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Abstract  

Virtual reality simulators are becoming increasingly popular in dental schools across the 

world. But to what extent do these systems reflect actual dental ability? Addressing this 

question of construct validity is a fundamental step that is necessary before these systems 

can be fully integrated into a dental school’s curriculum. In this study, we examined the 

sensitivity of the Simodont (a haptic virtual reality dental simulator) to differences in dental 

training experience. Two hundred and eighty-nine participants, with 1 (n = 92), 3 (n = 79), 4 

(n = 57) and 5 (n = 61) years of dental training, performed a series of tasks upon their first 

exposure to the simulator. We found statistically significant differences between novice (Year 

1) and experienced dental trainees (operationalised as 3 or more years of training), but no 

differences between performance of experienced trainees with varying levels of experience. 

This work represents a crucial first-step in understanding the value of haptic virtual reality 

simulators in dental education. 
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1 Introduction  

Virtual reality (VR) technology is becoming ubiquitous in dental training. The dental 

discipline has a substantial history of using simulation to facilitate the acquisition of the skills 

necessary for safe practice (1). Mannequin-based phantom head simulators with typodonts 

have long been considered as standard pedagogical tools in preclinical teaching (1). More 

recently, with advances in computing power, VR dental simulators are increasingly adopted 

to supplement and, potentially, replace traditional methods (2,3).  

A step-change in VR simulation has come from the integration of haptic technology into 

simulators, as these systems have the potential to provide several advantages over 

conventional approaches. Advantages include the ability to interact with virtual objects 

through realistic feel and touch (1,4,5). Haptic technology also provides students with the 

ability to feel the various tooth surfaces through force feedback mechanisms and distinguish 

between soft and hard tissues- potentially useful pedagogical information (2,3,6). These 

haptic systems also automatically produce kinematic data (performance production 

measures) that could be used for objective assessment of task performance - information 

that is not available in conventional training environments (7).  

Whilst there is obvious promise for haptic VR systems, a number of questions regarding 

the utility of these systems remain (8). Central to these issues is whether the systems relate 

to real world dentistry as training on these systems needs to ultimately translate to the clinic 

(9,10). Thus, it is incumbent on the dental education profession to be able to establish the 

construct validity of a system (11,12) before it is fully integrated into a dental school’s 

curriculum. Indeed, this issue has recently been identified as a research priority for 

healthcare simulation (13–15).  

The Simodont (MOOG, Nieuw-Vennep, Netherlands) is one such current state-of-the-art 

haptic VR simulator. This system has clear face validity: it provides a virtual environment to 
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practice various dental skills in a 3D oral cavity using virtual teeth, virtual burs and hand 

instruments. The system also produces convincing visual and auditory effects during 

performance (e.g. the sound of the hand piece) to enhance the simulation experience and 

make it more “realistic”(16,17). However, its construct validity - the ability to which it captures 

the ability and traits it was designed for (11), has not yet been established. To this end, we 

examined the construct validity of the Simodont using participants with no previous exposure 

to the simulator to control for a potentially confounding factor of practice effects. We 

operationalized construct validity as the ability to be able to differentiate between different 

levels of real-world dental experience.  
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2 Materials and methods 

2.1 Participants 

Undergraduate dental students (N = 377) enrolled on the dentistry programme at the 

School of Dentistry at the University of Leeds attended an induction training session on the 

Simodont. Data were recorded for Years 1 (n = 92), 3 (n = 79), 4 (n = 57) and 5 (n = 61), and 

retrieved retrospectively and anonymised (Year 2 data were not recorded; final sample size 

of 289). The study was approved by the ethics committees based in the School of Dentistry 

and School of Psychology at the University of Leeds, United Kingdom.  

2.2 Simodont 

The Simodont is a virtual reality dental simulator that consists of a panel PC user 

interface, 3D display, haptic display, and foot pedal. The haptic display includes a drill 

gimbal, hand support, space mouse and mirror gimbal. A realistic experience of the true 

clinical dental environment is simulated through the visual and audio rendering. This 

includes a true size display of the instrument and tooth rendered on the 3D screen. The 

Simodont ‘courseware’ software (developed by the Academic Centre for Dentistry 

Amsterdam (ACTA), Amsterdam, Netherlands) provides multiple procedures such as manual 

dexterity exercises with instant evaluation, operative procedures and crown and bridge 

preparations for students to practise (22). 

2.3 Procedure 

As part of induction training on the Simodont, students were provided with an instruction 

sheet and verbal instructions from a tutor on how to turn on the system, log in and select 

tasks. Students were asked to adjust the height of the chair and the unit to a position that felt 

comfortable and wear stereoscopic spectacles. Participants were given an opportunity to ask 
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any questions at any point during the training. Students were then provided with six manual 

dexterity exercises (displayed on the screen) from which the task–relevant instruments were 

then selected. 

All participants engaged in a manual dexterity exercise, which approximated the basic 

requirements of most dental procedures. The task involved the use of a dental hand piece to 

remove a target “red zone”, presented as a cross-shape in the middle of a block, whilst 

attempting to minimise removal of leeway zones (the “safe” outer areas of the block) as 

much as possible (see 

Figure 1 for further details).  

 

Figure 1. (A) Schematic drawing of one of the abstract shapes available in the manual 
dexterity training section of the Simodont courseware. (B) Cross-section of an exercise 

illustrating the location of a Target, the area of the Leeway (sides and bottom) and Container 

(sides and bottom).  
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Real-time feedback on performance was presented on a computer monitor attached to 

the device throughout the task. The feedback information included a percentage score for 

each of the following: target (task completion percentage), error scores (leeway bottom, 

leeway sides, container bottom and container sides), and drill time (in seconds). Participants 

were instructed that the aim of the task was to remove a minimum of sixty percent of the red 

zone without touching the beige zone. Once this had been achieved, the students could stop 

drilling and end the task. The students were free to take as many attempts as they felt 

necessary to reach the target score. Only the best performance (target > 60%, not touching 

the container zone with the shortest time to perform the task) for each participant was used 

for data analysis.  

2.4 Data Analysis 

For statistical analysis, we measured performance on four outcome variables: Time (in 

seconds), Leeway Bottom, Leeway Sides (quantified as percentages) and finally, a 

Composite Score that captured speed-accuracy trade-offs in performance. The composite 

measure was calculated by multiplying the log of the sum of the leeway errors (sides + 

bottom) by the log of the amount of time taken to complete the task- so that lower scores 

indicate better performance. All variables were tested for normality to ensure the data met 

requirements for valid analysis of variance (ANOVA). Where data were not-normally 

distributed, a transformation of the outcome variable was performed. When a significant 

difference of ANOVA (p < .05) was found between the groups, bonferroni corrected post hoc 

comparisons were performed. Partial eta squared values (ηp²) are reported to indicate effect 

size. ANOVAs were conducted using IBM SPSS version 20 (IBM, Armonk, NY) and the 

linear regression was performed using R version 3.1.3 (R Development Core Team, 2015). 
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3 Results 

A one-way ANOVA was conducted to compare student performance according to their 

year of progression for all outcome variables. We found a significant main effect of the year 

of study on the Composite Score [F(3,285) = 6.36, p < .001, 
2

p
η  = .06], Time [F(3,285) = 

7.08, p < .001, 
2

p
η = .07], Leeway Bottom [F(3,284) = 8.95, p < .001, 

2

p
η =.09], and Leeway 

Sides [F(3,284) = 7.51, p < .001, 
2

p
η  = .07]. For brevity, we describe only the statistically 

significant comparisons for each variable and plot the data in Figure 2. 

For the Composite Score, post hoc analysis revealed that Year 1 performance was 

reliably different to Year 4 (p = .05) and Year 5 (p < .001) and Year 3 was significantly 

different to Year 5 (p = .008). For Time, we found that Year 3 students took significantly 

longer to complete the task relative to Years (p <  .001). In our error measures, we found 

that for the Leeway Side variable, Year 1 performance was significantly different to Years 4 

(p = .006) and 5 (p < .001). Year 3 also made more Leeway Side drilling relative to Year 5 (p 

= .027). This pattern of results was similar in the Leeway Bottom variable, with Year 1 

making more drilling in this area relative to Years 4 (p = .001) and 5 (p < .001). In addition to 

this, Year 3 performance on this outcome variable compared to Year 5 approached the 

significance threshold (p = .056).  
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Figure 2. Performance measures a function of Training Year are plotted separately for (A) 
Leeway Sides; (B) Leeway Bottom, (C) Time; and (D) the Composite Score. Error bars 

represent 95% confidence intervals. 

 

Finally, we examined whether real-world dental experience could predict performance on 

this simulator. We used the Composite Score described above and regressed this value 

against Training Year (r = -.229, p < .001). We found that Training Year was a statistically 

significant predictor of performance, although it explained only a small amount of the 

variance in this measure (see Table 1). The regression analysis indicated that for every 1-

unit increase in Training Year, the performance on the Composite Score decreased by the 

unstandardized beta coefficient value of .519.  
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Table 1: Predicting VR Performance from Training Year 

Variable B SE β t Sig. Adjusted R2 

Constant 9.88 0.13  22.65 < .001  

Year -.519 0.04 -.229 3.99 < .001 .049 
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4 Discussion 

This study investigated the ability of the Simodont VR system to detect differences in 

motor performance between dental students with different levels of training experience. As 

far as we are aware, this is the first investigation on the validity of this virtual reality 

simulator. We found that Year 3, 4 and 5 students scored better than Year 1 in our 

composite measure of performance. The difference in performance between Years 3, 4 and 

5 was not significantly different, although the mean value grew linearly as dental experience 

increased. For the time taken to complete the task, a significant difference was only found 

between Year 1 and 3. Specifically, Year 3 took the longest time to complete the task, while 

Year 1 took the shortest time. Year 4 and 5 took less time to complete the task compared to 

Year 3. The overall scores and the task duration showed convergent validity. The 

performance of dental students improved as their level of experience increased. Likewise, 

the time taken to complete the task decreased as their level of experience increased- as 

shown by the differences between Years 3, 4 and 5. 

These data align well with the current understanding of the stages involved in motor skill 

acquisition (24). Early learning- which could last from minutes to months- is achieved by the 

students as they become able to produce movements using less motor planning or 

preparation time. This shift in the time-accuracy trade-off is a hallmark of motor skill learning, 

followed by subsequent automatization (skill learning)- which can occur at an execution level 

(through the formation of a new motor primitive) or at an intermediate level (allowing 

generation of novel behaviour, hierarchical chunking of actions, sequences and modular 

representation). The current data show that students take less time to perform a task, but 

are less accurate at the beginning of dental education. They then start to sacrifice time for 

accuracy (performing the task takes longer) as demonstrated by the Year 3 results, 

displaying a speed-accuracy trade-off. This is considered the first phase of learning whereby 

students try to understand the activity and concentrate on avoiding mistakes (18–21).  The 

time taken to perform the task decreases and accuracy improves as the students gain more 
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experience in years 4 and 5. This could be related to the middle phase of learning; gross 

mistakes decrease, performance appears smoother, and learners no longer need to 

concentrate as hard to perform at an acceptable level (18–21). This is in agreement with 

previous work which reports that performance improves with the amount of practice and is 

an index of expertise- whereas duration tends to decrease as the performer gains more 

experience (23,24). 

 Overall, these findings show that the Simodont is able to capture performance 

between novice and experienced dental students (such as between Year 1 and Year 4 or 

between year 1 and year 5), but not between performance of experienced trainees with 

varying levels of experience (e.g. comparisons between Year 1 and Year 3 or Year 3 and 

Year 4). It is however, unlikely that there is no real difference between these years as Year 4 

and Year 5 receive substantial clinical experience. Moreover, other studies have shown that, 

in terms of manual dexterity at least, there should be a clear difference between year groups 

(25). In future work, it may be useful to increase task demands and examine whether the 

Simodont is sensitive to this manipulation. For example, future studies could ask participants 

to obtain a higher percentage of target removal and/or lower error rates, introduce visual 

transformations such as mirror tasks or restrict the amount of time available to complete the 

task.  

       Previous studies have also attempted to capture motor performance using simulators 

(25,26), but have mainly concentrated on broader differences between experience (such as 

dental students, dentists and non-dentists), whereas our study aimed to capture finer 

differences in motor performance (between dental student year groups). This approach has 

allowed us to start the process of establishing the construct validity of the Simodont system.  

4.1 Conclusion 

In conclusion, the Simodont has shown sensitivity to performance differences between 

novice and experienced students. Thus, the Simodont has potential in stratifying different 
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levels of dental students’ performance (with the performance metrics that it automatically 

generates). The Simodont has shown convergent validity, suggesting it has good potential 

for measuring dental performance and educating students. Nevertheless, a variety of tasks 

of differing difficulty are likely to be required for fine graded discrimination (where easier 

tasks may have discriminatory ability at the novice end of the spectrum and vice versa). The 

present study suggests that research on this topic is highly justified and could lead to a step 

change in dental education practice.
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