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Abstract

The silencing of actin capping protein β2, Capzb2, by RNAi in developing cultured neurons 

results in short, dystrophic neurites reminiscent of cytoskeletal changes seen in diverse 

neurodegenerative diseases, including Alzheimer’s disease (AD) and Huntington’s disease (HD). 

Actin and tubulin are two major cytoskeletal proteins indispensable for normal neurite 

development and regenerative responses to injury and neurodegenerative stimuli. We have 

previously shown that Capzb2 binds tubulin and, in the presence of microtubule- associated 

protein tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth 

cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons results in short neurites 

with abnormal growth cones. Decreased neurite length is found in both AD and HD. In the first 

step towards uncovering the possible role of Capzb2 in these diseases, we studied Capzb2 protein 

expression in the postmortem brains of AD and HD patients. To determine whether disease-

specific changes in Capzb2 protein accompany the progression of neurodegeneration, we 

performed Western Blot analysis of prefrontal cortices (PFC) and hippocampi (HPC) in AD 

patients and of PFC and heads of caudate nuclei (HCN) in HD patients. Our results show disease- 

and area-specific dynamics in the levels of Capzb2 protein expression in the progressive stages of 

AD and HD.
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1. Introduction

Abnormalities in the cytoskeleton are found in many neurodegenerative diseases including 

AD. How these abnormalities affect neurodegeneration remains unclear. In Drosophila, 
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neurodegeneration stems directly from mutations in alpha and beta subunits of the actin 

capping protein (CP), demonstrating that a mutation in a gene encoding an actin 

cytoskeleton regulator can lead to the demise of neurons [1]. Recently, we showed that 

RNAi-mediated silencing of the actin capping protein β2 subunit (Capzb2) in cultured 

hippocampal neurons resulted in short, dystrophic neurites [2] reminiscent of cytoskeletal 

changes associated with neurodegeneration in AD and HD. Interestingly, apolipoprotein E4 

isoform (apoE4), the only confirmed genetic risk factor for late onset AD [3], inhibits 

neurite outgrowth in cultured neuronal cells [4], while the simplification of dendritic 

branching patterns in the brains of AD patients correlates with the presence of apoE4 allele 

[5]. Furthermore, amyloid precursor protein (APP), similar to Capzb2, is concentrated in 

lamellipodia [6], consistent with the idea that APP may play a role in growth cone motility 

and neurite outgrowth. The targets of the aggregations initiated by the interaction with 

mutant huntingtin are considered responsible for the neuronal morbidity in HD; these targets 

include cytoskeletal proteins [7]. Accordingly, dystrophic neurites containing mutant 

huntingtin are found in deep cortical layers of HD patients [8]. Moreover, decrease in neurite 

density and abnormal distribution of cytoskeletal markers by immunohistochemistry have 

been found in cortices of pre-symptomatic HD patients [9]. These neuropathological 

findings are thought to underlie cognitive and behavioral disturbances that often precede 

motor deficits [10,11].

CP is an F-actin binding protein that functions as an α/β heterodimer. By binding the barbed 

end of F-actin, the CP heterodimer blocks the access of actin monomers to the fast growing 

end. Both Drosophila and mammalian CP subunits have been shown to play a critical role in 

the organization and dynamics of lamellipodia and filopodia in non-neuronal cells by 

regulating the actin cytoskeleton [12,13]. In mammals, the β-subunit is encoded by one gene 

that gives rise to three isoforms [14]; one of these isoforms, Capzb2, is predominantly 

expressed in the brain [14]. While we have shown that Capzb2 function is indispensable for 

the normal morphology of growth cones and neurite length [2], it remains unclear what 

Capzb2 expression may mean for neurons during neurodegenerative disease or following 

injury. The established first critical step in response to axotomy is the initiation of 

microtubule polymerization and F-actin cytoskeleton rearrangement leading to the formation 

of a motile growth cone [15]. We have demonstrated that Capzb2 in the growth cones not 

only caps the F-actin barbed end, but also binds βIII-tubulin directly to affect the rate and 

extent of microtubule polymerization [2]. Interestingly, the interaction between actin 

capping protein and β-tubulin has been uncovered in a mass spectrometry screen for the 

alterations in protein-target binding in vivo in response to spatial learning [16].

In this study, we investigate the expression of Capzb2 protein in the postmortem brains of 

patients at progressive stages of two neurodegenerative diseases accompanied by cognitive 

decline, AD and HD. We conducted our analyses in the regions affected early and 

specifically in each disease (hippocampi in AD and heads of caudate nuclei in HD) as well 

as in the region affected as both diseases progress (prefrontal cortex). We provide evidence 

that Capzb2 protein expression exhibits region-specific changes in the HD brains and 

increases in the AD brains in spite of the known progressive neuronal loss.
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2. Experimental Procedures

We examined Capzb2 protein expression levels in the postmortem brain tissue from patients 

diagnosed with Alzheimer’s disease (11) and Huntington’s disease (9) from Massachusetts 

Alzheimer Disease Research Center (MADRC) at Massachusetts General Hospital. Tissue 

from 10 control (neuropathology- absent) brains was obtained from either MADRC or 

Boston Medical Center (BM) (Table 1).

Total protein extracts were prepared from the prefrontal cortex (Brodman area 9), 

hippocampus, and head of the caudate nucleus in RIPA buffer. The final protein 

concentration of each sample was determined by BCA assay. Protein samples were 

subjected to SDS-PAGE and immunoblotting with anti-Capzb2 1:1000 (DSHB) and anti-

GAPDH 1:10000 (Ambion) primary antibodies. A Chemiluminescent Detection System 

(Pierce) was used to visualize protein expression on an electronic capture Imager (Kodak). 

Densitometry was performed using ImageJ version 1.37v software (National Institutes of 

Health) and measurements were expressed as a relative value: disease samples were 

compared to the average value of control cases considered 100% (Relative Protein 

Expression, %, Figures 1–4).

3. Results

In AD HPC (Figure 1), about a half of the examined cases (6 out of 11) have increased 

Capzb2 protein expression in comparison to controls. Moreover, the increase in Capzb2 

protein expression (on average 150% of the control level) in these cases was more 

pronounced than the decrease (on average 25% less than the control level) noted in the 

remaining 5 examined cases. The highest individual increase was observed in case 972 at 

BB stage III–IV (close to 230%). The highest individual decrease was recorded in case 1325 

at BB stage V–VI (−50%). A comparable trend was seen in AD PFC (Figure 2). In 

comparison to controls 8 out of 11 AD PFCs showed an increase in Capzb2 protein 

expression. The decrease in protein expression, noted in three cases, was relatively small 

(−10% to −20%). The highest individual increase was observed in one of the advanced AD 

cases, BB stage V–VI (case 1325, ~ 220%). The highest individual decrease was recorded in 

a less advanced AD case, BB stage III–IV (case 972), −20%. Thus, the case with the highest 

increase in Capzb2 protein expression in HPC had the highest decrease of Capzb2 

expression in PFC. Conversely, the case with the highest decrease in Capzb2 protein 

expression in HPC (1325, BB stage V–VI, −50%) had the highest recorded increase in PFC 

expression (~ 220%).

In the heads of caudate nuclei (HCN) of HD patients there was a uniform decrease in the 

Capzb2 expression (Figure 3). Regardless of the stage of the disease, eight out of nine 

examined cases showed uniform decrease (on average −65%) in Capzb2 expression level in 

comparison to controls. In sharp contrast, in the majority of the cases (7 out of 9), the PFC 

showed increase in Capzb2 expression ranging from 110% to over 200% of the control level 

(Figure 4). Thus, Capzb2 expression in HD brains shows starkly divergent, region-specific 

trends.
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4. Discussion

In the caudate nuclei of HD patients overall, the Capzb2 protein expression is reduced in 

comparison to controls (Figures 3). However, in AD (Figures 1 and 2) as well as in PFC of 

HD patients (Figure 4), several individuals show increased levels of Capzb2 expression even 

in the advanced stages of each disease.

While the accumulation of hyperphosphorylated tau was demonstrated in the dystrophic 

dendrites of the affected (tangled) neurons in AD, the remaining non-tangled neurons 

exhibited proliferation of perisomatic dendrites as well as sprouting of distal dystrophic 

neurites [17]. The presence of growth cone-like structures on distal ends of processes has 

been interpreted as regenerative response occurring simultaneously with degenerative 

changes [17]. We found that the Capzb2 protein expression was increased in both the 

hippocampus and the prefrontal cortex of several AD patients. Previously we identified 

Capzb2 as a link between microfilament and microtubule assembly in the growth cone [2]. 

Together, these data raise the possibility that Capzb2 may be involved in morphological 

changes associated with regenerative response in neurons.

We found that Capzb2 protein levels exhibit diverging trends in the head of caudate nucleus 

(HCN) and the prefrontal cortex (PFC) during the progression of HD (Figures 3 and 4). A 

profound decrease in Capzb2 expression is noted at the earliest HD grade grossly 

diagnosable by the atrophy of the medial paraventricular portion of the caudate nucleus 

(Vonsattel grade 2/4) [18]. At this stage there is a severe neuronal loss (>50%)[18], which 

could explain the approximately 50% reduction in Capzb2 expression in HCN (Figure 3). 

However, PFCs of the same patients exhibit increased Capzb2 expression (Figure 4). PFC 

pyramidal neurons of layers III and V in HD patients have been found to augment their 

dendritic tree [19]. The observed increase in Capzb2 expression in the PFC of HD patients 

may reflect cytoskeletal reorganization during regenerative responses to the ongoing 

degeneration of cortical neurites [8, 9].

Thus, two clinically, morphologically, and biologically different neurodegenerative diseases, 

AD and HD, have in common decreased neurite length and the occurrence of growth cone 

formation followed by sprouting. These morphological features were shown to be affected 

by the changing levels of Capzb2 [2]. The here reported Capzb2 expression trends during the 

development of AD and HD warrant further evaluation of the potential role of Capzb2 as the 

regulator of neurite length and growth cone morphology in neurodegeneration.
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Figure 1. 
Relative protein expression in the hippocampi (HPC) of the individual patients in the 

progressive stages of AD (Braak and Braak Stages, BB, I–VI) in comparison to normal 

controls.
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Figure 2. 
Relative protein expression in the prefrontal cortices (PFC) of the individual patients in the 

progressive stages of AD (Braak and Braak Stages, BB, I–VI) in comparison to normal 

controls.
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Figure 3. 
Relative protein expression in the heads of caudate nuclei (HCN) of the individual patients 

in the progressive stages of HD (Vonsattel Stages, VS, 2–4) in comparison to normal 

controls.
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Figure 4. 
Relative protein expression in the prefrontal cortices (PFC) of the individual patients in the 

progressive stages of HD (Vonsattel Stages, VS, 2/4, 3/4, and 4/4) in comparison to normal 

controls.
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Table 1

Control brains used to obtain the average (normal, 100%) Capzb2 expression in each of the examined regions 

(HPC, PFC, HCN).

Case no. Age [yr] Sex Post mortem interval [hr]

BM 1 58 M 19

BM 6 65 M 4

BM 7 81 M 37

BM 9 72 F 23

BM 11 73 F 13

BM 12 33 M 45

BM 13 68 F 25

MADRC 1314 56 M 36

MADRC 1339 79 F 48

MADRC 1388 85 F 27
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