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Abstract The inherent computational cost of molec-
ular simulations limits their use to the study of nano-
metric systems with potentially strong size effects. In
the case of fracture mechanics, size effects due to yield-
ing at the crack tip can affect strongly the mechanical
response of small systems. In this paper we consider
two examples: a silica crystal for which yielding is lim-
ited to a few atoms at the crack tip, and a nanoporous
polymer for which the process zone is about one order
of magnitude larger. We perform molecular simulations
of fracture of those materials and investigate in partic-
ular the system and crack size effects. The simulated
systems are periodic with an initial crack. Quasi-static
loading is achieved by increasing the system size in the
direction orthogonal to the crack while maintaining a
constant temperature. As expected, the behaviors of
the two materials are significantly different. We show
that the behavior of the silica crystal is reasonably well
described by the classical framework of linear elastic
fracture mechanics (LEFM). Therefore, one can easily
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upscale engineering fracture properties from molecu-
lar simulation results. In contrast, LEFM fails capturing
the behavior of the polymer and we propose an alter-
native analysis based on cohesive crack zone models.
We show that with a linear decreasing cohesive law,
this alternative approach captures well the behavior of
the polymer. Using this cohesive law, one can antici-
pate the mechanical behavior at larger scale and assess
engineering fracture properties. Thus, despite the large
yielding of the polymer at the scale of the molecular
simulation, the cohesive zone analysis offers a proper
upscaling methodology.

Keywords Molecular simulation · LEFM ·
Large yielding · Cohesive zone

1 Introduction

A common issue in mechanical engineering is the mate-
rial fracture failure, which has to be accounted for
carefully for the safety of structures. It is well-known
in fracture mechanics that the presence of cracks in
a material induces stress concentrations that greatly
affect the maximum loading capacity of the material.
According to linear elastic fracture mechanics (LEFM),
the stress field is singular at crack tips and its asymptotic
form when approaching a tip is characterized by the
stress intensity factor. LEFM predicts that a crack prop-
agates when the stress intensity factor exceeds a critical
value, called toughness. LEFM was very successful at
predicting the failure of mechanical structures, even
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150 L. Brochard et al.

though the physical existence of infinite stresses at the
tip is of course questionable and one expects yielding
of the material close to the tip. Actually, as long as the
structure considered is much larger than the process
zone (small scale yielding assumption), the approxi-
mation of LEFM is reasonably valid and this theory
predicts correctly the mechanical behavior (Anderson
2005). However, when the size of the process zone is
no more negligible compared to the size of the struc-
ture, LEFM fails to predict the structure’s failure. The-
ories were developed to capture the effect of yielding at
the crack tip, e.g., HRR singularity (Hutchinson 1968)
or cohesive zone models (Dugdale 1960; Barenblatt
1962), in which the criterion of crack propagation is no
more the toughness (e.g., critical J-integral or the crack
tip opening displacement). Those theories are equiva-
lent to usual LEFM under the assumption of small scale
yielding, and all the failure criteria are thus related.

The size of the process zone varies widely depend-
ing on the material, from Angströms for cleavage frac-
ture of monocrystals to centimeters for concrete and
rocks (Bazant 1984). Any measurement of the tough-
ness of a sample for which the process zone size is not
negligible should account for yielding effects. This is
particularly true when considering molecular simula-
tions approaches since the studied system sizes barely
exceed a few tens of nanometers. More fundamentally,
a question that arises at the nanoscale is whether contin-
uum fracture mechanics still applies at this scale. For
instance, in their early work, Thomson et al. (1971)
have shown that the discrete nature of matter at the
atomic scale leads to a lattice trapping of the crack, an
effect unknown in continuum fracture mechanics. Like-
wise, a great deal of research efforts was devoted to var-
ious atomic scale peculiarities of fracture mechanics:
competition between crack propagation and dislocation
emissions (Rice and Thomson 1974; Celis et al. 1983;
Cheung and Yip 1994), role of inter-atomic poten-
tials (Sinclair 1975; Holian and Ravelo 1995; Marder
2004; Buehler and Gao 2006), role of phonons (Holian
and Ravelo 1995; Zhou et al. 1996; Gumbsch et al.
1997), crack velocity (Marder and Gross 1995; Buehler
and Gao 2006), dynamic instability (Marder and Gross
1995; Abraham and Broughton 1998; Buehler and Gao
2006; Kermode et al. 2008), effects of crystal orienta-
tion and grain boundaries (Miller et al. 1998; Abraham
and Broughton 1998; Pérez and Gumbsch 2000), effect
of chemical environment and impurities (Lawn 1983;
Kermode et al. 2013). A long standing issue in atomic

scale studies is the size effect that may arise at such
small scales. Holland and Marder (1999) designed a
molecular simulation approach and analysis for silicon
that is scale insensitive, provided the simulated system
is large enough (strip at least 80 atoms high). Bouch-
binder et al. (2010) discussed in detail various origins of
scale effects that cause deviations from LEFM theory,
such as non-linear elasticity and irreversibility at crack
tip, potential energy corrugation at the atomic scale,
energy flow near the tip. In all cases, LEFM limitations
arise from the assumption of continuum linear elastic-
ity at the crack tip. Apart from the intrinsic limitations
of continuum theories, material properties are also size
dependent when considering nanoscale systems. In par-
ticular, the high resistance to fracture of tough materials
involves processes that range from breaking of atomic
bonds to the nucleation of voids, crazing, crystal rota-
tions or microcracking on the micron and larger scales
(Bazant 1984; Garrison and Moody 1987; Anderson
2005; Ward and Sweeney 2012). The toughness of
systems smaller than the range of those processes are
size dependent. For brittle crystals with process zones
a few atoms large, size effects appear for systems a
few nanometer large (Nazmus Sakib and Adnan 2012);
whereas size effects are at the scale of civil engineer-
ing structures for building materials (Bazant 1984). The
toughness can also depend on the crack size because of
surface energy changes with strain, lattice trapping, and
non-linear mechanical behaviors (Mattoni et al. 2005;
Zhang et al. 2007). That is, the scale at which the effect
of crack size appears is very dependent on the nature
of the material.

Although molecular simulation approaches can cap-
ture the atomic details of fracture mechanisms, these
simulations do not exceed a few billions of atoms with
supercomputers and highly efficient implementation
(Abraham et al. 2002), which amounts to structures
0.1 µm large. Accordingly, effects due to small sizes
are a recurring issue when considering molecular sim-
ulation. For fracture studies, the assumption of small
scale yielding often fails which is responsible for dis-
crepancies between molecular simulation results and
LEFM. In this work, we present an approach to ana-
lyze molecular simulation results in order to capture
the fracture toughness of materials while accounting
for large yielding. This approach is based on cohesive
zone models, developed originally by Dugdale (1960)
and Barenblatt (1962) to model plastic effect and sup-
press unphysical stress singularity at crack tips. Cohe-
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sive zone models are not the only approach to circum-
vent the stress singularity of LEFM. Others exists such
as the (equivalent) dislocation-based approach (Bilby
et al. 1963), the non-local theory (Kröner 1967) and
some more recent theories (Pugno and Ruoff 2004; Oh
et al. 2006). Since cohesive zone models are known
to be inadequate for the modeling of dynamic frac-
ture because of their inherent mathematical formula-
tion (Langer and Lobkovsky 1998), we limit ourselves
to quasi-static evolution in this work and disregard
crack dynamics. The DBCS analysis (‘Dugdale–Bilby–
Cottrell–Swinden’) of Mattoni et al. (2005) is relevant
to the approach developed in this paper. While Mattoni
et al. (2005) limited their study to the effect of crack
size and analyzed only the critical stress at failure, we
consider in this work the system size effect and analyze
the complete loading curve.

As case studies, two materials are considered for
molecular simulations of fracture. The first one, a sil-
ica crystal, is a brittle material for which the process
zone is expected to be a few atoms large. The second
one, a molecular reconstruction of a saccharose coke,
is a highly cross-linked nanoporous polymer which
exhibits a significantly larger process zone. Accord-
ingly, the yielding effects should be limited in the first
material, but significant in the second, thus providing
two complementary cases. For each material, we inves-
tigate the effect of system and crack sizes on the fracture
behavior, e.g., the critical stress at failure. The molecu-
lar simulation results serve as a basis to challenge the-
ories. We identify LEFM strong shortcomings as soon
as yielding becomes significant, whereas cohesive zone
models proves much more versatile and universal with
respect to yielding effect.

In part 2 of this paper, we present the molecular sim-
ulations of the two materials considered and illustrate
some typical results. In part 3, we propose an analysis
that captures the yielding effects by mean of cohesive
zone models, and apply it to the two case studies.

2 Molecular simulations

2.1 Simulation details

The design of a molecular simulation is key when con-
sidering the simulation of fracture. In particular, major
fracture properties such as brittle to ductile transition,
crack tip blunting, or crack velocity are very sensitive
to small details of the simulation such as the inflec-

tion of the attractive part of the inter-atomic potential
(Belytschko et al. 2002), the way to handle emitted
phonon and dislocations at boundaries (Cheung and
Yip 1994), and the loading technique (Holian and Rav-
elo 1995). With the restriction to quasi-static behaviors,
we disregard crack dynamics, and, accordingly, precau-
tions regarding phonon propagation or loading tech-
nique are not critical in this work. However, the accu-
racy of the inter-atomic potential, the choice of bound-
ary conditions and the control of dissipated energy
(temperature) are still important issues. Regarding the
inter-atomic potential, we use the ReaxFF potential
(Duin et al. 2001). ReaxFF is a reactive potential trained
on experimental data or quantum calculations results.
It has the ability to adapt to various atomic configura-
tion, e.g., for carbon sp, sp2 or sp3 bonds. Therefore,
it is able to predict the complex molecular rearrange-
ments that occur in fracture simulations (bond break-
ing, bond formation, charge transfer etc.). The original
version of ReaxFF was parameterized for the simula-
tion of polymers and organic matter. In this work, we
use a parameterization of ReaxFF extended to the sim-
ulation of silica (Duin et al. 2003; Chenoweth et al.
2005) which is suitable for the two materials we con-
sider in this work. Previous studies on the fracture of
silicon have used ReaxFF successfully (Buehler et al.
2006, 2007), and the potential formulation does not
seem to exhibit spurious features that would strongly
affect the fracture behavior such as the force peak in
the REBO reactive potential (Belytschko et al. 2002).
In our simulations, the fracture behavior simulated with
reaxFF is consistent with the expected materials behav-
iors: brittle fracture but without cleavage for the silica
(Swiler 1994; Swiler et al. 1995), and chain elongation
and scission of the nanoporous carbon (Rottler 2009).

In the literature, various boundary conditions are
used to model fracture, from clamped boundaries (fixed
displacement) (Abraham and Broughton 1998) to pre-
scribed forces on boundary atoms (fixed stress often
coupled with continuum mechanics) (Celis et al. 1983)
and atoms insertions/removals to follow steady state
dynamics (Holland and Marder 1998). A recurring
issue is that artificial manipulation of the atom dynam-
ics at the boundary (either by imposing positions or by
imposing forces coming from a ‘smooth’ continuum
field) leads to unphysical molecular dynamics in the
vicinity of the boundary. When simulating materials
near 0 K, which is most often the case in the literature,
this issue is of little importance. But in the present work,
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Fig. 1 Schematic representation of the simulated systems. We
consider periodic boundary condition and increase the box size
to load the system until complete failure. The overall stress Σ is
computed

we consider finite temperatures (a key parameter espe-
cially for the polymer fracture behavior) and large scale
yielding potentially affected by the boundary. Accord-
ingly, spurious effects due to artificial manipulation of
boundary atoms are an important issue in this work.
To avoid it, we use periodic boundary conditions and
control the periodic box size to impose a mechanical
loading to the system (see Fig. 1). Periodic boundary
conditions mimic an infinite body, do not require to arti-
ficially manipulate boundary atoms and avoid surface
tensions that arise in non-periodic systems. However,
the behavior of a periodic body is not always represen-
tative of that of an infinite body (e.g., discrete num-
ber of phonon modes). Regarding fracture simulation a
recognized issue is the interactions between a crack and
its periodic replicas: from a dynamical point of view,
the vibrational waves emitted from a crack propagate
to the replicas and alter the crack propagation; from a
static point of view, the stress intensity at a crack tip
is affected by the presence of periodic replicas of the
crack. Since we disregard crack dynamics in this work,
we are only concerned with the second issue. We prop-
erly address this issue in the analysis part.

As mentioned, we perform molecular simulations
at room temperature (300 K). Temperature is associ-
ated with atom’s velocities at the molecular scale, also
referred to as ‘thermal agitation’, which is known to
affect the fracture behavior. For instance, the velocity
gap phenomenon vanishes upon temperature increase
because thermal agitation, on the order of the atomic
corrugation of the energy landscape, overcomes the lat-
tice trapping effect (Holland and Marder 1999). Like-

wise, temperature increase can induce brittle to ductile
transition by favoring blunting, dislocation nucleation,
or creep (Cheung and Yip 1994). In the present work,
temperature is an essential parameter since it strongly
affects the mechanics and failure properties of poly-
mers (Rottler 2009; Ward and Sweeney 2012). As an
illustration, the strength of the nanoporous polymer we
study is two times smaller at room temperature than
at 0 K. We use a Nose–Hoover thermostat to impose a
temperature of 300 K in our molecular simulation, with
a damping parameter of 10 fs (time step of integration
0.1 fs) (Frenkel and Smit 2002). Since the energy dis-
sipation during fracture generates heat, we systemati-
cally wait for thermal equilibration after each loading
step before acquiring physical observables. Doing so
our results can be considered quasi-static.

2.2 Simulation of silica

The first material we consider is α-cristobalite, a sil-
ica crystal. Previous molecular simulation studies have
investigated the failure behavior of this crystal (Swiler
1994; Swiler et al. 1995). While α-cristobalite is known
to exhibit a brittle behavior, cracking does not occur
along a specific cleavage plane. Instead, fracture sur-
faces exhibit fractal character which is typical of sili-
con oxides (Nakano et al. 1994). We performed mole-
cular simulations of fracture of α-cristobalite by initi-
ating an elliptic crack (aspect ratio 1/5) in the (001)
direction of the crystal and by increasing progressively
the box size in the direction orthogonal to the cracks.
To prepare the initial atomic configurations, we con-
sidered the unit cell from Downs and Palmer (1994)
(4.9717 × 4.9717 × 6.9223 Å3). We considered a total
of 24 different situations with various system sizes and
initial crack sizes, as listed in Table 1. We display in
Fig. 2 some of the systems simulated. The smallest
system considered is 29.8 × 20.8 × 5.0 Å3 large (209
atoms), and the largest 99.4 × 83.1 × 19.9 Å3 large
(11,324 atoms). The smallest crack considered is 7.5 Å
long (18 atoms removed) and the largest 50 Å long (548
atoms removed).

To load the system we performed small increments
of length of the system in the direction orthogonal to
the crack. In a first series of simulations, we increased
the length by 1 % every 10 ps, i.e., an equivalent strain
rate of 0.001 ps−1. To avoid rate effects, this strain rate
is two orders of magnitude smaller than the strain rate
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Table 1 Systems considered for simulation of fracture in the
(001) plane of α-cristobalite

System Lx (Å) L y (Å) L z (Å) Initial crack
size (Å)

Critical stress
Σcr (GPa)

A† 49.72 55.38 14.92 10 19.97

B† 49.72 55.38 14.92 20 15.73

C† 49.72 55.38 14.92 30 10.84

D† 74.58 69.22 24.86 20 14.99

E† 74.58 69.22 24.86 30 11.90

F† 74.58 69.22 24.86 40 9.77

G† 99.43 83.07 19.89 30 12.99

H† 99.43 83.07 19.89 40 10.84

I† 99.43 83.07 19.89 50 7.65

J† 99.43 69.22 4.97 30 12.21

K‡ 99.43 69.22 4.97 30 15.92

L‡ 89.49 62.30 4.97 30 11.20

M‡ 74.58 55.38 4.97 30 10.49

N‡ 59.66 41.53 4.97 20 14.24

O‡ 49.72 34.61 4.97 20 17.28

P‡ 39.77 27.69 4.97 15 15.78

Q‡ 29.83 20.77 4.97 12 20.77

R‡ 29.83 20.77 14.92 7.46 25.35

S‡ 29.83 27.69 14.92 7.46 24.66

T‡ 29.83 34.61 14.92 7.46 25.40

U‡ 29.83 41.53 14.92 7.46 24.64

V‡ 44.75 34.61 14.92 7.46 20.17

W‡ 59.66 27.69 14.92 7.46 24.06

X‡ 59.66 41.53 14.92 7.46 22.90

† Loading procedure: increments of L y of 1 % every 10 ps and
computation of Σ every 1 fs after a period of equilibration of
5 ps
‡ Loading procedure: increments of L y of 2.5 % every 2 ps and
computation of Σ every 1 fs after a period of equilibration of
1 ps

Fig. 2 Three of the systems simulated for α-cristobalite

at which the failure of silica becomes strain rate depen-
dent (Swiler et al. 1995). The average tensile stress in
the vertical direction (Σ) was computed every 1 fs after

Fig. 3 Results of the molecular simulations for three of the
α-cristobalite systems studied. The average tensile stress Σ in
the loading direction is represented as a function of the strain
imposed to the systems. The snapshots of molecular configura-
tions illustrate the case of system H

a period of relaxation of the system of 5 ps after each
increment. Σ can be interpreted as the average stress on
the top and bottom boundary of the periodic cell (Fig. 1)
and was computed with the virial equation (Allen and
Tildesley 1989). In a second series of simulations, we
optimized the loading procedure to reduce the compu-
tation time. We considered larger increments (2.5 %)
performed more frequently (every 2 ps), correspond-
ing to a strain rate of 0.0125 ps−1, still small enough
to prevent any rate effects. Σ was computed every 1 fs
after a period of equilibration of 1 ps after each incre-
ment. These values were chosen as a good compromise
between computational cost and accuracy. All the sim-
ulations were performed with the LAMMPS software
(Plimpton 1995) (http://lammps.sandia.gov).

In Table 1, we list the critical stress at the onset of
failure for all studied systems. In Fig. 3 the full load-
ing curve for the three systems displayed in Fig. 2 are
shown. The chart represents the evolution of the aver-
age stress Σ as a function of the strain L y/L y0 − 1
during the loading procedure up to complete failure
(L y0 is the initial size of the system). The non-zero
stress in the initial state is due to the surface tension
induced by the initiated crack and to the reaxFF poten-
tial for which the ground state of the material is not
exactly that of the initial atomic structure [unit cell
from Downs and Palmer (1994)]. We also display on
the same figure a few snapshots of the molecular struc-
ture for system H that illustrate the different steps
of failure. As expected, the mechanical behavior of
α-cristobalite is nearly linear elastic up to the onset
of crack propagation. The material failure is brittle
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with unstable cracking through the whole periodic cell
under displacement-controlled loading, leaving behind
a rough crack surface. As expected, the critical stress
and strain at the onset of failure depend on the crack
and system size. In particular, smaller cracks lead to
higher critical stresses. The highest critical stress of
25 GPa is obtained for the systems with the smallest
crack only 6 atoms long (systems R to X). This value
however is still much lower than the yield stress of
α-cristobalite (35 GPa, estimated from molecular sim-
ulations of bulk α-cristobalite). Therefore, the process
zone remains small, typically the size of a few atoms.

2.3 Simulation of nanoporous polymer

The second material we consider is CS1000, a molecu-
lar reconstruction of a saccharose-based heat-activated
carbon (CS) obtained by Hybrid Reverse Monte Carlo
method (Jain et al. 2006). CS1000 is a glassy
nanoporous material composed of a highly cross-linked
polymeric network (Fig. 4). Fracture mechanisms of
polymers are peculiar because of their underlying
molecular structure made of chains: chain elongation in
the process zone leads to the formation of fibrils bridg-
ing the crack faces separated by voids (crazing phenom-
enon) (Kramer and Berger 1990; Ward and Sweeney
2012). The crazing phenomenon is a strong toughen-
ing mechanism: glassy polymers can exhibit fracture
energy release rates orders of magnitude larger than
their surface energy. Fibrils are typically a few nanome-
ters large and can be studied by molecular simulations;
see, for instance, Rottler et al. (2002). In the particu-
lar case of CS1000, the high degree of cross-linking
strongly limits crazing, since important cross-linking
is known to increase the brittleness of polymers (Sauer
and Hara 1990). With a high degree of cross-linking, the
linear chain structure of polymers is turned into a three-
dimensional network which strongly limits the chain

Fig. 4 Three of the systems simulated for CS1000

mobility, and, therefore, reduces the plastic behavior
while increasing the stiffness. Thus, a highly cross-
linked polymer exhibits little or no crazing and chain
scission is the main failure mechanism. By molecu-
lar simulation of bulk CS1000, we estimated the yield
strength of the flaw-less matrix to be σY S = 19 GPa
(high value because of the absence of flaws). We antic-
ipate a toughness of CS1000 in the range of tough-
ness commonly observed for glassy solid polymers,
i.e., from 0.5 to 5 MPa

√
m (Ashby 2005). Assum-

ing a toughness of K I c = 2 MPa
√

m, we anticipate
a process zone size of rp = 4 nm at the crack tip
[following the Dugdale–Barenblatt estimate (Ander-

son 2005): rp = π
8

(
K I c

σY S

)2
]. This is a small process

zone with respect to polymers in general since process
zones associated with crazing can be tens of microm-
eters large. While the CS1000 process zone is limited
in size, it is still about one order of magnitude larger
than in the case of silica, which should strongly affect
the fracture behavior in our simulation with significant
size effects.

An additional complexity of polymer mechanics is
the dependency on both temperature and loading rate.
When temperature is raised or when loading rate is
decreased, amorphous polymers change from glass-
like to rubber-like behavior (Ward and Sweeney 2012).
In the glassy state, atoms vibrate close to their equi-
librium position, whereas in the rubbery state, poly-
mer chains are quite flexible and can adopt a variety of
conformations. As a consequence, rubbery polymers,
dominated by entropy, are compliant and viscoelastic;
while glassy polymers are stiff and elastic. The transi-
tion from one regime to another is quite sharp around
the glass transition temperature (for a given loading
rate). According to the time-temperature equivalence,
the viscoelastic behaviour at a temperature is related to
the behavior at another temperature by a change in the
loading rate only. Following this equivalence, a single
master curve fully characterizes the dependence of a
polymer mechanical property on both temperature and
loading rate. These concepts apply to polymer mechan-
ical failure as well, and master curves for failure prop-
erties can be drawn (Smith 1958). In the present case,
at room temperature (300 K), CS1000 is well below its
glass transition temperature since the heat activation of
saccharose at 1000 K removed the most flexible part
of the polymer. In addition, the loading rate we con-
sider in this study is high (0.0125 ps−1) because of the
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time scale accessible by molecular simulation. Inter-
estingly, at low temperatures/high loading rates, as is
the case here, the time-temperature equivalence mas-
ter curves are nearly constant, i.e., the properties are
temperature and rate independent. Nevertheless, in this
work, to avoid any mis-interpretation due to tempera-
ture and rate effects, we applied the same temperature
and the same loading rate to all CS1000 systems. For
one of the systems, we repeated the calculation with a
loading rate about one order of magnitude smaller to
investigate if significant rate effect could occur.

A series of 15 systems of various sizes constructed
from the CS1000 model, with an elliptic crack of vari-
ous length, but constant aspect ratio (1/5), was consid-
ered (detailed characteristics of the systems are listed in
Table 2). Three of these systems are displayed in Fig. 4.
The systems were loaded by increasing their length
orthogonal to the crack by 2.5 % every 2 ps (strain rate
of 0.0125 ps−1). The average tensile stress (Σ) in the

Table 2 Systems considered for simulations of fracture in
CS1000

System Lx (Å) L y (Å) L z (Å) Initial crack
size (Å)

Critical stress
Σcr (GPa)

A
′† 50 50 25 10 15.53

B
′† 50 50 25 15 14.15

C
′† 50 50 25 20 13.83

D
′† 50 50 25 25 10.89

E
′′† 50 50 25 30 9.44

F
′† 75 75 25 20 13.52

G
′† 75 75 25 25 13.49

H
′† 75 75 25 30 11.43

I
′† 75 75 25 35 10.63

J
′† 75 75 25 40 8.94

K
′† 100 75 25 30 12.41

L
′† 100 75 25 35 12.57

M
′† 100 75 25 40 11.99

N
′† 100 75 25 45 9.59

O
′† 100 75 25 50 9.31

P
′‡ 50 50 25 20 12.79

† Loading procedure: increments of L y of 2.5 % every 2 ps and
computation of Σ every 1 fs after a period of equilibration of
1 ps
‡ Loading procedure: increments of L y of 1 % every 10 ps and
computation of Σ every 1 fs after a period of equilibration of
5 ps

Fig. 5 Results of the molecular simulations for three of the
CS1000 systems studied. The average tensile stress Σ in the load-
ing direction is represented as a function of the strain imposed to
the systems. The snapshots of molecular configurations illustrate
the case of system N′

direction orthogonal to the crack was computed every
1 fs after a period of equilibration of 1 ps after each
increment. In addition, we repeated the molecular sim-
ulation for system C′ but with a much smaller load-
ing rate of 0.001 ps−1 (System P′). The systems were
loaded until complete failure was achieved. We report
in Table 2 the critical stress at the onset of failure for all
the systems simulated, and display in Fig. 5 the average
tensile stress Σ as a function of the strain, L y/L y0 −1,
for the three systems displayed in Fig. 4. In addition, we
include in Fig. 5 a few snapshots of molecular config-
uration for system N′ to illustrate the steps of CS1000
failure. Contrary to α-cristobalite, CS1000 failure is
stable upon displacement-controlled loading. One can
clearly observe significant yield at the crack tips. As for
α-cristobalite, the critical stress and strain at the onset
of failure depend on the crack and system size. That is,
as expected, the smaller the crack the larger the criti-
cal stress. But, in the case of CS1000, the maximum
critical stress (15.53 GPa, system A′) is quite close to
the yield strength (19 GPa). in fact, for this system, the
yielding of the crack plane is almost complete since the
uncracked area for this system represents 80 % of the
cross section in the crack plane.

3 Mechanical analysis

3.1 LEFM analysis

We first consider the strict application of LEFM to
the present situation. LEFM assumes linear elasticity
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even at the crack tips, a consequence of which is the
stress singularity at the tips (σ ∝ 1/

√
r , where r is

the distance from the crack tip). The stress intensity
K I in mode I loading, as is the case here, is defined as
K I = limx→0+

√
2πxσyy (y = 0) for a crack orthog-

onal to the y direction and for a crack tip located at
(x = 0; y = 0). The stress intensity characterizes the
singularity of the stress at the crack tip and depends
on the geometry and loading conditions of the system.
For instance, for a crack of size 2a in an infinite body
subjected to a remote stress Σ orthogonal to the crack,
the stress intensity is K I = Σ

√
πa. Failure occurs

when the stress intensity reaches the fracture tough-
ness, K I c. Therefore, for the finite crack in an infinite
body, the critical stress at failure is a function of the
crack size Σcr = K I c/

√
πa. For the periodic geom-

etry we consider in this work (Fig. 1), the situation is
more complex, since the stress intensity at a crack tip
is affected by the presence of the periodic replicas of
the crack. By dimensional analysis, the dimensionless
reduced stress intensity K I /

(
Σ

√
πa

)
also depends on

the dimensionless quantities characterizing the peri-
odic geometry, i.e., L y/Lx and 2a/Lx :

K I

Σ
√

πa
= CK I

(
2a

Lx

,
L y

Lx

)
(1)

This specific periodic geometry has been studied
within the framework of LEFM (Watanabe and Atsumi
1972; Isida et al. 1981; Karihaloo et al. 1996; Karihaloo
and Wang 1997). While there exists no analytical for-
mulation of CK I

(
2a/Lx , L y/Lx

)
, one can quantify it

numerically. In this work, we followed the numerical
approach proposed by Karihaloo et al. (1996), which
consists in a pseudo-traction method based on the solu-
tion of a single periodic array of collinear cracks (Tada
et al. 2000). The problem of an infinite body with a dou-
bly periodic array of crack submitted to a remote load-
ing Σ is first decomposed into a homogeneous crack-
free problem submitted to the remote loading and a
subsidiary problem in which the system is submitted to
the loading on the crack faces instead. The subsidiary
problem is further decomposed into an infinite number
of identical sub-problems where a body with a single
row of periodic collinear crack is submitted to pseudo-
tractions σ p on the crack faces. For the second decom-
position to be valid, the pseudo-tractions must satisfy
the consistency equation:

σ p (x) − 2
+∞∑

j=1

∫ a

0
Kσ j (x, u) σ p (u) du = Σ (2)

where the kernel Kσ j (x, u) represents the stress
induced by the pseudo-traction σ p (u) in the sub-
problem with collinear periodic cracks at y = − j L y

at the location of the pseudo-traction σ p (x) in the sub-
problem with the collinear periodic cracks at y = 0.
It is readily obtained from the analytic solution for
an infinite body with periodic collinear cracks (Tada
et al. 2000): Kσ j (x, u) = Re

(
Z

(
x + i

(
j L y

)
, u

))
+

j L yIm
(
Z ′ (x + i

(
j L y

)
, u

))
, with Z ′ = d Z

dz
and Z the

Westergaard stress function below for collinear peri-
odic cracks problem:

Z (z, u) =
2

Lx

cos
(

πu
Lx

)

((
sin

(
π z
Lx

))2
−

(
sin

(
πu
Lx

))2
)

×

√√√√√√

(
sin

(
πa
Lx

))2
−

(
sin

(
πu
Lx

))2

1 −
(

sin
(

πa
Lx

)
/ sin

(
π z
Lx

))2 (3)

Karihaloo et al. (1996) solved Eq. 2 by means of a
Gauss–Legendre quadrature method in which pseudo-
tractionsσ p (x) are discretized at the integration points.
Once the pseudo-tractions are known, one can easily
access any quantity of interest. For instance, the stress
intensity results from the pseudo tractions of a single
sub-problem (only one sub-problem leads to a singular
stress):

K I =
∫ a

0
KK I (u) σ p (u) du (4)

with

KK I (u) =
2

Lx

cos
(

πu
Lx

) √
Lx tan

(
πa
Lx

)

√(
sin

(
πa
Lx

))2
−

(
sin

(
πu
Lx

))2
(5)

Likewise, the deformation of the periodic cell is
obtained by the superposition of the deformations in the
homogeneous problem and in all the sub-problems. The
displacement ∆ of the periodic boundary at y = L y/2
is:
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∆ =
L y

2

Σ

E ′ +
+∞∑

j=−∞

∫ a

0
K∆ j (u) σ p (u) du (6)

where K∆ j (u) =
(
2/E ′) Im

(
Z

(
i
(

j + 1
2

)
L y, u

)

−Z
(
i
(

j L y

)
, u

))
and Z = d Z/dz. E ′ is the elas-

tic modulus in plane strain, which is the case here:
E ′ = E/

(
1 − ν2

)
, with E the Young’s modulus and ν

the Poisson’s ratio.
We applied the approach of Karihaloo et al. (1996)

to account for the interactions between periodic cracks.
The values of the correction factor CK I

in Eq. 1 are gen-
erally greater than 1, i.e., the influence of the periodic
replicas of a crack leads to higher stress intensities than
for an infinite body; up to 20 % increase for the geome-
tries we consider in this work. But, for some geome-
tries, e.g. L y/Lx < 0.6 and 2a/Lx < 0.45, the stress
intensity is moderately lower than in the infinite body
(CK I

< 1) which leads to a toughening of the material.
Thus, the effect of the doubly periodic array of crack
can be counter-intuitive and needs to be accounted for
carefully.

Like the stress intensity, the deformation of the
periodic cell is affected by the presence of periodic
cracks. The ratio between the dimensionless deforma-
tion ∆∗ = 2∆/L y and dimensionless stress Σ∗ =
Σ/E ′ is a function of the dimensionless quantities
L y/Lx and 2a/Lx characterizing the periodic geome-
try, and can be computed from Eq. 6:

2∆/L y

Σ/E ′ = C∆

(
2a

Lx

,
L y

Lx

)
(7)

With these corrections, one can fully characterize the
failure behavior as predicted by LEFM. Before failure,
the mechanical behavior is linear elastic and follows
Eq. 7. Failure occurs when the stress intensity reaches
the toughness. The critical stress at the onset of failure
is

Σcr =
K I c

√
πaCK I

(
2a
Lx

,
L y

Lx

) (8)

Then, in the quasi-static limit, the stress intensity is
equal to the toughness all along the crack propagation.
Therefore, for any crack length larger than the initial
length a > a0, the stress can be obtained from Eq. 8 and
the corresponding strain from Eq. 7. We summarize the
loading and failure of the periodic system as follows:

Fig. 6 Loading curves as predicted by LEFM for various crack
sizes and periodic cell elongations. We display the dimension-
less reduced stress Σ∗/K ∗

I c as a function of the dimension-
less reduced strain ∆∗/K ∗

I c. The behavior is linear elastic until

K I = K I c, i.e., Σ∗/K ∗
I c = CK I

(
a0
Lx

,
L y

Lx

)
. Then, cracking

occurs until complete propagation through the periodic box

∣∣∣∣∣∣∣∣∣∣∣

Before failure, for a = a0
∆∗
K ∗

I c
= C∆

(
2a0
Lx

,
L y

Lx

)
Σ∗
K ∗

I c
with Σ∗

K ∗
I c

<
(

CK I

(
2a0
Lx

,
L y

Lx

))−1

Then, for a > a0
∆∗
K ∗

I c
= C∆

(
2a
Lx

,
L y

Lx

)
Σ∗
K ∗

I c
with Σ∗

K ∗
I c

=
(√

a
a0

CK I

(
2a
Lx

,
L y

Lx

))−1

(9)

where we introduced the dimensionless reduced strain
∆∗/K ∗

I c and the dimensionless reduced stress Σ∗/K ∗
I c

with K ∗
I c = K I c/

(
E ′√πa0

)
. Note that after failure

the control variable is the crack length a that increases
from a0 to Lx/2.

Figure 6 displays the mechanical behavior of the
periodic system as predicted by LEFM. It highlights
that the behavior depends on the dimension ratios
2a/Lx and L y/Lx . The behavior is linear elastic
until the onset of failure, with an elasticity depend-
ing on the geometric ratios. Then, failure is almost
always unstable upon both stress-controlled load-
ing and displacement-controlled loading. That is, we
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almost always have dΣ∗

da
< 0 and d∆∗

da
< 0. This is

a peculiarity of the periodic system. In the periodic
geometry, when the crack propagates, the tips come
closer to their periodic replicas which enhances stress
intensity and favors instability. Failure is stable upon

displacement loading if ∂K I

∂a

∣∣∣
∆

< 0. For the periodic

system, this criterion is verified only for quite elon-
gated systems (L y/Lx small) and the range of crack
length for which failure is stable is limited. The sys-
tems we considered are all close to a square geometry.
Therefore, we expect unstable failure in our case.

The critical stress at failure (Eq. 8) also differs from
the case of an infinite body, because of the correction
term CK I

. Equation 8 can be rewritten in the following
dimensionless form:

Σ∗
cr√
G∗

c

=

(√
π

2a

Lx

CK I

(
2a

Lx

,
L y

Lx

))−1

(10)

where we introduced the dimensionless reduced fail-
ure stress Σ∗

cr/
√

G∗
c , with Σ∗

cr = Σcr/E ′ and G∗
c =

Gc/
(

Lx

2 E ′
)

. Gc is the critical energy release rate and

is related to the toughness K I c according to Irwin’s
formula (Anderson 2005): Gc = (K I c)

2 /E ′. We dis-
play in Fig. 7 the dependence of Σ∗

cr/
√

G∗
c on the geo-

metric ratios 2a/Lx and L y/Lx . For small crack sizes
(2a/Lx → 0), we recover the critical stress of a finite
crack in an infinite body. However, for moderate and

Fig. 7 LEFM prediction of the critical stress at the onset of
failure. We display the dimensionless reduced failure stress
Σ∗

cr /
√

G∗
c as a function of the crack size 2a/Lx for different

elongations L y/Lx of the periodic cell. We also display the case

of a finite crack in an infinite body: Σ∗
cr /

√
G∗

c = 1/

√
π 2a

Lx
.

When 2a/Lx → 0 one recovers the critical stress of an infinite
body. In contrast, significant deviations appears for larger crack
sizes, especially for 2a/Lx > 0.5

large crack sizes (2a/Lx > 0.2), the critical stress of a
periodic system deviates from that of an infinite system.
Particularly large deviations appear for 2a/Lx > 0.5.
In the limit of 2a/Lx → 1 the crack tips merge at the
periodic boundary, and, accordingly, the critical stress
converges to 0. For the systems we simulated, the ratio
2a0/Lx ranges from 0.13 to 0.60. Therefore, account-
ing for the correction CK I

is necessary in our work to
analyze the critical stresses.

3.2 Application of the LEFM analysis to molecular
simulation results

We apply the LEFM analysis to the molecular simu-
lation results of α-cristobalite and CS1000. Regarding
loading curve shape and failure stability, it is clear that
CS1000 results are in contradiction with LEFM predic-
tion: CS1000 failure is stable upon displacement load-
ing, and the loading curves (Fig. 5) exhibit significant
ductility with an ultimate strain at the end of failure
about twice the critical strain at the onset of failure.
In contrast, the α-cristobalite results (Fig. 3) are con-
sistent with LEFM: the behavior is almost linear and
failure is unstable since stresses fall to zero right after
the onset of failure. In our molecular simulations, it is
not possible to follow the instable branches that appear
in Fig. 6. Instead, the stress drops to zero at failure.

A quantitative comparison with LEFM theory can
be achieved by plotting the critical stress at failure as
a function of the effective crack half length ae f f =

a
(

CK I

(
2a
Lx

,
L y

Lx

))2
. If LEFM theory was respected,

following Eq. 8, we would observe that the critical
stress is proportional to the inverse of the square root
of the effective crack length: Σcr = K I c/

√
πae f f . By

fitting the curve, one can recover the fracture toughness
K I c characterizing the material. We display in Fig. 8
the critical stresses obtained for molecular simulations
as a function of ae f f for all simulated systems. On
the same Figure we display the fitted inverse square
root dependency according to LEFM theory. For α-
cristobalite, the results seem consistent with LEFM.
In the Figure, we distinguish between the two load-
ing rates (see Table 1). We do not observe any rate
effects, but it appears that the long simulation proce-
dure (smallest rate) provides more accurate results than
the short procedure (largest rate) for which the results
are significantly more dispersed. Despite the disper-

123



Capturing material toughness by molecular simulation 159

Fig. 8 Critical stress Σcr obtained from molecular simulation
for α-cristobalite (top) and CS1000 (bottom) as a function of
the effective half length of the crack ae f f . The results for α-
cristobalite respect LEFM theory, whereas the results for CS1000
differ significantly from LEFM at low crack lengths

sion, the results are quite consistent with LEFM the-
ory. The fitting leads to a fracture toughness K I c =
0.87 MPa

√
m. This value is consistent with experi-

mental values of toughness of silica. Indeed, Lucas
et al. (1995) reported K I c = 0.82 ± 0.07 MPa.m1/2.
In contrast to α-cristobalite, the results of CS1000
exhibit a rather linear trend with the effective crack
length, which is in contradiction with the inverse square
root dependency predicted by LEFM. Any tentative
application of LEFM to the results for CS1000 leads
to serious discrepancies between theory and observa-
tion. A tentative application is displayed in Fig. 8 with
large discrepancies at low crack lengths; the corre-
sponding toughness is the same as for α-cristobalite
(K I c = 0.87 MPa

√
m).

As an alternative to critical stress, one can focus on
the energy released during failure. The critical energy
release rate Gc is the energy released during the fracture
per unit area of crack surface created. Fracture occurs
when the system can release enough mechanical energy

P upon cracking, with Gc defining this threshold. For-
mally, Gc is the variation of mechanical energy −d P

due to a small advance of the crack (increment of crack
area d A): Gc = − ∂ P

∂ A

∣∣
T,loading. Together, Gc and P

are the two forms of energy for a system exposed to
mechanical loading whose response is limited to defor-
mation or fracture. In isothermal conditions, as is the
case here, the balance of Helmholtz free energy F is:
d F = d P +Gcd A. The average stress Σ is the deriva-
tive of the Helmholtz free energy F with respect to the

periodic cell size L y : Σ = 1
Lx Lz

∂ F
∂L y

∣∣∣
T,Lx ,Lz

. Accord-

ingly, integrating Σ with respect to L y provides a way
to calculate the variation of free energy. In particular the
integration of the complete loading curves (Fig. 6) leads
to the critical energy release rate. Indeed, at the begin-
ning of the loading curve, the system is unstressed,
i.e., P = 0; at the end of the loading curve, the sys-
tem is also unstressed and P = 0. Therefore, all the
mechanical energy accumulated during the loading was
converted into fracture energy at the end of the load-
ing. Accordingly, the change of Helmholtz free energy
calculated from the integration Lx L z

∫
loading Σd L y is

equal to the total increase in fracture energy Gc∆A,
where ∆A = L z (Lx − 2a0) is the total area of crack
created:

Gc =
Lx L z

∆A

∫

loading
Σd L y (11)

The critical energy release rate Gc, as obtained
from Eq. 11, can be converted into fracture tough-
ness K I c following Irwin’s formula (Anderson 2005):
Gc = (K I c)

2 /E ′. We applied this thermodynamic
integration to compute the toughness of α-cristobalite
and CS1000 from the molecular simulation results.
For α-cristobalite, we obtained an average toughness
of 1.13 ± 0.09 MPa

√
m, which is somewhat higher

than the value of 0.87 MPa
√

m derived from the crit-
ical stress. This discrepancy arises from the fact that
integrating the curves of Fig. 3 only provide an over-
estimation of the critical energy release rate because
of instability. Indeed, proper integration should fol-
low the unstable branch that recede to smaller strains
when the crack advances (such as in Fig. 6). But, our
molecular simulations are unable to follow the unsta-
ble branch and instead the stress drops to zero. As a
consequence, the integration of stress (area delimited
by the loading curve) overestimates the critical energy
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Fig. 9 Loading curves from molecular simulations compared
with LEFM predictions for the three systems of Fig. 2

release rates. For CS1000, the same restriction does
not apply since failure is stable. The integration of the
loading curves for CS1000 leads to an average tough-
ness of 1.49 ± 0.14 MPa

√
m, i.e., almost twice the

value estimates from the critical stress and LEFM. With
this toughness, the critical stresses predicted by LEFM
would be twice that obtained by molecular simulations.
This further confirms that LEFM is invalid for CS1000.

To illustrate the application of LEFM to
α-cristobalite, we display in Fig. 9 the loading curves
from molecular simulations along with that derived
from LEFM, for the three systems of Fig. 2. LEFM
captures satisfactorily the elastic behavior and predicts
the onset of failure with a reasonable accuracy given

the inherent variabilities of the simulations (in particu-
lar thermal agitation and variable crack tip initial con-
figuration). The failure branches differ significantly as
already discussed above. Figure 9 illustrates well the
overestimation of the toughness when performing a
thermodynamic integration on the molecular simula-
tion results.

3.3 Cohesive zone analysis

LEFM does not capture the behavior of CS1000 in
our molecular simulation. This is due to the impor-
tant yielding at the scale of our molecular simulations.
LEFM is valid only in the limit of small scale yielding,
which is clearly not the case for the CS1000 systems we
simulated. As a consequence, CS1000 response is duc-
tile without instability at failure and the critical stresses
obtained are much smaller than expected from LEFM
because of the inherent physical limit of CS1000 yield
stress. We propose here to introduce a cohesive zone
approach in the mechanical modeling of the periodic
system in order to capture the behavior of CS1000.
Cohesive zones are a simple modeling of the yield zone
at crack tips originally introduced by Dugdale (1960)
and Barenblatt (1962) to suppress the unphysical stress
singularities at crack tips. The approach is illustrated
in Fig. 10. Behind the crack tips, the crack faces are
cohesive, i.e., an attractive force p between the faces

Fig. 10 Schematic representation of the cohesive zone model.
Cohesive zones develop behind crack crack tips in which a force
is transmitted across the crack, depending on the crack opening.
The cohesive zone suppresses the stress singularity at the crack
tip. At large openings, the cohesive forces vanish and the crack
is unbridged. Loading proceeds in three phases: (1) the cohesive
zone grows until the opening at the end of the zone reaches the
critical opening, (2) the unbridged crack propagates, (3) the cohe-
sive zones coalesce at the periodic boundaries. In the third phase,
the mechanical problem is that of an infinite plate submitted to
periodic traction loads on its faces
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opposes the opening of the crack. In the original formu-
lation, the cohesive force is constant (plastic stress) and
vanishes at a critical opening δcr of the crack. More gen-
erally, the cohesive force p is a function of the opening
δ, called the cohesive law. The negative stress intensity
at the crack tip due to the cohesive forces cancels out
the stress intensity from the external loading so that
stress singularity is suppressed. This condition is used
to determine the length of the cohesive zone. Failure
occurs when the opening at the end of the cohesive
zone exceeds the critical opening at which the cohe-
sive force vanishes. Application of the J-integral to a
contour following the boundary of the cohesive zone
shows that the critical energy release rate is obtained
by integration of the cohesive law (Anderson 2005):

Gc =
∫ δcr

0
p (δ) dδ (12)

Thus, one can easily relate the cohesive zone model
to usual LEFM. For small scale yielding, the cohe-
sive zone is extremely small compared to the dimen-
sions of the system, in particular the size of the crack.
In that case, cohesive zone models and LEFM are
strictly equivalent and the two approaches are related by
Eq. 12. When yielding becomes significant, cohesive
zone predictions differ from that of LEFM. In particu-
lar, the stresses cannot exceed the yield stress, the main
physical contradiction of LEFM.

Even though cohesive zone models are an idealiza-
tion of the process zone, they are quite versatile and
have been used to model very different failure processes
from metal plasticity (Dugdale 1960) to biocomposites
damage (Gao 2006) and fracture in concrete (Hiller-
borg et al. 1976). We propose here to apply it to the
periodic geometry of our molecular simulations and
investigate if it can capture the behavior of CS1000.

The cohesive zone modeling introduces bridging
forces between the crack faces that depend on the open-
ing of the crack. The loading of the system takes place
as follows (see Fig. 10). Prior to loading, in the initial
state, there is no cohesive zone. Then, at the beginning
of the loading, the crack tip starts to move ahead and the
cohesive zone develops. When the opening at the end
of the cohesive zone exceeds the maximum opening of
the cohesive law, the unbridged crack starts to move
ahead as well. Finally, when the crack tip coalesce at
the periodic boundary, the cohesive zones keep trans-
mitting stress across the crack until the unbridged crack

coalesce. For the first regime before crack tip coales-
cence, the mechanical problem can be solved by intro-
ducing bridging forces in the periodic crack problem
treated in the LEFM approach. For the second regime
after coalescence, the mechanical problem is that of an
elastic plate submitted to symmetric periodic tractions
on its faces. This second mechanical problem can be
solved in the Fourier space. We present both solutions
hereafter.

We first consider the system before crack tip coales-
cence. The cohesive zone introduces bridging forces
p behind the crack tip as a function of the opening
δ (x) at position x . These bridging forces modify the
pseudo-traction consistency Eq. 2 as follows:

σ p (x)−2
+∞∑

j=1

∫ a

0
Kσ j (x, u) σ p (u) du+p (δ (x)) = Σ

(13)

The crack opening δ (x) can be computed from the
pseudo-tractions. Since the displacement discontinuity
that leads to the crack opening is due to one of the sub-
problems only, we can use of the analytic formulation
for a row of periodic collinear cracks (Tada et al. 2000).
We have:

δ (x) =
∫ a

0
Kδ (x, u) σ p (u) du (14)

with

Kδ (x, u)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

8
π E ′ tanh−1

⎛
⎝

√√√√ 1−
(

cos
(

πa
Lx

)
/ cos

(
πu
Lx

))2

1−
(

cos
(

πa
Lx

)
/ cos

(
πx
Lx

))2

⎞
⎠ if |x | ≤ u

8
π E ′ coth−1

⎛
⎝

√√√√ 1−
(

cos
(

πa
Lx

)
/ cos

(
πu
Lx

))2

1−
(

cos
(

πa
Lx

)
/ cos

(
πx
Lx

))2

⎞
⎠ if u < |x |≤a

(15)

Accordingly, the cohesive force distribution p (δ (x))

in Eq. 13 is a function of the pseudo-tractions σ p (x).
Solving for the pseudo-tractions in Eq. 13, one can
then access any quantity of interest (displacement/
deformation, stress intensity etc.). As before, we fol-
lowed the approach of Karihaloo et al. (1996) (Gauss–
Legendre quadrature method with σ p (x) discretized
at the integration points). However, the problem is no
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more linear because of the cohesive law p (δ). We used
an iterative Newton–Raphson method to solve the non-
linear problem. In addition, special attention must be
paid to discretization with respect to the discontinuities
of bridging forces to avoid integration and convergence
errors. At each loading step, the length of the cohesive
zone is adjusted so that the total stress intensity at the
crack tip is zero.

After crack tip coalescence at the periodic bound-
aries, the mechanical problem becomes that of stacked
periodic plates separated by cohesive zones which exert
a load function of the distance between consecutive
plates (Fig. 10). By symmetry, the stress and strain
fields are even about the center of the unbridged crack.
To solve this new mechanical problem, we consider
the solution of Sneddon (1951) for an infinite plate
loaded by even forces on its faces. The solution of Sned-
don consists in solving the mechanical problem in the
Fourier space. Applying a cosine Fourier transform to
the equations of mechanical equilibrium in the absence
of body forces gives:

(
∂2

∂y2 − ξ2
)

G = 0

with G (ξ, y) =
∫ ∞

0
χ (x, y) cos (ξ x) dx (16)

where χ is the Airy stress function. The function G

replaces χ in the Fourier space and fully determines the
stress, strain and displacement fields. In particular, the
normal component of the stress in the vertical direction,
the shear stress and the displacement in the vertical
direction are:

σy (x, y) = −
2

π

∫ ∞

0
ξ2G cos (ξ x) dξ (17)

τxy (x, y) =
2

π

∫ ∞

0
ξ
∂G

∂y
sin (ξ x) dξ (18)

u y (x, y) =
2

π

∫ ∞

0

1 + ν

E

(
1 − ν

ξ2

∂3G

∂y3

− (2 − ν)
∂G

∂y

)
cos (ξ x) dξ (19)

In the particular case of a plate, the solutions of Eq. 16
take the form:

G (ξ, y)=(A+Bξ y) cosh (ξ y)+(C+Dξ y) sinh (ξ y)

(20)

where A, B, C and D are constants that depend on
the boundary conditions. We consider a plate sub-
mitted to an even vertical traction load p (x) on its
upper and lower faces (y = L y/2 and y = −L y/2,
considering the middle of the plate as the origin).
Introducing these boundary conditions in Eqs. 17
and 18 leads to the following values for the con-

stants: A = − ξ L y cosh(ξ L y/2)+2 sinh(ξ L y/2)
ξ L y+sinh(ξ L y)

p̃(ξ)

ξ2 , B =

C = 0 and D = 2 sinh(ξ L y/2)
ξ L y+sinh(ξ L y)

p̃(ξ)

ξ2 where p̃ (ξ) =
∫ ∞

0 p (x) cos (ξ x) dx is the cosine Fourier transform
of the load p. The inverse transform is p (x) =
2
π

∫ ∞
0 p̃ (ξ) cos (ξ x) dξ . Introducing the values of the

constants into the expression of G (Eq. 16), we
obtain the expression of the vertical displacement
u

f aces
y (x) = u y (x, y = b) = −u y (x, y = −b)

(Eq. 19) on the upper and lower faces:

u
f aces
y =

8

π E ′

∫ ∞

0

(
sinh

(
ξ L y/2

))2

ξ L y + sinh
(
ξ L y

)

p̃ (ξ)
cos (ξ x)

ξ
dξ (21)

In our case, the load p is a periodic function of period
Lx . Therefore, the cosine Fourier transforms can be
replaced with Fourier series with the Fourier coeffi-

cients p̃k = 2
Lx

∫ Lx
2

0 p (x) cos
(

2πk
Lx

x
)

dx . Equation 21

becomes:

u
f aces
y =

8

π E ′

∞∑

k=0

(
sinh

(
πk

L y

Lx

))2

2πk
L y

Lx
+ sinh

(
2πk

L y

Lx

)

p̃k

cos
(

2πk
Lx

x
)

2πk
Lx

(22)

Equation 22 gives the deformed configuration of a
linear elastic plate under the action of an even sym-
metric periodic load on its faces. Owing to the cohe-
sive law, the load p is a function of the opening δ of
the crack, that is of the distance between two con-
secutive plates. The opening δ and the displacement
of the boundaries u y (±b) are related according to:

δ (x) = δ0 − 2 ·
(

u
f aces
y (x) − u

f aces
y (0)

)
, where δ0

is a parameter representing the opening at x = 0. The
mechanical problem can be formulated in terms of a
consistency equation that must be satisfied by the open-
ing δ:
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δ (x) = δ0 −
16

π E ′

×
∞∑

k=0

(
sinh

(
πk

L y

Lx

))2

2πk
L y

Lx
+ sinh

(
2πk

L y

Lx

)

p̃k

cos
(

2πk
Lx

x
)

− 1

2πk
Lx

(23)

where p̃k = 2
Lx

∫ Lx
2

0 p (δ (x)) cos
(

2πk
Lx

x
)

dx and

p (δ (x)) is the cohesive law. The opening function
δ (x), which is the solution of Eq. 23, fully charac-
terizes the mechanics of the system since one can then
derive from it the full stress, strain and displacement
fields. Except for linear cohesive laws, the problem of
Eq. 23 is non linear and no simple analytic solution
exists. In our work, we solve Eq. 23 by adopting a simi-
lar approach as was done previously for computing the
doubly periodic crack problem with cohesive zones.
That is, we use Gauss–Legendre method for integra-
tion of the Fourier coefficients p̃k while the opening δ

is discretized at the integration points. We solve Eq. 23
iteratively with a Newton-Raphson method. Doing so,
we can solve the mechanical problem for a wide variety
of cohesive laws, but the discretization must be adapted
carefully from one law to another to avoid integration
and convergence errors (due to discontinuities in the
law for instance).

The relationship between the dimensionless strain
∆∗ = 2∆/L y and stress Σ∗ = Σ/E ′ depends not
only on the geometric ratios 2a/Lx and L y/Lx as in
Eq. 7, but also on the cohesive law. As an example,
we display in Fig. 11 the case of a plastic cohesive law,
i.e., p (δ) = σY S for δ < δcr with σY S the yield stress
of the material. In Fig. 11, we show how the loading
curve changes with the dimensionless ratio δ∗

cr/σ
∗
Y S =

(2δcr/Lx ) /
(
σY S/E ′) which quantifies the degree of

ductility of the plastic cohesive law. Alternatively, we
can also relate this quantity to the ratio between the crit-
ical stress for an infinite body (K ∗

I c) and the yield stress

(σ ∗
Y S) as follows: δ∗

cr/σ
∗
Y S = (2πa/Lx ) ·

(
K ∗

I c/σ
∗
Y S

)2.
Accordingly, we expect a significant difference with
LEFM at large values of δ∗

cr/σ
∗
Y S . This is well illus-

trated in Fig. 11. For δ∗
cr/σ

∗
Y S → 0, the plastic cohesive

zone model predicts the same loading curve as LEFM.
But with increasing ductility ratio, the cohesive zone
model introduces non linearity and ultimately a plastic

Fig. 11 Loading curves and critical as predicted with a plastic
cohesive zone model for various ductility ratios δ∗

cr /σ
∗
Y S . For

the loading curves (top), we display the dimensionless reduced
stress Σ∗/K ∗

I c as a function of the dimensionless reduced strain
∆∗/K ∗

I c (with the geometrical ratios 2a/Lx = 0.5 and L y/Lx =
1). The loading curve from LEFM is displayed for comparison.
The cohesive zone model introduces non linearity and the loading
curves deviates from LEFM predictions. Deviation from LEFM
increases with ductility and a plateau appears that is characteristic
of the plastic cohesive law. For the critical stress (bottom), we
display the dimensionless reduced failure stress Σ∗

cr /
√

G∗
c as

a function of the crack size 2a/Lx (with the geometric ratio
L y/Lx = 1). For comparison, we also display the prediction of
LEFM for the same periodic geometry and for a finite crack in an
infinite body. The usual trend in 1/

√
a gradually evolves toward

a linear trend with increasing ductility

plateau, so that the shape of the loading curve signifi-
cantly differ from the LEFM prediction.

In Fig. 11, we also show how the ductility ratio
δ∗

cr/σ
∗
Y S affects the critical stress at failure. We display

the dimensionless reduced failure stress Σ∗
cr/

√
G∗

c =
Σ∗

cr/
√

δ∗
crσ

∗
Y S as a function of the crack size 2a/Lx for

L y/Lx = 1. The cohesive zone approach suppresses
the stress singularity, and, accordingly, at low 2a/Lx ,
the critical stress converges to a finite value Σcr = σY S ,
i.e., Σ∗

cr/
√

G∗
c = 1/

√
δ∗

cr/σ
∗
Y S . As for the loading

curve, the predictions of the cohesive zone model con-
verge to LEFM predictions for δ∗

cr/σ
∗
Y S → 0. But, sig-
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nificant discrepancy appears with increasing ductility.
In particular, the usual trend in 1/

√
a gradually evolves

toward a linear trend. The limit case is when the cohe-
sive zone extends over the whole uncracked body:

Σcr

σY S

= 1 −
2a

Lx

⇒
Σ∗

cr√
G∗

c

=
(

1 −
2a

Lx

)
1√

δ∗
cr/σ

∗
Y S

(24)

3.4 Application of the cohesive zone analysis to
molecular simulation results

We have shown in the previous section that cohesive
zone models lead to significant changes in the loading
curve and critical stress of the periodic system. The
plastic cohesive zone illustrated in Fig. 11 is an exam-
ple, but it does not captures the shape of the loading
curve we obtained for the nanoporous polymer (Fig. 5).
To capture the behavior of the nanoporous polymer, we
considered a linear decreasing cohesive law instead:
p (δ) = σY S (1 − δ/δcr ) for δ < δcr . We display in
Fig. 12 the loading curves and critical stress trend pre-
dicted with this cohesive law for various ductility ratios
δ∗

cr/σ
∗
Y S . The quantities displayed in Fig. 12 are the

same as in Fig. 11. Note, however, that we consider
a higher range of values for the ductility ratio δ∗

cr/σ
∗
Y S

since the linear cohesive law dissipates two times less
energy than the plastic cohesive law (G∗

c = δ∗
crσ

∗
Y S/2).

As a consequence, based on energy equivalence, the
ductility ratios of Fig. 12 are scaled by a factor of two
compared to the ratios in Fig. 11, whence the higher
values.

In Fig. 12, the qualitative shape of the loading curves
at high ductility ratios are quite consistent with the
molecular simulation results for CS1000 (Fig. 5). The
trend of the critical stress is similar to that obtained with
a plastic cohesive law: in the limit δ∗

cr/σ
∗
Y S → 0 the

critical stress converges to the LEFM prediction, while
at large ductility, the critical stress depends linearly on
the crack length, with a limit case:

Σcr

σY S

= 1 −
2a

Lx

⇒
Σ∗

cr√
G∗

c

=
(

1 −
2a

Lx

)√
2

δ∗
cr/σ

∗
Y S

(25)

Equation 25 differs from Eq. 24 by a factor of 2
which arises from the difference in energy release with

Fig. 12 Loading curves and critical as predicted with a linear
cohesive zone model for various ductility ratios δ∗

cr /σ
∗
Y S . The

notations are the same as in Fig. 11. The loading curves deviates
from LEFM prediction with increasing ductility and exhibit a
linear decreasing branch at large ductility characteristic of the
linear cohesive law. The usual trend of the critical stress in 1/

√
a

evolves toward a linear trend at high ductility

the plastic cohesive law. We evaluated the trend of the
critical stress from the results of molecular simulation
of CS1000. We display in Fig. 13 the critical stresses
for the various CS1000 systems simulated. Figure 13
shows that the critical stress obtained by molecular sim-
ulation follow a linear trend in a limited range of crack
length (0.2 < 2a0/Lx < 0.6). Note that the systems
considered in Fig. 13 have different geometrical ratios
L y/Lx which is not accounted for in this analysis. A
major consequence is that the dimensionless ductility
ratio δ∗

cr/σ
∗
Y S differ from one system to another. But,

in raw units (case of Fig. 13) the effect of L y/Lx van-
ishes with increasing ductility ratio as the critical stress
approaches the limit case (Eq. 25). The range of the lin-
ear trend (0.2 < 2a0/Lx < 0.6) is not wide enough to
characterize the degree of ductility of the cohesive law.
Assuming that the linear relation applies (Eq. 25), the y-
intercept of the linear trend in Fig. 13 is the yield stress
σY S . Doing so, we obtain σY S = 20 GPa, which com-
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Fig. 13 Trend between the critical stress Σcr and the reduced
crack length 2a0/Lx for all the CS1000 systems considered

pares well with the yield stress estimated by molecular
simulation of bulk CS1000 (19.4 GPa). Accordingly,
the linear trend is valid up to small crack length which
is characteristic of a high ductility ratio (δ∗

cr/σ
∗
Y S > 2).

The analysis of the loading curve shape and criti-
cal stress confirms that the linear cohesive zone model
is well adapted to model the behavior of CS1000.We
calibrated the value of δcr to capture the loading
curves from molecular simulations. We found that with
δcr = 18.5 Å the cohesive zone model captures reason-
ably well the mechanical responses of all the CS1000
systems considered. As an illustration, we display in
Fig. 14 the loading curves for the three CS1000 sys-
tems of Fig. 4 along with the predictions from the linear
cohesive zone model. In the framework of the cohesive
model, the energy dissipated during fracture is con-
centrated in the cohesive zone and the critical energy
release rate Gc can be obtained by integration of the
cohesive law (Eq. 12). Thus, with the linear cohesive
law, we have: Gc = δcrσY S/2 = 18.5 N/m. Alter-
natively, we can compute Gc by integrating the load-
ing curves from molecular simulation (Eq. 11). Unlike
the case of α-cristobalite, this estimation is valid here
since crack propagation is stable for CS1000. We obtain
Gc = 19.5±3.2 N/m which is consistent with the value
obtained from the cohesive law. In addition, no partic-
ular correlation is found between the energy release
rates and the system size. If the process zone size was
larger than the system size, we would observe that Gc

increases with the system size up to an asymptotic value
which is the relevant one at larger scales. Here, the high
degree of cross-linking of CS1000 strongly limits the
process zone size to the nanometer scale.

Fig. 14 Loading curves from molecular simulations compared
with the cohesive model predictions for the three systems of
Fig. 4

4 Conclusion

A careful analysis of molecular simulations of mate-
rial fracture failure, in which we pay a special atten-
tion to the size effects, shows that usual LEFM predic-
tions are still valid if the process zone size is small at
the scale of molecular simulations. We illustrate this
situation for a silica crystal, α-cristobalite, for which
the process zone is only a few atoms large. Provided
that boundary conditions are accounted for (periodic
boundaries in our work), LEFM captures correctly the
global material behavior (remote stress and average
strain). In particular, one can directly estimate mate-
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rial fracture properties, such as toughness, from mole-
cular simulation. In contrast, when the process zone
occupies a significant fraction of the molecular sys-
tem, LEFM fails to predict the mechanical behavior.
We illustrate this second situation with the example of
a nanoporous polymer, CS1000, for which the process
zone is about one order of magnitude larger than that
of α-cristobalite. LEFM fails to predict the behavior
of CS1000 both quantitatively and qualitatively: the
LEFM scaling between critical stress and crack size
(inverse square root) becomes linear, the stability of
CS1000 failure does not follow LEFM analysis, and
LEFM estimates of toughness from critical stress is not
consistent with the total energy released during failure.
To overcome the inherent limitations of LEFM in pres-
ence of large scale yielding, we develop an alternative
analysis which includes cohesive zone models at the
crack tips. Provided the cohesive law is well adapted,
we recovered all the features of the mechanical behav-
ior of CS1000 within this framework. From the cohe-
sive law, one can then easily recover the macroscopic
toughness and anticipate the mechanical behavior at
larger scales. Thus, our analysis with cohesive zone
models offers the possibility to upscale fracture prop-
erties from molecular simulation even with large yield-
ing at the scale of the molecular system. It should be
noted however that, the approach is limited by the size
of the molecular system simulated since the process
zone cannot extend further. The process zone size is on
the order of the square of the ratio between toughness
and yield stress. Thus, estimating this ratio is critical
to know whether or not the scale of molecular simula-
tions is relevant, and to decide what kind of analysis to
perform.
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