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ABSTRACT 

Activity space, defined as “the local areas within which people move or travel during 

the course of their activities during a specified time period”, is a measure of an individual’s 

spatial behavior which captures individual and environmental differences and offers an 

alternative approach to studying the spatial reach of travelers. The shape and area of activity 

space is a product of how it is conceptualized and measured. This paper enlarges the set of 

geometries which can be used to describe activity space. It tests four parametric geometries 

(ellipse, superellipse, Cassini oval, and bean curve), which are identified as those capturing a 

specific share of all locations visited, i.e. 95%, while minimizing the area covered. They are 

estimated for a number of long-duration data sets while distinguishing between trip purposes. 

We present both a flexible, easily adaptable method for calculating activity spaces of 

different shapes and a qualitative comparison of the four above-mentioned shape types on the 

basis of the given surveys. We can thus demonstrate that the choice of an appropriate shape 

representing an individual’s activity space is highly dependent on the spatial distributions and 

frequencies of the locations visited by the person in the given time period. 
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INTRODUCTION 

Before Geographic Information Systems (GIS) were introduced, Euclidean measures 

like the standard deviational ellipse (SDE) and methods using place-based proxies for 

household locations (such as a zip-code centroid) were used to approximate the activity space 

of travelers, which is understood here as the area they have visited in person (see (1) for more 

details). However, most previous studies were restricted to samples of one- or two-day diaries 

because of the expense involved in data collection, especially in geocoding the addresses 

reported. With recent advances in GIS technology and through the increasing availability of 

spatially referenced data, activity space has become a more attractive tool for studying the 

spatial behavior of individuals. These same technological advances have enabled researchers 

to develop new measures of activity space that improve on the precision of the standard 

deviational ellipse and represent and analyze actual travel behavior more accurately. 

The purpose of the micro-geographical concept of activity space is to capture the 

structures of the observed location choices of the individual traveler. A two-dimensional 

(geometric) form covers the places visited by an individual over a period of time in a defined 

manner. Previously, the standard deviation ellipse (SDE), the two-dimensional generalization 

of the confidence interval, was the preferred method because it easy to calculate (see (1,2) for 

further approaches). However, the SDE imposes a specific geometric form, which might or 

might not reflect the underlying behavior or urban form. In addition, it captures the 

underlying variance and therefore suggests rather large areas. Furthermore, if the SDE is 

calculated with respect to the home location, it imposes symmetry around the home even if 

one half of the area covered is free of locations visited. Alternatives avoiding these issues 

would therefore be desirable. 

Schönfelder and Axhausen (2) suggested the shortest-path network or kernel-density-

derived measures as alternatives. These are appealing, but they have computational 

drawbacks. In addition, shortest-path networks require substantial additional data in the form 

of a complete navigation network for the study area. Kernel-density-derived measures 

correlate very highly with the number of observed trips and add little new information. 

Nevertheless, they are a good semi-parametric way to map activity locations. If one accepts a 

particular geometry and a unique criterion to determine the parameters of this geometry a 

priori, then any geometric form could be used to capture the observed destinations: a circle, a 

square, a triangle, etc. In this paper four geometries will be tested, each reflecting a particular 

hypothesis about the form of a human activity space (see also (3) for a first implementation): 

• the ellipse, which can capture an activity space with either one or two clusters 

of locations visited combined with a range of other locations outside these 

clusters. (One cluster can be captured because the ellipse can collapse to a 

circle); 

• the Cassini oval, which also captures two clusters, but without intermediate 

locations between the clusters; 

• the bean curve, which can accommodate three clusters, but is more flexible 

than a triangle; 

• the superellipse, which comprises a circle and an ellipse, but can address a 

situation with four clusters by including a diamond-like form. 

This paper presents a method for matching these geometries to observed activity 

locations. It was applied to five long-duration diaries or GPS observations. The method 

improved estimates of the size of human activity space and for the first time also provided 

insights into its structure. The paper focuses on the algorithmic implementation of the 

calculation of activity spaces of the above-defined shapes. Furthermore, it is our objective to 

separate the calculation of an activity space from its actual shape. 
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After a brief overview of the literature covering work from biology, geography, and 

planning, we shall present the algorithm implemented, separated into the optimization process 

and the activity shapes defined above. The final section describes the data sets and the 

estimation results. The paper concludes with suggestions for further research. 

OVERVIEW OF THE LITERATURE 

One of the first aggregate approaches to estimating an individual’s range of movement 

and contact was Hägerstrand’s Mean Information Field (4). Since Hägerstrand and his 

colleagues could not use longitudinal movement information which would have fulfilled the 

research requirements, they used local migration data to test the model. The concept was later 

applied to other data sources and in different contexts, interestingly also to one of the first 

longitudinal travel data sets ever, the Cedar Rapids movement study data (5, 6). 

Lynch’s work (7) was based on the assumption that the perception of space is a highly 

subjective process, which contrasts with the generalized representation of space in 

cartography. Motivated by Lynch’s interest in the relationship between the structures as well 

as in the quality of architecture and human perception, Lynch found out that the mental maps 

of individuals, i.e., the image which human beings develop about their (travel) environment, 

are 

• more or less biased; 

• are simplifications of the real world; 

• are group-specific; and 

• are composed of about five basic elements which have different meanings for 

the structure of urban space in different cities (paths, border lines, areas, foci, 

and landmarks). 

Mental maps mainly act as individualized cognitive support for spatial ordering and 

orientation. Mental maps and their formation may be captured only through indirect methods. 

Lynch used memory protocols and—as a main approach—map sketches by test persons. 

Inspired by Hägerstrand’s space-time paths (8), Lenntorp (9) developed the concept of 

space-time prisms. He operationalized Hägerstrand’s ideas about measuring individual 

accessibility based on the notion of a person’s reach. Space-time prisms define the possible 

locations for a space-time path with obligatory activities such as work fixing the shape of the 

prism by predefining the person’s location. 

Finally, the activity-space concept, which was developed in the 1960s and 1970s in 

parallel with several of the approaches presented above to describe individual perception, 

knowledge, and actual usage of space (see (10) for a discussion), is used to represent the 

space which contains the places frequented by an individual over a period of time. Activity 

spaces are (geometric) indicators of observed or actual daily travel patterns (see also (11) for 

more details). This is stressed here because related concepts such as action space, perceptual 

space, mental maps or space-time prisms mainly describe an individual’s travel potential. 

Activity spaces are subject to fundamental geographical principles such as distance 

decay and directional bias, which implies that the probability of (regular) contact with a 

location usually decreases with its distance from the peg(s) of daily life (particularly home) 

and the necessary deviation from the main orientation or direction of daily travel. The latter 

refers to preferences for a particular place over other places of equal or similar distance due to 

some perceived quality of the preferred place (12). 

Newsome, Walcott and Smith (13) presented the use of ellipses to portray activity 

spaces and offered one example of how the ellipse construct can be used to analyze urban 

travel characteristics, based on observed trip-making behavior and socio-economic variables 

resulting in the importance of home location and household size for determining elliptic 

activity-space characteristics. 
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THE ACTIVITY-SPACE CALCULATION ALGORITHM 

The algorithm presented in this paper is an element of the (MATSim-T) multi-agent 

transportation simulation toolkit (14). The toolkit is based on a well-defined database 

describing a given scenario which consists of spatial data, transportation networks, survey 

information, and detailed descriptions of each individual active in the scenario (see Figure 1). 

Each optional element reads the defined XML (eXtensible Markup Language) data, stores it 

in an appropriate data structure, and writes it again in an enriched, reduced, or even 

unchanged form in the XML-data format. The person data structure is based on the MATSim-

T daily schedule DTD (in MATSim-T called a plans-DTD) and is used as a working file to 

enrich a person’s description, her or his personal knowledge of the scenario, and what she or 

he plans to do. In the minimum version the file holds only the identity number (ID) of all 

persons modeled. However, it is possible to add a large amount of information about each 

person to the file, such as age, sex, car ownership, home, work, other locations visited by the 

individual, etc. One part of the data structure actually defines personal activity spaces. These 

data points will be calculated by the activity-space calculation algorithm. Algorithms such as 

the one described in this paper can be added to each package to verify, manipulate, add, or 

delete data items according to the purpose of the algorithm. The flexible use of MATSim-T 

allows one to add other types of activity spaces than the ones implemented in here. Providing 

MATSim-T with the activity-space calculation algorithm allows one to use the result to 

analyze various behavioral characteristics of individuals for a given survey. 

The simplex optimization technique 

The Nelder-Mead simplex optimization technique (15) is an algorithm for finding the 

local minimum of a function of several variables. For two variables, a simplex is a triangle, 

starting with three two-dimensional points. These three points correspond to the three vertices 

of a triangle and constitute the first simplex. The method is a pattern search that compares 

function values at the three vertices of the triangle. The worst vertex, where f(x,y) is largest, is 

rejected and replaced with a new vertex. A new triangle is formed and the search is continued 

(see Figure 2). The process generates a sequence of triangles for which the function values at 

the vertices get smaller and smaller. The size of the triangles is reduced and the coordinates of 

the minimum point are found. Similarly, for a three-dimensional space, four initial 

observations are required, thus defining a tetrahedral body. In general, for a function of n 

variables, the algorithm maintains a set of n + 1 points forming the vertices of a simplex in n-

dimensional space. This simplex is successively updated at each iteration by discarding the 

vertex with the highest function value and replacing it with a new vertex that has a lower 

function value. Here is a brief outline of the steps involved in two-dimensional simplex 

optimization, following Mathews and Fink (16). 

Initial triangle BGW 

Let the function to be minimized be f(x,y). Since it is a two-variable function, we are 

dealing with two-dimensional parameter space and hence require three initial observations to 

serve as the three vertices of the triangle constituting the first simplex. Let these vertices be 

given by Vk = (xk,yk), k = 1,2,3. The function f(x,y) is then evaluated at each of the three 

points: zk = f(xk,yk) for k = 1,2,3. The points are then sorted according to the calculated 

response as the best, the next best, and the worst. We use the notation 

),(),,(),( 33221,1 yxWyxGyxB === , 

where B is the best, G is the next to best, and W is the worst vertex (see Figure 2b). 

Midpoint of the good side 

The next step involves calculating the midpoint of the line segment joining B and G. It 

is found by averaging the coordinates as 
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( )
1 2 1 2,

2 2 2

B G x x y y
M

+ + +⎛ ⎞= = ⎜ ⎟
⎝ ⎠ . 

Reflection using the test-point R 

The function f(x,y) decreases as we move along the side of the triangle from W to 

either of the points B and G, implying that function takes on smaller values at points located 

away from W on the opposite side of the line between B and G. A test-point R is chosen by 

“reflecting” the triangle through edge BG. In order to determine R, the midpoint of edge BG is 

calculated first. Then a line segment is drawn from W to M. Let its length be d. This line 

segment is extended a distance d through M to locate the point R. The vector formula of R is 

( ) WMWMMR −=−+= 2 . 

Expansion using the point E 

If the value of the function calculated at R is smaller than that at W, it signifies that we 

have moved in the correct direction towards the minimum. However, since this is not the 

minimal point, we can try to achieve a better approximation of it by extending the line 

segment through M and R to the point E (see Figure 2b), forming an extended triangle BGE. 

The point E is found in the same manner as R by moving an additional distance d along the 

line joining M and R. If the value of the function is lower than that at R, it implies that E is a 

better vertex than R. The vector formula of E is given by 

( ) MRMRRE −=−+= 2 . 

Contraction using the point C 

If the initial reflection fails, i.e., if the calculated value of the function at R is higher 

than that at W or if R is not within the accepted limits of the parameters, then a contraction is 

needed. A point C, called the “contracted point”, is found by calculating the midpoint of the 

line segment joining W and M. In this case, the point C replaces W in the simplex. However, if 

the function value at C is not lower than that at W, the points G and W must be shrunk 

towards B. The point G is replaced with M, and W is replaced with S, which is the midpoint of 

the line segment joining B with W (see Figure 2c). 

Therefore, at the end of every iteration step, we generate a new simplex with a set of 

three points (n + 1 points for n-dimensional simplex optimization). The process is repeated 

until we approach the optimum value or until the improvement of the response becomes 

insignificant between successive iterations. 

Using simplex optimization to calculate activity spaces 

The simplex-optimization algorithm described above can be used to find activity 

spaces of a specified shape such that the captured area will be minimized. Furthermore, we 

want to predefine a certain percentage of the given geocoded locations which the resulting 

activity space should cover. It is therefore crucial to define which parameters must be preset 

by the user, which ones define the parameter space in which the simplex algorithm optimizes, 

and—last but not least—we need to define the objective function which has to be minimized. 

The input parameters that must be predefined by the user are: 

• the type of the activity space to be minimized (ellipse, superellipse, Cassini 

oval or bean curve); 

• the type of locations chosen for calculating the activity space (here we have 

used “home”, “work”, “education”, “shop”, “leisure”, and also the category 

“all”, which defines the activity space to include all given locations); 

• the minimum coverage (cover = [0.0,1.0]) to define the percentage of locations 

which must be covered by the resulting activity space; 
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• the step size for angle θ, which defines the rotation of the shape based on the 

Euclidean coordinate system. The smaller the step size, the more precisely the 

resulting activity space will fit the global minimum. 

Note that the angle θ could, in principal, be part of the simplex parameter space. 

However, during our research, we have discovered that the search space including θ leads to 

problems in the optimization technique. In other words, the solution space is distorted towards 

the direction of θ, which greatly diminishes the performance of the simplex algorithm. 

The objective function f(x1,x2,…,xn) calculates the captured area of the given activity 

space defined by its parameters x1,x2,…,xn. For all four activity spaces discussed in this paper 

we have used the objective parameters x0 and y0 to define the center of the activity space in 

the given Euclidean coordinate system. The horizontal and vertical extensions (a and b) are 

also part of the search space. But since we have already set the coverage cover, we are able to 

reduce the search space by one dimension: instead of calculating f(x0,x1,a,b,…,xn), we reduce 

the search space so that it includes only activity spaces within the predefined cover value. 

Therefore, we substitute a and b by the ratio ratio = b/a and let the objective function 

calculate a and b so that it fulfills ratio = b/a and covers the defined amount of locations 

(preset by the cover parameter). As a result, the search space of the simplex algorithm is 

defined by the coordinates x0 and y0, the ratio and, depending on the given shape of the 

activity space, additional parameters. 

The objective function f(x0,x1,a,b,…,xn) is therefore replaced by f(x0,x1,ratio,…,xn). In 

the objective function, the actual extends of a and b will be calculated via the bisection 

method. A detailed description of the search space of each evaluated shape is described in the 

next section. 

Geometries implemented 

As discussed above, the geometries chosen impose a parametric form on the activity 

space. Although these geometries are an abstract representation of travelers’ activity spaces, 

they actually allow for the construction of a more comprehensive and realistic picture of 

travel behavior than has previously been provided. They provide an understandable graphical 

representation of a combination of elusive concepts, and they provide several appropriate 

measures of quantification and comparability to allow the further analysis of activity spaces. 

This section presents the mathematical definition of the geometries (see Figure 3 for their 

graphical representations). 

The ellipse 

An ellipse is defined as the locus of points P, such that the sum of the distances from 

P to two fixed points F1 and F2 (called foci) is constant. That is, distances PF1 and PF2 are 

equal to 2a, where a is a positive constant. An ellipse centered at the origin of an Euclidian 

coordinate system with its major axis along the abscissa is defined by the equation of the 

elliptical object: 

1

22

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

b

y

a

x

. 

The same ellipse is also represented by the parametric equations 
cos ; sinx a t y b t= = , 

where t = [0,2π]. 
If the ellipse is not centered at the origin of the Euclidian coordinate system it may be 

defined as 

1
00

22

=⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛ −

b
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a
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, 
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where (x0,y0) is the center. 

The parametric form of an ellipse centered at (x0,y0) and rotated through an angle θ is 

given by 

0cossinsincos,0sinsincoscos ytbtayxtbtax ++=+−= θθθθ . 

The area of an ellipse is given by 
baA ××= π . 

In order to produce an ellipse covering 95% of the activity locations, the following 

four parameters are used: 

• the x-coordinate of the center of the ellipse (x0); 

• the y-coordinate of the center of the ellipse (y0); 

• the orientation of the major axis of the ellipse (θ); and  

• the ratio (ratio) of the length of the semi-minor axis (b) to the length of the 

semi-major axis (a) of the ellipse. 

Superellipse 

A superellipse (Lamé curve), centered at origin, is defined in the Cartesian coordinate 

system as the set of points satisfying the equation 

1=+
rr

b

y

a

x

, 

where r > 0 and a and b are the radii of the oval shape. The case r = 2 yields an 

ordinary ellipse; r values less than 2 result in hyperellipses with pointed corners in the x and y 

directions resembling crosses; r values greater than 2 yield hyperellipses which increasingly 

resemble rectangles. 

The superellipse may be described parametrically as  

tbytax rr /2/2 sin,cos == . 

Its center (x0,y0) is given by 

1
00

=
−

+
− rr

b

yy

a

xx

, 

with the parametric equations 

0sin,0cos /2/2 ytbyxtax rr +=+= . 

A superellipse with its center at (x0,y0) and an orientation of θ with the x-axis is 

defined parametrically as 

0cossinsincos,0sinsincoscos /2/2/2/2 ytbtayxtbtax rrrr ++=+−= θθθθ . 

The area of the superellipse is given by 

( )
( )r

rab
A

r

/12/1

/11*4 /11

+Γ
+Γ

=
− π

, 

where Γ  is the gamma function. 

To construct an optimal superellipse, the following parameters must be calculated: 

• the x-coordinate of the center of the superellipse (x0); 

• the y-coordinate of the center of the superellipse (y0); 

• the orientation of the major axis of the superellipse (θ); 
• the ratio (ratio) of the length of the semi-minor axis (b) to the length of the 

semi-major axis (a) of the superellipse; and 

• the exponent r. 
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The exponent r determines whether a superellipse will look like a diamond 

(0 < r < 1),a rectangle (r = 1), or more like an ellipse (r > 1). In this paper we are interested in 

diamond shapes; therefore, we shall reduce the search space of the simplex algorithm to 

values of r between zero and one. 

The Cassini oval 

A Cassini oval is defined as a locus of a point such that the product of its distances 

from two fixed points at a distance of 2a apart is a constant b
2
.It can be expressed as 

( )( ) ( )( ) 42222
byaxyax =+++− .

 

The parametric form of the above curve is 

2424
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The parametric equation of a Cassini oval at an angle θ and centered at (x0,y0) is 

4 2 4 2
sin2 sin2

cos( ) cos2 0; sin( ) cos2 0
b t b t

x a t t x y a t t y
a a a a

θ θ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + − + = + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ . 

The area of the curve is given by 

( ) ( ) θθθθ d
a

b
adrA

⎥
⎥
⎦

⎤

⎢
⎢
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⎡
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⎠
⎞

⎜
⎝
⎛±== ∫

Π

Π−

2sin2cos
2

1 2

44/

4/

22

. 

The shape of the oval depends on the ratio b/a. When b/a is greater than 1, the locus is 

a single, connected loop. When b/a is less than 1, the locus comprises two separate parts, as 

shown in Figure 3. When b/a is equal to 1, the locus is a lemniscates. Since the situation b/a is 

less than 1 is not relevant to our purpose, it was excluded by constraining b/a to be greater 

than 1 throughout the optimization process. 

For the Cassini oval, the optimization process is determined by the following four 

parameters: 

• the x-coordinate of the center of the Cassini oval (x0); 

• the y-coordinate of the center of the Cassini oval (y0); 

• the orientation of the major axis of the Cassini oval (θ); and 

• the ratio (ratio) of the length of the semi-minor axis (b) to the length of the 

semi-major axis (a) of the Cassini oval. 

The bean curve 

The standard unit bean curve, situated in the first and fourth quadrants, with its origin 

at one end and the horizontal axis of unit length oriented along the abscissa, is given by the 

equation 

( )224224 yxxyyxx +=++ . 

The parametric form of the bean curve is 

2

sin31coscos
sin,sin

22
2 θθθθθ ++

== yx
. 

The area of the bean curve is given by  

( )
1

0

2 1 1 (2 3 ) ~ 1.058049* *A x x x x dx a b a b= − + + − ⋅ ⋅∫
. 
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The optimization process is performed in a four-parameter space consisting of the 

following: 

• the x-coordinate of the center of the bean (x0); 

• the y-coordinate of the center of the bean (y0); 

• the orientation of the major axis of the bean (θ); and 

• the ratio (ratio), where a and b are the multiples by which the standard unit 

bean curve is stretched in the horizontal and vertical directions. 

RESULTS AND DISCUSSION 

Data sources  

In the past, transport planners collected short-duration, generally one-day diaries 

because of the cost and effort required for long-duration studies. However, with the 

availability of the GPS-based tracking system and increased interest in studying travel 

behavior, a number of long-duration surveys and observational studies have become available. 

The data sets employed here are the Uppsala five-week diary (17), the Mobidrive six-

week diary (18), the ISA Rättfart GPS observational study (19, 20), the SVI Stabilität six-

week diary (21), and the AKTA GPS observational study (22). 

The Uppsala survey was conducted in the city of Uppsala, Sweden, located 

approximately 70 km northwest of Stockholm, in the year 1971. A random sample of 20% of 

the population was drawn. The final sample size was 278 households with 488 persons, of 

which 92 households were chosen for further analysis. The addresses of all trips were 

geocoded by hand. 

The Mobidrive survey, conducted over six years in the German cities of Halle/Saale 

and Karlsruhe in 1999, involved a total of 317 persons in 139 households. The trip destination 

addresses of all main study trips were geocoded, whereby the geocoding was positive for 

more than 98% of the trips. Small street blocks were used as the basis for geocoding the street 

addresses in Karlsruhe and Halle. However, addresses outside the urban areas were geocoded 

only on the basis of the centroid of the municipality. 

The ISA Rättfart GPS study, carried out in the town of Borlänge in central Sweden, 

consists of movement information for vehicles which was collected fully automatically for up 

to two years. The vehicles were equipped with an on-board data-collection system consisting 

of a GPS receiver, a data-storage device running a GIS to map all movements, and a mobile 

power supply. The study was conducted from 1999 to 2002, involving more than 200 private 

and commercial cars equipped for periods of up to two years each. 

The SVI Stabilität survey was performed in the Swiss canton of Thurgau in 2003, 

covering a six-week reporting period involving 99 households and 230 persons. Nearly all 

destination addresses and household locations could be geocoded with great precision. 

In the AKTA study, carried out in the greater Copenhagen area of Denmark, 

approximately 400 cars were equipped with a GPS-based device during two 8 to 10-week 

periods in 2001 and 2002. Vehicle-movement data was collected every second. A telephone-

based before-and-after survey, which consisted of attitude questions, accompanied the GPS-

monitoring process. The available sample involved 50 vehicles and persons with 44 to 135 

reported days and 125 to 1044 reported trips each. A trip was defined as beginning when the 

first satellite signal was received and ending when the engine was switched off. The locations 

visited were identified by a simple clustering technique which grouped adjacent trip ends into 

clusters using the SAS Fastclus procedure (23). 

Setup 

For all the surveys given above we have calculated a 95% coverage of activity spaces 

(cover = 0.95). It should be noted that it is generally not possible to obtain exactly the given 
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coverage because the number of locations excluded are discrete numbers. Therefore, the 

algorithm has calculated the lowest possible coverage above 0.95. 

The frequency of visits to each location in the above studies is known. We used this as 

the weight of the location simply by multiplying the location by the frequency of visits. Thus, 

locations which were visited often are typically part of the calculated activity space. 

We assigned an orientation step size of θ by θstep = 22.5°. This was a good trade-off 

between computation time and the accuracy of the resulting activity space. 

Results 

Before discussing the results for all of the samples, a set of example results will be 

discussed and mapped. Figure 4 depicts the different optimal geometries covering 95% of the 

shopping locations visited by a respondent drawn from the “SVI Stabilität” study. The person 

reported 218 trips, sorted by the following activity types: 

• 44 leisure activities at 24 unique leisure locations; 

• 77 work activities at 11 unique work locations; 

• 84 home activities at 1 unique home location; 

• 12 shopping activities at 10 unique shop locations; and 

• 1 education activity at 1 unique education location. 

The point to be noted here is that the superellipse produced is not the most optimal one 

possible. This is due to the limited number of angles which were tested during the 

optimization process (see above). A smaller step size for angles could be adopted for higher 

accuracy, but at the cost of increased computation time. 

Figure 5 shows the optimal bean curves for all locations as well as for the four 

activity-purpose subsets. The bean curve covering 95% of all activity locations is smaller than 

that for leisure activities, because there are peripheral and rarely-visited leisure locations.  

The optimal parameters were defined for all of the proposed geometries and all five 

data sets (Table 1). In addition, the best, i.e., smallest, of the four geometries was determined 

for each respondent. All distributions are highly skewed to the left with substantially smaller 

medians than means. The large coefficients of variation underline this variance, while the 

mean and median of the best geometry (meaning that we counted the best activity-space type 

for each single individual) is much smaller than any of the other distributions. Therefore, none 

of the given geometries is appropriate for all respondents. The Cassini oval fits in about two 

of three cases, but not always. This indicates that the Cassini oval best reflects the typical 

pattern of two dominant clusters of activity (1): mostly home, work, and education, but also 

frequently a leisure-oriented cluster. The bean curve captures a pattern with three clusters in 

less than 10% of the cases. 

If we compare the number of occurrences of a specific ratio of one of the given 

activity spaces, as shown in Figure 6, there are several notable aspects: 

1. In the ellipse, superellipse, and bean-curve histograms, there is a high amount of ratio 

(b/a) almost equal to zero. There are artifacts created by calculating activity spaces for 

one or two geocoded locations. Since those activity spaces do not have any use, we do 

not consider them in the analysis. 

2. The ratio histogram of the ellipse shows a more or less normal distribution with the 

mean of ratio b/a equal to 1. In other words, many resulting ellipse activity spaces 

capture an area similar to a circle. With the information given in table 1, we already 

know that there are many exceptions in which the ellipse type does not cover an 

appropriate area while other shapes minimize the space better. 

3. Similar conclusions can be drawn about the superellipse. While the ratio is normally 

distributed around b/a = 1, the exponent (r) is either very small (which forms a very 
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spiky-shaped diamond) or almost 1 (diamond-shaped). Since the results in Table 1 

show that the superellipse does not capture an appropriate activity space compared to 

the other shapes, it is no improvement on the ellipse shape. 

4. By contrast, the Cassini oval delivered very promising output. Most parts of the 

shapes are lemniscates. The others tend to form a circle. This indicates that the Cassini 

oval nicely captures location sets which are concentrated at two spatial regions. The 

ellipse and the superellipse fail in such cases. The Cassini oval—per definition—

consumes a small amount of space compared to the ellipse. Therefore, it is not 

surprising that the Cassini oval has a high frequency of being the best solution. 

5. Last but not least, there is also a promising histogram for the bean curve. Since its 

shape is the most flexible of the four ones tested, we could capture locations sets with 

two groups (b/a < 1) as well as with three groups (b/a > 1). Circle-like activity spaces 

could also be captured (b/a ~ 1). Two-group location sets are captured better by the 

Cassini oval, but the bean curve is better trimmed than the ellipse. 

SUMMARY AND OUTLOOK 

In this paper we have presented a generic activity-space calculation module embedded 

in the MATSim-T project. It has the flexibility to produce an appropriate activity-space 

representation for a given location set. The module can be varied according to the type of 

shape of the activity space, the type of location to be covered by the activity space, and the 

percentage of locations which the activity space should cover. The module can be used in 

MATSim-T to enrich the person description of the MATSim-DataBase. Therefore, it provides 

a clean interface for analyzing or answering spatial-behavior questions of almost any kind. 

The results in the previous section show that none of the defined types of shape for an 

activity space is always the best activity space representation for all individuals. It highly 

depends on the spatial distribution and frequency of visits to the locations by the person. The 

Cassini oval typically best fits individuals with two clusters of locations (e.g., a daily 

commuter), while the bean curve would, for example, be a good activity space for describing 

weekly commuters (with a work location, a weekday home location, and a weekend home 

location cluster). The results also clearly show that the—often used—ellipse seldom produces 

a good representation of an activity space. Actually, it is only useful if the visited locations 

are spread out more or less randomly. That is why in such cases the ellipse shape is close to a 

circle.  

It would be desirable to test other, more enhanced shapes (i.e., a combination of the 

Cassini oval and the bean curve), since all of the tested shapes had their limitations. We may 

want to implement shapes which are less specialized and are able to define activity space 

much more efficiently and accurately. 

The underlying simplex algorithm fulfills its purpose only partially. It is dissatisfying 

to preset the orientation of the shape stepwise and then pick the best solution. Some tests that 

involved adding the orientation into the search space clearly showed that the simplex 

algorithm could get stuck at a local optimum. To gain more flexibility (and computational 

speed), it is necessary to replace the simplex algorithm by a more stable optimization model 

which can handle more complex search spaces. Evolutionary strategies like the covariance 

matrix adaptation (CMA) used in (10) are fairly good approaches. 

It would be interesting to discover what factors influence the activity space sizes of 

different individuals. A detailed statistical analysis needs to be performed to see if socio-

demographic variables affect individual travel behavior and thus individual activity space. 

The empirical results reported in this paper suggest that the activity-space concept has 

the potential of becoming a more widely-used tool for studying spatial access, transport 

policy, and planning and can be used to understand urban travel behavior. It can be used to 
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evaluate present and future urban structure and accordingly come up with solutions to satisfy 

the activity demand in a household’s neighborhood, resulting in reduced travel expenses, 

congestion, and emissions. With the growing recognition of the need for long-duration data 

sets, future analyses will lead to improved understanding of urban travel behavior and thus 

more accurate forecasts and enhanced policy analyses. 
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FIGURE 1: Schematic overview of MATSim-T 
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FIGURE 2: Steps of the Nelder-Mead simplex algorithm 
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FIGURE 3: Geometries tested 
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FIGURE 4: Example of optimal geometries for the shopping (plus home) locations 
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FIGURE 5: Example of 95% coverage of activity spaces by weighted purpose (bean 

curves) 
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FIGURE 6: Occurrence distributions of ratio (b/a) for the four shapes 
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Uppsala diary Cassini Ellipse Bean curve Superellipse Best geometry

Mean 115.71 197.80 145.40 200.55 92.93

Median 9.04 16.10 13.70 18.40 8.96

Standard deviation 354.80 652.46 508.67 674.88 326.45

Frequency of being the best solution 113 7 10 14 144

   

Mobidrive diary, Halle / Karlsruhe Cassini Ellipse Bean curve Superellipse Best geometry

Mean 384.74 629.12 597.88 558.71 333.63

Median 42.30 71.50 66.70 76.90 37.60

Standard deviation 1909.28 3175.02 3166.75 2846.46 1665.40

Frequency of being the best solution 257 16 20 24 317

   

ISA Rättfart GPS study, Borlänge Cassini Ellipse Bean curve Superellipse Best geometry

Mean 102.10 141.20 165.43 147.98 88.79

Median 65.60 110.00 102.00 112.00 65.60

Standard deviation 128.44 110.23 214.70 126.55 92.48

Frequency of being the best solution 53 1 5 7 66

   

SVI Stabilität survey, Thurgau Cassini Ellipse Bean curve Superellipse Best geometry

Mean 1845.99 2819.77 2509.13 3419.68 1724.84

Median 347 598 460 637 319

Standard deviation 3893.65 6123.99 8087.50 3667.79 3219.41

Frequency of being the best solution 177 14 26 13 230

   

AKTA study, Copenhagen Cassini Ellipse Bean curve Superellipse Best geometry

Mean 3322.98 4111.08 5013.48 4869.48 2603.34

Median 246.00 426.00 366.00 491.00 241.00

Standard deviation 7520.15 10729.63 11684.94 13688.16 6314.43

Frequency of being the best solution 146 26 17 12 201

 

 

TABLE 1: Optimal geometries for all locations: Summary of the results 

 


