
CAQE: A Certifying QBF Solver
Markus N. Rabe

University of California, Berkeley
rabe@berkeley.edu

Leander Tentrup
Saarland University

tentrup@cs.uni-saarland.de

Abstract—We present a new CEGAR-based algorithm for QBF.
The algorithm builds on a decomposition of QBFs into a sequence
of propositional formulas, which we call the clausal abstraction.
Each of the propositional formulas contains the variables of
just one quantifier level and additional variables describing the
interaction with adjacent quantifier levels. This decomposition
leads to a simpler notion of refinement compared to earlier
approaches. We also show how to effectively construct Skolem
and Herbrand functions from true, respectively false, QBFs;
allowing us to certify the solver result.

We implemented the algorithm in a solver called CAQE.
The experimental evaluation shows that CAQE has competitive
performance compared to current QBF solvers and outperforms
previous certifying solvers.

I. INTRODUCTION

Efficient solving techniques for Boolean theories are an
integral part of modern verification and synthesis methods. The
ever growing complexity of verification and synthesis prob-
lems led to propositional problems of enormous size. To see
further advances in these areas, we believe that is necessary to
move to more compact representations of these requirements.
Quantified Boolean formulas (QBFs) have repeatedly been
considered as a candidate theory to compactly encode Boolean
problems [1]–[7]. Recent advances in QBF solvers give raise
to the hope that QBF may help to increase the scalability of
verification and synthesis approaches.

The recent introduction of algorithms based on counter-
example guided abstraction refinement (CEGAR) significantly
improved the scalability of QBF solving [8], [9]. However, the
CEGAR approach shows poor performance for instances with
many quantifier alternations, as we show in this paper, and it
currently lacks the ability to certify its results. In this work,
we present a modification of the CEGAR approach for QBF
that tackles these two problems.

Certifying the results is particularly important for QBF, as
the pure yes/no answer is of little use. Like the propositional
SAT problem [10], [11], QBF can be used to encode objects of
interest, like error paths [3], [5] and implementations [4], [12],
[13]. While the yes/no answer of a SAT or QBF solver then
provides the information about the existence of this object,
we often want to construct a concrete instance for further use.
For the propositional SAT problem the object can typically

This work was partially supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS) and by
NSF grants CCF-1139138 and CCF-1116993. The first author did a part of
the work at Saarland University.

be extracted as the assignment of the variables, but for QBF
the object potentially consists of the Skolem functions for
the existential quantifiers or the Herbrand functions for the
universal quantifiers. Most current QBF solvers, however, are
unable to provide Skolem or Herbrand functions or suffer
performance penalties when they do [14], [15].

Our approach is based on the observation that the only
information relevant for the processing of inner quantifier
levels is which clauses are satisfied by the outer quantifier
levels. Consider the following example:

∀X∃Y. (x1 ∨ x2 ∨ y1) ∧ (x2 ∨ y1 ∨ y2) ∧ (y1 ∨ y2)

where xi ∈ X and yi ∈ Y for all i.
To determine the truth value of this QBF, we need to show

that for every assignment of the variables X , there is an
assignment of the variables Y such that the propositional part
of the formula above is true. Any assignment of X satisfies a
certain set of clauses and thereby requires that the remaining
set of clauses is satisfiable by the variables Y . For example
the assignment x1x2 satisfies exactly the first clause and any
assignment of the variables Y that satisfies the remaining
clauses is sufficient for this case. We can thus split the formula
into two parts; one for the universally quantified variables X
and one for the existentially quantified variables Y :

ϕX := ((x1 ∨ x2)→ ¬b1) ∧ (x2 → ¬b2) ∧ (false→ ¬b3) ,
ϕY := (t1 ∨ y1) ∧ (t2 ∨ y1 ∨ y2) ∧ (t3 ∨ y1 ∨ y2) ,

where the variables B = {b1, b2, b3} (bottom) indicate that
the clause is satisfied by the lower quantifier level (∃Y), and
the variables T = {t1, t2, t3} (top) indicate that the clause is
satisfied by the upper quantifier level (∀X). That is, for every
clause ϕX requires that whenever the clause is satisfied by the
X variables, it does not have to be satisfied by the Y variables.
And ϕY requires that when the clause is satisfied by some
X , it does not have to be satisfied by the variables Y . The
problem to determine the truth of the QBF is then equivalent
to determining whether for each satisfying assignment of ϕX
that includes the assignment b of B, the formula ϕY (tb) is
satisfiable, where tb is the assignment of T that assigns ti
iff bi is not assigned in b (for all 1 ≤ i ≤ 3). We call this
decomposition of the QBF the clausal abstraction.

Following the CEGAR approach to QBF, we would alternate
between the two quantifier levels and determine satisfying
assignments of ϕX and ϕY . When there is no assignment
of ϕX left, we conclude that the original formula is true,
or when there is no satisfying assignment of ϕY for a given

assignment of X , we have found a counter-example. While the
overall approach is similar to the existing CEGAR approaches
to 2QBF [9], it lets us rephrase the refinement step in an
interesting way: Every satisfying assignment α of ϕY defines
a single clause over the variables B that we can add to the
formula ϕX . This excludes all assignments of X for which α
satisfies the remaining formula.

The principle of clausal abstractions can be lifted to full
QBF and we show that this leads to an algorithm with competi-
tive performance. The evaluation of our implementation CAQE
reveals the differences to the previous CEGAR-based QBF
solver RAReQS: The algorithm we propose is particularly
effective for QBFs with many quantifier alternations, while the
previous CEGAR-based approach seems particularly effective
for problems with few quantifier alternations.

Our approach can be used to certify the result of a QBF.
From the sequence of T assignments and assignments of the
quantified variables, we can effectively extract Skolem and
Herbrand functions in the form of circuits. We describe a proof
format and provide a tool chain for the certification process,
which outperforms earlier certifying QBF solvers.

To summarize, the contributions of this paper are twofold:
• We develop a CEGAR algorithm for QBF based on

clausal abstractions, and
• we give a method to effectively extract Skolem and

Herbrand functions for the certification of the results.

II. QUANTIFIED BOOLEAN FORMULAS

A quantified Boolean formula (QBF) is a propositional
formula over a finite set of variables X with domain B =
{0, 1} extended with quantification. The syntax is given by
the following grammar:

ϕ := x | ¬ϕ | (ϕ) | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x. ϕ | ∀x. ϕ ,

where x ∈ X . For readability, we lift the quantification over
variables to the quantification over sets of variables and denote
∀x1.∀x2. . . .∀xn.ϕ with ∀X.ϕ and ∃x1.∃x2. . . .∃xn.ϕ with
∃X.ϕ, accordingly, for X = {x1, . . . , xn}.

Given a subset of variables X , an assignment of X is a
function α : X → B that maps each variable x ∈ X to either
true (1) or false (0). For simplicity we describe assignments
also by the subset x ⊆ X of variables that are assigned 1 (or
true). We denote the set of assignments of a set of variables
X by A(X).

A quantifier Qx.ϕ for Q ∈ {∃,∀} binds the variable x in
the scope ϕ. Variables that are not bound by a quantifier are
called free. We assume the natural semantics of the satisfaction
relation x |= ϕ for QBF ϕ and assignments x ⊆ X where X
are the free variables of ϕ. QBF satisfiability is the problem to
determine, for a given QBF ϕ, the existence of an assignment
for the free variables of ϕ, such that the formula is true.

The dependency set of an existentially quantified variable y,
denoted by dep(y), is the set X of universally quantified
variables x such that ∃y. ϕ is in the scope of x. A Skolem
function fy : A(dep(y)) → B maps an assignment of the
dependencies of y to an assignment of y. The truth of a QBF

ϕ is equivalent to the existence of a Skolem function fy for
every variable y of the existentially quantified variables Y ,
such that {y ∈ Y | fy(x ∩ dep(y))} |= ϕ holds for every
assignment x of the universal variables X .

A closed QBF is a formula without free variables. Closed
QBFs are either true or false. A formula is in prenex normal
form, if the formula consists of a quantifier prefix followed
by a propositional formula. Every QBF can be transformed
into a closed QBF and into prenex form while maintaining
satisfiability. For a k > 0, a formula ϕ is in the kQBF fragment
if it is closed, in prenex normal form, and has exactly k
alternations between ∃ and ∀ quantifiers.

A literal l is either a variable x ∈ X , or its negation ¬x.
Given a set of literals {l1, . . . , ln}, the disjunctive combination
(l1∨. . .∨ln) is called a clause and the conjunctive combination
(l1∧ . . .∧ ln) is called a cube. Given a literal l, the polarity of
l, sign(l) for short, is 1 if l is positive and 0 otherwise. The
variable corresponding to l is defined as var(l) = x where
x = l if sign(l) = 1 and x = ¬l otherwise.

A QBF is in prenex conjunctive normal form (PCNF) if its
propositional formula is a conjunction over clauses, which is
called a matrix. To simplify the notation, we treat a matrix ψ as
a set of clauses ψ = {C1, . . . , Cn} and a clause C as a set of
literals C = {l1, . . . , lm} and use standard set operations like
intersection and union for their manipulation. Every prenex
QBF can be transformed into prenex CNF using the Tseitin
transformation [16] with a linear increase in the size of the
formula and number of existential variables.

III. CLAUSAL ABSTRACTIONS

In this section, we present clausal abstractions, a decom-
position of QBFs into sequences of propositional formulas—
one propositional formula for each quantifier level. Clausal
abstractions provide us a new notion of refinement and thereby
leads us to a variant of the CEGAR algorithm for QBF.

The example in the introduction intuitively explained how
every clause in a QBF with one quantifier alternation can be
split into two parts with additional variables that describe their
interaction. The main observation was that every assignment
for the variables quantified by the inner (existential) quantifier,
corresponds to a single cube over the new variables T . In the
following, we extend this principle to QBF with more than
one quantifier alternation and we consider a closed QBF ϕ in
prenex conjunctive normal form:

ϕ := Q1X1. . . . QnXn. ψ ,

where ψ = C1 ∧ . . . ∧ Ck is the matrix of ϕ with k clauses
and each QiXi is a quantifier block, i.e., a maximal list of
consecutive quantifiers of the same type.

Let’s first consider the case that Q1 is an existential quanti-
fier. Proving ϕ to be true means to find an assignment x1 for
X1 such that the remaining formula Q2X2. . . . QnXn. ψ(x1)
is true. Inspecting ψ(x1) reveals that the assignment of the
variables X1 eliminated certain clauses (by satisfying them)
and removed all occurrences of X1 literals from the remaining
clauses. We can thus split each clause Ci into two parts Ci,1

2

and Ci,>1, where Ci,1 is the part that can be satisfied by some
assignment to X1 and Ci,>1 is the part that must be satisfied
by some variable in Xi with 1 < i ≤ n. For each clause Ci,
we introduce the variables bi (bottom) in Ci,1 and ti (top)
Ci,>1 to indicate by which part Ci is satisfied.

Ci,1 =
(∨

l∈Ci∧var(l)∈X1
l
)
∨ bi

Ci,>1 =
(∨

l∈Ci∧var(l)∈(
⋃

i>1Xi) l
)
∨ ti

Ci,1 contains no variables in
⋃
i>1Xi and Ci,>1 is free of

the variables X1. We call the conjunction of clauses ϕ∃X1
=∧

j<k Cj,1 the existential clausal abstraction for X1.
As the variables B occur only positively in Ci,1, the existen-

tial clausal abstraction is monotone in B. In particular, there is
a unique minimal assignment bmin(x1) to B for every assign-
ment x1 to X1. The minimal assignment bmin(x1) contains
exactly the set B variables whose clauses have to be satisfied
by a variable from a quantifier block i > 1 when the first
quantifier block chooses x1. Hence it is clear that the formula
that results from fixing x1 in the matrix ψ is the same as the
matrix that results from fixing t = {ti | bi /∈ bmin, 1 ≤ i ≤ k}
in the remaining matrix ψ>1 =

∧
i≤k Ci,>1.

Now let’s turn to the case that the outermost quantifier
Q1 is a universal quantifier. Analogue to the previous case,
disproving ϕ means to show that there is an assignment x1 of
X1 such that the remaining formula Q2X2. . . . QnXn. ψ(x1)
is false. Now, assignments of X1 that satisfy less clauses are
more desirable, as they set more of the variables B to true and
therefore make it harder to satisfy the remaining formula. The
existential clausal abstraction, however, always allows us to set
more of the variables B to true and therefore fails to represent
when a clause is necessarily fulfilled by an assignment x1. In
other words, the existential clausal abstraction represents the
lower bounds on B, while we need the upper bounds on B
for the universal case. For the universal case, we therefore
propose to use the following clausal abstraction:

Ci,1 =
∧
l∈Ci∧var(l)∈X1

(l ∨ bi)
Ci,>1 = (

∨
l∈Ci∧var(l)∈(

⋃
i>1Xi) l) ∨ ti

The universal clausal abstraction for X1 is then the conjunc-
tion ϕ∀X1

=
∧
j<k Cj,1. The universal clausal abstraction

guarantees that for every assignment x1 to X1 there is a
unique maximal assignment bmax(x1) to B, that is an as-
signment with a maximal number of variables set to true. The
decomposition of each clause Ci into the conjunction Ci,1
ensures that whenever the clause Ci is satisfied by one of its
literals, then the variable bi must be set to false—representing
that the other quantifier blocks do not have to satisfy this
clause any more. Again, the formula that results from fixing
x1 in C1 ∧ . . . ∧ Ck is the same as the matrix that results
from fixing t = {ti | bi /∈ bmax, 1 ≤ i ≤ k} in the remaining
formula ψ>1 = C1,>1 ∧ . . . ∧ Ck,>1.

We observe that each clausal abstraction only needs one
copy of the T variables and another copy of the B variables.
When we build the clausal abstractions ϕQiXi

for all quantifier
blocks Qi, we can thus reuse the sets of variables for T and
B and only need to introduce 2k fresh variables.

IV. CEGAR WITH CLAUSAL ABSTRACTIONS

In this section, we present a CEGAR algorithm for QBF
based on clausal abstractions. To formulate the algorithm, we
assume a method called SAT to solve propositional formulas.
We assume that SAT returns whether the formula is satisfiable
(SAT) or unsatisfiable (UNSAT). Further, in case the formula
is satisfiable SAT returns a satisfying assignment—potentially
only for a subset of the variables like in line 6. In our
implementation these queries are solved by a SAT solver. In
the following, we use Ψ>1 = Q2X2 . . . QnXn.ψ>1 to denote
the formula that remains when splitting the clausal abstraction
ϕQ1X1 from the QBF Ψ. Expressions of the form c ? e1 : e2
denote abbreviated if-statements. If the conditional c evaluates
to true we return e1 and otherwise e2.

The input to the algorithm SOLVE is a QBF QX.Ψ and the
output is either SAT or UNSAT.

1: procedure SOLVE(QX.Ψ)
2: if Ψ is propositional then
3: return SAT(Ψ)

4: α← (Q = ∃) ? ϕ∃X : ϕ∀X
5: while true do
6: result , b← SAT(α)
7: if result = UNSAT then
8: return (Q = ∃) ? UNSAT : SAT
9: t← {ti | bi /∈ b, 1 ≤ i ≤ k}

10: result ← SOLVE(Ψ>1(t))
11: if Q = ∃ and result = UNSAT then
12: α← α ∧ (

∨
l∈b l)

13: else if Q = ∀ and result = SAT then
14: α← α ∧ (

∨
l/∈b l)

15: else
16: return (Q = ∃) ? SAT : UNSAT

The algorithm generates an assignment b for the variables
B in the clausal abstraction, determines t = {ti | bi /∈
b, 1 ≤ i ≤ k}, and then goes into recursion for the remaining
formula Q2X2 . . . QnXn.ψ>1(t). Whenever a recursive call
failed for an existential quantifier block, i.e., the remaining
formula turned out to be false, we add the clause

∨
l∈b l to the

existential clausal abstraction. Analogously, when a recursive
call failed for a universal quantifier block, i.e., the remaining
formula turned out to be true, we add the clause

∨
l/∈b l to

the universal clausal abstraction. The next iteration will either
bring up a new assignment for the variables B or fail to do so,
in which case the formula is violated in the existential case
and satisfied in the universal case, respectively.

A. Reusing Clausal Abstractions and their Refinements

Reusing the state of SAT solvers is critical for performance.
Instead of regenerating the clausal abstractions for inner
quantifier for every instantiation of the variables of the outer
quantifier blocks, we set up one SAT solver per quantifier
block that we keep for the complete run of the algorithm.
Reusing the SAT solvers for each quantifier level also enables
us to efficiently reuse all previous refinements for the same
level. The clauses by which we refined stay valid for all times.

3

1: procedure SOLVE∃(∃X.Ψ, t)
2: while true do
3: result ,b, failed ← SAT(ϕX , t)
4: if result = UNSAT then
5: return UNSAT, , failed
6: else if Ψ is propositional then
7: return SAT, t,
8: tb ← {ti | bi /∈ b, 1 ≤ i ≤ k}
9: result , t′, failed ′ ← SOLVE∀(Ψ, t ∪ tb)

10: if result = UNSAT then
11: ϕX ← ϕX ∧ (

∨
t∈failed′ ¬bt)

12: else
13: return SAT, t′,

Given a QBF with matrix ψ we prepare a SAT solver for
each existential quantifier block ∃X with the clauses

ϕX :=
∧
Ci∈ψ

((∨
l∈Ci∧var(l)∈X

l
)
∨ ti ∨ bi

)
, (1)

and for each universal quantifier block ∀X , we prepare a SAT
solver with the clauses

ϕX :=
∧
Ci∈ψ

(∧
l∈Ci∧var(l)∈X

(l ∨ ti)
)
. (2)

In the construction of the clausal abstraction for the final level,
i.e., ϕXk

, we additionally require the bottom literals B to be
false, as there is no quantifier level below the current level to
which we could pass the proof obligations.

To obtain the clausal abstraction of a QBF Ψ(t) we then
simply assume the assignment t. Solving formulas under
assumptions is a common feature of modern SAT solvers.

Note that formula (2) does not contain B variables. For
the universal clausal abstractions it is possible to join the two
types of literals and ask for a satisfying assignment of ϕX that
assigns a minimal number of T variables to true, under the
assumption that at least those that were given in the function
call are true. This is merely a measure to reduce the number
of variables used in the formula.

B. Algorithm with Optimizations

The input to the algorithm SOLVE consists of a QBF
QiXi.Ψ. Depending on the type of the outermost quantifier, it
calls SOLVE∃ or SOLVE∀ and fixes an initial assignment t = ∅
of T that indicates that no clauses were satisfied so far.

1: procedure SOLVE(Φ)
2: return Φ = ∃X.Ψ ? SOLVE∃(Φ, ∅) : SOLVE∀(Φ, ∅)
The algorithm SOLVE∃ makes use of a feature of modern

SAT solvers by assuming a partial assignment for a particular
call. This feature enables us to deactivate those clauses that
are satisfied already. The notation SAT(ϕX , t) denotes a SAT
call for which we additionally assume the assignment t. SAT
calls with assumptions either return a satisfying assignment,
which is guaranteed to have the sub-assignment t, or in
case the formula is unsatisfiable under the assumptions they

1: procedure SOLVE∀(∀X.Ψ, t)
2: while true do
3: result , t′, failed ← SAT(ϕX , t

+)
4: if result = UNSAT then
5: return SAT, failed ,
6: result , t′′, failed ′ ← SOLVE∃(Ψ, t

′)
7: if result = SAT then
8: ϕX ← ϕX ∧ (

∨
t∈t′′ ¬t)

9: else
10: return UNSAT, , failed ′

additionally return a set of failed assumptions, denoted by
failed . The failed assumptions are a subset of the assumptions
t and suffice to make the formula unsatisfiable. In line 11,
¬bt denotes the variable b ∈ B that corresponds to the
same clause as variable t. The algorithm refines the clausal
abstraction only by those variables B that made the recursive
call to SOLVE∀ unsatisfiable. This significantly strengthens the
refinement compared to the basic algorithm.

Similar to the algorithm SOLVE∃, the algorithm SOLVE∀
makes use of assumptions for SAT calls. Since, we joined the
T and B variables, we only assume the positively assigned
variables in t, denoted by the call SAT(ϕX , t

+). The SAT
call then produces an assignment t′ for which it possibly sets
further variables T to true. In contrast to the existential case,
we can use t′ directly for the recursive call. The refinement
step only refines by the variables T occurring in the assign-
ment t′′ returned by the recursive call. The assignment t′′ is
a subset of t′ and therefore represents the information that
the call to SOLVE∃ satisfied more clauses than required by the
assignment t′.

Theorem 1. SOLVE(Φ) is correct and terminates.

The proof is a simple induction over the quantifier quantifier
hierarchy.

C. Stronger Refinements

The algorithm above always refines by a single clause.
In certain cases, however, we can strengthen the refinement
in SOLVE∃ by excluding a conjunction of clauses C, that
are equivalent in the following sense: If some clause C
corresponds to a failed assumption, then all other clauses
C \ {C} would also lead to a failed assumption. Formally,
we characterize this criterion by the subset relation between
clauses restricted to the lower level literals. Let ∃iXi be a
quantifier block of a QBF with matrix ψ, let failed ′ be the
failed assumptions returned by the lower level (line 9), and let
tk ∈ failed ′ be one of the failed assumptions. If Ck cannot
be satisfied by a quantifier block QjXj with j > i, then any
Cl with Cl ∩

(⋃
j>iXj

)
⊆ Ck ∩

(⋃
j>iXj

)
, Cl ⊆i Ck

for short, cannot be satisfied either. Hence, given the failed
assumptions failed ′, we refine∨

tk∈failed′

∧
Cl ∈ ψ,
Cl ⊆i Ck

¬bl , (3)

4

p cap 3 3
d
d
6 -3
u SAT
d
4 5 3
u SAT
u SAT
1
u SAT
r SAT

〈∅, {x1},SAT〉

〈∅, ∅,SAT〉

〈{t3}, {x3},SAT〉 〈{t1, t2}, {x3},SAT〉

↑ u

↓ d ↑ u

↙ d

↗ u ↘ d

↖ u

Fig. 1. A clausal abstraction proof in the CAP format (left) and its tree
structure (right).

The refinement has to be transformed to CNF using the Tseitin
transformation [16].

Additionally, after we have found an assignment for an
existential quantifier block, we have a routine that checks
whether the assignment satisfies clauses that are deactivated by
the current T assignment. If so, we delete the corresponding
literals from the T assignment.

D. Preprocessing Techniques

We use basic preprocessing techniques that can be eas-
ily integrated into our certification infrastructure: tautology
clauses, pure literals, unit clauses, universal reduction, and
miniscoping. For miniscoping, we apply the well known rule
∀X.∃Y1, Y2. ϕ(X,Y1) ∧ ψ(X,Y2) ≡ (∀X.∃Y1. ϕ(X,Y1)) ∧
(∀X.∃Y2. ψ(X,Y2)). That is, we search for a partitioning of
the matrix according to the existential variables of the current
scope. By applying this rule bottom-up, we get a tree-shaped
quantification header. Note that this tree only branches after an
existential quantifier, hence, we modify the algorithm to split
the current entry according to the partitioning and solve every
child individually. For true QBF instances, this transformation
can significantly reduce the size of the Skolem functions.

V. CERTIFICATION

Similar to the QBFCert [15] framework, we propose a two
step approach to certification that allows us to keep the certifi-
cation infrastructure separate from the solver. First, our solver
outputs a clausal abstraction proof (CAP), that is a sequence
of assignments of T variables together with the corresponding
assignments of X variables as well as navigation symbols to
determine the quantification level. A clausal abstraction proof
is essentially a post-order linearization of the recursion tree.

Clausal abstraction proofs contain the following elements:

• Header: p cap v c where v is the maximal variable
number and c is the number of clauses.

• Result: r res where res ∈ {SAT,UNSAT}.
• Quantifier tree navigation: d for down, u res for up

with subtree result res ∈ {SAT,UNSAT}, and n for next
sibling (in the case of miniscoping).

• T and variable assignments: t1 t2 . . . l1 l2 . . . , with
v < ti ≤ v + c for every i and 0 < |lj | ≤ v for every j.

• The strengthening instruction s c t1 . . . tn representing
the cube of T variables used in the strong refinement
optimization described by equation (3) in Section IV-C.

As an example, consider the following QBF:

∃x1∀x2∃x3 : (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
t1≡x4

(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
t2≡x5

(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
t3≡x6

Figure 1 shows a clausal abstraction proof for this QBF. After
the header, the proof descends to the lowest quantifier (lines
d and d) where the decision x3 = 0 is a satisfying assignment
given that clause 3, corresponding to t6, is satisfied by a
higher level quantifier (line 6 -3). The algorithm presented
in Section IV guarantees that there is an assignment of the
higher quantifier levels that satisfies the this set of clauses
(i.e. clause 3). The proof format, however, delays printing
the assignments of higher quantifier levels until it successfully
ascends to the upper levels of the proof. Omitting assignments
for failed proof branches saves a significant amount of space.
Next we ascend to the universal quantifier level (line u SAT).
The previous assignment of the universal quantified variable
x2 can be omitted, as it did not refute the current proof
branch. The universal level chooses a new assignment for x2
and the proof descends again (line d). This time clauses 1
and 2, corresponding to t4 and t5, are satisfied by a higher
level clause and x3 = 1 is a satisfying assignment for the
remaining clauses (line 4 5 3) and we ascend again (line
u SAT). We exhausted the assignments of x2 and the proof
hence ascends from the universal quantifier level (line u
SAT). Upon returning successfully from this proof branch,
we print the assignment of x1 = 1 (line 1) that was chosen
in the beginning. We return successfully from the outermost
existential quantifier level (line u SAT) and the QBF is
concluded to be true (r SAT).

We proceed with the general description of the certi-
fication approach. From the clausal abstraction proof, we
build a circuit—encoded as an And-Inverter-Graph (AIG)—
representing the Skolem or Herbrand function. First, we parse
the clausal abstraction proof into a tree structure, where
the levels of the tree correspond to the quantifier blocks of
the QBF. Since the clausal abstraction proof is a post-order
linearization, we can build the proof tree bottom-up. For a
quantifier block QX.Ψ, a node 〈t,x, r〉 in the tree is a tuple
consisting of a T assignment t, an X assignment x, and
the subtree result r ∈ {SAT,UNSAT}. Next, we prune the
tree according to the result: If the QBF is true, we dismiss
universal levels as well as nodes that are labeled as UNSAT.
Analogously, if the QBF is false, we dismiss existential levels
as well as nodes with r = SAT. All remaining nodes are
relevant for the certificate.

Given a quantifier block QX.Ψ, we first collect the list
of nodes NX corresponding to this level (according to the
navigation commands in the proof trace). For every variable
x ∈ X we then build the Skolem/Herbrand function fx
with the algorithm CONSTRUCTFUNCTION, which takes three

5

arguments: the variable x, the list of nodes NX , and the type
of quantifier Q ∈ {∃,∀}.

1: procedure CONSTRUCTFUNCTION(x, N , Q)
2: fx ← false
3: fpre ← true
4: for 〈t,x, r〉 ∈ N do
5: if x ∈ x then
6: fx ← fx ∨ (fpre ∧ PRECONDITION(t, Q))

7: fpre ← fpre ∧ ¬PRECONDITION(t, Q)

8: return fx

1: procedure PRECONDITION(t, Q)
2: if Q = ∃ then
3: return

∧
t∈t

(∨
l∈Ct∧var(l)∈

⋃
j<iXi

l
)

4: else
5: return

∧
t∈T\t

(∧
l∈Ct∧var(l)∈

⋃
j<iXi

l
)

In the algorithm above the formula fx characterizes when
the Skolem/Herbrand function will set x to true and fpre
characterizes the cases that are not yet covered by fx. In each
iteration over the list of nodes we extend fpre by the case
that is covered by the current node (line 7). If the variable
x occurs positively in the assignment, we also extend the
function fx (line 6). Each case is described by the conjunction
over the clauses described by the T assignment restricted
to the variables of smaller quantifier levels (see algorithm
PRECONDITION). For a given t ∈ T , we denote with Ct
the clause that corresponds to the t variable. The formulas
fx computed by the algorithm CONSTRUCTFUNCTION then
define the output signals of the AIG.

In the example of Fig. 1, the list of nodes for x1 consists
of the single node: 〈∅, {x1},SAT〉, indicating that without
precondition (∅) x1 is set to true. For x3 there are two nodes:
〈{t3}, {x3},SAT〉 and 〈{t1, t2}, {x3},SAT〉, indicating that if
clause 3 is satisfied, x3 is set to false, and if clauses 1 and 2
are satisfied, x3 is set to true. The Skolem function computed
by the algorithm above is fx3 = (x1 ∨ x2)∧ (x1 ∨ x2), which
simplifies to fx3 = x2.

For a true (false) QBF, the resulting AIG certificates can be
checked by substituting the existential (universal) variables in
matrix by applications of their Skolem (Herbrand) functions
and then query a SAT solver to ask for an assignment of the
variables such that some clause is falsified (all clauses are
satisfied). The certificate is valid if, and only if, the SAT solver
returns UNSAT and the Skolem/Herbrand functions depend
only on variables in their dependency set.

VI. EXPERIMENTAL EVALUATION

We implemented the algorithm and its optimizations in a
tool named CAQE1 (Clausal Abstraction for Quantifier Elimi-
nation). The tool is written in the programming language C and
we use a generic SAT solver interface that can be instantiated
with PicoSAT [17] (default) or MiniSat [18]. In this section,

1available at http://react.uni-saarland.de/tools/caqe/

we evaluate the implementation on the instances from QBF
Gallery 2014 [19] in several categories: the number of solved
instances per benchmark family with and without preprocess-
ing, the number of instances solved in certification mode, and
the size of the generated certificates. We compare CAQE to the
(available) best performing solvers of the QBF Gallery 2014.
For our experiments, we used a machine with a 3.6 GHz quad-
core Intel Xeon processor and 32 GB of memory. The timeout
was set to 10 minutes.

A. Solved Instances per Family

Table I shows for each solver how many instances of the
QBFGallery benchmark set are solved within 10 minutes. We
removed the preprocessing track of QBFGallery and instead
ran every solver with and without preprocessing using Blo-
qqer [20]. For three of the seven families, a configuration of
CAQE solved the highest number of instances. Overall, CAQE
using PicoSAT ranked second after RAReQS when using the
number of solved instances as a measure.

Most notably, CAQE solved an exceptionally high number
of problems in the hardness family, which consists of bounded
model checking queries for incomplete designs [6]. One char-
acteristic of this family is that number of quantifier alternations
is relatively high; going up to 60 alternations. Figure 2 shows
the performance of all solvers for the 188 instances of the
full benchmark set that have a high number of quantifier
alternations. The plot suggests that CAQE performs well on
instances with a high number of quantifier alternations—in
particular compared to other CEGAR-based solvers.

Unsurprisingly, the choice of the underlying SAT solver has
a significant impact on the performance of CAQE. In this
setting, the variant using PicoSAT performs better, however,
more testing and optimization was done for this variant.

The effect of preprocessing is unusual. While preprocessing
by Bloqqer improved the performance overall (in particular
for CAQE using MiniSat), the analysis per family reveals that
Bloqqer decreased the performance of CAQE using PicoSAT
for three benchmark families.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

50

100

150

200

250

300

350

400

450

500

550

600

CAQE+p

CAQE+p+b

CAQE+m

CAQE+m+b

RAReQS

RAReQS+b

GhostQ

DepQBF

DepQBF+b

Fig. 2. Number of solved instances within 10 minutes among the 188
instances from QBFGallery 2014 with more than 6 quantifier alternations.

6

http://react.uni-saarland.de/tools/caqe/

TABLE I
NUMBER OF INSTANCES OF THE QBFGALLERY 2014 BENCHMARK SET SOLVED WITHIN 10 MINUTES.

CAQE RAReQS GhostQ DepQBF
Family total picosat picosat+bloqqer minisat minisat+bloqqer rareqs rareqs+bloqqer ghostq depqbf depqbf+bloqqer
eval2012r2 276 75 112 55 98 81 129 124 88 128
bomb 132 91 74 75 59 84 82 75 67 80
complexity 104 50 67 60 67 75 91 26 49 57
dungeon 107 46 31 22 69 57 62 45 44 66
hardness 114 78 103 58 94 15 68 57 8 81
planning 147 84 79 50 55 146 135 31 57 47
testing 131 54 77 25 84 36 92 102 57 76
all 1011 478 543 345 526 494 659 460 370 535

B. Certificates

Table II shows the number of instances of the QBF Gallery
2014 benchmark set that was solved within 10 minutes in
certifying mode (#solved) and the number of certificates that
was verified within 10 minutes (#verified). The evaluation also
shows that CAQE can certify more results than DepQBF and
provides certificates that are only half the size in average. The
size of the certificates is measured in terms of AND-gates in
the AIGER file that encodes the Skolem or Herbrand function
after minimization with the DFRAIG algorithm of ABC [21].

Compared to the non-certifying run in Table I, the solvers
solved between 84% (DepQBF) and 90% (CAQE) of the
instances in certifying mode. This can be traced back to two
factors. First, certain optimizations have to be disabled in
certification mode, and second, there is a significant amount
of time spent writing the proofs to disk. Furthermore, not all
of the instances solved in certification mode could be verified
within the given amount of verification time.

Lastly, we compare the size of the certificates of CAQE
and DepQBF on the commonly solved instances in Fig. 3.
The variance of the relative certificate sizes is high, but the
number of instances where CAQE generated certificates of
significantly smaller size than DepQBF is larger than the
number of instances where DepQBF generated certificates of
significantly smaller size than CAQE.

TABLE II
CERTIFYING RUNS OF DEPQBF AND CAQE.

Solver # solved # verified # unique avg. size
CAQE 428 340 146 3138
DepQBF 312 239 44 7447
virtual best 468 384 - 5357

VII. RELATED WORK

Various techniques have been proposed for QBF, includ-
ing expansion [22], [23], BDDs [24], [25], (DPLL-like)
search [14], [26], and CEGAR [9]. The CEGAR approach
has been first explored in the context of model checking [27].
Janota and Silva successfully applied CEGAR to 2QBF [9].

RAReQS: Subsequently, Janota et al. extended the CE-
GAR approach to full QBF [8]. They implemented the ap-
proach in the tool RAReQS (and to a certain extend also
in GhostQ), which lead to significant performance gains for

several problem families. To evaluate the truth of a QBF
ϕ = Q1X1 . . . QnXn.ϕ with n quantifier alternations, the
algorithm picks an assignment x1 to X1 and recursively
determines the truth of ϕ′(x1) = Q2X2 . . . QnXn.ϕ(x1).
If that call returns a counter-example, that is an assign-
ment x2 to X2, then ϕ is refined by the formula ϕ′′ =
Q1X1.Q3X3 . . . QnXn.ϕ(x2), which has two quantifier al-
ternations fewer than ϕ. Before checking ϕ′(x′1) for other
assignments x′1, it is first checked whether the assignment is
already excluded by x′1. (That is, we first check ϕ′′(x′1).) In
this way, the assignment x1 cannot occur a second time as
a counter-example. A potential problem with this approach
is that the formula ϕ′′ is itself a QBF, and may itself be
refined with other QBFs in later iterations. We may therefore
have to check each new assignment x′1 for a tree of counter-
examples that each are QBFs, and the size of the tree of
counter-examples may grow exponentially with the quantifier
alternation depth. Our experiments suggest that this problem
actually occurs in practice: while being very effective for
low quantifier alternation depths, RAReQS solves only few
instances with a higher number quantifier alternations.

In this work we propose an alternative CEGAR algorithm
in which we refine only by single clauses. This notion of
refinement coincides with the RAReQS refinement step in the
case of 2QBF, but for two or more quantifier alternations it
is weaker: Assignments that lead to a counter-example may
reappear later. This explains why RAReQS outperforms CAQE
on benchmarks with a low number of quantifier alternations.
The weaker notion of refinement in CAQE, however, avoids
the need for the tree of counter-examples and therefore scales
well to instances with many quantifier alternations.

Clause selection: Very recently and independently from
this work, Janota and Marques-Silva proposed clause selection
and implemented the approach in the tool Qesto [28]. Similar
to clausal abstractions, they reason about the satisfaction of
sets of clauses and the algorithms have a similar structure.
The encodings of the individual quantifier blocks, however,
reveal interesting differences in the execution of this idea:
• Qesto uses equality constraints for the variables connect-

ing the quantification levels while CAQE uses implica-
tions, requiring fewer clauses in the encoding.

• For universally quantified levels, CAQE needs to add only
one variable per clause, while Qesto needs two.

• Qesto considers the clauses for existential and universal

7

100 101 102 103 104 105
100

101

102

103

104

105

DepQBF+QBFCert+ABC certificate size

C
A

Q
E

+A
B

C
ce

rt
ifi

ca
te

si
ze

Fig. 3. The size of certificates computed by CAQE and DepQBF.

levels in a negated form, while CAQE does not negate
existential levels.

It will be interesting to see whether CAQE and Qesto share the
same runtime characteristics or whether these are particular
to our encoding, and whether Qesto can be extended to
certification as well.

Certifying QBF: Certifying QBF solvers enable a rich set
of applications like encodings of bounded model checking [3]–
[6] and synthesis that use the certificates as implementa-
tions [12]. Previous certifying QBF solvers were based on
a DPLL-like search [14], [15] or expansion [29]. Our work
shows how to enable certification for the CEGAR approach.

There has been work on certifying QBF preprocessing
techniques based on QRAT proofs in Bloqqer [30], [31]. It may
be possible to integrate CAQE in combination with Bloqqer
in a similar setting as in [32].

VIII. CONCLUSIONS AND FUTURE WORK

We presented clausal abstractions, a decomposition of QBFs
into sequences of propositional formulas, and a new CEGAR
algorithm for QBF. The overall performance is competitive and
our experiments suggest that the new algorithm is effective
for instances with a high number of quantifier alternations.
We showed how to certify the results of the algorithm and
the evaluation shows that significantly more instances can be
certified with our solver compared to the state-of-the-art.

In the future, we plan to consider joining the two notions of
refinement used in RAReQS and CAQE and to integrate our
algorithm in a certification framework like [32] to enable its
use together with certified preprocessing.

REFERENCES

[1] M. Benedetti and H. Mangassarian, “QBF-based formal verification:
Experience and perspectives,” JSAT, vol. 5, no. 1-4, pp. 133–191, 2008.

[2] W. Zhang, “QBF encoding of temporal properties and QBF-based
verification.” in IJCAR, 2014, pp. 224–239.

[3] T. Jussila and A. Biere, “Compressing BMC encodings with QBF.”
Electr. Notes Theor. Comput. Sci., pp. 45–56, 2007.

[4] B. Finkbeiner and L. Tentrup, “Fast DQBF refutation,” in Proceedings
of SAT, 2014, pp. 243–251.

[5] N. Dershowitz, Z. Hanna, and J. Katz, “Bounded model checking with
QBF,” in Proceedings of SAT, 2005, pp. 408–414.

[6] C. Miller, C. Scholl, and B. Becker, “Proving QBF-hardness in bounded
model checking for incomplete designs,” in Proceedings of MTV, 2013,
pp. 23–28.

[7] M. N. Rabe, C. M. Wintersteiger, H. Kugler, B. Yordanov, and
Y. Hamadi, “Symbolic approximation of the bounded reachability prob-
ability in large Markov chains,” in Proceedings of QEST. Springer,
2014, pp. 388–403.

[8] M. Janota, W. Klieber, J. Marques-Silva, and E. M. Clarke, “Solving
QBF with counterexample guided refinement.” in Proceedings of SAT,
2012, pp. 114–128.

[9] M. Janota and J. P. M. Silva, “Abstraction-based algorithm for 2QBF,”
in Proceedings of SAT, 2011, pp. 230–244.

[10] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Proceedings of TACAS, 1999, pp. 193–207.

[11] A. Solar-Lezama, R. M. Rabbah, R. Bodı́k, and K. Ebcioglu, “Program-
ming by sketching for bit-streaming programs,” in Proceedings of PLDI,
2005, pp. 281–294.

[12] R. Bloem, U. Egly, P. Klampfl, R. Könighofer, and F. Lonsing, “SAT-
based methods for circuit synthesis,” in Proceedings of FMCAD, 2014,
pp. 31–34.

[13] B. Finkbeiner and L. Tentrup, “Detecting unrealizable specifications of
distributed systems,” in Proceedings of TACAS, 2014, pp. 78–92.

[14] F. Lonsing and A. Biere, “DepQBF: A dependency-aware QBF solver,”
JSAT, vol. 7, no. 2-3, pp. 71–76, 2010.

[15] A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, and A. Biere, “Resolution-
based certificate extraction for QBF - (tool presentation),” in Proceedings
of SAT, 2012, pp. 430–435.

[16] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” Studies in constructive mathematics and mathematical logic, vol. 2,
no. 115-125, pp. 10–13, 1968.

[17] A. Biere, “PicoSAT essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008.
[18] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Proceedings

of SAT, 2003, pp. 502–518.
[19] “QBF Gallery - Joint Evaluation of Quantified Boolean Formulas,” 2014,

http://qbf.satisfiability.org/gallery/.
[20] A. Biere, F. Lonsing, and M. Seidl, “Blocked clause elimination for

QBF,” in Proceedings of CADE-23, 2011, pp. 101–115.
[21] R. K. Brayton and A. Mishchenko, “ABC: An academic industrial-

strength verification tool,” in Proceedings of CAV, 2010, pp. 24–40.
[22] A. Biere, “Resolve and expand,” in Proceedings of SAT, 2004.
[23] F. Lonsing and A. Biere, “Nenofex: Expanding NNF for QBF solving,”

in Proceedings of SAT, 2008, pp. 196–210.
[24] G. Audemard and L. Sais, “A symbolic search based approach for

quantified boolean formulas,” in Proceedings of SAT, 2005, pp. 16–30.
[25] O. Olivo and E. A. Emerson, “A more efficient BDD-based QBF solver,”

in Proceedings of CP, 2011, pp. 675–690.
[26] E. Giunchiglia, M. Narizzano, and A. Tacchella, “QuBE: A system for

deciding quantified boolean formulas satisfiability.” in Proceedings of
IJCAR, 2001, pp. 364–369.

[27] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement for symbolic model
checking,” J. ACM, vol. 50, no. 5, pp. 752–794, 2003.

[28] M. Janota and J. Marques-Silva, “Solving QBF by clause selection,” in
Proceedings of IJCAI. AAAI Press, 2015, pp. 325–331.

[29] A. Goultiaeva, A. Van Gelder, and F. Bacchus, “A uniform approach for
generating proofs and strategies for both true and false QBF formulas,”
in Proceedings of IJCAI, 2011, pp. 546–553.

[30] M. Heule, M. Seidl, and A. Biere, “A unified proof system for QBF pre-
processing,” in Proceedings of IJCAR, ser. LNCS, vol. 8562. Springer,
2014, pp. 91–106.

[31] ——, “Efficient extraction of skolem functions from QRAT proofs,” in
Proc. of FMCAD, 2014, pp. 107–114.

[32] M. Janota, R. Grigore, and J. Marques-Silva, “On QBF proofs and
preprocessing,” in Proceedings of LPAR, 2013, pp. 473–489.

8

http://qbf.satisfiability.org/gallery/

	Introduction
	Quantified Boolean Formulas
	Clausal Abstractions
	CEGAR with Clausal Abstractions
	Reusing Clausal Abstractions and their Refinements
	Algorithm with Optimizations
	Stronger Refinements
	Preprocessing Techniques

	Certification
	Experimental Evaluation
	Solved Instances per Family
	Certificates

	Related Work
	Conclusions and Future work
	References

