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Abstract—In this letter we present a deterministic
discrete-time networked SEIR model that includes a num-
ber of transportation networks, and present assumptions
under which it is well defined. We analyze the limiting
behavior of the model and present necessary and suffi-
cient conditions for estimating the spreading parameters
from data. We illustrate these results via simulation and
with real COVID-19 data from the Northeast United States,
integrating transportation data into the results.

Index Terms—Control applications, transportation
networks, SEIR model, COVID-19.

I. INTRODUCTION

IN DECEMBER 2019, a novel coronavirus (SARS-CoV-2),
that causes the disease COVID-19, was detected in Wuhan,

China. This virus quickly spread throughout China, and before
long, the virus had reached the status of a global pandemic. In
order to minimize the impact of COVID-19, it is critical to be
able to quickly track the spread of the virus and understand the
mechanisms that are enabling its propagation. While the mode
of transmission of the virus is not exactly known, human-
to-human interaction appears to be a main factor [1]. A key
component for transmission is the underlying transportation
network, which acts as a propagator of the virus within and
between communities.

In this letter we extend the deterministic SEIR [2] model
for viral spread to consider spread over the network in the
context of human interaction and transportation. We model
the proportion of people in each county who have not been
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infected (S), those who have been infected but have not
been confirmed via a test (E), test-confirmed infected cases
(I), and those who have either recovered or died from the
virus (R) and show that we are able to model the evolu-
tion of such a virus, as well as recover the proper model
parameter values from time series data of infections and
recoveries and apply this model to the recent COVID-19
outbreak.

The SEIR model has become popular for modeling epidemic
spread (e.g., [3]) and has been described in [4]. A similar
model to the SEIR model, the SEIV model has been studied in
previous work where the vigilant state V corresponds to a state
that is not infected nor immediately susceptible, i.e., similar to
the recovered state R [5]. The model has also been extended to
account for quarantine [6] and asymptomatic transmission [7].
When considering how transportation can propagate a viral
outbreak, the SIS model has been extended to include trans-
portation flows between nodes [8]. We go beyond prior work
by integrating transportation networks into a networked SEIR
model, analyzing the model, and applying it to the COVID-19
pandemic.

The multi-networked SEIR model is introduced in Section II
and its limiting behavior is discussed in Section III.
Results on model parameter estimation are given in
Section IV, and the model is applied via simulations and
real COVID-19 data to the Northeast U.S. We conclude
in Section VI.

A. Notation
Given a vector x, the transpose is indicated by x�, x̄ is the

average of its entries, and diag(·) is a diagonal matrix with
the argument on the diagonal. We use 0 and 1 to denote a
vector or matrix of zeros and ones, respectively, of the appro-
priate dimensions. We define a directed graph G = (V, E, w),
where V is the set of nodes, E ⊆ V × V is the set of edges,
and w : E → R

+ is a function mapping directed edges to
their weightings, with R

+ being the set of positive real val-
ues. Given G, we denote an edge from node i ∈ V to node
j ∈ V by (i, j). We say node i ∈ V is a neighbor of node
j ∈ V if and only if (i, j) ∈ E , and denote the neighbors of
node j as Nj. We denote the weighted adjacency matrix asso-
ciated with G as A with the nonzero entry aji indicating the
strength of edge (i, j) as given by w. We use [n] to denote the
set {1, 2, . . . , n}.
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II. MULTI-NETWORKED SEIR MODEL

Here we introduce the discrete-time multi-networked SEIR
model. We assume that the virus spreads over a set of graphs
Gl = (V, E l, wl), for l ∈ L, where we interpret each node in
V as a subpopulation, L is the set of transportation networks,
and E l, wl capture the weighted transportation links. Node i’s
susceptibility sk

i , exposed ek
i , infection pk

i , and recovery rk
i

proportions evolve as

sk+1
i = sk

i − hsk
i ι

k
i , (1a)

ek+1
i = ek

i + hsk
i ι

k
i − hσie

k
i , (1b)

pk+1
i = pk

i + h(σie
k
i − γip

k
i ), (1c)

rk+1
i = rk

i + h
(
γip

k
i

)
, (1d)

where k is the time step, h is the sampling parameter, σi cap-
tures the rate at which the exposed become confirmed infected
cases, γi is the recovery rate, and

ιki =
∑
l∈L

⎛
⎜⎝β

e,l
i

∑

j∈N l
i

al
ije

k
j + β

p,l
i

∑

j∈N l
i

al
ijp

k
j

⎞
⎟⎠, (2)

where al
ij represents the edge weights, and β

e,l
i and β

p,l
i are

the corresponding infection rates for the lth transportation
network. Note for the special case where |L| = 1, the model
in (1)-(2) becomes the traditional networked SEIR model.

For the discrete-time SEIR model to be well-defined we
need the following assumption.

Assumption 1: For all i ∈ [n], we have 0 < hγi < 1, 0 <

hσi < 1, 0 ≤ hι̌ki < 1, where ι̌ki = ∑
l∈L(β

e,l
i +β

p,l
i )

∑
j∈Ni

al
ij,

and β
e,l
i , β

p,l
i , al

ij ≥ 0, for all j ∈ [n].
Assumption 1 requires the sampling parameter to be small
enough in relation to the healing parameters and the denseness
of the graph scaled by the infection parameters, and guarantees
that the model is well defined.

Lemma 1: Consider the model in (1)-(2) under
Assumption 1. Suppose s0

i , e0
i , p0

i , r0
i ∈ [0, 1], s0

i + e0
i +

p0
i + r0

i = 1 for all i ∈ [n]. Then, for all k ≥ 0 and i ∈ [n],
sk

i , ek
i , pk

i , rk
i ∈ [0, 1] and sk

i + ek
i + pk

i + rk
i = 1.

Proof: We prove this result by induction. By assumption, it
holds for the base-case k = 0. We follow the proof by showing
the induction-step, that is, assume sk

i , ek
i , pk

i , rk
i ∈ [0, 1] and

sk
i + ek

i + pk
i + rk

i = 1, for all i ∈ [n], and we now show
that this holds also for time-step k + 1. By Assumption 1
and (1a), sk+1 ≥ sk

i − hsk
i ι̌

k
i = sk

i [1 − hι̌ki ] ≥ 0. We also have
sk+1 ≤ sk ≤ 1 since h[−sk

i ι
k
i ] ≤ 0. By Assumption 1 and (1b),

ek+1
i ≥ (1−hσi)ek

i ≥ 0. Moreover, by the assumption ek
j , pk

j ≤
1 for all j ∈ [n], Assumption 1, and (1b), ek+1

i ≤ ek
i + sk

i hι̌ki ≤
ek

i +sk
i ≤ 1. By Assumption 1 and (1c), pk+1

i ≥ (1−hγi)pk
i ≥ 0

and pk+1
i ≤ pk

i + hσiek
i ≤ pk

i + ek
i ≤ 1. By Assumption 1

and (1d), rk+1
i ≥ rk

i ≥ 0, and rk+1
i ≤ rk

i + pk
i .

Thus, by the principle of mathematical induction we have
that, if s0

i , e0
i , p0

i , r0
i ∈ [0, 1] and s0

i + e0
i + p0

i + r0
i = 1 for all

i ∈ [n] then sk
i , ek

i , pk
i , rk

i ∈ [0, 1] and sk
i + ek

i + pk
i + rk

i = 1 for
all k ∈ N.

III. ANALYSIS OF MODEL

In this section we present a result on the stability of the
healthy states of the networked SEIR model, that is, where
limk→∞ ek

i = 0 and limk→∞ pk
i = 0 for all i ∈ [n].

Let λ
Mk
max be the dominant eigenvalue of Mk, where Mk is

defined as

Mk =
[
(I + hSkTe − hσ) hSkTp

hσ (I − hγ )

]
, (3)

where Sk = diag(sk
i ), Te = ∑

l∈L Be
l Al, Tp = ∑

l∈L Bp
l Al,

Be
l = diag(β

e,l
i ), Bp

l = diag(β
p,l
i ), γ = diag(γi) and σ =

diag(σi). Note that Mk captures the dynamics of the vector of
the exposed and infection states, ek and pk, in (1)-(2).

Theorem 1: Consider the model in (1)-(2) under
Assumption 1. Suppose s0

i , e0
i , p0

i , r0
i ∈ [0, 1], s0

i + e0
i +

p0
i + r0

i = 1 for all i ∈ [n], Tp is irreducible, s0
i > 0 for

all i ∈ [n], and p0
i > 0 for some i. Then, for all k ≥ 0 and

i ∈ [n],
1) sk+1

i ≤ sk
i ,

2) limk→∞ ek
i = 0 and limk→∞ pk

i = 0,
3) λ

Mk
max is monotonically decreasing as a function of k,

4) there exist a k̄ such that λ
Mk
max < 1 for all k ≥ k̄,

5) there exists k̄, such that pk
i converges linearly to 0 for

all k ≥ k̄ and i ∈ [n].
Proof: We present the proof for each part of the theorem,

starting with 1).
1) By Lemma 1 and Assumption 1, we have that −hsk

i ι
k
i ≤ 0

for all i ∈ [n] and k ≥ 0. Therefore, from (1a), we have
sk+1

i ≤ sk
i .

2) Since the rate of change of sk, −hSk[Teek + Tppk], is
non-positive for all k ≥ 0 and sk is lower bounded by zero,
by Lemma 1, we conclude that limk→∞ sk exists. Therefore,

lim
k→∞ −hSk

[
Teek + Tppk

]
= 0. (4)

Therefore, limk→∞ ek+1 − ek = limk→∞ −hσek. Thus, by
Assumption 1, hσi > 0 for all i ∈ [n], limk→∞ ek

i = 0 for
all i ∈ [n].

Similarly, we show that limk→∞ pk
i = 0 for all i ∈ [n].

We have that limk→∞ pk+1 − pk = limk→∞ h(σek − γ pk) =
limk→∞ −hγ pk, where we used that limk→∞ ek = 0. By
assumption hγi > 0 for all i ∈ [n], thus limk→∞ pk

i = 0
for all i ∈ [n].

3) By assumption s0
i > 0 for all i ∈ [n], and from the proof

of Lemma 1 we can see that sk
i > 0 for all i ∈ [n], k ≥ 0.

Therefore, since we have that Tp is irreducible, from (3) and
Assumption 1, the matrix Mk is irreducible and non-negative,
for all finite k. Thus by the Perron-Frobenius Theorem for
irreducible non-negative matrices we have that λ

Mk
max = ρ(Mk).

Since ρ(Mk) increases when any entry increases [9, Th. 2.7]
and by 1) of this theorem, we have that ρ(Mk) ≥ ρ(Mk+1),
that is λ

Mk
max ≥ λ

Mk+1
max .

4) There are two possible equilibria: i) limk→∞ sk = 0, and
ii) limk→∞ sk = s∗ �= 0. We explore the two cases separately.

i) If limk→∞ sk = 0,

lim
k→∞ Mk =

[
I − hσ 0

hσ I − hγ

]
.

Therefore, by Assumption 1, there exists a k̄ such that
λ

Mk
max < 1 for all k ≥ k̄.
ii) If limk→∞ sk = s∗ �= 0, then, by 2), for any

(s0, e0, p0, r0) the system converges to some equilibrium of
the form (s∗, 0, 0, 1 − s∗). Define

εk
s := sk − s∗ and εk

p :=
[

ek

pk

]
− 02n. (5)
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Linearizing the dynamics of εk
s and εk

p around (s∗, 02n) gives

εk+1
s = εk

s − hSk[Te Tp]εk
p, (6a)

εk+1
p = Mkε

k
p. (6b)

Let λM∗
max be the maximum eigenvalue of

M∗ =
[
(I + hdiag(s∗)Te − hσ) hdiag(s∗)Tp

hσ (I − hγ )

]
(7)

with corresponding normalized left eigenvector w∗, that is,

w∗�M∗ = λM∗
maxw∗�

. (8)

If λM∗
max > 1, then the system in (6) is unstable. Therefore,

by Lyapunov’s Indirect Method, limk→∞(εk
s , ε

k
p) �= (s∗, 02n),

which is a contradiction.
Now consider the case where λM∗

max = 1. Define

M̃k =
[

hdiag(εk
s )T

e hdiag(εk
s )T

p

0 0

]
. (9)

Then we can write Mk = M∗+M̃k, observe that all entries in M̃
are non-negative. Using (5) and left multiplying the equation
of εk+1

p in (6b) by w∗� we get

w∗�
εk+1

p = w∗�Mkε
k
p

= λM∗
maxw∗�

εk
p + w∗�M̃kε

k
p

= w∗�
εk

p + w∗�M̃kε
k
p.

Thus,

w∗�(
εk+1

p − εk
p

)
= w∗�M̃kε

k
p ≥ 0, (10)

where the last inequality holds since all elements are non-
negative. This contradicts that limk→∞ zk = 02n, that is 2).
Therefore, there exists a k̄ such that λ

Mk
max < 1 for all k ≥ k̄.

5) Since, by 4), there exists a k̄ such that λ
Mk
max < 1 for all

k ≥ k̄, and we know that λ
Mk
max = ρ(Mk) ≥ 0 by Assumption 1,

we have

lim
k→∞

‖pk+1‖
‖pk‖ = ‖Mkpk‖

‖pk‖ = λMk
max < 1. (11)

Therefore, for k ≥ k̄, pk converges linearly to 0n.
Note that the proof was inspired by a similar result for the

SIR model [10, Th. 1]. The results in Theorem 1 show that
the virus will die out, providing insight into the convergence
rate, under mild assumptions.

IV. ESTIMATING MODEL PARAMETERS

We now explore conditions for estimating the SEIR model
parameters from data. Due to space limitations we consider
|L| = 1 and refer to Remark 1 for |L| > 1. In order to
estimate the parameters we define the following matrices:

	 =
⎡
⎢⎣

hS0Ae0 hS0Ap0 −he0 0
...

...
...

...

︸ ︷︷ ︸
a

hST−1AeT−1

︸ ︷︷ ︸
b

hST−1ApT−1 −heT−1 0

⎤
⎥⎦,

(12)


 =
⎡
⎢⎣

0 0 he0 −hp0

...
...

...
...

0 0 ︸ ︷︷ ︸
c

heT−1

︸ ︷︷ ︸
−d

− hpT−1

⎤
⎥⎦, (13)

and

� = [
0 0 0 d

]
. (14)

Using the above matrices we write (1) as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1 − e0

...

eT − eT−1

p1 − p0

...

pT − pT−1

r1 − r0

...

rT − rT−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
	


�

]

︸︷︷︸
Q

⎡
⎢⎣

βe

βp

σ
γ

⎤
⎥⎦. (15)

We find the least squares estimates β̂e, β̂p, σ̂ , and γ̂ using the
pseudoinverse of Q.

Theorem 2: Consider the model in (1) with homogeneous
virus spread, that is, βe, βp, σ , and γ are the same for all n
nodes. Assume that sk, ek, pk, rk, for all k ∈ [T] ∪ {0}, and h
are known, with n > 1. Then, the parameters of the spreading
process can be identified uniquely if and only if T > 0, and
there exist i1, i2, i3, i4 ∈ [n] and k1, k2, k3, k4 ∈ [T − 1] ∪ {0}
such that

pk1
i1

�= 0, ek2
i2

�= 0, (16a)

gk3
i3

(ek3)gk4
i4

(pk4) �= gk4
i4

(ek4)gk3
i3

(pk3), (16b)

where gk
i (x) = sk

i

∑
j∈Ni

aijxj.
Proof: Using (12)-(14), we can write Q as follows

Q =
[

I −I 0nT×nT

0nT×nT I −I
0nT×nT 0nT×nT I

]

︸ ︷︷ ︸
D

[a b 0 0
0 0 c 0
0 0 0 d

]

︸ ︷︷ ︸
Q̃

. (17)

Since n > 1, 	̃ = [
a b

]
has at least two rows, and given

that (16b) holds, 	̃ has column rank equal to two. Moreover,
if (16a) holds c and d each have at least one element that
is nonzero. Thus, Q̃ has full column rank. Clearly D has full
rank which implies that the rank of Q is equal to the rank of
Q̃ [11]. Therefore, there exists a unique solution to (15) using
the pseudoinverse.

If one of the assumptions in (16a)-(16b) is not met, Q will
have a nontrivial nullspace. Therefore, in that case, (15) does
not have a unique solution.
For the heterogeneous case it is not necessary to know
all entries of sk, ek, pk, rk. It is sufficient to know only
sk

j , ek
j , pk

j , rk
j , for j ∈ Ni1 ∪ Ni2 ∪ Ni3 ∪ Ni4 ∪ {i1, i2, i3, i4},

where i1, i2, i3, i4 satisfy (16).
To estimate the spreading parameters for the discrete-time,

heterogeneous SEIR model from Section II we define:

	i =

⎡
⎢⎢⎣

hs0
i

∑
j∈Ni

aije0
j hs0

i

∑
j∈Ni

aijp0
j − he0

i 0
.
.
.

.

.

.
.
.
.

.

.

.

︸ ︷︷ ︸
ai

hsT−1
i

∑
j∈Ni

aije
T−1
j ︸ ︷︷ ︸

bi

hsT−1
i

∑
j∈Ni

aijp
T−1
j − heT−1

i 0

⎤
⎥⎥⎦,

(18)


i =

⎡
⎢⎢⎣

0 0 he0
i − hp0

i
.
.
.

.

.

.
.
.
.

.

.

.

0 0 ︸ ︷︷ ︸
ci

heT−1
i ︸ ︷︷ ︸

−di

− hpT−1
i

⎤
⎥⎥⎦, (19)
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and

�i = [
0 0 0 di

]
. (20)

Using the above matrices we write (1) as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
i − e0

i
...

eT
i − eT−1

i
p1

i − p0
i

...

pT
i − pT−1

i
r1

i − r0
i

...

rT
i − rT−1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
	i

i
�i

]

︸ ︷︷ ︸
Qi

⎡
⎢⎣

βe
i

β
p
i

σi
γi

⎤
⎥⎦. (21)

We find the least squares estimates β̂e
i , β̂

p
i , σ̂i, and γ̂i using

the pseudoinverse of Qi.
Corollary 1: Consider the model in (1). Assume that

sk
i , ek

j , pk
j , rk

i , for all j ∈ Ni ∪ {i}, k ∈ [T − 1] ∪ {0}, eT
i , pT

i , rT
i ,

and h are known. Then, the parameters of the spreading pro-
cess for node i can be identified uniquely if and only if T > 1,
and there exist k1, k2, k3, k4 ∈ [T − 1] ∪ {0} such that

pk1
i �= 0, ek2

i �= 0, (22a)

gk3
i (ek3)gk4

i (pk4) �= gk4
i (ek4)gk3

i (pk3), (22b)

where gk
i (x) = sk

i

∑
j∈Ni

aijxj which only uses the entries xj
for which j ∈ Ni.

Proof: Using (18)-(20), we can write Qi as follows

Qi =
[

I −I 0T×T

0T×T I −I
0T×T 0T×T I

]

︸ ︷︷ ︸
Di

[ai bi 0 0
0 0 ci 0
0 0 0 di

]

︸ ︷︷ ︸
Q̃i

.

Since T > 1, 	̃i = [
ai bi

]
has at least two rows, and given

that (22b) holds, 	̃i has column rank equal to two. Moreover,
if (22a) holds, c and d each have at least one element that is
nonzero. Thus, Q̃i has full column rank. Clearly Di has full
rank which implies that the rank of Qi is equal to the rank of
Q̃i [11]. Therefore, there exists a unique solution to (15) using
the pseudoinverse.

If one of the assumptions in (22a)-(22b) is not met, Qi will
have a nontrivial nullspace. Therefore, in that case, (21) does
not have a unique solution.

Remark 1: When using the full transportation model,
namely |L| > 1, we can expand 	i in (18), adding two
columns to Qi for each transportation network l with entries∑

j∈Ni
ǎl

ije
k
j and

∑
j∈N l

i
ǎl

ijp
k
j and the corresponding entries

β̌
e,l
i and β̌

p,l
i to the vector on the RHS of (21). Furthermore,

by similar process as shown in Corollary 1, we can con-
struct QL

i = DiQ̃L
i where the first row of Q̃L

i becomes
[a1

i , b1
i , . . . , a|L|

i , b|L|
i , 0, 0]. By satisfying (22a) and ensuring

that [a1
i , b1

i , . . . , a|L|
i , b|L|

i ] has full column rank, we can also
show a unique solution exists in this case.

The results in Theorem 2 and Corollary 1 allow us to learn
the spreading parameters from data for homogeneous and het-
erogeneous viruses, respectively, under the given assumptions.
Bridging these two, we can group different nodes into sets
with homogeneous parameters, for example rural vs. urban
counties.

V. SIMULATIONS AND CASE STUDY

In this section we apply the networked SEIR model to the
COVID-19 pandemic in the Northeast U.S., and incorporate
flight mobility data via simulations and real spread data.

A. Study Area
We consider the spread of COVID-19 through five states

in the Northeastern U.S. from March through August, 2020,
and consider how the underlying air transportation network
between the cities in the five-state region propagated the
virus. Specifically, we obtain data for New York (NY), New
Jersey (NJ), Massachusetts (MA), Rhode Islands (RI), and
Connecticut (CT), and consider this five-state region as a
closed system (i.e., no virus entering or leaving the system).
This region is selected both because this was the first signifi-
cant COVID-19 outbreak in the U.S., making the simplifying
modeling assumption that the region is closed with respect to
COVID-19 more reasonable.

We model the infected population proportion in each of the
110 counties in the five-state region. Note that we combine the
COVID-19 case numbers for the five counties that make up
New York City into one administrative region since diagnosis
statistics are provided at the city-level for New York City.

In order to capture the transmission of COVID-19 accu-
rately, we categorize counties as either urban or rural based
on the average population density. Counties with a population
density of at least 500 people per square mile are consid-
ered urban, while counties with lower density are considered
rural. County-level population counts are obtained from the
U.S. Census Bureau 2018 population estimate [12].

B. Transportation Data and Network Topologies
Three different types of connections are considered

when modeling the network topology in (2): (i) county
adjacency (aN

ij ) ; (ii) self-loops for spread within the

county (aS
ij = I); (iii) flights between airports (aF,k

ij ) to capture
long-range links between non-adjacent counties [13]. It should
be noted that the flight adjacency matrix aF,k

ij is time-varying.
We incorporate travel by collecting flight data for every

flight between cities in the study area from March through
August, 2020 (most recent data available at time of writ-
ing) from the Bureau of Transportation (BTS) [13]. This data
includes aircraft registration, which is cross-referenced with
the Federal Aviation Administration database to obtain the
number of passenger seats on each flight. The full dataset and
code to reproduce the results are available online [14].

To construct the scaled flight matrix, we use the number of
available seats between each city pair on a particular day, and
normalize this number with the maximum number of daily
seats observed for each city pair. This produces a scaled value
between 0 and 1 that represents the intensity of travel between
any given city pair on a particular day.

To capture the reduction in travel associated with state-
wide stay-at-home orders, the study period is divided into four
phases shown in Table I. Phase 1 represents the time before
the stay-at-home order (high transportation volume). Phase 2
represents the time immediately after the stay-at-home order
started (declining transportation in urban areas). By Phase 3,
both urban regions and rural regions restrict travel. Phase 4
represents a gradual return to pre-restriction travel levels. Each
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TABLE I
STUDY PHASES AND SCALING FACTORS FOR ADJACENCY BETWEEN
URBAN COUNTIES AND OTHER COUNTIES (URBAN OR RURAL) φu

N ,
WITHIN URBAN COUNTIES φu

S , ADJACENCY BETWEEN RURAL

COUNTIES AND OTHER COUNTIES (URBAN OR RURAL) φr
N , AND

WITHIN URBAN COUNTIES φr
S , INSPIRED BY OBSERVED TRAVEL

REDUCTIONS SUMMARIZED IN [15] TO ACCOUNT FOR CHANGE IN
TRAVEL ACTIVITY. THE MAGNITUDE OF THE SCALING FACTOR

REFLECTS THE EXTENT OF THE CONNECTION, I.E., THE
HIGHER φ, THE STRONGER THE CONNECTION

row of each adjacency matrix, excluding flights between air-
ports, is scaled by the appropriate φ value in Table I based on
its urban/rural classification and the phase to account for the
corresponding reduction in mobility.

C. Simulations
In this section we illustrate the analysis and parameter

estimation results from Sections III–IV.
We use the county adjacency matrix (aN

ij ). To simu-
late the states for the SEIR model we use (1), with
homogeneous spread parameters (βe,N, βp,N, σ, γ ) =
(0.04, 0.06, 0.40, 0.30) and the initial state e0

1 = 0.02,
e0

2 = 0.03, p0
1 = 0.01, with the rest of the initial

conditions for the non-susceptible states set to zero for
each node. We correctly recover the spread parameters
using (15) and ek, pk, and rk for k ∈ {0, 1}, as expected
by Theorem 2.

We include the adjacency matrix that represents the flights
between airports (aF,k

ij ), and the adjacency matrix with only
self-loops for spread within the county (aS

ij). To simulate the
states we use (1)-(2), with the same initial state and the spread
parameters (βe,N, βp,N, βe,F, βp,F, βe,S, βp,S, σ, γ ) =
(0.04, 0.06, 0.02, 0.03, 0.05, 0.07, 0.40, 0.30). Moreover,
we add measurement noise to evaluate the sensitivity of
the estimation results and assume that the perturbation
on e is greater than that on p and r since it is the most
difficult of the three states to measure. The measured states
are ẽ, p̃, and r̃, determined by ẽk

i = ek
i + εe(ek

i ) where
εe(xi) ∼ N (0, 0.015xi + 0.0001), p̃k

i = pk
i + ε(pk

i ), and
r̃k

i = rk
i + ε(rk

i ) where ε(xi) ∼ N (0, 0.008xi + 0.00001). In
order to emulate the difficulty of measuring the states at the
beginning of an outbreak, we start measuring from k = 14,
and recover the spread parameters by left multiplying (15) by
the pseudo-inverse of Q. The estimated states ê, p̂, and r̂ are
constructed using (1), the first set of measured states ẽ14, p̃14,
and r̃14, and the recovered spread parameters. In Figure 1 we
show how well the average states are recovered compared to
the average of the actual states, e, p, and r using the measured
states to recover the spread parameters. The recovered spread
parameters (β̂e,N, β̂p,N, β̂e,F, β̂p,F, β̂e,S, β̂p,S, σ̂ , γ̂ ) are
(0.043, 0.058, 0.023, 0.028, 0.037, 0.082, 0.400,
0.300). The error of ê, p̂, and r̂ are 0.016, 0.015, and 0.004,
respectively, computed as ‖x−x̂‖2‖x‖2

, for the corresponding
state x.

Fig. 1. Simulation of a homogeneous SEIR system with three networks,
its measured states, and the recovered states to show that the recovered
states captures the average state.

Fig. 2. Simulation of a homogeneous SEIR system with three networks,
one network is not completely known. Shows how well the recovered
states captures the average state.

To evaluate the sensitivity of recovering the states with
measurement noise and while only approximately know-
ing the network, we use a noisy version of the adjacency
matrix that represents the aviation network by adding i.i.d.
zero-mean Gaussian noise with standard deviation 0.001
to every possible edge, not allowing entries to be nega-
tive nor greater than 1. The recovered spread parameters
(β̂e,N, β̂p,N, β̂e,F, β̂p,F, β̂e,S, β̂p,S, σ̂ , γ̂ ) are (0.043, 0.058,
0.023, 0.025, 0.035, 0.082, 0.400, 0.300) and the error of ê, p̂,
and r̂ are 0.078, 0.074, and 0.018, respectively. In Figure 2,
we see that the averages of the recovered states are fairly close
to the averages of the actual states even when accurate flight
data is not available.

D. Real COVID-19 Spread Data
We use daily COVID-19 case numbers aggregated by Johns

Hopkins University (JHU) [16]. Using this dataset, we are
able to estimate ek

i , pk
i , and rk

i in (1). The per-capita infection
rate in county i on day k, pk

i is estimated by the number of
confirmed cases in county i minus the cases that have been
removed on day k and divided by the population in county
i. Due to incompleteness and inaccuracies in the county-level
recovery data, we estimate the state rk

i by assuming rk
i −rk−1

i =
(pk−dr

i +rk−dr
i )−(pk−dr−1

i +rk−dr−1
i ). That is, we assume each

confirmed case becomes removed after dr days. Based on [17],
we use the median recovery time dr = 21 when computing
the states. Due to uncertainty in the true dr, we learn γ =
1/dr when calibrating the model. Similarly, we estimate ek

i as
ek

i − ek−1 = (pk+de
i + rk+de

i ) − (pk+de−1
i + rk+de−1

i ). That is,
the number of new exposed cases on day k equals the number
of new cases that were confirmed on day k + de, where de is
the delay in number of days from becoming exposed to being
confirmed. We use de = 14, since COVID-19 symptoms may
appear as long as 14 days after exposure [18]. Note that we use
the upper bound (14 days) to account for the additional time
after first showing symptoms until receiving a positive test
result. To limit the number of parameters learned, we assume
a fixed transition rate from exposed to infected of σ = 1/de.



108 IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

Fig. 3. SEIR model simulations both with and without taking flight data
into account. Each curve represents the proportion of infected popu-
lation pk

i in a particular county. Dashed lines represent real data, p,
solid lines of the same color represent the corresponding simulation
results, p̂.

TABLE II
THE RECOVERED PARAMETERS AND THE PREDICTION SCALED ERROR
‖p − p̂‖2/‖p‖2 IN THE CASE OF WITH FLIGHT ADJACENCY MATRIX AND
WITHOUT FLIGHT ADJACENCY MATRIX. E IS THE SCIENTIFIC NOTATION

E. SEIR Model With and Without Aviation Network
Using (1)-(2) and a modified version of (21) as described

in Remark 1, we estimate the parameter values and simulate
the SEIR model both with and without taking transmissions
resulting from inter-city travel into account. The parameters
are estimated by minimizing the error in the modified version
of (21) while constraining them to be non-negative using the
cvx solver [19].

The SEIR model error is presented in Table II and the cor-
responding model performance is plotted in Figures 3(a)–3(d).
Comparing the performance of the SEIR model both with
(Figs. 3(c) and 3(d)) and without (Figs. 3(a) and 3(b)) the
flight network, we see that by including the aviation data, we
are able to predict the proportion of the population in the
infected state with slightly less error than when flight data
is not considered. This indicates that, by including the trans-
portation network, we are able to better model the virus spread.
As before, the error in rural counties remains lower than in
urban counties. This result is in line with our expectations
that there may be viral spread over the aviation network. Note
though that asymptomatic transmission is not being explic-
itly modeled, and may be a significant source of error in this
modeling effort. Further, the inference of the epidemics states
from observed data could also be improved. Another factor
that may be contributing to the higher error is assuming that
the system is closed (i.e., no travel in-to or out-of the region).

VI. CONCLUSION

In conclusion, we have proposed a discrete time SEIR
model to capture virus spread over transportation networks.

We analyzed the limiting behavior of the model and presented
conditions for estimating the spread parameters from data. The
developed model is applied to infection and travel data col-
lected from the Northeastern U.S. To extend this work and
improve the performance of the model, we plan to incor-
porate asymptomatic transmission. Nonlinear state estimation
could also be employed to more accurately estimate the epi-
demic states for the SEIR model from observed data, similar
to the algorithm proposed in [10]. Capturing the transporta-
tion networks via population flows for the SEIR model, similar
to [8] is another interesting future direction.
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