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Capturing Small Objects and Edges Information for
Cross-Sensor and Cross-Region Land Cover

Semantic Segmentation in Arid Areas
Panli Yuan , Qingzhan Zhao , Yuchen Zheng , Member, IEEE, Xuewen Wang , and Bin Hu

Abstract—In the oasis area adjacent to the desert, there is more
complex land cover information with rich details, multiscales of
interest objects, and blur edge information, which poses some chal-
lenges to the semantic segmentation task in remote sensing images
(RSIs). In traditional semantic segmentation methods, detailed
spatial information is more likely lost in feature extraction stage
and the global context information is more effectively integrated
into segmentation results. To overcome these land cover semantic
segmentation model, FPN_PSA_DLV3+ network, is proposed in
an encoder–decoder manner capturing more fine edge and small
objects information in RSIs. In the encoder stage, the improved
atrous spatial pyramid pooling module extracts the multiscale
features, especially small-scale feature details; feature pyramid
network (FPN) module realizes better integration of detailed in-
formation and semantic information; and the spatial context in-
formation at both global and local levels is enhanced by intro-
ducing polarized self-attention (PSA) module. For the decoder
stage, the FPN_PSA_DLV3+ network further adds a feature fu-
sion branch to concatenate more low-level features. We select
Landsat5/7/8 satellite RSIs from the areas of north and south
of Xinjiang. Then, three self-annotated time-series datasets with
more small objects and fine edges information are constructed
by data augmentation. The experimental results show that the
proposed method improves the segmentation performance of small
targets and edges, and the classification performance increases
from 81.55% to 83.10% F1 score and from 72.65% to 74.82% mean
intersection over union only using red–green–blue bands. Mean-
while, the FPN_PSA_DLV3+ network shows great generalization
in cross region and cross sensor.

Index Terms—Convolutional neural networks (CNNs), fine edge,
remote sensing image (RSI), semantic segmentation, small objects.
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I. INTRODUCTION

THE oasis–desert mosaic belt, playing the boundary role
between desert and oasis ecosystems, is a representative

landscape in the arid areas of northwestern China, such as
Xinjiang [1]. Sustainable agriculture development and sustain-
ability of the ecosystem affected by the desertification and urban
expansion of the oasis–desert mosaic belt [2]. Therefore, we
urgently need to grasp the spatial distribution and dynamic
change information of land cover in an arid area, which could
effectively improve economic and ecological benefits and propel
the national ecological barrier construction.

With the significant development of remote sensing (RS)
technology, there are vast volumes of remote sensing images
(RSIs) with different resolutions available for earth observation,
which are mutually constrained by the spectral resolution, spa-
tial resolution, and richness of historical data [3]. Landsat-like
satellite images have a tradeoff with the three aspects, which
have a long duration, wide coverage, and repetitive capability
and are beneficial to widespread applications, including land
cover mapping, urban planning, land resource management,
environmental monitoring, and other fields [4], [5].

Scholars have tried many approaches to RSIs classification
in recent years, and there are some limitations. The traditional
machine learning (ML) methods only use the texture and spectral
information to classify sandy land [6] and other land cover
information of oasis [7], which are prone to produce unsatis-
factory classification results due to their inferior capabilities of
feature extraction [8]. Object-oriented methods use the spatial
and spectral characteristics of the object to classify but suffer
from problems, such as insufficient generalization of classifica-
tion rules and manual participation in segmentation parameters
adjustment [9]. The last decade has witnessed the rapid advance
of deep learning [10] in the computer vision field, especially
the fundamental semantic segmentation task [11], [12]. Many
improved models based on fully convolutional network (FCN)
[13] have appeared one after another and successfully applied
to RSIs semantic segmentation surpassing traditional methods
with a large margin [14]. However, the existing convolutional
neural network (CNN) based methods lose more detailed infor-
mation after continuous convolution operation and are difficult
to segment the small object. Meanwhile, the current segmen-
tation methods only obtain the main smooth contour of the
object instead of a sharp edge. The extraction of small objects
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and edge information is hindered by the similarity of spectral
response, textures, sharpen, and blur edge. Some methods are
low automation and features require to be manually designed
[15], [16].

As an alternative, the encoder–decoder design is proposed to
directly aggregate multilevel semantic features and more spatial
information [17], [18]. UNet [19] and RefineNet [20] have a
similar architecture with multipath skip connections to reuse
multilevel feature maps. The DenseU-Net [21] extracts feature
by continuous downsampling blocks and upsampling blocks to
restore the spatial information of the RSIs. For those FCN-based
methods, a large amount of spatial detail information is lost
in the process of features transmitted from encoder to decoder
and does not be restored well by decoder. Furthermore, some
models enhance the ability to integrate contextual information
in network structure, such as aggregating local features with
decreasing dilation factor in atrous convolution [22], introducing
a context encoding module to highlight the class-independent
feature [23], and proposing a parallel pooling design to integrate
the contextual information [24]. The atrous spatial pyramid
pooling (ASPP) combining pyramid pooling module and atrous
convolution [25] and applies in DeepLabV3+ [26] and Densea-
spp [27]. In another way, the feature pyramid network (FPN)
[28] combines strong semantic information and rich spatial
information to solve the different sizes’ objects segmentation
problem. The attention mechanism also improves the feature
extraction capability of a model by strengthening the pertinence
of learning [29]. It applies learned weights to features to further
extract relevant information and has better service for semantic
segmentation [30], [31], [32]. However, most methods are fit for
the specific case study, while they are not appropriate in other
cases [33]. And the improvement of classification accuracy is
limited in RSIs with complex backgrounds.

Among the above CNN-based models, global dependencies,
multiscale features fusion, and attention mechanisms design
bring great effect to the segmentation of small objects and fine
edges. How to take advantage of the strength of these modules to
establish a CNN-based network with the generalized property
for refined edge and small objects segmentation is a problem
worthy of exploration.

Otherwise, an effective CNN-based classification model relies
heavily on the well-annotated training data as training materials.
Some datasets have very high resolution but only several classes
without many small objects and more detailed edge informa-
tion [34], [35]. For the lack of large-scale public classification
datasets, including complex land covers, such as the scattered
build-up and highly fragmented landscape without clear-cut
border in the arid area [36], [37], it is significant to build such
dataset as data support to solve the problem of the semantic
segmentation of small objects and edges, such as the oasis
adjacent to the desert.

In this article, first, to monitor the desertification and urban
expansion of the oasis adjacent to the desert, we select two typi-
cal arid study areas in the north and south of Xinjiang and choose
long-time-series Landsat-like satellite images as the data source.
Then, three self-annotation datasets, Mosuowan Landsat8 OLI
Dataset (denoted as MSW_LCD), Tumushuke Landsat8 OLI
Dataset (denoted as TMSK_LCD), and Tumushuke Landsat7

ETM+ and Landsat5 TM Dataset (denoted as TMSK_LELTD),
are constructed. Limited by the impact of the natural environ-
ment, the edges bordering the desert are irregular and residential
land is small and scattered. Therefore, there are many small
objects (build-up) and complex edge information (the boundary
of desert and farmland) in these three datasets, while the exist-
ing semantic segmentation datasets are more used to annotate
large-scale features, and the edge information is not rich enough
[38]. According to the definition of the International Society for
Optical Engineering, the size of a small object is the size of
the object, which is less than 0.15% of the original image [39].
Based on this definition, we will make the land cover with less
than 416 × 416×0.15% of pixels as the small object land cover
in the subimage with the size of 416 × 416 pixels.

At the same time, to better solve the problem of com-
plex land covers classification in arid areas, such as irreg-
ular edges and many scattered small objects, we propose a
novel encoder–decoder semantic segmentation architecture: the
FPN_PSADLV3+ network. We make targeted improvements to
the model in both the encoder and decoder stages to discriminate
small objects and fine parts of objects. For the encoder, the
FPN_PSADLV3+ network refines multiscales semantic infor-
mation via three blocks. Specifically, the FPN module makes full
use of multistage feature maps from the backbone, the polarized
self-attention (PSA) block [40] enhances the ability to capture
semantic information, and the improved ASPP composition ver-
ify field-of-views to capture multiscale features. For the decoder,
three feature fusion branches come from the encoder and the
upsampling rules are improved to better fuse low-level feature
information. Finally, we fine tune the model on the TMSK_LCD
dataset to verify the across-region generalization of the model
and on the TMSK_LELTD dataset to verify the cross-region and
cross-sensor (denoted as cross-region–sensor) generalization.

The main contributions of this article are listed as follows.
1) We manually establish multisensor time-series land cover

classification datasets containing many small object and
edge complex land covers, namely the MSW_LCD,
TMSK_LCD, and TMSK_LELTD datasets for model
training, validation, and testing, which allows us to con-
tinuously monitor land surface and observe long-term
regional or global changes.

2) A novel semantic segmentation network, the FPN-
PSADLV3+ network, is proposed to capture small ob-
jects and edges information for semantic segmentation
of RSIs. The FPN-PSADLV3+ network introduces the
FPN module to fuse more detailed information, leverages
the improved ASPP composition for multiscale feature
maps, and imports the PSA block to capture more long-
range dependency to obtain more discriminant feature
representation and learn more relevant features along
channel and spatial dimension improving the learning
efficiency.

The rest of this article is organized as follows. Section II
describes the proposed datasets in detail. Section III presents
the design and architecture of the proposed FPN_PSADLV3+
network. Section IV reports the experimental results. Section V
discusses the performance of the FPN_PSADLV3+ network.
Finally, Section VI concludes this article.



YUAN et al.: CAPTURING SMALL OBJECTS AND EDGES INFORMATION 985

Fig. 1. Location of the study areas. (a) Mosuowan reclamation, North Xin-
jiang. (b) Tumushuke region, Southern Xinjiang.

II. DATASET DESCRIPTION AND PREPROCESSING

We establish three datasets for land cover classification. Sec-
tion II-A describes the details of two study areas. Section II-B in-
troduces information about the source data. Section II-C presents
in detail how we build the datasets and the characteristics of the
datasets.

A. Study Area

There are two key points that need to decide are which
geographic area to include and what types of land covers to be
classified before constructing a dataset. Specifically, as the focus
is on accurately the current status of land use in arid areas, we
selected two interest regions of the Tumushuke region, Southern
Xinjiang (39°39′N - 40°4′N, 78°53′E - 79°19′E, denoted as
TMSK, see Fig. 1(a)) and Mosuowan Reclamation Area, North
Xinjiang (44°23′N -45°12′N, 85 52′E - 86°19′E, denoted as
MSW, see Fig. 1(b)), as the study areas, which are adjacent to the
desert. And the representative types of land cover we classify
are farmland, build-up, bare land, and water. Compared with
the MSW region in northern Xinjiang, the TMSK region has
the characteristics of decentralized and residential houses that
scatter on agricultural land and urbanization development, which
is relatively slow before 2013. Therefore, it is of significance to
grasp the land resource utilization, urban development status,
and ecological situation by mastering the distribution of land
covers in the TMSK region of southern Xinjiang.

B. Data Collection and Preparation

We choose Landsat-like satellite imagery as the source data
for the classification of four land covers, namely farmland,
bare land, build-up, and water. What needs to be explained
is that the spectral and texture characteristics of the four land
covers are easier to distinguish from each other during the peak
growth period (May to October of a year). The short satellite
revisit period (16 days) increases the amount of candidate data.
The satellite images are downloaded from the geospatial data

cloud and the United States Geological Survey, and the main
parameters of availability images are provided in Table I.

The radiation calibration and the atmospheric correction are
the preconditions of quantitative RS study on the satellite RSI
acquired by different sensors at different times. The Landsat7
ETM+ image data from 2003 to 2005 have striped data loss.
With the help of the ENVI landsat_gapfill extension tool, the
pixel space interpolation repair is completed. The spectral bands
to build up the three datasets are the blue (0.450–0.515 µm)
band, green (0.525–0.600 µm) band, and red (0.630–0.680 µm)
band. The spatial dimensions are 1133 × 2874 pixels and 1237
× 1527 pixels in the TMSK and MSW region, respectively, after
cutting from interest regions of the study area. Rich source data
facilitate us to build the multisensor time-series satellite datasets
and provide data support for subsequent work.

C. Dataset Construction

The MSW_LCD dataset is imaged by Landsat8 OLI from
Mosuowan reclamation area; the TMSK_LCD is imaged by
Landsat8 OLI from Tumushuke region; and the TMSK_LELTD
dataset is imaged by Landsat5 TM and Landsat7 ETM+ from
Tumushuke region. On May 16, 2021 and August 8, 2021,
we carry out field data collection in the MSW and TMSK
regions, mainly collecting the land covers corresponding to GPS
information. Combining field investigations data and satellite
imagery, these three datasets have complex foreground informa-
tion, multiscale interest objects, and blur edges between desert
and farmland. Moreover, some of these land covers may have
similar spectral responses, rich texture features, and irregular
geometric structures, which further increases the within-class
variability and decreases separability between different land
covers. Therefore, our datasets are more characteristic of typical
arid areas. Here, we analyze the spectral information and tex-
ture characteristics of the images and summarize the following
interpretation signs.

1) The build-up land includes towns, villages, industrial
building land, etc. Build-up land is compact and massive
and mostly in the form of blocks and strips in the MSW and
TMSK regions after 2013, while scattering in the middle
of the agricultural land TMSK before 2013. The spectral
of images is mostly mixed with white, red, and blue.

2) The bare land includes gravel Gobi, barren land, bare rock,
sandy area, etc. The spectral of the desert image is brown
and yellow [see Fig. 2(d1), (e2), and (d2)], with complex
and irregular edges at the borders of farmland and desert
[see Fig. 2(f1), (e2), and (f2)].

3) The farmland includes cultivated land, shrubland, forested
land, grassland, etc. The spectral and shape properties of
the farmland images in Fig. 2(a1)–(c1) and (a2)–(c2) are
completely diverse. Some are large continuous rectangu-
lar, while others are irregular with dark green color.

4) The water includes lakes, artificial lakes, reservoirs, wet-
lands, and other waterbodies. Waterbody spectral is green
with different shades [see Fig. 2(j1), (j2), and (l2)]. The
distribution area is relatively fixed, the boundary is more
obvious, but the boundary of the small water bodies is
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TABLE I
AVAILABILITY OF LANDSAT-LIKE IMAGERY IN THE MSW AND TMSK REGIONS

Fig. 2. Sample images from the TMSK and MSW datasets. (a) Tumushuke region. (b) Mosuowan area.

not clear with complicated shape [see Fig. 2(k1), (l1), and
(k2)].

The performance of RSI classification based on deep learning
relies heavily on the well-annotated large-scale training data
[40]. The data input to the semantic segmentation model is cut
to 416 × 416 pixels without overlapping from each other, and
the blank image blocks are filtered out. Five representative land
cover types are annotated: farmland, bare land, build-up, water,
and background. Precise pixel-level data annotation adopts a
visual interpretation method combined with high-resolution im-
ages from google earth pro and field investigations information
using the LabelMe deep learning annotation tool. And then
converting it into a color-coded (red, green, and blue) map with
a shape of 416 × 416×3. Fig. 3 shows some annotation results.

We apply several efficient data augmentation methods to
increase the number of samples, as shown in Fig. 4. The rotation
and random crop resize are mimic the bird’s eye view of the
satellite when shooting land covers. And the Gaussian blur and
random erasing are used to simulate the interference of the cloud
coverage on the image quality. In all, the number of images on

the MSW_LCD, TMSK_LCD, and TMSK_LELTD datasets is
4342, 2429, and 6161, respectively.

Table II presents the distribution of land covers and the
proportion of small object parcels in the three datasets, and
the proposed dataset has a high proportion of small targets in
farmland, bare land, and build-up. The distribution ratios of
water and build-up on the three datasets are similar, and bare
land and farmland land are slightly different. This is related
to the geographical environment of southern and northern
Xinjiang. The high percentage of small objects and complex
edge information of land covers will be a challenge for the
exploration of land cover extraction models. The MSW_LCD,
TMSK_LCD, and TMSK_LELTD datasets are available at
figshare.com/articles/figure/LandCoverClassificationDataset/2
1445518.

III. FPN_PSA_DLV3+ NETWORK

This section presents the proposed method,
FPN_PSA_DLV3+ architecture (see Section III-A), for land
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Fig. 3. Examples of images and their corresponding annotation masks. The
first row is the original image, the second row is the mask of annotation and
original image, and the third row is the visualization of labels.

TABLE II
AMOUNT OF DATA DISTRIBUTED PER LAND COVER ON EACH DATASET

cover semantic segmentation of RSIs, which takes advantage
of multistage feature maps from the backbone to integrate
more detailed information with the aid of the FPN module (see
Section III-B), incorporates multiscale contextual information
that make the trained model robust to scale variations using the
improved ASPP module (see Section III-C), and leverages PSA
to improve the learning efficiency (see Section III-D).

A. Overall Model Architecture

We propose an effective encoder–decoder network, the
FPN_PSA_DLV3+ network for capturing more small ob-
jects and finer edge detailed information (see Fig. 5). The
FPN_PSA_DLV3+ network is based on the DeepLabv3+ [26],
which is the latest improved version of the DeepLab series
of networks [25], [26], [42]. We find that DeepLabv3+ may
not successfully recover small objects and finer edge detailed

information by applying continuous two-dimensional convolu-
tion operation of the encoder and two quadruple upsampling
and pooling operations of the decoder. Some improvements are
made to the DeepLabv3+ in capturing contextual information
and mitigating the loss of detailed information and multiscale
feature extraction.

Encoder: We take Resnet50 as the feature extractor and use
the feature maps from the output of the last residual block layer
of each stage to get more low-level information. Input tensor I
and output tensorO of the FPN_PSA_DLV3+ network have the
same dimension C × H × W. Conv1, conv2, conv3, and conv4
represent different residual blocks of Resnet50. The original size
of input feature maps is denoted as f. And {1/2f, 1/4f, 1/8f, and
1/16f}, respectively, represent the outputs of the conv1, conv2,
conv3, and conv4. To preserve initial global information, the
output feature maps from conv2 are sent to the decoder as
low-level features instead of conv1 due to its large memory
footprint. Moreover, the coarser-resolution maps from conv4
are upsampled by a factor of 2. Then, the maps are merged
with maps from conv3 by elementwise addition. The generated
finer-resolution maps with more detailed information, 1/8f, are
also sent to the decoder. Simultaneously, ASPP probes the
incoming 1/16f maps from conv4 with atrous convolutions and
pooling operations at multiple field-of-views to capture features
at different scales. The resulting features are concatenated and
pass through the parallel layout PSA module. The PSA model
generates channel weighting and spatial weighting for the fed
feature maps, respectively. The channel weighting is used to es-
timate the class-specific output scores and the spatial weighting
is used to detect pixels of the same semantics. Thus, the PSA
module is introduced to this position to highlight features for the
above goals. After the PSA module, we apply 1 × 1 convolution
operation with 256 filters to reduce the number of channels and
then send this 1/16f high-level features to the encoder.

Decoder: Compared with the original DeepLabv3+, the
FPN_PSA_DLV3+ adds a feature fusion branch to make full
use of the feature maps of the backbone. Therefore, the ability
of capturing semantic information is enhanced from three fea-
ture fusion branches: the first branch is from the conv2 of the
backbone; the second is from the output of the FPN module;
and the third branch is from the output of the ASPP5 and 1
× 1 convolution. In addition, the same semantics are highly
nonlinear in nature. If the feature maps from the third branch
are directly upsampled by a factor of 4, the semantic informa-
tion cannot be effectively recovered, especially for the small
objects and object parts. For the fine-granted segmentation, we
replace bilinearly upsampling operation by a factor of 4 with
two bilinearly upsampling operation by a factor of 2. And after
the first upsampling operation, the second branch from FPN of
the feature information is concatenated. The concatenated maps
subsequently pass through the second upsampling operation by
a factor of 2. After the feature fusion of the second branch and
the third branch, we obtain 1/4f feature maps. The output feature
maps concatenate the first branch feature maps from the conv2.
After that, we apply a 3 × 3 convolution for features refinement
followed by a simple bilinear upsampling operation by a factor
of 4. Here, the upsampling operation is not replaced with two
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Fig. 4. Sample images after different data augmentation methods.

Fig. 5. Architecture of the FPN_PASDLV3+ network. PSA denotes the polarized self-attention block. FPN denotes the feature pyramid network module.

bilinear upsampling operation by a factor of 2 because there is
no more detailed information that needs to be integrated into the
network.

B. FPN Module

As an efficient available way to compute a multiscale feature
representation, the FPN module creates a feature pyramid that
alleviates large semantic gaps between low-level and high-level
features. As shown in Fig. 6, the input of the FPN model
comes from two parts: the finer-resolution and the coarser-
resolution feature maps. And the lateral connection associates
finer-resolution low-level feature maps across coarser-resolution

semantic maps. First, the finer-resolution feature maps pass
through a 1 × 1 convolution and add those maps with coarser-
resolution feature maps after upsampling by a factor of 2. After-
ward, fusion feature maps from different levels are obtained.
Feature activation maps from the FPN module obtain richer
semantic information and spatial information and effectively
improve the performance of the whole network.

C. Improved ASPP Module

The ASPP module captures multiscale objects and context
information. It is crucial to select proper atrous rates for different
segmentation objects [43]. Considering that the goal of this



YUAN et al.: CAPTURING SMALL OBJECTS AND EDGES INFORMATION 989

Fig. 6. Building block of FPN module.

Fig. 7. Schematic diagram of the improved ASPP.

article is to capture more effective information on small objects
and object parts, we improve the original ASPP by changing the
size of the atrous rates or adding another atrous convolutional
layer according to the characteristics of small objects, as shown
in Fig. 7. On the one hand, we adjust the atrous rates of ASPP by
applying the atrous rates with {1, 4, 10, 16} (denoted as ASPP4
module). Compared with the original ASPP module, the overall
atrous rates are reduced, and more detailed features are extracted
without affecting the fusion of context information. On the other
hand, we add a 3 × 3 convolution with an atrous rate of 3 with
a smaller receptive field and get the ASPP5 module. ASPP5
module is a range of atrous convolutions with rates= {1, 3, 6, 12,
18}. There is a hybrid dilated convolution layers of different rates
so that the convolution calculation could cover the entire feature
map. To a certain degree, introducing the ASPP5 module to
the proposed network aggregates multiscale information without
losing resolution information and alleviates the gridding effect.

D. Polarized Self-Attention Block

PSA block is first proposed by He et al. [46], as shown
in Fig. 8; PSA block is constructed for boosting long-range
feature interactions, which is made up of two branches: the
channel-only attention branch and the spatial-only attention
branch (see Fig. 8). Specifically, the channel-only attention
branch generates an attention score of C × 1×1 in the channel

Fig. 8. Architecture of PSA block. (a) Channel-only attention block.
(b) Spatial-only attention block. (c) Parallel layout PSA module. (d) Sequentially
layout PSA module.

dimension, and the spatial-only attention branch generates an
attention score of 1 × H × W in the spatial dimension. And
then the attention scores dot product the input feature map to get
the outputs Oc and Os, respectively. The two branches greatly
enhance the discriminant ability of long-range contextual feature
representations in the channel and spatial dimension. There are
two ways to combine the outputs of the two branches, the parallel
layout PSA module [denoted as PSA (P), Fig. 8(c)] and the
sequentially layout PSA module [denoted as PSA (S), Fig. 8(d)].
The PSA module preserves the highest attention resolution for
both the channel of C/2 and spatial dimension of [W, H] to
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TABLE III
NUMBER OF SUBIMAGES IN TRAINING SET, VALIDATION SET, AND TEST SET

output high-resolution semantic information. And the PSA is
currently the only self-attention block that combinates nonlinear
functions of SoftMax and Sigmoid to increase the dynamic range
of attention and fit output distribution. Introducing the PSA
module improves the learning efficiency and the effect of model
classification.

IV. EXPERIMENTAL RESULTS

In this section, we first describe the experimental settings and
evaluation indicators in Section IV-A. In Section IV-B, a range of
popular CNN networks used in RSI classification tasks is com-
pared in terms of classification accuracy and convergence speed.
We also explore the feature extraction capabilities of different
backbones on the DeepLabv3+ architecture concentrating on
the classification performance gain (see Section IV-C). We then
perform some ablation study where we add or replace some mod-
ules in the DeepLabv3+ architecture (see Section IV-D). Finally,
we demonstrate the generalization of the FPN_PSADLV3+
architecture by focusing on cross-region and cross-sensor RS
classifications (see Section IV-E).

A. Experimental Settings and Measurement

We train all models for 100 epochs with a batch size of 3,
using Adam optimizer with a cross-entropy loss function. We
set the initial learning rate to 0.001 and employ an equal interval
adjustment policy with the patience of 8 and gamma of 0.5
to attenuate the learning rate gradually. One point that needs
to be emphasized is that we fine tune the model with a small
initial learning rate of 0.0005 on the evaluation of generalization
of cross-region and cross-sensor experiments. In the process
of model fine tuning, we adopt a pretrained model on the
MSW_LCD dataset because a proper initialization contributes
to the performance of the network and some common feature
information is learned from other datasets. Our implementation
is on a single NVIDIA RTX 2080Ti, Keras platform. We give the
detailed training set, verification set, and test set distributions of
the three datasets, as shown in Table III.

Several different metrics are used to evaluate the segmentation
capability of the proposed method. The accuracy evaluation
indicators include overall accuracy (OA), precision, Kappa co-
efficient, F1 score, and Mean Intersection over Union (MIoU).
The recall calculates the ratio of correctly classified pixels of one
land cover to the true total number of those land cover pixels in
the predicted image. Kappa coefficient tests the consistency of
the prediction result and the ground truth. The MIoU calculates
the ratio between the intersection and the union of two sets to
reflect the accuracy and completeness of the segmentation result.
F1 score is the harmonic average of recall and precision. The

TABLE IV
PERFORMANCE OF DIFFERENT MODELS ON THE MSW_LCD DATASET

calculations are listed as follows:

OA =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

pe =
a1 × b1 + a2 × b2 ++an × bn

m×m
(4)

Kappa =
p0 − pe
1− pe

(5)

F1 =
2

1
precision + 1

recall

(6)

MIOU =
TP

FP + PN + TP
(7)

where TP, FP, TN, and FN are the numbers of true positive, false
positive, true negative, and false negative pixels, respectively;
p0 is the OA; an represents the number of real samples of each
class; bn is the number of predicted samples of each class; n is
a total of n types of land cover types; and m represents the total
number of m pixels in all land covers.

B. Comparison of Different Semantic Segmentation Methods

We conduct experiments on the MSW_LCD dataset to eval-
uate the performance of four popular semantic segmentation
networks. Table IV presents the specific evaluation results of
different architectures on the MSW_LCD dataset. Compared
with PsPNet, SegNet, and UNet, the MIoU of DeepLabv3+ is
20.88%, 3.11%, and 0.25% higher than the other three models,
respectively.

There are several loss values’ curves on the same validation
dataset of different networks in Fig. 9. After 30 epochs, the
loss curve of the DeepLabv3+ network becomes relatively flat,
but the other three models need much more epochs during the
training process to reach convergence. Thus, we choose the
DeepLabv3+ network going through 100 epochs with the best
comprehensive performance on the MSW_LCD dataset as the
basic network.

We report OA, Kappa coefficient, F1 score, MIoU, train-
able parameters, and the training time consumption for each
epoch in Table V when using five different backbones, namely
Xception [44], MobileNetV2 [45], Resnet50/101 [46], and
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Fig. 9. Validation learning curves of four models on the MSW_LCD dataset.

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT BACKBONE NETWORKS IN THE DEEPLABV3+ ARCHITECTURE

TABLE VI
ABLATION EXPERIMENT ON THE MSW_LCD DATASET

Densenet121 [47] in the DeepLabv3+ model. Specifically, the
DeepLabv3+ architecture with Resnet50 backbone [denoted as
DeepLabv3+ (Resnet50)] outperforms other models and has
a good tradeoff among accuracy, parameter amount, and time
consumption.

C. Ablation Experiments

A series of ablation experiments are conducted to clarify
how different modules contribute to the performance gain of
the FPN module, ASPP4 composition, ASPP5 composition,
PSA (S) module, and PSA (P) module on the DeepLabv3+

(Resnet50) network. The number of parameters for each model
structure is also given in Table VI and reflects that the proposed
model obtains optimal segmentation results at a lower compu-
tational cost. Overall, the proposed model reduces the number
of parameters by about 40% compared with the DeepLabv3+
(Resnet50). Here, all results share the same hyperparameters and
experimental platform.

As shown in Table VI, when introducing the FPN mod-
ule and replacing bilinearly upsampled by a factor of 4 with
two bilinearly upsampled by a factor of 2, the F1 score
and MIoU are increased by 0.42% and 0.63%. Adopting
ASPP4 gets only marginal performance improvement. In further
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Fig. 10. Confusion matrices of two networks on the MSW_LCD dataset. (a) Confusion matrices of DeepLabv3+ (Resnet50). (b) Confusion matrices of
FPN_PSA_DLV3+.

experiments, the F1 score and MIoU performance are further
improved from 82.14% to 82.24% and from 73.76% to 73.36%
when adding PSA (S). PSA (P) module boosts the network by
82.71%–82.14% F1 score and 74.35%–73.36% MIoU. There-
after, we replace ASPP4 with ASPP5 module, an F1 score and
MIoU improvement of 0.63% and 0.82% are observed. In further
experimental result, it can be seen that the F1 score and MIoU
of the introduction of the PSA (S) module are improved by
0.08% and 0.2%, and the introduction of the PSA (P) module
is improved by 0.5% and 0.72% compared with the original
model. DeepLabv3+ with FPN, ASPP5, and PSA (P) modules
(denoted FPN_PSADLV3+) gets 84.1% F1 score and 74.82%
MIoU. A promising result is obtained by FPN_PSADLV3+ on
the MSW_LCD, which is not only better than the DeepLabv3+
with FPN module, ASPP4 composition, and PSA (S) block but
also better than the DeepLabv3+ with FPN module, ASPP5
composition, and PSA (P) block.

D. Land Cover Segmentation

To observe the performance of the model in each land cover,
we compute confusion matrices of DeepLabv3+ (Resnet50)
network and FPN_PSA_DLV3+ network of five different land
covers (including background class), as shown in Fig. 10, where
the columns refer to predicted classes and the rows to actual
classes. All five classes can be clearly distinguished and the
higher the segmentation accuracy is, the darker the color will
be.

Table VII reports the classification performance of each net-
work on the four land cover types: farmland, bare land, build-up,
and water. The proposed model outperforms the typical methods.
It is evident that the classification accuracy of deserts with
complex edges significantly improves by 2.57% to 17.67% using
the FPN_PSADLV3+ network. For build-up with a high number
of small objects, the proposed model improves accuracy by
2.26% to 6.94% F1 over the existing classification models. And
classification result for farmland increases by 1.2% to 12.8%
F1. Remarkably, compared with the DeeplabV3+ (Resnet), the
FPN_PSA_DLV3+ has the highest F1 improvement of 2.57%

TABLE VII
CLASSIFICATION PERFORMANCE OF DIFFERENT MODELS ON THE MSW_LCD

DATASET

for bare land, which has the highest percentage (94.04%) of
small target parcels. For the build-up land cover with a sample
share of only 2.98% in which the percentage of small target
parcels is 74.49%, the F1 boost is as high as 2.26% compared
with that model before the improvement. For water land cover
with only 26.61% of small sample parcels, the proposed model
also has no significant segmentation performance degradation.
We provide segmentation visualization results of DeepLabv3+
(Resnet50) and FPN_PSA_DLV3+ network in Fig. 11. The
edge details of the four land covers in the visual results greatly
improve our model and the segmentation result of the net-
work in this article is the closest to ground truth. Our model
has better performance in terms of small objects land covers,
such as a small area of build-up (as shown in the fourth row
and the fifth row of Fig. 11) and the finer edge of land cov-
ers (as shown in the first row, second row, and third row of
Fig. 11).
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Fig. 11. Segmentation results compared with DeepLabv3+ (Resnet50) model on the MSW_LCD dataset.

V. DISCUSSION

A. Performance of the FPN_PSADLV3+ Model

This article first evaluates several classical semantic segmen-
tation networks that are often applied to RSIs classification in
terms of classification accuracy, number of model parameters,
training time, and model convergence speed. Table IV and
Fig. 9 present that the DeepLabv3+ model not only effectively
improves the classification accuracy of land covers but also has
a faster convergence speed. We continue exploring the feature
extraction capability by trying different backbones based on
the DeepLabv3+ model. From Table V, it is evident that the
DeepLabv3+ (Resnet50) performs better than the other models.
Although the results generated by Densenet, Resnet101, and
Xception are almost good, these models need much more aver-
age time per epoch during the training phase. And MobileNetV2

is 78.22 s per training epoch faster than ours, its kappa coeffi-
cient, recall, F1 score, and MIoU are worse.

Ablation experiments (see Table VI) indicate optimal segmen-
tation of small objects and fine edges with a reasonable com-
plexity and each module also contributes its own power: First,
the FPN module incorporates more detailed information and
eliminates large semantic gaps between low-level and high-level
features; second, the ASPP5 module is a simple yet effective ap-
proach by adopting four dilated convolutions to extract features
at different scales; The PSA (P) block preserves high-resolution
semantics in attention computation at a reasonable cost and fit
output distribution with a higher problem complexity by the
order of output element numbers. The experiment proves that
the PSA (P) in DeepLabv3+ improves the classification result
marginally higher than PSA (S) with similar experimental results
to the two modules in [46].
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Fig. 12. Overall classification performance of three models on test dataset. The
DeepLabv3+ (Resnet50) denotes the baseline. The FPN_PSADLV3+ denotes
the proposed network trained from the scratch. Mfine-tuneTFPN_PSADLV3+
denotes the proposed network pretrained on MSW_LCD and then fine tuned on
the TMSK _LELTD dataset. (a) Evaluation results of fine-tune subexperiment1
on the TMSK_LCD dataset. (b) Evaluation results of fine-tune subexperiment1
on the TMSK _LELTD dataset.

Although the segmentation of small samples is always a tough
task for fine-grained segmentation, the FPN_PSA_DLV3+ net-
work boosts all the other networks for small samples, build-up
in Table VII. The UNet network has the best classification effect
for water. There is a relatively obvious misjudgment of water
in the FPN_PSA_DLV3+ network. Weeds grow in the water,
which has the same spectral reflection as farmland, and there
are bare land surfaces in shallow waters, which have the same
spectral reflection as deserts. Therefore, water is more likely to
be mistakenly divided into farmland and desert.

For the visual results in Fig. 11, the DeepLabv3+ (Resnet50)
results are messy for fine details of objects and object parts and
prone to be interrupted in some slender farmland and small build-
up. The proposed method considers more information of small
target and adds a feature extraction block with a smaller receptive
field. The FPN module more outstandingly combines detailed
information with high-level semantic information, which keeps
more shallow information by two bilinearly upsampling with a
factor of 2. Moreover, introducing PSA (P) block is expected
to preserve high-resolution semantics in attention computation
at a reasonable cost and fit output distribution with a higher
problem complexity by the order of output element numbers.
Empirically, the proposed model provides segmentation with
more precise and finer details than DeepLabv3+ (Resnet50).

Fig. 13. Experimental results of four land covers of models with different
structures on test dataset. (a) Classification performance for each land cover on
the TMSK_LCD dataset. (b) Classification performance for each land cover on
the TMSK_LELTD dataset.

B. Generalization Validation of the FPN_PSADLV3+ Model

A fine-tune model training skill is used to evaluate model
generalizability. On the one hand, we assess how well the
model generalized across two different regions of the TMSK
region and MSW region with the same sensor of Landsat8
OLI sensor. Specifically, we fine tune the pretrained model
from the MSW_LCD dataset with a smaller learning rate on
the TMSK_LCD dataset. By fine tuning the FPN_PSADLV3+
model, a Kappa coefficient, F1 score, and MIoU improvement
of 1.92%, 0.69%, and 0.3% are observed compared with training
FPN_PSADLV3+ from scratch [see Fig. 12(a)]. On the other
hand, we fine tune the model pretrained from the MSW_LCD
dataset to evaluate the cross-region–sensor generalization on the
TMSK_LELTD dataset. Compared with the model trained from



YUAN et al.: CAPTURING SMALL OBJECTS AND EDGES INFORMATION 995

scratch, the fine-tuned model improves the kappa coefficient, F1
score, and MIoU by 1.72%, 1.97%, and 2.46% [see Fig. 12(b)]. It
is conclusively shown that the proposed method is successfully
implemented with the different sensors and different regions.

Overall, fine-tuned FPN_PSADLV3+ model achieved the
best effect whether it is on TMSK_LCD dataset or
TMSK_LELTD dataset. It shows that the proposed model has
strong generalization ability in different research areas, Southern
Xinjiang, Northern Xinjiang, and different sensors: Landsat5,
Landsat7, and Landsat8.

It is worth noting that the overall classification effect in
the TMSK_LELTD dataset is slightly lower than that of the
MSW_LCD dataset. One of the reasons is that there is a great
gap in the build-up extraction results on the two datasets. The
TMSK_LELTD dataset contains images from 1990 to 2012,
the economic development of southern Xinjiang is lagging,
and the build-up scales are not neatly planned. Usually, there
are scattered residential houses on the cultivated land, which
poses greater challenges for finer classification. The MSW_LCD
dataset contains the images from 2013 to 2021. Since 2013, the
urban and rural planning policies in southern Xinjiang have been
gradually ameliorated, and build-up is getting denser, and the
characteristics of the build-up are more prominent.

Fig. 13 shows the classification effect of the DeepLabv3+
(Resnet50), FPN_PSADLV3+ training from scratch, and the
fine-tuned FPN_PSADLV3+ model on four land covers. The
fine-tuned FPN_PSADLV3+ model on TMSK_LCD dataset
outperforms the model trained from scratch on the segmentation
of farmland, bare land, build-up, and water by 0.54%, 1.5%,
3.25%, and 4.05% F1, respectively [see Fig. 13(a)].

In particular, the TMSK_LCD dataset has a significant in-
crement in the number of water samples and the percentage of
small sample parcels compared with the MSW_LCD dataset,
so the enhancement of water segmentation after fine tuning on
TMSK_LCD dataset reaches up to 4.05%. In the MSK_LCD
dataset with the occupancy of small target parcels up to 93.8% of
build-up, the segmentation performance promotion of fine-tuned
FPN_PSADLV3+ model for build-up is 3.26%. And the fine-
tuned FPN_PSADLV3+ model on the TMSK_LELTD dataset
outperforms FPN_PSADLV3+ model trained from scratch on
the segmentation of farmland, bare land, build-up, and water
by 0.66%, 0.79%, 3.27%, and 3.37% F1, respectively [see
Fig. 13(b)]. The distribution about small object parcels on
TMSK_LELTD dataset and the performance segmentation im-
provement after fine tuning are similar to those on TMSK_LCD
dataset. The above validation process has a better estimation of
the generalization performance of the model. The fine-tuning
model effectively avoids the problems of insufficient parameter
optimization and significantly improves the accuracy of each
land cover, especially for water and build-up, which are prone
to misclassification.

The differences between Landsat sensors and others are not
only in spatial resolution and band settings but also may be in the
corresponding spatial response functions and spectral response
functions. However, the source data we use are all from the
Landsat-like satellite imagery and the cross-sensor generaliza-
tion performance we verified is to explore the generalization

Fig. 14. Land cover segmentation results of FPN_PSADLV3+ network on
Sentinel-2A images.

among Landsat8 OLI, Landsat7 ETM+, and Landsat5 TM. We
further attempted to use the trained FPN_PSADLV3+ network
for semantic segmentation of Sentinel-2 images. Specially, we
use the pretrained model from the MSW_LCD dataset to fine
tune the FPN_PSADLV3+ model using Sentinel-2 satellite
data from Yuli Comt, Bayinguoleng Mongolian Autonomous
Prefecture, Xinjiang Uygur Autonomous Region, China. By
fine tuning the FPN_PSADLV3+ model, the model achieved
92.25% Kappa coefficient, 80.09% F1 score, and 71.66% MIoU.
The proposed network can effectively extract small objects and
edges almost close to the ground truth, as shown in Fig. 14. This
further illustrates the cross-region and cross-sensor generaliza-
tion potential of the FPN_PSADLV3+ model.

In the future, quantitative tests are still needed to be done
on more types of datasets to further confirm the generaliza-
tion performance of the network. We will exploratively extend
the current approach by integrating CNN-based models and
transformer-based models to further improve the segmentation
performance of fine edge and small objects in RSIs. More-
over, real-time semantic segmentation with context aggrega-
tion architectures for RSIs will be explored for multiscenario
applications.

VI. CONCLUSION

In this article, to meet the challenge of small objects
and fuzzy edges of land cover in arid areas adjacent to the
desert, FPN_PSADLV3+ architecture with the best compre-
hensive performance is introduced. First, a benchmark network,
DeepLabV3+ (Resnet50), with a moderate number of model
parameters and fast convergence, is selected to which the FPN,
ASPP5, and PSA modules are added for improving performance
of the model in mitigating loss of detail information, multiscale
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feature extraction, and capturing contextual information. And
ablation experiments are carried out to prove the effectiveness of
each module. The proposed semantic segmentation model over-
all achieves a 1.55% F1 score improvement and 2.17% MIoU
improvement on the MSW_LCD dataset with a reasonable
computational complexity to DeepLabv3+. The small objects,
build-up, get a 2.26% F1 score improvement, and farmland and
bare land with blur boundary get 1.2% and 2.57% improvement.
Moreover, the FPN_PSADLV3+model has great generalization
in cross region and cross sensor. The proposed model has a
tradeoff between efficiency and accuracy on the segmentation
of small objects and fine edges in RSIs and provides good
solution for land cover segmentation and, thus, quantitative for
built-up expansion and desertification monitoring in complex
arid scenarios.

REFERENCES

[1] X. Yang, L. Ci, and X. Zhang, “Dryland characteristics and its optimized
eco-productive paradigms for sustainable development in China,” Natural
Resour. Forum, vol. 32, no. 3, pp. 215–227, 2008.

[2] C. Liu, F. Zhang, V. C. Johnson, P. Duan, and H.-T. Kung, “Spatio-temporal
variation of oasis landscape pattern in arid area: Human or natural driving,”
Ecol. Indicators, vol. 125, Jun. 2021, Art. no. 107495.

[3] C. Elachi and J. J. van Zyl, Introduction to the Physics and Techniques of
Remote Sensing. Hoboken, NJ, USA: Wiley, 2021.

[4] Q. Yuan et al., “Deep learning in environmental remote sensing:
Achievements and challenges,” Remote Sens. Environ., vol. 241, 2020,
Art. no. 111716.

[5] J. Li, Y. Pei, S. Zhao, R. Xiao, X. Sang, and C. Zhang, “A review of
remote sensing for environmental monitoring in China,” Remote Sens.,
vol. 12, no. 7, 2020, Art. no. 1130.

[6] X. Wang, Z. Li, and Z. Gao, “Monitoring sandified land changes using
multi-temporal landsat TM/ETM+ data in Dengkou County of Inner
Mongolia, China,” in Proc. 4th Int. Congr. Image Signal Process., 2011,
pp. 1646–1651.

[7] Q. Yu et al., “The optimization of urban ecological infrastructure network
based on the changes of county landscape patterns: A typical case study of
ecological fragile zone located at Deng Kou (Inner Mongolia),” J. Cleaner
Prod., vol. 163, pp. S54–S67, 2017.

[8] S. Talukdar et al., “Land-use land-cover classification by machine learning
classifiers for satellite observations—A review,” Remote Sens., vol. 12,
no. 7, 2020, Art. no. 1135.

[9] C. Luo et al., “Using time series Sentinel-1 Images for object-oriented
crop classification in google earth engine,” Remote Sens., vol. 13, 2021,
Art. no. 561.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. 25th Int. Conf. Neural
Inf. Process. Syst., 2012, pp. 1097–1105.

[11] G. Alberto et al., “A review on deep learning techniques applied to semantic
segmentation,” 2017, arXiv:1704.06857.
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