CAR: Clock with Adaptive Replacement

Sorav Bansal and Dharmendra S. Modh&
fStanford University!IBM Almaden Research Center
Emails: sbansal@stanford.edu, dmodha@us.ibm.com

Abstract— CLOCK is a classical cache replacement policy page is present in the cache, then it can be served
dating back to 1968 that was proposed as a low-complexityquickly resulting in a “cache hit’. On the other hand,
approximation toLRU. On every cache hit, the polidyRU it 5 yaquested page is not present in the cache, then it

needs to move the accessed item to the most recently used

position, at which point, to ensure consistency and correctnesg,nUSt be fetched from the auxiliary memory resulting

it serializes cache hits behind a single global lo€k.OCK in a “cache miss”. Usually, latency on a cache miss
eliminates thidock contentionand, hence, can support high is significantly higher than that on a cache hit. Hence,

concurrency and high throughput environments such as vircaching algorithms focus on improving the hit ratio.
tual memory (for example, Multics, UNIX, BSD, AIX) and Historically, the assumption of “demand paging” has

databases (for example, DB2). Unfortunaté&},OCK is still .
plagued by disadvantages &fRU such as disregard for been used to study cache algorithms. Under demand

“frequency”, susceptibility to scans, and low performance. Paging, a page is brought in from the auxiliary memory
As our main contribution, we propose a simple and eleganto the cache only on a cache miss. In other words, de-
new algorithm, namelyCLOCK with Adaptive Replacement = mand paging precludes speculatively pre-fetching pages.
gggr'?)réstrs";‘;n?_e‘s(ise};eﬁz' é‘g}’?&'ﬁ}?ﬁgsaﬂ?ﬁ?i&égvgl;San 4 Under demand paging, the only question of interest is:
dynamically céptures the “recency” and “frequency” l‘eatureswhen the cache _'S full, and a new page must be inserted
of a workload; (iii) it uses essentially the same primitives IN the cache, which page should be replaced? The best,
as CLOCK, and, hence, is low-complexity and amenable to offline cache replacement policy is BeladyW4iN that
a high-concurrency implementation; and (iv) it outperforms replaces the page that is used farthest in the future [1].
CLOCK across a wide-range of cache sizes and workloadsgyf course, in practice, we are only interested in online

The algorithmCAR is inspired by the Adaptive Replacement - .
Cache ARC) algorithm, and inherits virtually all advantages cache replacement policies that do not demand any prior

of ARC including its high performance, but does not serialize knowledge of the workload.
cache hits behind a single global lock. As our second contri- . .
bution, we introduce another novel algorithm, namely, CAR B- LRU: Advantages and Disadvantages

with Temporal filtering CART), that has all the advantages of A popular online policy imitatesMIN by replacing

CAR, but, in addition, uses a certain temporal filter to distill {ha |east recently used.RU) page. So farLRU and

Eglgi;;s with long-term utility from those with only short-term its variants are amongst the most popular replacement

policies [2], [3], [4]. The advantages @RU are that it

is extremely simple to implement, has constant time and

) ) space overhead, and captures “recency” or “clustered lo-

A. Caching and Demand Paging cality of reference” that is common to many workloads.
Modern computational infrastructure is rich in exam- In fact, under a certain Stack Depth Distribution (SDD)

ples of memory hierarchies where a fast, but expensiv@ssumption for workloadd.RU is the optimal cache

main (“cache”) memory is placed in front of a cheap, replacement policy [5].

but slow auxiliary memory. Caching algorithms manage The algorithmLRU has many disadvantages:

the contents of the cache so as to improve the overall D1 On every hit to a cache page it must be moved

performance. In particular, cache algorithms are of to the most recently usedMRU) position.

. INTRODUCTION

tremendous interest in databases (for example, DB2),
virtual memory management in operating systems (for
example, LINUX), storage systems (for example, IBM
ESS, EMC Symmetrix, Hitachi Lightning), etc., where
cache is RAM and the auxiliary memory is a disk
subsystem.

In this paper, we study the generic cache replacement
problem and will not concentrate on any specific appli-
cation. For concreteness, we assume that both the cache
and the auxiliary memory are managed in discrete,
uniformly-sized units called “pages”. If a requested

In an asynchronous computing environment
where multiple threads may be trying to move
pages to the MRU position, the MRU position
is protected by a lock to ensure consistency
and correctness. This lock typically leads to
a great amount of contention, since all cache
hits are serialized behind this lock. Such con-
tention is often unacceptable in high perfor-
mance and high throughput environments such
as virtual memory, databases, file systems, and
storage controllers.



D2 In a virtual memory setting, the overhead of D. Adaptive Replacement Cache
moving a page to th&®RU position—on every
page hit—is unacceptable [3]. A recent breakthrough generalization dfRU,

D3  While LRU captures the “recency” features of namely, Adaptive Replacement CacteR(C), removes
a workload, it does not capture and exploit the disadvantages D3 and D4 bRU [10], [11]. The algo-
“frequency” features of a workload [5, p. 282]. rithm ARC is scan-resistant, exploits both the recency
More generally, if some pages are often re-and the frequency features of the workload in a self-
requested, but the temporal distance betweertuning fashion, has low space and time complexity, and
consecutive requests is larger than the cach@utperforms.RU across a wide range of workloads and
size, thenLRU cannot take advantage of such cache sizes. Furthermo®RC which is self-tuning has
pages with “long-term utility”. performance comparable to a number of recent, state-

D4 LRU can be easily polluted by a scan, that of-the-art policies even when these policies are allowed
is, by a sequence of one-time use only pagethe best, offline values for their tunable parameters [10,
requests leading to lower performance. Table VI].

C. CLOCK

. . E. Our Contribution
Frank Corbat (who later went on to win the ACM

Turing Award) introducedCLOCK [6] as a one-bit T symmarize CLOCK removes disadvantages D1
approximation ta.RU: and D2 ofLRU, while ARC removes disadvantages D3
“In the Multics system a paging algorithm has and D4 ofLRU. In this paper, as our main contribution,

been developed that has the implementation we present a simple new algorithm, namely, Clock with
ease and low overhead of the FIFO strategy Adaptive ReplacementCAR), that removes_allfour
and is an approximation to the LRU strategy. disadvantages D1, D2, D3, and D4 IoRU. The basic

In fact, the algorithm can be viewed as a idea is to maintain two clocks, say; and1», where
particular member of a class of algorithms T, contains pages with “recency” or “short-term utility”
which embody for each page a shift register and Ty contains pages with “frequency” or “long-
memory length ofk. At one limit of & = 0, term utility”. New pages are first inserted iy and
the algorithm becomes FIFO; at the other limit graduate tdl; upon passing a certain test of long-term
ask — oo, the algorithm is LRU. The current utility. By using a certain precise history mechanism
Multics system is using the value &f = 1, that remembers recently evicted pages fra@m and
T,, we adaptively determine the sizes of these lists
CLOCK removes disadvantages D1 and D2 L&tU. in a data-driven fashion. Using extensive trace-driven

» Simulations, we demonstrate tHaAR has performance

The algorithmCLOCK maintains a “page reference bit ;
with every page. When a page is first brought into thecomparable tAARC, and substantially outperforms both
U and CLOCK. Furthermore, likeARC, the algo-

cache, its page reference bit is set to zero. The pages : . ) o
in the cache are organized as a circular buffer knowrthM CAR is self-tuning and requires no user-specified

as aclock On a hit to a page, its page reference bit™MagIic parameters.

is set to one. Rep|acement is done by moving|@k The algorlthmsARC and CAR consider two consec-
hand through the circular buffer. The clock hand can utive hits to a page as a test of its long-term utility. At
only replace a page with page reference bit set to zerdipper levels of memory hierarchy, for example, virtual
However, while the clock hand is traversing to find the memory, databases, and file systems, we often observe
victim page, if it encounters a page with page referencdWo or more successive references to the same page
bit of one, then it resets the bit to zero. Since, on a pagdairly quickly. Such quick successive hits are not a
hit, there is no need to move the page to MU posi- ~ guarantee of long-term utility of a pages. Inspired by
tion, no serialization of hits occurs. Moreover, in virtual the “locality filtering” principle in [12], we introduce
memory applications, the page reference bit can bé&nother novel algorithm, namely, CAR with Temporal
turned on by the hardware. Furthermore, performancdiltering (CART), that has all the advantages GAR,

of CLOCK is usually quite comparable tbRU. For  but, imposes a more stringent test to demarcate between
this reason, variants @LOCK have been widely used Pages with long-term utility from those with only short-

in Multics [6], DB2 [7], BSD [8], AIX, and VAX/VMS  term utility.

[9]. The importance ofcLOCK is further underscored We expect thaCAR is more suitable for disk, RAID,

by the fact that major textbooks on operating systemsstorage controllers, where@ART may be more suited
teach it [3], [4]. to virtual memory, databases, and file systems.



F. Outline of the Paper however, due to much lower performance thaRU,

In Section II, we briefly review relevant prior art, In FIFO in its original form is seldom used today.

Sections Il and IV, we present the new algorith@&R Second chanceSC) [3] is a simple, but extremely
and CART, respectively. In Section V, we present re- effective enhancement to FIFO, where a page reference
sults of trace driven simulations. Finally, in Section Vi, Pit IS maintained with each page in the cache while

we present some discussions and conclusions. ma_intair_ling the pages ir_‘ a FIFO queue. Wher_1 a page
arrives in the cache, it is appended to the tail of the

1. PRIOR WORK qgueue and its reference bit set to zero. Upon a page
hit, the page reference bit is set to one. Whenever a
page must be replaced, the policy examines the page at
the head of the FIFO queue and replaces it if its page
A LRU and LFU: Related Work reference bit. is zero otherwise thel page is moved to
the tail and its page reference bit is reset to zero. In

The Independent Reference ModéRI) captures the latter case, the replacement policy reexamines the
the notion of frequencies of page references. Under th@ew page at the head of the queue, until a replacement
IRM, the requests at different times are stochasticallycandidate with page reference bit of zero is found.
independentLFU replaces the least frequently used A key deficiency of SC is that it keeps moving
page and is optimal under tH&M [5], [15] but has pages from the head of the queue to the tail. This
several drawbacks: (i) Its running time per request ismovement makes it somewhat inefficie@LOCK is
logarithmic in the cache size. (i) It is oblivious to functionally identical toSC except that by using a
recent history. (iii) It does not adapt well to variable circular queue instead dfIFO it eliminates the need
access patterns; it accumulates stale pages with pag§ move a page from the head to the tail [3], [4], [6].
high frequency counts, which may no longer be useful.Besides its simplicity, the performance 6LOCK is

The last fifteen years have seen development of guite comparable thRU [22], [23], [24].
number of novel caching algorithms that have attempted While CLOCK respects ‘“recency”, it does not
to combine “recency” (RU) and “frequency” LFU)  take “frequency” into account. A generalized version,
with the intent of removing one or more disadvantagesnamely, GCLOCK, associates a counter with each page
of LRU. Chronologically,FBR [12], LRU-2 [16], 2Q that is initialized to a certain value. On a page hit, the
[17], LRFU [18], [19], MQ [20], and LIRS [21] have  counter is incremented. On a page miss, the rotating
been proposed. For a detailed overview of these algoelock hand sweeps through the clock decrementing
rithms, see [19], [20], [10]. It turns out, however, that counters until a page with a count of zero is found
each of these algorithms leaves something to be desirefR4]. A analytical and empirical study o6CLOCK
see [10]. The cache replacement poldC [10] seems  [25] showed that “its performance can be either better
to eliminate essentially all drawbacks of the aboveor worse thanLRU”. A fundamental disadvantage of
mentioned policies, is self-tuning, low overhead, scan-GCLOCK is that it requires counter increment on every
resistant, and has performance similar to or better thapage hit which makes it infeasible for virtual memory.
LRU, LFU, FBR, LRU-2, 2Q, MQ, LRFU, andLIRS— There are several variants GLOCK, for example,
even when some of these policies are allowed to seleahe two-handed clock [9], [26] is used by SUN'’s Solaris.
the best, offline values for their tunable parameters-Also, [6] considered multi-bit variants cELOCK as
without any need for pre-tuning or user-specified magicfiner approximations td.RU.
parameters.

Finally, all of the above cited policies, including I CAR
ARC, use LRU as the building block, and, hence, A. ARC: A Brief Review

continue to suffer from drawbacks D1 and D2LldRU. Suppose that the cache can holgages. The policy
ARC maintains a cache directory that contaifs
B. CLOCK: Related Work pagese pages in the cache andhistory pages. The
As already mentioned, the algorith@LOCK was  cache directory oARC, which was referred to aSBL
developed specifically for low-overhead, low-lock- in[10], maintains two lists; andL,. The first list con-
contention environment. tains pages that have been seen only once recently, while
Perhaps the oldest algorithm along these lines washe latter contains pages that have been seen at least
First-In First-Out FIFO) [3] that simply maintains a twice recently. The listL; is thought of as “recency”
list of all pages in the cache such thlatad of the and L, as “frequency”. A more precise interpretation
list is the oldest arrival andhil of the list is the most would have been to think of; as “short-term utility”
recent arrival FIFO was used in DEC’s VAX/VMS [9]; and L, as “long-term utility”. The replacement policy

For a detail bibliography of caching and paging work
prior to 1990, see [13], [14].



for managingDBL is: Replace thd.RU page in L1, Intuitively, 79 U B; contains pages that have been
if |[L1| = ¢; otherwise, replace theRU page in L,. seen exactly once recently wherégsJT>U B, contains
The policy ARC builds onDBL by carefully selecting pages that have been seen at least twice recently. We
c pages from the2c pages inDBL. The basic idea roughly think of 77 U B; as “recency” or “short-term

is to divide L; into top 7Ty and bottomB; and to utility” and 7} UT, U B, as “frequency” or “long-term
divide L. into top 7> and bottomB,. The pages in utility”.

T, andT; are in the cache and in the cache directory, In the algorithm in Figure 2, for a more transparent
while the history pages i3; and B, are in the cache exposition, we will think of the list§}; andT; as second
directory but not in the cache. The pages evicted fronchance lists. HowevelSC and CLOCK are the same
T, (resp.T3) are put on the history lisB; (resp.Bs). algorithm that have slightly different implementations.
The algorithm sets a target sizefor the list73. The  So, in an actual implementation, the reader may wish
replacement policy is simple: Replace thRU page in  to useCLOCK so as to reduce the overhead somewhat.
Ty, if |Th| > p; otherwise, replace theRU page in  Figure 1 depictsl; and 7> as CLOCKs. The policy
T,. The adaptation comes from the fact that the targeARC employs a strict RU ordering on the list§; and
sizep is continuously varied in response to an observedl, whereasCAR uses a one-bit approximation tdRU,
workload. The adaptation rule is also simple: Incrgase that is,SC. The listsB; and B, are simpleLRU lists.

if a hit in the history3, is observed; similarly, decrease  We impose the following invariants on these lists:

p, if a_hit in the_hi_storyBg is observed. This completes | 0< || + |1y < e

our brief description ofARC. 12 0<|Ty| +|Bi| < e

B. CAR 13 0 < |Ty| + |Ba| < 2c.
; o i 14 0<|Ti|+ |Ta| + |Bi| + |B2| < 2c.
Our policy CAR is inspired by ARC. Hence, for 15 If |T0| + |To| < ¢, then B, U Bs is empty.
the sake of consistency, we have chosen to use the |g If 7] + |By| + |To| + |Bs| > c, then |Ty| +

same notation as that in [10] so as to facilitate an easy T3] = c.
comparison of similarities and differences between the |7 Due to demand paging, once the cache is full,
two policies. it remains full from then on.

For a visual description o€AR, see Figure 1, and
for a complete algorithmic specification, see Figure 2.
We now explain the intuition behind the algorithm.

For concreteness, letdenote the cache size in pages.
The policy CAR maintains four doubly linked listsfy,

Ty, B1, and By. The listsT; andT; contain the pages For this purpose, we will maintain &rget sizep for

n cache_, while the lists3, and B.2 maintain history the list 77. By implication, the target size for the list
information about the recently evicted pages. For eacqﬂ2 will be ¢ —p. The extra history leads to a negligible

page in the cache, _that is, M or Ty, we vyﬂl maintain space overhead.
a page reference bit that can be set to either one or zero. . . .
0 . . The listT; may contain pages that are marked either
Let 77 denote the pages ify with a page reference bit . .
1 i ) one or zero. Suppose we start scanning thellistrom
of zero and letl} denote the pages i, with a page ; .
. .0 1 . the head towards the tail, until a page marked as zero
reference bit of one. The list§ and7} are introduced . ) )
. ! . is encountered; lefl] denote all the pages seen by
for expository reasons only—they will not be required : i .
A ; A . such a scan, until a page with a page reference bit of
explicitly in our algorithm. Not maintaining either of : .
. Y o ero is encountered. The [i§f] does not need to be
these lists or their sizes was a key insight that allowe o ! . .
constructed, it is defined with the sole goal of stating

us to simplify ARC to CAR. .
The precise definition of the four lists is as follows our cache replacement policy.
" The cache replacement poli§AR is simple:

Each page inlY and each history page if; has ) _
either been requested exactly once since its most recent f 71 \ 71 containsp or more pages, then

The idea of maintaining extra history pages is not
new, see, for example, [16], [17], [19], [20], [21], [10].
We will use the extra history information contained in
lists By and B> to guide a continual adaptive process
that keeps readjusting the sizes of the ligtsand 75.

removal fromT; U T> U B; U B, or it was requested remove/ a page frondy, else remove a page
only once (since inception) and was never removed from from T U T5.
T, UTy U By U Bs. For a better approximation tARC, the cache replace-

Each page irl'l, each page iffz, and each history ment policy should have been: T containsp or more
page inB, has either been requested more than oncgages, then remove a page fram, else remove a page
since its most recent removal frof UT,UB; U By, or  from T} UT5,. However, this would require maintaining
was requested more than once and was never removebe list 70, which seems to entail a much higher
from 77 U1y U B U Bs. overhead on a hit. Hence, we eschew the precision, and



"Recency" “Frequency”

T

=

Ny

@“
Vanvan

Fig. 1. A visual description ofCAR. The CLOCKS 77 andT> contain those pages that are in the cache and theHistand
B contain history pages that were recently evicted from the cacheCLECK T3 captures “recency” while th€ELOCK T
captures “frequency.” The list®; and B, are simpleLRU lists. Pages evicted frori; are placed onB;, and those evicted
from T are placed onB,. The algorithm strives to keep; to roughly the same size 85, and B> to roughly the same
size asTi. The algorithm also limit§7:| + |B:| from exceeding the cache size. The sizes of @€CKs 77 and 1> are
adapted continuously in response to a varying workload. Wheneveiira Bit is observed, the target size of is incremented;
similarly, whenever a hit inB; is observed, the target size @i is decremented. The new pages are inserted in €ffheor
T> immediately behind the clock hands which are shown to rotate clockwisepdge reference bit of new pages is sedto
Upon a cache hit to any page Th U T5, the page reference bit associated with the page is simply det\Whenever thel;
clock hand encounters a page with a page reference hit tfe clock hand moves the page behind eclock hand and
resets the page reference bit@oWhenever thel clock hand encounters a page with a page reference lif tife page is
evicted and is placed at thdRU position in B;. Whenever thél; clock hand encounters a page with a page reference bit of
1, the page reference bit is reset@Whenever thel; clock hand encounters a page with a page reference lif tife page
is evicted and is placed at th@RU position in Bs.

go ahead with the above approximate policy wh&fe involved. Hence, cache hits are not serialized behind

is used as an approximation g . a lock and virtually no overhead is involved. The key
The cache history replacement policy is simple asinsight is that theMRU operation is delayed until a
well: replacement must be done (lines 29 and 36).
If |T1] + |B1| contains exactly: pages, then Line 3 checks for a cache miss, and if so, then line 4
remove a history page from, else remove checks if the cache is full, and if so, then line 5 carries
a history page fromBs. out the cache replacement by deleting a page from either

Once again, for a better approximation &RC, the L1 OF T>. We will dissect the cache replacement policy
replace()” in detail a little bit later.

cache history replacement policy should have been: If
|T?| + |B1| contains exactlyc pages, then remove a If there is a cache miss (line 3), then lines 6-10
history page fromB;, else remove a history page from examine whether a cache history needs to be replaced.
Bs,. However, this would require maintaining the size of In particular, (line 6) if the requested page is totally
T which would require additional processing on a hit, new, that is, not inB, or By, and|T:| + |Bi| = c then
defeating the very purpose of avoiding lock contention.(line 7) a page inB; is discarded, (line 8) else if the
We now examine the algorithm in Figure 2 in detail. Page is totally new and the cache history is completely
Line 1 checks whether there is a hit, and if so, thenfull, then (line 9) a page i3, is discarded.
line 2 simply sets the page reference bit to one. Observe Finally, if there is a cache miss (line 3), then lines
that there is ndVIRU operation akin toLRU or ARC ~ 12-20 carry out movements between the lists and also



carry out the adaptation of the target size fbr. In CLOCK, cache misses are still serialized behind a
particular, (line 12) if the requested page is totally new,global lock to ensure correctness and consistency of the
then (line 13) insert it at the tail df}, and set its page lists T3, T, By, and Bs. This miss serialization can be
reference bit to zero, (line 14) else if the requested pageomewhat mitigated by a free buffer pool.

is in By, then (line 15) we increase the target size for Our discussion ofCAR is now complete.

the listTy and (line 16) insert the requested page at the

tail of 75 and set its page reference bit to zero, and, IV. CART

finally, (line 17) if the requested page is iB,, then

. ' A limitation of ARC andCAR is that two consecutive
(line 18) we decrease the target size for the Tistand

. ; , hits are used as a test to promote a page from “recency”

(Ilng 19) insert the requgsted page at the taillpfand or “short-term utility” to “frequency” or “long-term

set Its page rgference ,b't o ZEr0. _utility”. At upper level of memory hierarchy, we often
Our adaptation rule is essentially the same as that ipserye two or more successive references to the same

ARC.. The rolg of the gdaptatlon is to |r_1vest in thg list page fairly quickly. Such quick successive hits are

that is most likely to give the highest hit per additional |, 5\\n as “correlated references” [12] and are typically

page invested. ~_ not a guarantee of long-term utility of a pages, and,
We now examine the cache replacement policy (lines,ence “such pages can cause cache pollution—thus re-

22-39) in detail. The cache replacement policy can onlyy,,cing performance. The motivation behiGART is to
replace a page with a page reference bit of zero. So, lin@eate 4 temporal filter that imposes a more stringent test
22 declares that no such suitable victim page to _replac?or promotion from “short-term utility” to “long-term

is yet found, and lines 23-39 keep looping until they it The basic idea is to maintain@mporal locality

find such a page. _ o windowsuch that pages that are re-requested within the
If the size of the list7} is at leastp and it is not  yindow are of short-term utility whereas pages that are
empty (line 24), then the policy examines the head ofie_requested outside the window are of long-term utility.

Ty as a replacement candidate. If the page reference bitthermore, the temporal locality window is itself an
of the page at the head is zero (line 25), then we hav%daptable parameter of the algorithm.
found the desired page (line 26), we now demote it from 14 pasic idea is to maintain four lists, nameiy,

the cache and move it to tHdRU position in B; (line Ty, By, andB, as before. The pages i andT; are in

27). Else (que 28) if the page reference bit of the Pag€he cache whereas the pagesAn and B, are only in

at the head is one, then we reset the page reference hifg cache history. For simplicity, we will assume thiat

to one and move the page to the tail’Bf (line 29). 5747, are implemented as Second Chance lists, but, in
On the other hand, (line 31) if the size of the list practice, they would be implemented @GsOCKs. The

Ty is less thanp, then the policy examines the page isis B, and B, are simpleLRU lists. While we have

at the head ofl; as a replacement candidate. If the ,5a the same notation for the four lists, they will now

page reference bit of the head page is zero (line 32)yq hrovided with a totally different meaning than that
then we have found the desired page (line 33), and, either ARC or CAR.

we now ngqte it frpm the cache'and move it to the Analogous to the invariants 11-17 that were imposed
MRU position in B; (line 34). Else (line 35) if the page
reference bit of the head page is one, then we reset t
page reference bit to zero and move the page to the tail _,
of T, (line 36). 12 0< B[ +]Baf <.

Observe that while ndVIRU operation is needed 13" 0<[Ta| +[By] < 2c. .
during a hit, if a page has been accessed and its page AS for CAR and CLOCK, for each page iy U 75
reference bit is set to one, then during replacement suce Will maintain a page reference bit. In addition, each
pages will be moved to the tail end @, (lines 29  page is marked with dilter bit to indicate whether it
and 36). In other wordsCAR approximatesARC by ~ haslong-term utility(say, “L") or only short-term utility
performing a delayed and approxima#RU operation ~ (say, “S”). No operation on this bit will be required

on CAR, we now impose the same invariants GART
cept that 12 and I3 are replaced, respectively, by:

during cache replacement. during a cache hit. We now detail manipulation and use
While we have alluded to a multi-threaded environ- Of the filter bit. Denote by: a requested page.
ment to motivateCAR, for simplicity and brevity, our 1) Every page irf, and B, must be marked as “L".

final algorithm is decidedly single-threaded. A true, 2) Every page inB; must be marked as “S”.

real-life implementation o€CAR will actually be based 3) A page inTy could be marked as “S” or “L".

on a non-demand-paging framework that uses a free 4) A head page iff; can only be replaced if its page

buffer pool of pre-determined size. reference bit is set t6 and its filter bit is set to
Observe that while cache hits are not serialized, like “S”.



INITIALIZATION : Setp = 0 and set the list§y, Bi, Ts, and By to empty.

CAR( z)
INPUT: The requested page

1. if (z isin Ty UT3) then /* cache hit */
2: Set the page reference bit forto one.
3: else /* cache miss */
4: if (|T1] + |T2| = ¢) then
/* cache full, replace a page from cache */
5: replace()
/* cache directory replacement */

6: if ((z is notin By U By) and (|T1| + |B1| = ¢)) then
7 Discard theLRU page inB;.
8: elseif ((|71| + |T2| + |B1| + |Bz| = 2¢) and (z is not in By U Bs)) then
9: Discard theLRU page inBs.
10: endif
11: endif

[* cache directory miss */
12: if (z is not in By U Bs) then
13: Insertx at the tail of 71. Set the page reference bit ofto 0.

[* cache directory hit */
14: elseif (z is in By) then
15: Adapt: Increase the target size for the fIstas: p = min {p + max{1,|B2|/|B1|}, ¢}
16: Move z at the tail ofT;. Set the page reference bit ofto 0.

/* cache directory hit */
17: else /* x must be inBy */
18: Adapt: Decrease the target size for the Tistas: p = max {p — max{1, |B1|/|B2|},0}
19: Move z at the tail ofT;. Set the page reference bit ofto 0.
20: endif
21: endif
replace()
22: found =0
23: repeat
24: if (|71] >= max(1,p)) then
25: if (the page reference bit of head pageTinis 0) then
26: found = 1;
27: Demote the head page Tn and make it theMRU page inBj.
28: else
20: Set the page reference bit of head pag@iirio 0, and make it the tail page .
30: endif
31: else
32: if (the page reference bhit of head pagéeTinis 0), then
33: found = 1;
34: Demote the head page T» and make it theMRU page inB-.
35: else
36: Set the page reference bit of head pag#irto 0, and make it the tail page .
37: endif
38: endif

39: until (found)

Fig. 2. Algorithm for Clock with Adaptive Replacement. This algorithm is self-corgdirNo tunable parameters are needed as
input to the algorithm. We start from an empty cache and an empty cacwaty. Thefirst key point of the above algorithm

is the simplicity of line 2, where cache hits are not serialized behind a lockiatully no overhead is involved. Theecond
key point is the continual adaptation of the target size of theTisin lines 16 and 19. Thénal key point is that the algorithm
requires no magic, tunable parameters as input.



5) If the head page 7} is of type “L", then it in the cache that have their filter bit set to “S” and “L”",
is moved to the tail position iff; and its page respectively. Clearly) < ng + ny < ¢, and, once the

reference bit is set to zero. cache is fulling + ny = ¢. The algorithm attempts to
6) If the head page iff; is of type “S” and has page keepng +|B:| andny, + |Bs| to roughlyc pages each.

reference bit set ta, then it is moved to the tall The complete policyCART is described in Figure 3.

position in7; and its page reference bit is set to We now examine the algorithm in detail.

zero. Line 1 checks for a hit, and if so, line 2 simply sets
7) A head page iff» can only be replaced if its page the page reference bit to one. This operation is exactly

reference bit is set to. similar to that of CLOCK and CAR and gets rid of the
8) If the head page ifl; has page reference bit set the need to perfornMRU processing on a hit.

to 1, then it is moved to the tail position iff} Line 3 checks for a cache miss, and if so, then line

and its page reference bit is set to zero. 4 checks if the cache is full, and if so, then line 5

9) If x ¢ T UB; UT>U By, then set its type to “S.”  carries out the cache replacement by deleting a page
10) If z € Ty and|T1| > |B,], change its type to “L.”  from eitherT} or T,. We dissect the cache replacement
11) If « € T, U By, then leave the type oft  policy “replace()” in detail later.

unchanged. If there is a cache miss (line 3), then lines 6-10
12) If x € By, thenxz must be of type “S”, change its examine whether a cache history needs to be replaced.
type to “L.” In particular, (line 6) if the requested page is totally

When a page is removed from the cache directory, thanew, that is, not inB; or By, |Bi| + |Bz| = ¢ + 1,
is, from the sefl; U B; UT, U By, its type is forgotten. and B; exceeds its target, then (line 7) a pageBn
In other words, a totally new page is put i and is discarded, (line 8) else if the page is totally new and
initially granted the status of “S”, and this status is notthe cache history is completely full, then (line 9) a page
upgraded upon successive hits to the pagdiinbut  in B is discarded.
only upgraded to “L” if the page is eventually demoted Finally, if there is a cache miss (line 3), then lines 12-
from the cache and a cache hit is observed to the pag2l carry out movements between the lists and also carry
while it is in the history listB;. This rule ensures that out the adaptation of the target size fr. In particular,
there are two references to the page that are temporallffine 12) if the requested page is totally new, then (line
separated by at least the length of the list Hence, 13) insert it at the tail ofl}, set its page reference
the length of the lisf; is the temporal locality window. bit to zero, set the filter bit to “S”, and increment the
The intent of the policy is to ensure that t/ig | pages counterng by 1. (Line 14) Else if the requested page
in the list Ty are the most recently uséd;| pages. Of is in By, then (line 15) we increase the target size for
course, this can only be done approximately given theghe list T} (increase the temporal window) and insert
limitation of CLOCK. Another source of approximation the requested page at the tail endZgf and (line 16)
arises from the fact that a page’n, upon a hit, cannot set its page reference bit to zero, and, more importantly,
immediately be moved td} . also changes its filter bit to “L". Finally, (line 17) if the
While, at first sight, the algorithm appears very requested page is iBs, then (line 18) we decrease the
technical, the key insight is very simple: The ligf  target size for the lisf}; and insert the requested page
contains|7;| pages either of type “S” or “L", and is at the tail end ofl, (line 19) set its page reference bit
an approximate representation of “recency”. The listto zero, and (line 20) update the targefor the list B;.
T, contains remaining pages of type “L” that may The essence of the adaptation rule is: On a hiBin
have “long-term utility”. In other words: attempts it favors increasing the size d@f;, and, on a hit inBs,
to capture useful pages which a simple recency basetll favors decreasing the size @i .
criterion may not capture. Now, we describe theréplace()” procedure. (Lines
We will adapt the temporal locality window, namely, 23-26) While the page reference bit of the head page in
the size of the lisfl}, in a workload-dependent, adap- 75 is 1, then move the page to the tail position’i,
tive, online fashion. Lep denote the target size for the and also update the target g to control the sizeBef
list T1. Whenp is set to the cache sizg the policy In other words, these lines capture the movement from
CART will coincide with the policyLRU. T, to T7. When this while loop terminates, eith@g is
The policy CART decides which list to delete from empty, or the page reference bit of the head padg:in
according to the rule in lines 36-40 of Figure 3. We is set to0, and, hence, can be removed from the cache
also maintain a second parametewhich is the target if desired.
size for the listBy. The replacement rule for the cache (Line 27-35) While the filter bit of the head page in
history is described in lines 6-10 of Figure 3. T is “L" or the page reference bit of the head page in
Let countersng andn;, denote the number of pages T; is 1, keep moving these pages. When this while loop



terminates, eithef’ will be empty, or the head page in ~ For all traces, we only considered the read requests.
T, has its filter bit set to “S” and page reference bit All hit ratios reported in this paper amold start We

set t00, and, hence, can be removed from the cachewill report hit ratios in percentage$x.

if desired. (Lines 28-30) If the page reference bit of

the head page if} is 1, then make it the tail page

in 7,. At the same time, ifB, is very small orT} is B Results

larger than its target, then relax the temporal filtering In Table 11, we compar&RU, CLOCK, ARC, CAR

constraint and set th(_e filter bit to *L". (L_ines _31_'33) I andCART for the traces SPC1 and Merge(S) for various
the“ Q,age reference bit is set @dbut thg fllter.t_)lt is set cache sizes. It can be clearly seen tBAIOCK has
o “L", then move the page to the tail position ify. performance very similar td.RU, and CAR/CART
Also, change the targe have performance very similar tARC. Furthermore,

(Lines 36'4(.)) These "”e$ represent our cache feCARICART substantially outperfornCLOCK.
placement policy. If7} contains at leasp pages and

is not empty, then remove the head pageZin else

he head SPC1
remove the head page Tb-_ C (pages)| LRU CLOCK | ARC CAR CART
Our discussion oCART is now complete. 65536 | 0.37 037 082 084 0.90
131072 | 0.78 0.77| 162 1.66 1.78
262144 | 1.63 1.63| 323  3.29 3.56
V. EXPERIMENTAL RESULTS 524288 | 3.66 3.64| 756  7.62 8.52
In this section, we will focus our experimental sim- 1048576 | 9.19 931] 2000 20.00 21.99
ulations to comparé.RU, CLOCK, ARC, CAR, and Merge(S)
CART. C (pages)| LRU CLOCK | ARC CAR CART
16384 | 0.20 020 1.04 1.03 1.10
A. Traces 32768 | 0.40 0.40| 208 207 2.20
_ _ . 65536 | 0.79 0.79| 4.07  4.05 4.27
Table | summarizes various traces that we used in 131072 | 1.59 158| 7.78 776 8.20
this paper. These traces are the same as those in [10,| 262144| 3.23 8.2r| 14.30 1425 1507
. ; 524288 | 8.06 8.66 | 24.34 2447  26.12
Sect|or_1 V.A], gnc_i, for brevity, we refer the re_ader there 1048576 | 27.62 2004| 40.44 41.00 41.83
for their description. These traces capture disk accesses| 1572864 | 50.86 52.24| 57.19 57.92  57.64
; 2097152 | 68.68 69.50| 71.41 7171 7177
by databases, web servers, NT workstations, and a 4194304 | 8730 876! 8726 8726 8726

synthetic benchmark for storage controllers. All traces : —
have been filtered by up-stream caches, and, hence, aféBLE Il A comparison of hit ratios oERU, CLOCK, ARC,
representative of workloads seen by storage controller$AR, and CART on the traces SPC1 and Merge(S). All hit

disks. or RAID controllers. ratios are reported in percentages. The page siZzekiBytes
for both traces. The largest cache simulated for SPC1 was
Trace Name| Number of Requests  Unique Pagés 4 GBytes and that for Merge(S) wa$ GBytes. It can be
ﬁ; igggggg 23%;32? seen that. RU and CLOCK have similar performance, while
P3 3912296 762543 ARC, CAR, andCART also have similar performance. It can
P4 19776090 5146832 be seen thaARC/CAR/CART outperformLRU/CLOCK.
P5 22937097 3403835
P6 12672123 773770
P7 14521148 1619941 . . .
P8 42243785 977545 In Figures 4 and 5, we graphically compare the hit-
P9 10533489 1369543 ratios of CAR to CLOCK for all of our traces. The
P10 33400528 5679543 performance o€AR was very close tARC andCART
P11 141528425 4579339 o
P12 13208930 3153314 and the performance dELOCK was very similar to
P13 15629738 2497353 LRU, and, hence, to avoid cluttet,RU, ARC, and
P14 114990968 1381492/ CART are not plotted. It can be clearly seen that across
ConCat 490139585 47003311 ) . .
Merge(P) 490139585 47003313 a wide variety of workloads and cache sizEAR
DS1 43704979 10516352 outperformsCLOCK—sometimes quite dramatically.
SPC1 41351279 6050363 ; -
s1 3995316 1309698 Finally, in Table Ill, we produce an at-a-glance-
S2 17253074 1693344 summary ofLRU, CLOCK, ARC, CAR, and CART
S3 16407702 1689882 for various traces and cache sizes. Once again, the same
Merge (S) 37656092 4692924

conclusions as above are seen to hdlRC, CAR, and
TABLE |. A summary of various traces used in this paper. CART outperformLRL.J a_ndCLOCK, ARC, CAR, and
Number of unique pages in a trace is termed its “footprint”. CART have a very S|m|.Iar. performance, a@l OCK
has performance very similar t{dRU.



INI

TIALIZATION : Setp =0, ¢ =0, ns = nr, = 0, and set the list§1, Bi, Tz, and B2 to empty.

CART( z)
INPUT: The requested page

1: if (z is in Ty UT3) then /* cache hit */
2: Set the page reference bit forto one.
3. else /* cache miss */
4: if (|T1|+ |T2| = ¢) then
/* cache full, replace a page from cache */
5: replace()
/* history replacement */
6: if (zx ¢ B1UBy) and(|Bi|+ |Bz| = c¢+ 1) and ((B1] > max{0, ¢}) or (B2 is empty)))then
7 Remove the bottom page B, from the history.
8: elseif (x ¢ B1 U By) and (|B1| + |Bz| = ¢+ 1)) then
9: Remove the bottom page B, from the history.
10: endif
11: endif
[* history miss */
12: if (= is not in By U Bz) then
13: Insertz at the tail of 77. Set the page reference bit ofto 0, set filter bit ofz to “S”, andns = ns + 1.
[* history hit */
14: elseif (z is in By) then
15: Adapt: Increase the target size for the listas: p = min {p + max{1,ns/|B1|},c}. Move z to the tail of ;.
16: Set the page reference bitofto 0. Setn;, = ny, + 1. Set type ofzr to “L".
[* history hit */
17: else /* x must be inBy */
18: Adapt: Decrease the target size for the Tistas: p = max {p — max{1,nz/|Bz|},0}. Move z to the tail of T7.
19: Set the page reference bitofto 0. Setn;, = np + 1.
20: if (|T2] + |Bz2| + |T1| — ns > ¢) then, Set targely = min(q + 1, 2¢ — |71 |), endif
21: endif
22: endif
replace()
23: while (the page reference bit of the head pagd&inis 1)) then
24: Move the head page if%, to tail position in7;. Set the page reference bit @
25: if (|T2|+ |Bz| + |T1| — ns > ¢) then, Set targely = min(q + 1, 2c — |T1|), endif
26: endwhile
[* The following while loop should stop, i} is empty */
27: while ((the filter bit of the head page 1h; is “L”) or (the page reference bit of the head pageTinis 1))
28: if ((the page reference bit of the head pagdinis 1)
29: Move the head page it to tail position in7}. Set the page reference bit @
30: if ((|71] > min(p + 1,|B1])) and (the filter bit of the moved page is “S'fhen,
set type ofz to “L”, ng =ns — 1, andny = ng + 1.
endif
31: else
32: Move the head page if; to tail position inT:. Set the page reference bit @
33: Setqg = max(q — 1,¢ — |T1]).
34: endif
35: endwhile
36: if (|71]| >= max(1,p)) then
37: Demote the head page Tn and make it theMRU page inB;. ns = ns — 1.
38: else
39: Demote the head page T» and make it theMRU page inBz. nr, = nr, — 1.
40: endif
Fig. 3. Algorithm for Clock with Adaptive Replacement and Temporal FilteringisTagorithm is self-contained. No tunable

parameters are needed as input to the algorithm. We start from an eagbty and an empty cache history.



T T T T
64l ]
6af 1
E) q
2k . ]
16| 1
g g g
g 2 161 CAR 1 °
3 g K
¢ & g ]
z T cLock z
8F ]
. 4F Bl 2 i
. . . . . . . . . . . .
1024 4096 16384 65536 262144 1024 409 16384 65536 262144 1024 4096 16384 65536 262144
Cache Size (Number of 512 byte pages) Cache Size (Number of 512 byte pages) Cache Size (Number of 512 byte pages)
P4 P5 P6
T T T T T T T T
64l
2
b 1
16
g g 2
< CcAR 5 CAR e
& & 16 1 &
S S S
cLock cLock
8 .
8F ]
4
. . . . . . . . . . . .
1024 409 16384 65536 262144 1024 409 4 65536 262144 1024 409 16384 65536 262144
Cache Size (Number of 512 byte pages) Cache Size (Number of 512 byte pages) Cache Size (Number of 512 byte pages)
P7 id
T T T T T T T T
64 ; ]
64
2 @ 1
16
g g g6 1
S CAR 5 S CAR
g ] g
=8 = =
I £ I
CLOCK . cLock
4
1
4 - 1
2
05
. . . . . . . . . . . .
1024 409 334 65536 262144 1024 409 16334 65536 262144 1024 409 16384 65536 262144
Cache Size (Number of 512 byte pages) Cache Size (Number of 512 byte pages) Cache Size (Number of 512 byte pages)
P10 P11 P12
T T T T T T T T
64l 1
£
£ 1
161 b 1
g g CAR g
o 2 . ) CAR
3 8r 3 5 160 1
¢ < cLock :
E £ 16 1 £
cLock
o
8 ]
8F . 1
oF
. . . . . . . . . . . .
1024 4096 16384 65536 262144 1024 409 16384 65536 262144 1024 409 16384 65536 262144

Cache Size (Number of 512 byte pages)

Fig. 4. A plot of hit ratios (in percentages)

Cache Size (Number of 512 byte pages)

achieved AR and CLOCK. Both thezx-

Cache Size (Number of 512 byte pages)

and y-axes use logarithmic scale.



P13 Pl ConCat(P)
T T T T T T T T T T T
64 d 6ar
2F B 1
£
£
CAR
g 16| g CAR ‘ g
o e o
g CAR H g 11
g Suf CLOCK 1 g
cLocK LRU
8
ok
ar ol |
s
. . . . . . . . . . .
1024 4096 16384 65536 262144 1024 409 16384 65536 262144 1024 4096 16384 65536 262144
Cache Size (Number of 512 byte pages) Cache Size (Number of 512 byte pages) Cache Size (Number of 512 byte pages)
Merge(P) DS1 SPCL
T T T T T T T T
2
2F q
32 B 16
CAR 161 | CAR
8
g g CAR g
-] 2 -]
g H g
o : = 4 cLock
H LRU Ea { £
16 q
2
cLock
4t ]
1
8 ]
ok ]
. . . . . . . . .
8192 32768 131072 524288 65536 262144 1048576 4194304 65536 262144 1048576 4194304
Cache Size (Number of 512 byte pages) Cache Size (Number of 512 byte pages) Cache Size (Number of 4096 byte pages)
s s2
T T T T T T
64f- 1
32p 1
2F q
CAR
161 1
" CAR _op 1
g g
o o
g K
¢ ¢
= g ] =
: = CLocK 1
cLoCK
ar 9 af 4
2t 1 2F q
. . . . . .
65536 131072 262144 523288 1048576 65536 131072 262144 524288 1048576
Cache Size (Number of 4096 byte pages) Cache Size (Number of 4096 byte pages)
s3 Merge(S)
T T T T T T
641 N b 1
af q
32p q
CAR or
CAR
161 ] sf
g g
-] 2
g g4 cLock
T gf cLock ] i
oF
at 1 1f )
o ]
. . . . . .
65536 131072 262144 524288 1048576 16384 65536 1048576 4194304

Fig. 5. A plot of hit ratios (in percentages) achieved ®AR and CLOCK. Both thex- andy-axes use logarithmic scale.

Cache Size (Number of 4096 byte pages)

%2144
Cache Size (Number of 4096 byte pages)




Workload | c (pages) space (MB] LRU CLOCK | ARC CAR CART
P1 32768 16| 16.55 17.34] 28.26 29.17 29.83
P2 32768 16| 18.47 17.91| 27.38 28.38 28.63
P3 32768 16 3.57 3.74| 17.12 17.21 17.54
P4 32768 16 5.24 525| 11.24 11.22 9.25
P5 32768 16 6.73 6.78 | 14.27 14.78 14.77|
P6 32768 16| 4.24 4.36| 23.84 24.34 24.53
P7 32768 16 3.45 3.62| 13.77 13.86 14.79
P8 32768 16| 17.18 17.99| 27.51 28.21 28.97
P9 32768 16 8.28 8.48 | 19.73 20.09 20.75
P10 32768 16| 2.48 3.02| 9.46 9.63 9.71
P11 32768 16| 20.92 21.51| 26.48 26.99 27.26
P12 32768 16 8.93 9.18| 1594 16.25 16.41
P13 32768 16| 7.83 8.26| 16.60 17.09 17.74
P14 32768 16| 15.73 15.98| 20.52 20.59 20.63
ConCat 32768 16| 14.38 14.79| 21.67 22.06 22.24
Merge(P) 262144 128| 38.05 38.60| 39.91 39.90 40.12
DS1 | 2097152 1024| 11.65 11.86| 22,52 25.31 21.12
SPC1| 1048576 4096| 9.19 9.31| 20.00 20.00 21.91
S1 524288 2048| 23.71 25.26| 33.43 33.42 33.62
S2 524288 2048| 25.91 27.84| 40.68 41.86 42.10
S3 524288 2048| 25.26 27.13| 40.44 41.67 41.87|
Merge(S) | 1048576 4096| 27.62 29.04| 40.44 41.01 41.83

TABLE Il . At-a-glance comparison of hit ratios @RU, CLOCK, ARC, CAR, andCART for various workloads. All hit ratios
are reported in percentages. It can be seen ltRdi and CLOCK have similar performance, whilaRC, CAR, and CART
also have similar performance. It can be seen tRC, CAR, and CART outperformLRU and CLOCK-sometimes quite
dramatically.

22168 ‘ CAR has a very low overhead on cache hits

CAR is self-tuning. The policy CAR requires no
tunable, magic parameters. It has one tunable parameter
p that balances between recency and frequency. The
policy adaptively tunes this parameter—in response to
an evolving workload—so as to increase the hit-ratio.
A closer examination of the parametgrshows that
16384 1 it can fluctuate from recencyp(= c¢) to frequency
(p = 0) and back- all within a single workload. In other
words, adaptation really matters! Also, it can be shown
that CAR performs as well as its offline counterpart
a2y 1 which is allowed to select the best, offline, fixed value
of p chosen specifically for a given workload and a
cache size. In other words, adaptation really works!

‘ / See Figure 6 for a graphical demonstration of hpw
2000000 SO0l T (o Number) 19776000 fluctuates. The self-tuning nature GAR makes it very
attractive for deployment in environments where ao

Fig. 6. A plot of the adaptation parametgr(the target size priori knowledge of the workloads is available.

for Iist_Tl)versus the virt_ual time for the algorith@AR. The_ CAR is scan-resistant A scan is any sequence of
trace is P4, the cache size38768 pages, and the page size . .
is 512 bytes. one-time use requests. Such requests will be put on top
of the list 77 and will eventually exit from the cache
without polluting the high-quality pages if,. More-
VI. CONCLUSIONS over, in presence of scans, there will be relatively fewer
hits in B; as compared td3,. Hence, our adaptation
In this paper, by combining ideas and best featuregule will tend to further increase the size 6% at the
from CLOCK and ARC we have introduced a policy expense ofl}, thus further decreasing the residency
CAR that removes disadvantages D1, D2, D3 and D4time of scan in everT;.
of LRU. CAR is high-performance CAR outperformsLRU
CAR removes the cache hit serialization problem andCLOCK on a wide variety of traces and cache sizes,
of LRU and ARC. and has performance very comparableARC.

24576 1

Target Size for List T,




CAR has low space overhead, typically, less that [9] H. Levy and P. H. Lipman, “Virtual memory management in

1%. the VAX/VMS operating system,JEEE Computer pp. 35-41,
. . . . March 1982.
CAR is simple to implement Please see Figure 2. [10] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low
CART has temporal filtering. The algorithmCART overhead replacement cache,’Rroc. 2nd USENIX Conference
has all the above advantagesCMR, but, in addition, on File and Storage Technologies (FAST 03), San Francisg, CA

. . : o pp. 115-130, 2003.
it employs a much stricter and more precise criterion[11] N. Megiddo and D. S. Modha, “One up on LRUbgin — The

to distinguish pages with short-term utility from those Magazine of the USENIX Associatjorol. 28, pp. 7-11, August

: ) - 2003.
with long-term utility. . [12] J. T. Robinson and M. V. Devarakonda, “Data cache man-
It should be clear from Section II-A that a large agement using frequency-based replacement Piac. ACM

number of attempts have been made to improve upon  SIGMETRICS Confpp. 134-142, 1990.

: [13] A. J. Smith, “Bibliography on paging and related togics,
LRU. In contrast, relatively few attempts have been Operating Systems Reviewol. 12, pp. 39-56, 1978.

made to improve upoCLOCK-the most recent being [14] A. J. Smith, “Second bibliography for cache memorieggm-
in 1978! We believe that this is due to severe constraints[ls] pAuH\elr AArﬁhit%mjreé\lewa/ol. 19,dn3). é, lglslal. N
: B .V o, P. J. Denning, an . D. man, “Principles o
|mposed byCITOCK O,n how much procesglng can be optimal page replacement). ACM vol. 18, no. 1, pp. 80-93,
done on a hit and its removal of the single global 1971.

lock. Genuine new insights were required to invent[16] E. J. O'Neil, P. E. O'Neil, and G. Weikum, “The LRU-K page

: : ; replacement algorithm for database disk buffering,” Rroc.
novel, effective algorithms that improve up@i.OCK. ACM SIGMOD Conf. pp. 297-306, 1993,

We hope thatCAR and CART represents two SUCh [17] T. Johnson and D. Shasha, “2Q: A low overhead high per-
fundamental insights and that they will be seriously formance buffer management replacement algorithmPiioc.

. : VLDB Conf, pp. 297-306, 1994.
considered by cache designers. [18] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and
C. S. Kim, “On the existence of a spectrum of policies that
ACKNOWLEDGMENT subsumes the least recently used (Iru) and least frequesgly u
(Ifu) policies,” in Proc. ACM SIGMETRICS Confp. 134-143,
We are grateful to Bruce Lindsay and Honesty Young 1999.

; ; [19] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho,
for suggesting that we look at lock contention, to Frank and C. S. Kim, “LRFU: A spectrum of policies that subsumes

Schmuck for pointing out bugs in our previous attempts,  the least recently used and least frequently used polidiEEE
and to Pawan Goyal for urging us to publish this work. Trans. Computersvol. 50, no. 12, pp. 1352-1360, 2001.

[T ; ia [20] Y. Zhou and J. F. Philbin, “The multi-queue replacemeigioal
We are grateful to our manager, Moidin Mohiuddin, rithm for second level buffer caches,” Proc. USENIX Annual

for his constant support and encouragement during this  tech. conf. (USENIX 2001), Boston, Mpp. 91-104, June
work. The second author is grateful to Nimrod Megiddo 2001.

for his collaboration orARC. We are grateful to Bruce [21] S:Jiang and X. Zhang, "LIRS: An efficient low inter-reéace
) recency set replacement policy to improve buffer cache perfor

McNutt and Renu Tewari for the SPC1 trace, to Windsor mance.” inProc. ACM SIGMETRICS Conf2002.

Hsu for traces P1 through P14, to Ruth Azevedo for[22] W. R. Carr and J. L. Hennessy, “WSClock — a simple and
effective algorithm for virtual memory management,” Broc.

the trace DS1, and to.Ken Bates ar_1d Bru_ce McNutt. for Eighth Symp. Operating System Principlps. 87-95, 1981.

traces S1-S3. We are indebted to Binny Gill for drawing 23] H.T. Chou and D. J. DeWitt, “An evaluation of buffer maeag

the beautiful and precise Figure 1. ment strategies for relational database systemsZrateedings
of the 11th International Conference on Very Large DataBase
Stockholm, Swedepp. 127-141, 1985.

REFERENCES [24] A.J. Smith, “Sequentiality and prefetching in databsygstems,”

. . . ACM Trans. Database Systemsl. 3, no. 3, pp. 223-247, 1978.
[1] L. A. Belady, “A study of replacement algorithms for virfua [25] V. F. Nicola, A. Dan, and D. M. Dias, “Analysis of the gene

storage computersiBM Sys. J.vol. 5, no. 2, pp. 78-101, 1966. alized clock buffer replacement scheme for database traosact
[2] M. J. Bach,The Design of the UNIX Operating Systefmgle- processing,” iNnACM SIGMETRICSpp. 35-46, 1992.

wood Cliffs, NJ: Prentice-Hall, 1986. _ [26] U. Vahalia,UNIX Internals: The New FrontiersPrentice Hall,
[3] A. S. Tanenbaum and A. S. WoodhulDperating Systems: 1996.

Design and ImplementatiorPrentice-Hall, 1997.

[4] A. Silberschatz and P. B. GalvirQperating System Concepts
Reading, MA: Addison-Wesley, 1995.

[5] J. E. G. Coffman and P. J. Dennin@perating Systems Theory
Englewood Cliffs, NJ: Prentice-Hall, 1973.

[6] F. J. Corbab, “A paging experiment with the multics system,”
in In Honor of P. M. Morse pp. 217-228, MIT Press, 1969.
Also as MIT Project MAC Report MAC-M-384, May 1968.

[7] L. M. Haas, W. Chang, G. M. Lohman, J. McPherson, P. F.
Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. J. Carey, and
E. Shekita, “Starburst mid-flight: As the dust cleartfEE
Trans. Knowledge and Data Engineeringl. 2, no. 1, pp. 143—
160, 1990.

[8] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter-
man, The Design and Implementation of the 4.4BSD Operating
System Addison-Wesley, 1996.



