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Abstract. Equilibrium or stationary solutions usually proceed through the exact bal-
ance between hyperbolic transport terms and source terms. Such equilibrium solutions
are affected by truncation errors that prevent any classical numerical scheme from cap-
turing the evolution of small amplitude waves of physical significance. In order to
overcome this problem, we compare two commonly adopted strategies: going to very
high order and reduce drastically the truncation errors on the equilibrium solution,
or design a specific scheme that preserves by construction the equilibrium exactly, the
so-called well-balanced approach. We present a modern numerical implementation of
these two strategies and compare them in details, using hydrostatic but also dynamical
equilibrium solutions of several simple test cases. Finally, we apply our methodology
to the simulation of a protoplanetary disc in centrifugal equilibrium around its star
and model its interaction with an embedded planet, illustrating in a realistic applica-
tion the strength of both methods.
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1 Introduction

Hyperbolic balance laws are used to describe many dynamical problems in natural sci-
ences. They are defined as a set of conservation laws with associated source terms, which
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model the production or destruction of the corresponding conserved quantity. Many
physical systems of scientific interest can be described by a system of hyperbolic conser-
vation laws with source terms, or in short, hyperbolic balance laws.

Hyperbolic balance laws are particularly challenging because they feature equilib-
rium solutions that result from the exact cancellation of the divergence of the flux and
the source terms in these equations. Small truncation errors can perturb this equilibrium
solution, leading to the production of spurious waves that can dominate over the real
waves that control the physics of the problem at hand.

For example, for the case of the inviscid Euler equations with a gravity source term
(also known as the Euler-Poisson system), hydrostatic steady states are important in,
for example, hydraulics [3, 5, 6] and astrophysics [20, 21, 29]. The difficulty here is to
capture properly sound waves, gravity waves or convective flows, whose amplitude can
be comparable to the truncation errors of a second order method and a reasonable grid
resolution.

General steady states with non constant velocity fields are also found to be important
in planetary sciences, namely in the early stages of protoplanetary discs, where the source
term models the gravity of a central star [28], and is balanced by the centrifugal and
pressure forces. The challenge here is to be able to resolve the interaction of a small planet
with the gaseous disc, leading to the formation of a small amplitude spiral wave that can
be dominated by the truncation errors of the equilibrium solution. In this context, the
classical approach is to use a cylindrical mesh, reducing drastically discretisation errors
along circular orbits. It is however desirable to find a solution on a Cartesian mesh, as it
allows to deal with more general cases which are not strictly axisymmetric.

In summary, solving for such flows which are close to equilibrium can be very chal-
lenging for a naive, low order numerical method on a mesh not necessarily adapted to
the geometry of the equilibrium solution as the truncation error incurred while solving
the steady state can be larger than the small amplitude waves of interest.

There are nowadays many practical numerical methods with very low truncation er-
rors. A class of such methods are the so-called discontinuous Galerkin (DG) methods [1].
These methods, at least for smooth and regular problems, can be made as accurate as
desired. This means that, at least in principle, the amplitude of the truncation errors can
be reduced to an arbitrarily small value. This requires an appropriate way to implement
the source terms in the DG formalism [7, 18]. This also requires the use of a high enough
resolution mesh to capture the equilibrium solution, which translates into higher compu-
tational cost for higher order solutions.

There is another strategy that allows one to use a low-order method, while capturing
almost exactly the equilibrium solution. This is called the well-balanced approach (intro-
duced in detail [17]), which is concerned with numerical schemes that satisfy the discrete
equivalent of an underlying steady state, effectively, taking into account the existence of
a steady state (or near steady state) solution.

The natural question is thus whether exact well-balancedness is required in practice
or if methods that solve the PDE (including the source term) need only to be very accu-
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rate. This is the question we wish to explore in this paper on several examples of interest
for natural sciences in general and astrophysics in particular.

Let d, e∈N, Ω an open subset of R
e and fj for 1≤ j≤ d be smooth functions from Ω

into R
e. A general e-size system of d-dimensional hyperbolic balance laws can be written

in the following form:

∂w

∂t
+

d

∑
j=1

∂

∂xj
fj(w)−s(w,x)=0, x=(x1,··· ,xd)∈R

d, t>0, (1.1)

where the vector valued function w=(w1,··· ,we):Rd×[0,∞)→Ω denotes the solution, the
functions fj=[ f1j,··· , fej]

T are flux-functions and s(w,x) is the vector of source terms. We
denote vectors in bold v and a component of the vector as v, where the index is omitted
if not important.

In order to solve hyperbolic balance laws, one can use classical methods for hyper-
bolic conservation laws (i.e. when s(w,x)= 0) in conjunction with an operator-split ap-
proach to add the source terms. However, problems can arise when one tries to model
flows near equilibrium states, for which (1.1) admits a steady state solution such that:

d

∑
j=1

∂

∂xj
fj(w)−s(w,x)=0. (1.2)

In this work, we are mainly interested in solving the Euler-Poisson system with an
analytical gravitational potential Φ with moving steady states (where the velocity field
v 6≡0). We restrict ourselves to one- or two-dimensional cases given by e=3 and d=1, or
e=4 and d=2 respectively. We however present the main equations in the 2D case only,
as given in (1.3)

∂w

∂t
+

2

∑
j=1

∂

∂xj
fj(w)−s(w,x)=0, (1.3)

where

w=









ρ

ρvx

ρvy

E









, f1(w)=









ρvx

ρv2
x+p

ρvxvy

vx(E+p)









, f2(w)=









ρvy

ρvxvy

ρv2
y+p

vy(E+p)









, s(w)=











0

−ρ ∂
∂x Φ

−ρ ∂
∂y Φ

−ρv·∇Φ











.

Here ρ is the mass density, v= (vx,vy) the velocity and E the total energy given by the
sum of internal and kinetic energy.

E=ρǫ+
1

2
ρ|v|2.
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In addition, p denotes the pressure and we assume p= p(ρ,e) is a known function. Fur-
thermore, we assume an ideal gas, such that the system is closed with the equation of
state:

p=ρǫ(γ−1),

where γ denotes the adiabatic index. The source terms, shown on the right hand side of
the momentum and energy equations, model the effect of the gravitational forces on the
fluid, for a given potential Φ.

To correctly solve these equations numerically and capture small perturbations to the
steady state, dedicated computational methods are required to solve the discrete version
of the source-flux balance (1.2). For non well-balanced methods, there is no guarantee
that the truncation errors induced by discretising the steady state solution are not greater
than the small perturbations we want to describe.

The design of well-balanced schemes (i.e. schemes which satisfy exactly a discrete equiv-
alent of the underlying steady state) has been an active field of research, first coined
in [14]. There have been many attempts to deal with this aspect, in particular for the shal-
low water equations, where steady states can represent the lake at rest case (hydrostatic
equilibrium) [4] or a running river (non-trivial velocity equilibrium state) [25].

For the Euler-Poisson system there have been several recent contributions. We do
not intend to give an exhaustive account of all the work that has be done in this topic,
but we refer to: [16] where the authors design a well-balanced first and second order
accurate finite volume scheme for approximating the Euler equations with gravitation
using a discretisation of the hydrostatic equilibrium for the pressure reconstruction, [18,
19] where a similar approach to treat hydrostatic equilibria, isothermal and polytropic
equations of state achieves a high order well-balanced discontinuous Galerkin scheme,
and [8] where a relaxation scheme is adopted.

In [28] a second order finite volume method dealing with non zero velocities is pre-
sented in the context of protoplanetary discs. Concerning more general classes of steady
states, the survey [22] describes two classes of schemes, one based on high-order accurate,
non-oscillatory finite difference operators which are well-balanced for a general class of
equilibria, and another one based on well-balanced quadratures, showing the suitability
of these methods on the Shallow Water equations, and the work in [23], describing a high
order path-conservative scheme and well balanced reconstruction, however, the analysis
for this work is restricted to 1-dimension quasi-linear hyperbolic systems.

On the other hand, due to the tractability of modern, very-high-order methods, one
could ask whether these methods alone could be enough to solve the equilibrium solu-
tions to a high enough accuracy.

In this paper, we make a comparative study between a new method which is truly
well balanced and a popular class of very-high-order methods, namely the discontinu-
ous Galerkin method. We would like to answer the following fundamental questions,
considering both hydrostatic and moving equilibria solutions:
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1. Are there cases where using a high order scheme is sufficient to capture solutions
close to a steady state?

2. Under which circumstances is it necessary to use a well balanced method?

3. What is the cost associated to each approach and how does it balance with accu-
racy?

In particular, we compare a well-balanced, high-order discontinuous Galerkin method
with a non well-balanced, high-order discontinuous Galerkin method under different
steady state regimes, both hydrostatic and stationary (with a non-zero velocity).

The outline of this paper is as follows: a brief introduction on equilibrium solutions,
as well as the description of the Runge-Kutta discontinuous Galerkin (RKDG) method is
provided in Section 2. In Section 3, we describe our well balanced formulation of RKDG.
In Section 4, a set of benchmark problems are defined, both in one and two dimensions,
and quantitative results are presented, followed by our final discussion in Section 5.

2 Preliminaries

2.1 Steady state solutions

A solution w is said to be a steady state solution of (1.1) if it fulfils the following relation

d

∑
j=1

∂

∂xj
fj(w)−s(w,x)=0, (2.1)

for w :Rd×[0,∞)→Ω, fj : Ω→R
e and s : Ω×R

d →R
e, Ω⊂R

e.
We call w a hydrostatic steady state of (1.3) if the pressure component fulfils the fol-

lowing relation
∇p=−ρ∇Φ, (2.2)

for ρ,p :Rd×[0,∞)→Ω, and Φ : Ω×R
d →R

e, Ω⊂R
e and a gravity potential Φ∈C1.

Let the following be the standardised form of an time explicit numerical scheme for
(1.3), where H(·) denotes the update function for each timestep n in a quantity indexed
by k (e.g. cell average) and q, p denote the stencil size:

wn+1
k =wn

k +
∆t

∆x
H(wn

k−q,··· ,wn
k+p). (2.3)

The numerical scheme is exactly well-balanced if for a steady state solution w, the fol-
lowing holds

H(wn
k−q,··· ,wn

k+p)=0. (2.4)

The scheme is said to be well-balanced with order Np if, for a steady state solution w, the
following holds

|H(wn
k−q,··· ,wn

k+p)|=O(∆xNp+1). (2.5)
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A formal definition of the above is given in [23].

Remark 2.1. In the astrophysics literature, in particular in the planet formation commu-
nity [2], the following equilibrium relation between the centrifugal force associated to the
cross-radial velocity vθ , the gradients of the thermal pressure p and the gradient of the
gravitational potential Φ is often referred to as a dynamical equilibrium:

v2
θ

r
=

1

ρ
∇p+∇Φ. (2.6)

It is often the case that the pressure gradient ∇p is assumed to be small and thus can
be neglected [2]. For the purpose of this work, we considered initial conditions which
are strictly hydrostatic, and also more general stationary solutions or steady states of the
Euler-Poisson equation.

2.2 Runge Kutta Discontinuous Galerkin (RKDG) method

Consider a regular domain D ∈R, approximated by K non-overlapping elements such
that

⋃

K∈Dh
K ≈ D. The 2-dimensional tessellation is given by the tensor product of the

1-dimensional discretizations, thus yielding square volumes (or cubic volumes in 3D).
Let Th denote the Cartesian tessellation of the domain D where our problem is defined.

We seek for the approximate solution wh(t) in the finite element space of discontinu-
ous functions Vh:

Vh={vh ∈L∞(D) : vh|K∈Vh(K), ∀K∈Th}.

We take Vh(K) to be the collection of polynomials of at most degree Np.

Following the Runge Kutta discontinuous Galerkin (RKDG) method described in [9],
we write the weak formulation for each component of (1.1) by multiplying the system by
a smooth test function v(x) and integrate over a control volume K:

d

dt

∫

K
w(x,t)v(x)dx+ ∑

e∈∂K

∫

e
f (w(x,t))·ne,Kv(x)dΓ−

∫

K
f (w(x,t))·∇v(x)dx

=
∫

K
s(w(x,t))v(x)dx (2.7)

for any smooth v(x). We denote the outward unit normal as ne,K and edge as e.

The following integrals are approximated with a suitable order numerical quadrature

(where {xi,ωi}
M,L
i=0 denotes the set of quadrature points and weights):

∫

e
f (w(x,t))·ne,Kv(x)dΓ≈

L

∑
i=0

f (w(xi,t))·ne,Kv(xi)ωi|e|, (2.8)
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∫

K
f (w(x,t))·∇v(x)dx≈

M

∑
j=0

f (w(xj,t))·∇v(xj)ωj|K|, (2.9)

∫

K
s(w(x,t))v(x)dx≈

M

∑
j=0

s(w(xj,t))v(xj)ωj|K|. (2.10)

Note that there is an ambiguity in the definition of the flux f (w(x,t))·ne,K since w
can be multi-valued at the cell interface. In order to overcome this inconsistency, this
term is replaced by a single-valued numerical flux he,K(x,t) computed using a Riemann
solver. The exact solution is replaced by the finite dimensional approximate solution
wh=∑i=0ŵi(t)ψi(x), where ŵi(t) is given by the L2 inner product between w(x,t) and ψi,
a basis element of Vh(K), and the test functions v(x) are replaced by vh(x)∈Vh(K). This
yields the following numerical scheme:

wh(t=0)=PVh
(w0),

d

dt

∫

K
wh(x,t)vh(x)dx=− ∑

e∈∂K

L

∑
i=1

he,K(xi,t)vh(xi)ωi|e|+
M

∑
j=1

f (wh(xj,t))·∇vh(xj)ωj|K|

+
M

∑
j=1

S(wh(xj,t))vh(xj)ωj|K|, ∀vh(x)∈V(K), ∀K∈Th,

where operator PVh
denotes the L2 projection of the initial data w0(x) into the space of

finite elements Vh.
In addition, throughout this work, we make the following choices:

1. We denote by {ψ}
Np

i=0 the Legendre basis vectors spanning Vh(K), subject to the
following normalisation:

∫ 1

−1
ψi(x)ψj(x)dx=δij ;

2. We take the numerical quadrature points and weights {xi,ωi}
M
i=0 to be Gauss-

Legendre quadrature points;

3. We use local Lax-Friedrichs flux as the numerical flux. We note that our analy-
sis works for any consistent numerical flux function that is Lipschitz continuous
in both arguments, non-decreasing in its first argument and non-increasing in its
second argument.

2.2.1 Time discretisation

We use the TVD Runge-Kutta time discretization as in [13]. Let {tn}N
n=0 be a partition

of [0,T] and ∆tn = tn+1−tn, n=0,··· ,N−1, then the time marching algorithm is given in
Algorithm 1.

The parameters ai,j, bi and ci can be found in Tables 2, see [13].
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Data: w0
h=PVh

(w0)

Result: wn+1
h

for n = 0, ... N-1 do

w
(0)
h =wn

h
for i = 1, ... k+1 do

ki =L(tn+ci,w
(0)
h +h∑

i−1
j=1 ai,jkj)

end

wn+1
h =w

(0)
h +h∑

s
i=1biki

end
Algorithm 1: TVD RK time marching algorithm.

Given that an explicit time integrator is used, the timestep ∆t has to fulfill a Courant-
Friedrich-Lewy (CFL) condition to achieve numerical stability. In this work, the timestep
∆tK at cell K is calculated as [26]. Furthermore, the introduction of a source term can
introduce additional constraints on the timestep. As described in [31], the timestep for a
solution approximation of degree at most Np, we choose the minimum of the expression
below:

∆tK =min





C

2Np+1

(

d

∑
i=1

|vK
i |+cK

s

∆xK
i

)−1

,
1

√

2γ(γ−1)

cK
s

|∇ΦK |



,

where cs =
√

γp/ρ is the sound speed, vK
i is the ith component of the velocity average

at cell K, ∆xK
i is the mesh-width in the ith dimension and |∇Φ|K the magnitude of the

gradient of Φ at cell K. The constant C is chosen to be small, for example, 0.2.

Table 1: Runge-Kutta Butcher tableaus for the TVDRK schemes.

0
1/2 1/2

1/2 1/2

0
1 1

3/4 1/4 1/4

1/6 1/6 1/3

SSP(2,2) SSP(3,3)

2.3 Discretisation error of DG for steady Euler system

In this short section we show that the traditional Runge Kutta discontinuous Galerkin
method is inherently not well balanced and specify the source of approximation error for
each conserved variable.
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Table 2: Runge-Kutta Butcher tableaus for the TVDRK schemes.

0
0.39175222700392 0.39175222700392
0.58607968896779 0.21766909633821 0.36841059262959
0.47454236302687 0.08269208670950 0.13995850206999 0.25189177424738
0.93501063100924 0.06796628370320 0.11503469844438 0.20703489864929 0.54497475021237

0.14681187618661 0.24848290924556 0.10425883036650 0.27443890091960 0.22600748319395
SSP(4,5)

We consider the 1-dimensional Euler system (2.11) and the DG discretisation de-
scribed above

∂

∂t
ρ+

∂

∂x
ρv=0, (2.11a)

∂

∂t
ρv+

∂

∂x
(ρv2+p)=−ρ

∂

∂x
Φ, (2.11b)

∂

∂t
E+

∂

∂x
(v(E+p))=−ρv

∂

∂x
Φ. (2.11c)

Considering, for example, (2.11a) in some control volume K mapped to [−1,1] inter-
val, and modal coefficient i:

∂t ρ̃i =
∫

K
ρv∂xψidx−

∮

∂K
ρvψi ·ndΓ. (2.12)

If the solution of the system is a steady state, then ∂t ρ̃i =0 ∀i.
One can write the update Hρ vector (as in (2.3)), where each component corresponds

to ith the modal update, with the associated test function ψi:

Hi
ρ=∑

j

ρv∂xψi(xj)wj− ρ̂vψi(1)+ ρ̂vψi(−1).

To evaluate ·̂ we need an approximate flux function to combine the left and right hand-
side values of the flux. We consider the Lax-Friedrichs flux, for example, defined as:

f̂ (a,b)=
f (a)+ f (b)

2
−

α(a−b)

2
,

where α=max(v+cs) and cs =
√

γ
p
ρ .

Assuming a simple steady state class of solutions, consider the non-moving equilib-
ria, where v≡0, (2.11a) has the following (component wise) update:

Hi
ρ=

α

2
[[ρ(xk+1/2)]]ψi(1)−

α

2
[[ρ(xk−1/2)]]ψi(−1),

where [[ f (x)]] = f (x+)− f (x−) denotes the jump in f between left and right states at x,

and 〈 f (x)〉= f (x+)+ f (x−)
2 the average of f at x. This shows that the error comes from the

jumps in the variable ρ at the interfaces of the control volume K.
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Similarly, the update function Hρv for (2.11b) is:

Hi
ρv=−〈p(xk+1/2)〉ψi(1)+〈p(xk−1/2)〉ψi(−1)−∑

j

ρ∂xΦψi(xj)wj+∑
j

p∂xψ(xj)wj.

And for (2.11c):

Hi
E =

α

2
[[E(xk+1/2)]]ψi(1)−

α

2
[[E(xk−1/2)]]ψi(−1).

For the density and energy evolution, the error comes from the jump on the respective
variable at the interfaces. For the momentum equation, the error will arise from the split
treatment when discretising ∇· f (w) and s(w), which should exactly cancel out if w is a
steady state solution.

Now we consider a general class of steady state solutions, where v 6≡0. From (2.11a),
follows that ρv=const.

Then, for (2.11a) one can write the following update function:

Hi
ρ=∑

j

ρv∂xψi(xj)wj−
α

2
[[ρ(xk+1/2)]]ψi(1)+

α

2
[[ρ(xk−1/2)]]ψi(−1)−〈ρv〉ψi(1)+〈ρv〉ψi(−1).

Rewriting Hρ, using the fact that ρv = const and that Legendre polynomials have the
property ψn(−x)=(−1)nψn(x), one can arrive at:

Hi
ρ=

α

2
[[ρ(xk+1/2)]]ψi(1)−

α

2
[[ρ(xk−1/2)]]ψi(−1).

Independently of the order of the polynomial ψn, the volume integral part cancels out
either due to the numerical flux contribution or due to the fact ρv is constant.

For (2.11b):

Hi
ρv =−〈ρv2+p(xk+1/2)〉ψi(1)+〈ρv2+p(xk−1/2)〉ψi(−1)

−∑
j

ρ∂xφψi(xj)wj+∑
j

(ρv2+p)∂xψ(xj)wj.

And for (2.11c):

Hi
E=

α

2
[[E(xk+1/2)]]ψi(1)−

α

2
[[E(xk−1/2)]]ψi(−1)

+〈v(E+p)(xk+1/2)〉ψi(1)−〈v(E+p)(xk−1/2)〉ψi(−1)

−ρv∑
j

∂xφψi(xj)wj+∑
j

(v(E+p))∂xψ(xj)wj.

While update Hρ remains unchanged, Hρv and HE have additional terms from the ve-
locity contribution, and thus one can observe that the error arises from splitting the flux
term in surface and volume terms, and the separated treatment of the source term and
∇· f (w).
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3 Well-balanced RKDG method

We now present our implementation of a well balanced method for RKDG. Using the
formulation presented in (2.2), we follow an approach similar to [11], where we represent
the solution of (1.1) as a sum of a steady state (or equilibrium) solution weq(x) and a
perturbation δw(x,t):

w(x,t)=weq(x)+δw(x,t) a.e.

We note that if (1.1) admits a steady state solution weq, the flux-source balance relation
holds:

∇· f (weq(x))= s(weq(x)). (3.1)

And weakly, for a suitable test function v(x):

∫

∇· f (weq(x))v(x)dx=
∫

s(weq(x))v(x)dx. (3.2)

Subtracting (3.2) from (2.7), and noting that a state state solution satisfies ∂
∂t weq = 0, we

can write:

d

dt

∫

K
(δw(x,t))v(x)dx=− ∑

e∈∂K

∫

e
δ f (w(x,t))·ne,Kv(x)dΓ

+
∫

K
δ f (w(x,t))·∇v(x)dx

+
∫

K
δs(w(x,t))v(x)dx,

where we use the following notation:

1.
∫

e
δ f (w(x,t))·ne,Kv(x)dΓ=

∫

e

(

f (w(x,t))− f (weq(x))
)

·ne,Kv(x)dΓ;

2.
∫

K
δ f (w(x,t))·∇v(x)dx=

∫

K
( f (w(x,t))− f (weq(x)))·∇v(x)dx;

3.
∫

K
δS(w(x,t))v(x)dx=

∫

K
(s(w(x,t))−s(weq(x)))v(x)dx.

Note again that there is an ambiguity in the definition of the flux f (w(x,t))·ne,K since
w can be multi-valued at the cell interface. To overcome this inconsistency, the ambiguous
term is here again replaced by a single-valued numerical flux he,K(x,t) computed using
the Lax Friedrich Riemann solver.

Let our numerical solution be represented as:

wnum(x,t)=weq(x)+δwh(x,t),
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where δwh∈Vh(K). Furthermore, we approximate the integrals with a quadrature, which
yields the following well balanced DG numerical scheme:

δwh(t=0)=PVh
(δw0),

d

dt

∫

K
δwh(x,t)vh(x)dx=− ∑

e∈∂K

L

∑
i=0

δ fe,K(wnum(xi,t))vh(xi)ωi|e|

+
M

∑
j=0

δ f (wnum(xj,t))·∇vh(xj)ωj|K|

+
M

∑
j=0

δs(wnum(xj,t))vh(xj)ωj|K|, ∀vh(x)∈V(K), ∀K∈Th.

Note that this reformulation is only suitable for problems where the solution w is close
enough to the prescribed steady state solution weq. In fact, if the initial condition is exactly
equal to the steady state solution (w0 = weq), the scheme will capture the equilibrium
solution exactly. If the initial condition is close to the steady state solution, this scheme
is able to evolve the perturbation without being dominated by the truncation error on
the steady state solution. However, if the initial condition is very far from the adopted
steady state, this scheme might not be suitable and the traditional RKDG scheme will be
more robust. If this is the case, setting the steady state weq to 0 and the perturbation δw
to the full solution, one simply recovers the traditional RKDG scheme [9].

4 Numerical experiments

In this section, several benchmark problems will be introduced. These will be the basis
of our discussion in Section 5. An introduction and description of code used to perform
the numerical experiments can be found in [30]. Additional results can be found in Ap-
pendix C.

4.1 Error estimate

The empirical error estimates are calculated using the L1-error norm:

||wh(x)−w(x)||1 =
∫

D
|wh(x)−w(x)|dx.

It is shown in [27] that a convergence rate of Np+1 for a Np degree polynomial approx-
imation of the solution in L1-error norm is expected for smooth enough functions. This
quantity is computed with a numerical quadrature and computed the following manner:

||wh(x)−w(x)||1 ≈ ∑
K∈D

M

∑
i=0

M

∑
j=0

|wh(ν
K(xi,yj))−w(νK(xi,yj)) |ωiωj

∆x∆y

4
, (4.1)
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where {xi,yj}
M
i,j=0 are Gauss Legendre quadrature points, {ωi,ωj}

M
i,j=0 the corresponding

weights and νK(χ,υ) a linear transformation mapping element K to the canonical element
[−1,1]×[−1,1],

νK(χ,υ)=
(

xl−χ
∆x

2
, yl−υ

∆y

2

)

,

and (xl,yl) the center of element K.

4.2 Well-balanced property

In this section, the well-balanced property of the schemes is evaluated. To this end, we
first evolve a hydrostatic equilibrium solution. What should be observed, in this case, is
that the solution does not change for any time T>0. However, due to the failure of per-
fectly balancing the discrete version of ∇· f (w) and s(w), the state at some time T might
deviate from the initial condition. We then solve for the propagation of perturbations
of the equilibrium solution, that we call here waves, using various amplitudes, and mea-
sure whether the schemes can capture these perturbations without being affected by the
truncation errors of the equilibrium solution. In the last set of test cases, we evaluate the
quality of our schemes using a dynamical equilibrium state, meaning that the velocity
v=(vx,vy) is non-zero for the steady state solution.

4.2.1 Hydrostatic equilibrium

1-dimensional case. Considering an ideal gas γ=1.4 and a linear gravitational potential
Φx = gx, we are interested in preserving the following isothermal equilibrium state:

ρeq(x)=ρ0exp

(

−
ρ0g

p0
x

)

,

ueq(x)=0,

peq(x)= p0exp

(

−
ρ0g

p0
x

)

,

(4.2)

with ρ0=1.0, p0=1.0 and g=1.0.
Because we are interested in preserving the equilibrium state, we impose the bound-

ary condition as the extension of the domain in ∂D, as follows:

ρ(x)|x∈∂D =ρeq(x), vx(x)|x∈∂D =vx,eq(x), vy(x)|x∈∂D =vx,eq(x), p(x)|x∈∂D = peq(x),
(4.3)

where x=(x) in 1-dimension and x=(x,y) in 2-dimensions.
The numerical errors for the density are shown in Fig. 1 for the following resolutions

N = 8, 16, 32, 64 at time T = 10.0 for the second and third order well-balanced scheme
(WBDG2 and WBDG3, respectively) and the traditional discontinuous Galerkin method
with orders 2, 3 and 4 (DG2, DG3, DG4 respectively). One can observe that by increas-
ing the resolution or the order, the truncation error can be reduced, even for long time
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Figure 1: L1 error convergence for the 1-dimensional hydrostatic test case (4.2).

evolution. Furthermore, at N=64 at 4th order, we reach a similar absolute error as in our
well-balanced methods.

It is important to stress that the well-balanced scheme requires either the storage of
additional arrays or requires to perform many additional computation every time step.
Indeed, at each Runge-Kutta timestep, we can either recompute face nodal values or we
can store the equilibrium solution once and for all, requiring O((4+m)Nx Nym) of addi-
tional memory, where Nx and Ny denotes the number of cells in x−,y− direction, respec-
tively, and m the order of the method†. Shown in Fig. 2, we show the total time it takes to
run the 1-dimensional hydrostatic equilibrium test case (4.2) when performing the well-
balanced reconstruction (denoted as WBDG2(Rec)) versus precomputing and storing the
equilibrium variables (denoted as WBDG2(Mem)), compared to the traditional discontin-
uous Galerkin methods with order 2, 3 and 4 (denoted as DG2, DG3, DG4 respectively).

A perturbation is now added to the pressure state of the equilibrium solution de-
scribed in (4.2), as shown below:

p(x,t=0)= peq(x)+ηexp

(

−
ρ0g

p0

(x−0.5)2

0.01

)

. (4.4)

The initial condition (4.4) is run until T = 0.25 with different pulse amplitudes:
η = 1×10−2, 1×10−4, 1×10−6 and 1×10−8. In Fig. 3 we show the pointwise L1 error of
between the solution attained with different orders of the non-well balanced discontinu-
ous Galerkin scheme and a high resolution solution which captures the pulse. We note

†Further optimization is possible, by storing the resulting volume/surface integral for each cell, further
reducing the necessary storage to O(Nx Ny).
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Figure 4: Non well-balanced method versus well-balanced method for hydrostatic equilibrium with varying
amplitude perturbation on the pressure field for initial conditions (4.4).

that if the error is larger than the perturbation size, then it is clear that a particular com-
bination of order and resolution is not enough to capture the perturbation. A qualitative
depiction of this is shown in Fig. 4, for a fixed grid-size of N = 64 and different orders.
Furthermore, we note that for η = 1×10−2, the difference between a second-order well
balanced and a second-order non-well-balanced scheme is impossible to see. However,
when the perturbation’s amplitude η decreases below the truncation error of the scheme,
the wave is no longer well captured. As shown in Fig. 3, the error for a non-well-balanced
scheme can be reduced by increasing the order of the scheme or the resolution of the grid,
effectively reducing the approximation error. Note that for the well-balanced method, we
always capture the correct wave solution. The time to solution for the experiment with
perturbation size 1×10−8 is shown in Table 3. Additional times to solution can be found
in Appendix C.

2-dimensional case. We consider an ideal gas γ=1.4 and a linear gravitational potential
Φ= g(x+y). We are interested in preserving the following isothermal equilibrium state
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Table 3: Time to solution for initial conditions (4.4) for η=1×10−8 in seconds (s).

N DG4 DG5 WBDG2 WBDG3

8 0.37 0.56 0.05 0.14

16 0.62 1.28 0.10 0.29

32 2.05 4.79 0.20 0.69

64 12.8 32.4 0.62 3.25

128 103 270 3.84 24.1

on a unit square domain x∈ [0,1]×[0,1]:

ρeq(x,y)=ρ0 exp

(

−
ρ0g

p0
(x+y)

)

,

ueq(x,y)=0,

veq(x,y)=0,

peq(x,y)= p0 exp

(

−
ρ0g

p0
(x+y)

)

,

(4.5)

with ρ0=1, p0=1 and g=1.

The numerical errors for the pressure are reported in Fig. 5 for the following resolu-
tions N = 8, 16, 32, 64, evaluated at final time T = 10.0. Similarly to the 1-dimensional
case, one can observe that the truncation error can be reduced again by increasing the
number of cells or the order, as expected.
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Figure 5: L1 error convergence for the 2-dimensional hydrostatic test case (4.5).
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Figure 6: Non well-balanced method vs well-balanced method for hydrostatic equilibrium with varying amplitude
perturbation on the pressure field for initial conditions (4.6).

Again, as in 1-dimension, a perturbation is added to the pressure state of the isother-
mal equilibrium solution:

p(x,y,t=0)= peq(x,y)+ηexp

(

−
ρ0g

p0

(

(x−0.3)2+(y−0.3)2

0.01

))

. (4.6)

The initial condition (4.6) is run with different pulse amplitudes: η = 1×10−4 and
1×10−8. The results are shown in Fig. 6. Again, we observe that by increasing the order,
we can resolve for small perturbations, but we have to choose the resolution carefully
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to guarantee that the pulse is captured accurately. As before, the well-balanced methods
capture the wave solution correctly, even with a second-order scheme. Further analysis,
such as the pointwise L1 error of between the solution attained with different orders of
the non-well balanced discontinuous Galerkin scheme and a high resolution solution and
simulation time to solution can be found in Appendix C.

4.2.2 Non-hydrostatic steady state

1-dimensional case. We consider the manufactured example‡ of an ideal steady gas
γ = 1.4 with a nonzero velocity field and a gravitational field which balances the flux
term exactly. We are interested in preserving the following moving equilibrium state:

ρeq(x)=ρ0exp

(

−
ρ0g

p0
x

)

,

ueq(x)=exp(x),

peq(x)=exp

(

−
ρ0g

p0
x

)γ

,

(4.7)

with ρ0 = 1, p0 = 1 and a non linear potential φ = exp(x)(−exp(x)+γexp(−γx)). The
boundary values are imposed as in (4.3). The results are shown in Fig. 7 for T=10.0.
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Figure 7: L1-error convergence for the 1-dimensional dynamic test case (4.7).

Now, just as in the hydrostatic equilibrium case (4.4), a perturbation is added to the
pressure field:

p(x,t=0)= peq(x)+ηexp

(

−
ρ0g

p0

(x−0.3)2

0.01

)

. (4.8)

‡For details of this initial condition, refer to Appendix A.
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Figure 8: Non well-balanced method vs well-balanced method for dynamic equilibrium with varying amplitude
perturbation on the pressure field as described in (4.8).

We run the numerical experiment with different pulse amplitudes: η = 1×10−2, 1×
10−4, 1×10−6 and 1×10−8. The results are shown in Fig. 8. Our conclusions remain the
same as for the hydrostatic case: for non-well-balanced methods, only a very high or-
der scheme can capture the low amplitude wave correctly. It appears from Fig. 8 that
the largest truncation error arises from the left boundary and propagates in the direc-
tion of the flow. On the contrary, our second-order, well balance method can deal with
vanishingly small amplitude waves. Further analysis, such as the pointwise L1 error of
between the solution attained with different orders of the non-well balanced discontinu-
ous Galerkin scheme and a high resolution solution and simulation time to solution can
be found in Appendix C.

2-dimensional case. Modified steady vortex. We consider a modified gresho vortex,
where the pressure is modified to balance exactly a gravity source term. The initial con-
ditions for the primitive variables are:

ρ=1.0, vx =−vθ
(y−yc)

r
, vy =vθ

(x−xc)

r
, p= p(r), (4.9)
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Figure 9: L1-error convergence for the 2-dimensional modified gresho vortex (see Eq. (4.9)).

with the cross-radial velocity vθ and pressure p:

vθ(r)=











5r, r<0.2,

2−5r, 0.2≤ r<0.4,

0, r≥0.4,

p(r)=















5+ 25
2 r2−αΦ, r<0.2,

9−4log(0.2)+ 25
2 r2−20r+4log(r)−αΦ, 0.2≤ r<0.4,

3+4log(2)−αΦ, r≥0.4,

where α= 0.01 and Φ= 1
r . One can easily verify that adding a gravity source term with

the potential αΦ recovers the gresho vortex analytically and that this is a steady state
solution of the Euler system. We run this initial condition until T=1.0. In Fig. 9 we can
see the measured empirical L1-norm between the well balanced discretisation and the
traditional discontinuous Galerkin method. We recover the expected convergence rate is
of O(1.4) for the traditional Gresho vortex test case. Including the gravity source term
does not alter the convergence properties of the scheme. We also see that the well-balance
scheme maintain the equilibrium state to machine precision accuracy.

Simplified protoplanetary disc. In the context of planet formation, it is customary to
consider a stationary disc rotating around a single star, which is a steady state solution of
the Euler-Poisson equations.

In this paper, we consider a constant density disc defined in a [−6,6]×[−6,6] box,
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with the following initial conditions:

ρeq =1.0, ueq=−
vθ

r
y, veq =

vθ

r
x, peq = c2

s ρeq, (4.10)

where vθ =
√

1
r (1−α2) is the orbital velocity (slightly sub-Keplerian), cs =αvK the speed

of sound, given by the product of the Keplerian velocity vK and the disk aspect ratio
α=0.03, and the gravity potential of a unit point mass given by Φ=− 1

r .

We now describe in details how we set up our boundary conditions, for which great
care is required in order to preserve the correct geometry of the problem and to stabilise
the solution:

• For the domain boundary conditions (on the box [−6,6]×[−6,6]), the steady state
solution is just imposed in ghost elements, as shown in (4.3).

• To minimise spurious effects due to the rotation of the disk near the end of the box
domain, the constant density field ρeq is multiplied with a tampering function d(r).
The following tampering function is taken:

d(r)=
1

1+
(

r
r0

)q ,

setting q = 20, r0 = 4.2. This function was adopted after several other functions
have been tried. Note that for the stability of the RKDG method it is important
to consider functions which have well behaved derivatives at all orders. Another
good candidate we have tried is the sigmoid function (not shown here).

• The disc is an isolated system with no mass inflow and a (tampered) sharp edge.
We need to introduce a buffer region near the disc edge where propagating waves
are damped to reduce wave reflection. We use a methodology similar to [10], which
smoothly relaxes the numerical solution to the equilibrium solution at the edge of
the buffer zone using a function R(r) so that

H̃(u)=H(u)R(r).

Note that this function must leave the solution unaltered outside of the buffer re-
gion. In our experiments we set R(r)= 1

1+exp(r2−15.0)
where the parameter 15.0 was

chosen to set the size of the buffer region. In [10], the authors used a parabolic
function R(r) instead.

• Similarly, at the centre of the disk, around r = 0.0, we use an inner buffer region
where the numerical solution is set to the steady state solution. An inner radius of
r<0.75 is considered for the size of the inner buffer region.
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A perturbation is then added to the gravity field of the star. Physically, this perturbation
can be interpreted as a planet. As such, the magnitude of the gravitational force exerted
by the planet is very small in comparison to the gravitational force exerted by the star.
We introduce this perturbation in the second term of Eq. (4.11)

∇Φ(x)=
x

(r2+ǫ2)
3
2

+η
x−xp

(r2
p+ǫ2)

3
2

, (4.11)

where rp=
√

||x−xp ||, xp denotes the position of the perturbation

xp =

(

xp

yp

)

=





rc cos
(

vK
rc

t
)

rc sin
(

vK
rc

t
)



,

fixed to be a circular orbit at r=2.2 with Keplerian velocity vK and ǫ=0.01 is the softening
length for the planet. By varying η, we control the size of the perturbation. We test
different sizes of η to denote different sized planets, namely, η=3.1×10−6, 9×10−5 and
9.5×10−4 which correspond to Earth, Neptune and Jupiter sized planets, respectively.

The system is evolved until 20 rotations are performed at r = 2.2, corresponding to
approximately T=410 in our normalised units.

The results after the planet has performed only one rotation can be seen in Fig. 10
and after 10 rotations in Fig. 11. For the smallest perturbation (η = 3.1×10−6), we note
that already after one full rotation, the solution of the DG2 method has interacted with
the waves generated by the mismatch between the inner boundary condition and the
evolved solution, and this effect disappears when increasing the method to 3rd order or
when using the WBDG2 scheme. After 10 rotations it’s clear that the perturbation has
been lost in the numerical errors when using DG2, whereas for DG3 the solution remains
very clean, both in the perturbation and the steady state background solution. Similarly,
when using WBDG2, we observe a very clean perturbation on top of the unperturbed
steady state background, although the resolution on the perturbation is lower than in the
DG3 case.

A similar behaviour is observed for the medium amplitude perturbation (η=9×10−5),
after one rotation. After 10 rotations, although the spiral density wave can be seen in all
methods, both when using DG2 and DG3, artefacts are observed in the gap opened by the
planet, whereas when using WBDG2 the gap remains cleaner. For the larger perturbation
(η=9.5×10−4), even though the effect from the boundary is still present, we see virtually
no difference between DG2 and WBDG2. For such large sized planets, it is expected for
a gap to be carved in the disc, and the regime of the study is very different. Indeed, after
10 rotations the disk is visibly unstable, and the solution has deviated enough from the
steady state background solution that there’s virtually no difference between DG2 and
WBDG2. Indeed, for the simulation to reach 10 rotations, we had to stabilise all methods
by using a positivity preserving limiter. Note that the large amplitude case is particularly
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Figure 10: Density perturbations for non well-balanced method versus well-balanced method from dynamic
equilibrium for varying perturbation of sizes on the gravity field, after 1 rotation, at approximately T=21.

interesting, because it demonstrates that our well-balanced scheme is robust enough to
sustain large deviations from the adopted equilibrium state, recovering the properties of
the corresponding non-well-balanced scheme.

Lastly, as denoted in Table 4, we show the time to solution required for different non
well-balanced and well-balanced methods. In this example, it becomes clear the advan-
tage of using a well-balanced scheme for long term evolution of small perturbations, as

Table 4: Time to solution for the protoplanetary disc case after 10 rotations, for varying planet sizes.

η DG2 DG3 WBDG2

3.1×10−6 1h42m 16h30m6 3h18m

9×10−5 1h42m 16h10m 3h21m

9.5×10−4 1h30m 15h30m 3h30m
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Figure 11: Density perturbations for non well-balanced method versus well-balanced method from dynamic
equilibrium for varying perturbation of sizes on the gravity field, after 10 rotations, at approximately T=210.

the necessary increase in order and resolution in the non well-balanced case can be trans-
lated into much longer simulation times.

5 Conclusion

The motivation of this paper was to address the following three research questions:

• RQ 1: Are there cases where using a high order scheme is sufficient to capture
solutions close to a steady state?

• RQ 2: Under which circumstances is it necessary to use a well balanced method?

• RQ 3: What is the cost associated to each approach and how does it balance with
accuracy?
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To address these questions, we compared a classical RKDG scheme with a novel well-
balanced RKDG scheme using different numerical examples. We study the performance
of these two numerical schemes under the regime of hydrostatic equilibrium and dynamic
equilibrium. This last type of equilibrium is of interest for many studies and simulations
of proto-planetary systems. A summary of our results from the numerical experiments
shown in Section 4 follows:

• When considering hydrostatic equilibrium in one space dimension, the non-well
balanced high order method behaves very well. In particular, for waves with am-
plitude larger than the scheme’s truncation error, the method was able to resolve
the perturbation accurately as expected. For example, when using the 3rd or 4th

order method, we were able to reduce the truncation error down to O(10−8) and
O(10−12) for a resolution of N=64, respectively.

• Studying the hydrostatic equilibrium case in a 2-dimensional setting, we were
able to reduce the error to O(10−8) and O(10−12) only for a resolution of Nx =
64, Ny = 64 when using a 3rd or 4th order method, respectively. However, it was
observed that when using a well-balanced scheme, the required resolution (either
in space or in polynomial degree) could be lowered without affecting the ability of
the scheme to capture the waves.

• Considering a steady state with a non-trivial velocity in a 1-dimensional setting

(dynamic equilibrium), we are able to reduce the error to O(10−6) and O(10−10) for
a resolution of N = 64, for a 3rd or 4th order, respectively. When considering the
same initial condition with a smaller perturbation in the pressure field, high order
methods appear to fail in capturing properly the wave (in particular for perturba-
tion η = 1×10−8). Only our well-balanced scheme is robust enough to capture the
wave dynamics properly.

• For the modified Gresho vortex, a 2-dimensional steady state solution with a non-

trivial velocity, we observe that the non well-balanced method converges with the
expected numerical accuracy, even in the presence of the source terms. The well-
balanced scheme is preserving the stationary solution down to machine precision
accuracy.

• For the idealised disc-planet interaction case, a 2-dimensional steady state solu-
tion with a non-trivial velocity, we observe that for small and medium amplitude
perturbations, the well-balanced scheme is clearly superior, being able to keep the
background solution for longer than the non well-balanced methods, although the
increase in the approximation order improves the solution significantly. In partic-
ular, for the medium amplitude perturbation we observe the opening of a shallow
gap. In both DG2 and DG3 this gap is not very clean. In the context of planet mi-
gration, the gap opening is important because it decreases the angular momentum
exchange between the planet and disc, which in turn is translated into a decrease
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of the migration rate of the planet [24]. For both the small and medium amplitude
perturbations, we are able to observe the expected density spiral arms without the
strong numerical artefacts that we see when using classical high order schemes. In-
deed, in this case the density wave seems to be corrupted mostly from the inner and
outer boundaries. In order to stabilise the solution when using DG2 and DG3, in ad-
dition to sophisticated boundary conditions, we have to use a positivity preserving
limiter [15]. For the large amplitude perturbation, we see no difference between
DG2 and WBDG2. Our hypothesis is that the solution can’t be represented as a
simple superposition of a steady state solution and a time dependent small pertur-
bation, however, we note that the WBDG2 scheme behaves as DG2 (also requiring
the positivity preserving limiter), which points towards our well-balanced method
being robust for large perturbations.

The use of a well-balanced scheme for the rotating disk case seems a good compro-
mise (RQ2), while for simpler 1-dimensional hydrostatic equilibrium problems, one can
beat down the truncation error fairly easily by raising either the order or the resolution
of the scheme, without using the well balance correction (RQ1).

We note that the well-balanced correction does not come without a cost (RQ3). As
shown in Fig. 2, the well-balanced correction can slow down the code significantly. This
can be alleviated by pre-computing and storing all the variables from the steady state
solution. However, this means that the memory requirements for this algorithm almost
double (in comparison to the classical RKDG scheme). Due to the compute intensity
of DG methods, GPUs are usually the appropriate hardware to run these methods [12],
which are often limited in memory so this is something worth considering when choosing
the appropriate implementation.

Note than one very restrictive condition for our well-balanced scheme is to know the
exact form of the equilibrium solution everywhere, either in analytical or tabulated form.
Moreover, a high-order scheme, if it is robust enough to capture the wave dynamics, will
always deliver higher accuracy than a well-balanced, low order scheme. In [30], we show
that the DG method can be a competitive method in planet-disc interaction studies, even
without the well balanced correction, if one uses enough grid points, a conservative slope
limiter and a careful boundary condition strategy.

In conclusion, we have shown that the well balanced property in numerical schemes
is important for two reasons: 1- we are able to capture low amplitude waves propagat-
ing in non-trivial equilibrium states without resorting to complex boundary conditions
strategies and 2- we are able to solve for very small perturbations using lower order
methods, which requires significantly less computations per time step, in particular when
considering multi-dimensional problems. Both these points are relevant for setups like
the one discussed here, namely the long term evolution of the sightly perturbed multi-
dimensional equilibrium disc solution. As further steps, we hope to test and potentially
study an extension of this scheme to capture equilibrium solution with discontinuities
and to consider arbitrary general equilibrium states along the lines of [25].
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Appendices

A One dimensional moving steady state solution

In this section we are interested in the construction of a simple 1-dimensional test case
which is a steady state solution to the 1-dimensional Euler equations with a non trivial
velocity field. The objective is to find the quartet of functions (ρ,v,p,φ) such that they
fulfil the following:

∂

∂x
(ρv)=0, (A.1a)

∂

∂x
(ρv2+p)=−ρ

∂

∂x
Φ, (A.1b)

∂

∂x

(

(E+p)v
)

=−ρv
∂

∂x
Φ. (A.1c)

From (A.1a), we have ρv=const, whereas for (A.1b) and (A.1c):

ρv
∂

∂x
v+

∂

∂x
p=−ρ

∂

∂x
Φ,

∂

∂x

(

(E+p)v
)

=−ρv
∂

∂x
Φ.

Noting that E= p
γ−1+

1
2 ρv2, (A.1c) yields:

ρv2 ∂

∂x
v+

∂

∂x

(

pv
γ

γ−1

)

=−ρv
∂

∂x
Φ.

Substituting (A.1b) into (A.1c), one can solve find p if we assume some form for ρ (and
consequently for v).

Setting ρ= exp(−x), thus v= exp(x) and p= exp(−γx). An expression for Φ can be
written by solving the differential equation in (A.1b), yielding: ∂

∂x Φ=exp(x)(−exp(x)+
γexp(−γx)).
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B A simple equilibrium solution for proto-planetary discs

The orbital speed for a gas can be calculated from the Euler-Poisson equations:

∂v

∂t
+(v·∇)v=−

1

ρ
∇p−∇Φ,

where p denotes the pressure, ρ the density and Φ the gravitational potential. We can
rewrite the second term as§:

(v·∇)v=
1

2
∇vTv−v×(∇×v).

Assuming a steady state ( ∂
∂t =0) axisymmetric solution, we derive the orbital velocity:

v2
φ

r
=

1

ρ

∂

∂r
p+

∂

∂r
Φ.

Furthermore, defining the Keplerian velocity: vK(r)=
√

r ∂
∂r Φ and the constant disk aspect

ratio [2] with

α=

√

p(r)
ρ(r)

vK(r)
,

we can deduce the relation for the pressure to be p(r)=α2ρ(r)v2
K. Finally, we obtain the

equilibrium tangential velocity vφ knowing the constant α and the profile ρ(r).

C Supplementary results

In this section we provide the time to solution for the numerical experiments performed
in Section 4 and convergence plots associated to the perturbation tests.

C.1 1-dimensional hydrostatic

For convenience, we restate the initial conditions: an ideal gas γ=1.4 in isothermal equi-
librium state and a linear gravitational potential Φx = gx is considered:

ρeq(x)=ρ0 exp

(

−
ρ0g

p0
x

)

,

ueq(x)=0,

p(x,t=0)= peq(x)+ηexp

(

−
ρ0g

p0

(x−0.5)2

0.01

)

,

(C.1)

with ρ0=1.0, p0=1.0 and g=1.0.

§Using the following identity ∇(A·B)=A×(∇×B)−(∇×A)×B+(A·∇)B+(B·∇)A.
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Table 5: Time to solution for the 1-dimensional hydrostatic equilibrium (C.1) (s) for perturbation size η =
1×10−2, 1×10−4 and 1×10−6, respectively.

N DG1 DG2 WBDG2 WBDG3

8 0.37 0.56 0.05 0.14

16 0.62 1.28 0.10 0.29

32 2.05 4.79 0.20 0.69

64 12.8 32.4 0.62 3.25

128 103 270 3.84 24.1

N DG2 DG3 WBDG2 WBDG3

8 0.37 0.56 0.05 0.14

16 0.62 1.28 0.10 0.29

32 0.18 4.79 0.20 0.69

64 12.8 32.4 0.62 3.25

128 103 270 3.84 24.1

N DG2 DG3 WBDG2 WBDG3

8 0.37 0.56 0.05 0.14

16 0.62 1.28 0.10 0.29

32 2.05 4.79 0.20 0.69

64 12.8 32.4 0.62 3.25

128 103 270 3.84 24.1

C.2 2-dimensional hydrostatic

Ideal gas γ=1.4, in isothermal equilibrium and a linear gravitational potential Φ=g(x+
y). Unit square domain x∈ [0,1]×[0,1]:

ρeq(x,y)=ρ0exp

(

−
ρ0g

p0
(x+y)

)

,

ueq(x,y)=0,

veq(x,y)=0,

peq(x,y)= p0exp

(

−
ρ0g

p0
(x+y)

)

,

(C.2)

with ρ0 = 1, p0 = 1 and g = 1. The time to solution is shown on Tables 6, 7 and error
convergence plots in Fig. 12.

Table 6: Time to solution for hydrostatic equilibrium (C.2) (s) at T=10.0.

Nx DG2 DG3 DG4 WBDG2 WBDG3

8 1.53 3.36 10.8 1.85 4.63

16 2.92 7.32 24.6 3.74 9.52

32 6.88 19.9 82.1 8.74 24.7

64 19.3 101 525 2.46 130

128 119 777 4310 154 981
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Table 7: Time to solution for hydrostatic equilibrium (C.2) (s) for perturbation sizes η=1×10−4, 1×10−8 at
T=0.25.

Nx DG2 DG3 WBDG2 WBDG3

8 0.04 0.08 0.05 0.10

16 0.08 0.17 0.09 0.22

32 0.17 0.49 0.22 0.64

64 0.50 2.51 0.69 3.26

128 2.98 19.5 3.84 24.5

Nx DG3 DG4 WBDG2 WBDG3

8 0.08 0.27 0.03 0.10

16 0.17 0.62 0.07 0.22

32 0.50 2.06 0.17 0.62

64 2.50 13.2 0.61 3.26

128 19.5 108 3.86 24.5
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Figure 12: Non well-balanced method vs well-balanced method for hydrostatic equilibrium with varying amplitude
perturbation on the pressure field for initial conditions (C.2).

C.3 1-dimensional dynamic

Ideal steady gas γ=1.4 with a nonzero velocity field and a non linear gravitational field

ρeq(x)=ρ0exp

(

−
ρ0g

p0
x

)

,

ueq(x)=exp(x),

peq(x)=exp

(

−
ρ0g

p0
x

)γ

,

(C.3)

with ρ0=1, p0=1 and a non linear potential φ=exp(x)(−exp(x)+γexp(−γx)). The time
to solution for this test case is very similar to the 1-dimensional hydrostatic equilibrium
case, and is thus omitted. The error convergence plots are shown in Fig. 13.



32 M. Han Veiga et al. / Commun. Comput. Phys., 26 (2019), pp. 1-34

10

1

10

2

N (log)

10

-5

10

-4

10

-3

10

-2

10

-1

e
r
r
o
r

max amplitude T=0. 25

η=1× 10

−2

DG1

DG2

10

1

10

2

N (log)

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

e
r
r
o
r

max amplitude T=0. 25

η=1× 10

−4

DG3

DG2

10

1

10

2

N (log)

10

-9

10

-8

10

-7

10

-6

10

-5

10

-4

e
r
r
o
r

max amplitude T=0. 25

η=1× 10

−6

DG3

DG4

10

1

10

2

N (log)

10

-9

10

-8

10

-7

10

-6

e
r
r
o
r

max amplitude T=0. 25

η=1× 10

−8

DG5

DG4

Figure 13: Non well-balanced method versus well-balanced method for hydrostatic equilibrium with varying
amplitude perturbation on the pressure field for initial conditions (C.3).
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