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Abstract

In recent years, lattice Boltzmann methods have been increasingly used to simulate rarefied gas

flows in micro- and nano-scale devices. This is partly due to the fact that the method is compu-

tationally efficient, particularly when compared to solution techniques like the direct simulation

Monte Carlo approach. However, lattice Boltzmann models developed for rarefied gas flows have

difficulty in capturing the nonlinear relationship between the shear stress and strain rate within

the Knudsen layer. As a consequence, these models are equivalent to slip-flow solutions of the

Navier-Stokes equations.

In this paper, we propose an effective mean free path to address the Knudsen layer effect, so that

the capabilities of lattice Boltzmann methods can be extended beyond the slip-flow regime. The

model has been applied to rarefied shear-driven and pressure-driven flows between parallel plates at

Knudsen numbers between 0.01 and 1. Our results show that the proposed approach significantly

improves the near-wall accuracy of the lattice Boltzmann method and provides a computationally

economic solution technique over a wide range of Knudsen numbers.
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I. INTRODUCTION

Microsystems have developed rapidly since the concepts of ‘lab-on-a-chip’ and ‘micro-

Total-Analysis-Systems’ were first introduced in the early 1990s. The benefits of miniatur-

ization include increased chemical yields, lower reagent consumption, enhanced sensitivity,

and reduced processing time. More importantly, miniaturization may offer enhanced func-

tionality that cannot be achieved in conventional macro-scale devices. Recently, increasing

numbers of miniaturized devices have been developed that require an understanding of

the fundamental physics associated with rarefied gas flows in the slip- and transition-flow

regimes. However, predicting such flows presents a significant modeling challenge due to the

fact that gas microflows experience a range of non-equilibrium phenomena under standard

operating conditions including velocity slip and temperature jump at solid boundaries, and a

nonlinear stress/strain relationship within the Knudsen layer. Previously, these phenomena

have only been encountered in macro-scale flows under extreme conditions [1].

Despite the major advances in microsystems technology, the current lack of fundamental

understanding of micro- and nano-scale gas flows is hindering the systematic design of new

miniaturized devices [2]. The Navier-Stokes equations with no-slip boundary conditions

often fail to explain important experimental observations, e.g. that the measured flow rate

is higher than expected while the drag and friction factor are lower than expected [3].

This is because the Navier-Stokes equations can only describe flows that are close to local

thermodynamic equilibrium. When the mean free path of the gas molecules approaches

the length scale of the device, the flow lacks scale separation and is unable to achieve local

equilibrium [4]. The critical parameter is the Knudsen number, Kn = l/H, where l is the

mean free path of the gas molecules and H is the characteristic length scale of the flow

system. The Navier-Stokes equations with no-slip boundary conditions are only appropriate

when Kn < 0.001. However, gas flows in miniaturized devices are often in the slip regime

(0.001 < Kn < 0.1) or the transition regime (0.1 < Kn < 10). In these regimes, the gas

can no longer be described as a continuous quasi-equilibrium fluid nor as a free molecular

flow [5]. In practice, most devices will operate over a range of Knudsen numbers in different

parts of the device; this makes it even more difficult to develop a general flow model.

The direct simulation Monte Carlo (DSMC) method (a statistical molecular dynamics

approach) can successfully simulate high-speed transition flows [6]. In contrast, the flows
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encountered in micro- and nano-scale systems typically involve low Mach numbers and low

Knudsen numbers. Under these conditions, the DSMC approach is not computationally

efficient due to the requirement to perform large amounts of data sampling in order to re-

duce the statistical scatter in the predicted flow fields. This makes current DSMC methods

unsuitable for low speed, low Knudsen number flows [7]. Similar problems occur in hybrid

DSMC/Navier-Stokes solvers for mixed-density flows [8] and direct solutions of the Boltz-

mann equation [9]. Significant effort has been made to extend the validity of continuum-

based equations and develop higher-order equation sets, such as Grad’s 13 moment method

and the Burnett equations. However, these methods have generally failed to produce sat-

isfactory results for low-speed flows in the transition regime, although significant progress

has been made in coupling the Navier-Stokes equations with the BGK model [10]. The

development of the Information Preservation (IP) method for DSMC [11, 12] appears to be

a promising approach while Baker and Hadjiconstantinou [13] and Chun and Koch [14] have

recently demonstrated that the statistical scatter associated with Monte Carlo methods can

be reduced by considering only the deviation from equilibrium. However, there is currently

no comprehensive and computationally efficient model that can simulate both low-speed and

low Knudsen number gas flows for 0.1 ≤ Kn ≤ 1.

The lattice Boltzmann method offers an attractive technique for micro- and nano-scale flu-

idic applications where the microscopic and macroscopic behavior are coupled. The method

retains a computational efficiency comparable to Navier-Stokes solvers but is potentially a

more accurate model for gas flows, over a broad range of Knudsen numbers, because its

origins lie in kinetic theory. Since Nie et al. [15] and Lim et al. [16] first applied the lattice

Boltzmann method to simulate rarefied gas flows, many publications have emerged which

demonstrate that velocity slip and temperature jump phenomena can be captured by the

lattice Boltzmann equation (LBE) approach [17–26]. However, the foregoing work focused

on developing new boundary conditions for the velocity slip and temperature jump rather

than constructing new LBE models that conserve symmetry for the higher-order moments

(an essential requirement to obtain quantitative results for high Knudsen number flows).

Consequently, these lattice Boltzmann models are still working within the Navier-Stokes

slip-flow regime and are therefore restricted to very low Knudsen numbers i.e. Kn ≤ 0.1.

In other words, these models fail to capture the flow characteristics in the Knudsen layer

where the Navier-Stokes equations are not valid. However, Sbragaglia and Succi [27] have
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FIG. 1: Schematic diagram showing the microscopic slip (uslip) and macroscopic slip (us) for

Kramers’ problem [30]. Actual velocity profile (—) and velocity profile predicted using Navier-

Stokes and LBE models (– –) within the Knudsen layer.

recently argued that the LBE method should be able to provide a reasonable description of

rarefied gas flows beyond the hydrodynamic slip-flow limit and up to Kn ∼ O(1).

One of the most important tests for any transition-regime model is whether it can capture

the nonlinear flow characteristics in the Knudsen layer. In order to simulate high Kn flows,

where temperature and density variations play an important role, one possible solution is

to develop more advanced LBE models for the high-order moments. Recently, Shan et al.

[28] have shown that higher-order LBE models, based on an expansion of the Boltzmann

distribution function, can be constructed. In contrast, Benzi et al. [29] have proposed a

phenomenological pseudo-potential to describe molecular interactions at the surface. This

approach could offer a way of constructing a more comprehensive near-wall treatment to

capture nonlinear phenomena. However, no definitive results have yet been produced to

demonstrate that either of these approaches can capture Knudsen layer effects. In this

paper, we propose an alternative and computationally efficient method to extend the range

and validity of the LBE method into the transition regime.

II. CAPTURING KNUDSEN LAYERS

The Knudsen layer, or kinetic boundary layer, is a region near a solid wall with a thickness

of a few mean free paths where the usual linear relationship between the stress and rate of
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strain is no longer valid, i.e. the Navier-Stokes equations become inappropriate in this

layer. Figure 1 illustrates the velocity profile in the Knudsen layer for the particular case

of Kramers’ problem - a gas bounded by a single planar wall, subjected to a uniform and

constant shear stress. As illustrated in Fig. 1, the flow behavior in the Knudsen layer is

very different from that predicted by the Navier-Stokes equations and LBE models which

over-estimate the velocity slip at the wall.

Unlike the DSMC method, the mean free path must be prescribed through the Knudsen

number in LBE simulations of rarefied gas flow. However, the presence of a solid boundary

will have a significant impact on the distance a gas molecule can travel between successive

collisions, especially in the near-wall region. As a consequence, the mean free path will be

smaller than that observed in the bulk flow. We therefore propose an effective mean free

path, which is defined as the average distance a gas molecule will travel between consecutive

collisions with either another gas molecule or the solid wall. This adjustment to the mean

free path will only apply in the Knudsen layer and, for isothermal rarefied gas flow at low

speed, the correction can be obtained from well documented work on the velocity defect in

the Knudsen layer for Kramers’ problem [30].

The velocity defect, the difference between the actual velocity and that predicted by the

Navier-Stokes equations, increases as the wall is approached. This particular problem has

been investigated experimentally and numerically for gas flows at the incompressible and

isothermal limit. Despite the lack of a universally accepted description of the Knudsen layer,

there is clear evidence to suggest that the velocity defect decreases rapidly away from a solid

boundary and is virtually zero outside the Knudsen layer, as illustrated in Fig. 1. For diffuse

scattering of the gas molecules, Cercignani [31, 32] has shown that the velocity profile in the

Knudsen layer for Kramers’ problem is given by:

u(y) = k
[

y + ζ − l I
(

y

l

)]

, (1)

where k is the velocity gradient in the bulk flow, ζ = 1.1466 l is the slip coefficient, y is

the distance normal to the wall, and I is a function that represents the velocity defect in

the Knudsen layer. The mean free path in the bulk flow, l, is defined as (µ/p)
√

πkBT/2m,

where µ is the viscosity, p is the pressure, kB is Boltzmann’s constant, T is the absolute

temperature, and m is the molecular mass. Tabulated values for the velocity defect have

previously been reported [31, 33–35] and compared with experimental data [36].
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More recently, Lockerby et al. [37, 38] developed several expressions to approximate

the Knudsen layer, including an empirical expression, I(y/l) ≈ 7/20(1 + y/l)−2, and an

alternative formulation for the velocity profile given by

u(y) = k



y + l

√

2

π
+

7

10C
l
(

1 − e−Cy/l
)



 , (2)

where C is a constant (see [38] for a more detailed description). For Kramers’ problem,

C = 1 leads to a velocity profile that is very close to that obtained from both the linearized

Boltzmann equation and DSMC simulations.

To enable the Navier-Stokes equations to capture the velocity profile in the Knudsen layer,

an effective viscosity has been proposed by Lockerby et al. [37]. However, to incorporate

Knudsen layer effects in lattice Boltzmann models, it is necessary to redefine the wall function

in terms of an effective mean free path, le. From kinetic theory, the viscosity is related to

the mean free path via µ = φcρl, where c is the mean molecular speed and φ is taken to be

a constant with a value of 0.499 [39]. For an isothermal, incompressible flow the mean free

path is proportional to the viscosity and therefore the effective mean free path, le, can be

obtained from

le =
l

1 + 0.7e−Cy/l
. (3)

Equation (3) represents a wall function that can provide a correction to the mean free path.

Outside the Knudsen layer, the effective mean free path in Eq. (3) approaches the mean

free path in the bulk flow, l. However, at the wall (y = 0), the effective mean free path

is 1.7 times smaller than in the bulk flow. Although the wall function defined in Eq. (3)

is based on Kramers’ problem, the velocity defect within the Knudsen layer is a universal

phenomenon found in all rarefied flows. In the present study, the wall function approach is

incorporated into a D2Q9 LBE model and applied to a range of shear- and pressure-driven

flows.

III. LATTICE BOLTZMANN FORMULATION

To demonstrate the present approach, we consider the lattice Bhatnagar-Gross-Krook

(BGK) model with an external forcing term Fi as proposed by He et al. [40]:

∂fk

∂t
+ eki

∂fk

∂xi

= −fk − f eq
k

λ
+

(eki − ui)Fi

c2
sρ

f eq
k , (4)

6



where fk is the velocity distribution function, f eq
k is the distribution function at equilibrium,

eki is the lattice velocity, ui is the macroscopic velocity, cs is the sound speed of the lattice

fluid, ρ is the density, and λ is the relaxation time. For a two dimensional, nine-velocity

lattice model (D2Q9), the equilibrium distribution function can be expressed as:

f eq
k = ρωk

[

1 +
ekiui

c2
s

+
(ekiui)

2

2c4
s

− uiui

2c2
s

]

, (5)

ω0 =
4

9
; ωk =

1

9
, k = 1, 2, 3, 4 ; ωk =

1

36
, k = 5, 6, 7, 8,

where the lattice velocities, ek, are given by

e0 = 0 ,

ek =

[

cos

(

(k − 1)π

2

)

, sin

(

(k − 1)π

2

)]

c , k = 1, 2, 3, 4, (6)

ek =

[

cos

(

(k − 5)π

2
+

π

4

)

, sin

(

(k − 5)π

2
+

π

4

)]√
2 c , k = 5, 6, 7, 8,

where c =
√

3RT (R is the gas constant). After discretizing Eq. (4), we obtain

fk(x + ekδt, t + δt) − fk(x, t) = −1

τ
[fk(x, t) − f eq

k (x, t)] + δt
(eki − ui)Fi

c2
sρ

f eq
k (x, t), (7)

where τ = λ/δt is the nondimensional relaxation time and δt is the time step.

Zhang et al. [20] have shown that the Knudsen number in a D2Q9 lattice BGK model

can be related to the relaxation time as follows:

Kn =

√

8

3π

(τ − 0.5)

NH

, (8)

where NH = H/δx is the number of lattice sites, δx is the lattice length, and H is the

height of the channel. Substituting the effective mean free path from Eq. (3) allows the

nondimensional relaxation time to be written as

τ =

√

3π

8

(

KnNH

1 + 0.7e−Cy/l

)

+ 0.5 . (9)

Recent work applying lattice Boltzmann methods to rarefied gas flows has focused on

the development of slip boundary conditions and currently there are many approaches to

capture slip effects at the wall. Examples include bounce-back, specular reflection, or a

combination of the two [15, 16, 19, 23, 41], kinetic theory boundary conditions [17, 42, 43],
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and a virtual wall collision scheme [24]. In the present investigation, a kinetic boundary

condition [17, 42, 44] has been used with the assumption of fully diffuse molecular reflection:

|(ek − uw) · n| fk =
∑

(e
k′
−uw)·n<0

|(ek′ − uw) · n|Rf (ek′ → ek)fk′ , (10)

where k′ and k are the incident and reflected directions of the particles, uw and ρw are the

velocity and density at the wall, n is the unit normal, and Rf is the the scattering kernel

given by

Rf (ek′ → ek) =
AN

ρw

[(ek − uw) · n]f eq
k |u=uw

. (11)

The coefficient, AN , in Eq. (11) is given by

AN = ρw

∑

k |(ek − uw) · n| fk

|(ek − uw) · n| f eq
k |u=uw

∑

k |(ek′ − uw) · n| fk′

. (12)

IV. RAREFIED FLOW BETWEEN PARALLEL PLATES

The present wall function technique for the effective mean free path is based on Kramers’

problem: namely, a gas bounded by a single planar wall and subjected to a uniform and

constant shear stress. However, this technique can be applied to more complex geometries

by assuming that the influence of overlapping Knudsen layers is additive. For example,

if the distance between the parallel plates is H, then the effective mean free path in the

overlapping Knudsen layers can be assumed to be

le =
l

1 + 0.7(e−Cy/l + e−C(H−y)/l)
, (13)

where y is the distance from one wall and H − y is the distance from the other wall. In

this section, we test whether this approach can provide accurate predictions over a range of

Knudsen numbers up to Kn ∼ O(1).

A. Planar Couette flow

The model was initially tested on a planar Couette problem consisting of a moving upper

plate and a stationary lower plate. The kinetic boundary conditions given in Eqs. (10,

11, 12) were used to describe the molecular interactions with the solid walls, while peri-

odic boundary conditions were implemented at the inlet and outlet. Figure 2 illustrates
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FIG. 2: Nondimensional velocity profiles for planar Couette flow at a Knudsen number of 0.01.

Comparison of LBE solution with the wall-function approach (—), LBE solution without the wall-

function approach (· · ·), Navier-Stokes slip-flow solution at Ma = 0.016 (— —), Navier-Stokes

slip-flow solution at Ma = 0.16 (– – –), and DSMC data at Ma = 0.16 (◦).

the predicted velocity profiles for a planar Couette flow at a Knudsen number of 0.01. For

this problem, the nondimensional velocity, U , is defined as U = u/Uplate while the nondi-

mensional distance is defined as L = y/H. To validate the LBE wall function technique,

the results have been compared to DSMC data and a first-order slip-flow solution of the

Navier-Stokes equations. The DSMC method is often used as an independent numerical

test and it is generally accepted that the method provides an accurate description of the

flow characteristics within the Knudsen layer. In the present study, the DSMC simulations

were performed using the computational scheme developed by Bird [6] and the gas-surface

interactions were modeled using a Maxwellian diffuse reflection boundary condition.

The current LBE model is only valid in the isothermal/incompressible limit, and therefore

the simulations are restricted to low speed flow. Unfortunately, the DSMC approach is

computationally expensive at low Mach numbers, due to the requirement to perform large

amounts of sampling to reduce the statistical scatter. It is therefore necessary to choose a

Mach number that minimizes compressibility effects in the LBE model while reducing the

computational burden of the DSMC simulations. For a Knudsen number of Kn = 0.01, two

Mach numbers have been considered, Ma = 0.016 and 0.16, respectively. Figure 2 shows that

the Navier-Stokes slip-flow solutions at these two flow speeds are almost indistinguishable,
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demonstrating that compressibility is negligible below a Mach number of 0.16. Moreover,

the LBE solution is in excellent agreement with both the DSMC data and the Navier-Stokes

solutions, confirming that the proposed wall function approach has minimal effect at low

Knudsen numbers.

Figure 3 illustrates the growing influence of the Knudsen layer as Kn is increased beyond

the slip-flow regime. For these results, the DSMC simulations were performed at a Mach

number of 0.16 to reduce the computational cost. As expected, the LBE predictions without

the wall function are almost identical to the Navier-Stokes slip-flow solution. Both the

Navier-Stokes and lattice Boltzmann methods overpredict the slip at the wall, with the

velocity increasing linearly from the stationary lower plate to the moving upper plate. As

the Knudsen number is increased, the predicted velocity profiles are shown to depart further

from the DSMC data. However, when the wall function is incorporated into the LBE model,

the accuracy of the predictions is significantly improved and the proposed model is clearly

able to capture the nonlinear flow behavior in the Knudsen layer.
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FIG. 3: Nondimensional velocity profiles for planar Couette flow at Knudsen numbers of 0.25, 0.5,

0.75, and 1.0. Comparison of LBE solution with the wall-function approach (—), LBE solution

without the wall-function approach (· · ·), Navier-Stokes slip-flow solution (— —), and DSMC

data (◦).

B. Pressure-driven flow

The second test case considers fully-developed pressure driven (Poiseuille) flow between

parallel plates. To validate the wall-function approach, the lattice Boltzmann results are

compared with data obtained by Ohwada et al. [45] using a direct solution of the linearized

Boltzmann equation. Ohwada et al. assumed the applied pressure gradient in the streamwise

direction was small, so that the flow could be considered incompressible. In the lattice

Boltzmann simulations, a uniform pressure gradient was applied in the streamwise direction

while periodic velocity boundary conditions were used at the inlet and outlet.

Figure 4 illustrates the predicted velocity profiles across the channel for various Knudsen
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FIG. 4: Nondimensional velocity profiles for planar Poiseuille flow at Knudsen numbers of 0.113,

0.226, 0.451, 0.677, and 1.13. Comparison of LBE solution with the wall-function approach (—),

LBE solution without the wall-function approach (– – –), Ohwada et al.’s solution [45] of the

linearized Boltzmann equation (square), and the Navier-Stokes slip-flow solution (◦).

12



numbers between 0.113 and 1.13. For this problem, the nondimensional velocity, U , is defined

as U = u/U , where U is the mean velocity in the channel. The lattice Boltzmann simulations

without the wall-function are almost identical to the Navier-Stokes slip-flow solution and the

discrepancy between these predictions and Ohwada et al.’s linearized Boltzmann solution

clearly increases with Knudsen number. However, adopting the wall-function approach leads

to a significant improvement in the LBE predictions up to Kn ∼ 0.5.

In pressure driven flows, the pressure gradient causes a heat flux in the streamwise di-

rection despite the uniform temperature of the gas [45]. This higher-order rarefaction effect

cannot be captured using the current wall function approach and causes the LBE model to

increasingly depart from Ohwada et al.’s predictions as the Knudsen number is increased.

For Kn > 0.5, the wall function does provide an improved description of the velocity pro-

file but, in its current form, is unable to capture the full nonlinearity associated with the

Knudsen layer.
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V. CONCLUSIONS

A wall-function approach for the effective mean free path has been proposed that enables

lattice Boltzmann methods to be extended beyond the slip-flow regime. For planar Couette

flow, the results indicate that the method significantly improves the accuracy of lattice

Boltzmann models, especially in the near-wall region, and it has been shown that the method

provides a reasonable description of the nonlinear flow characteristics in the Knudsen layer

up to Kn ∼ O(1). In the case of pressure-driven flow, the wall function approach provides

a significant improvement for Knudsen numbers up to 0.5 but the method is currently

unable to capture the full effect of the Knudsen layer for Kn > 0.5. This approach has

been implemented without sacrificing the computational efficiency of the lattice Boltzmann

method. However, the present wall-function is based on phenomenological observations for

Kramers’ problem and this needs to be improved in the future. The next stage of the

investigation is to extend the wall-function technique to incorporate additional effects, such

as surface curvature and temperature variations, and address deficiencies in the prediction

of pressure-driven flow at higher Knudsen numbers.
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