

Car Detection using Unmanned Aerial
Vehicles: Comparison between Faster R-CNN
and YOLOv3

Conference Paper

CISTER-TR-190620

Bilel Benjdira

Taha Khursheed

Anis Koubaa

Adel Ammar

Kais Ouni

Conference Paper CISTER-TR-190620 Car Detection using Unmanned Aerial Vehicles: Comparison ...

© 2019 CISTER Research Center
www.cister-labs.pt

1

Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-
CNN and YOLOv3

Bilel Benjdira, Taha Khursheed, Anis Koubaa, Adel Ammar, Kais Ouni

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

Unmanned Aerial Vehicles are increasingly beingused in surveillance and traffic monitoring thanks to their
highmobility and ability to cover areas at different altitudes andlocations. One of the major challenges is to use
aerial imagesto accurately detect cars and count-them in real-time for trafficmonitoring purposes. Several deep
learning techniques wererecently proposed based on convolution neural network (CNN)for real-time classification
and recognition in computer vision.However, their performance depends on the scenarios wherethey are used. In
this paper, we investigate the performance oftwo state-of-the art CNN algorithms, namely Faster R-CNN
andYOLOv3, in the context of car detection from aerial images.We trained and tested these two models on a large
car datasettaken from UAVs. We demonstrated in this paper that YOLOv3outperforms Faster R-CNN in sensitivity
and processing time,although they are comparable in the precision metric.

Car Detection using Unmanned Aerial Vehicles: Comparison between

Faster R-CNN and YOLOv3

Bilel Benjdira1,5, Taha Khursheed 2, Anis Koubaa 3, Adel Ammar 4, Kais Ouni5

Abstract— Unmanned Aerial Vehicles are increasingly being
used in surveillance and traffic monitoring thanks to their high
mobility and ability to cover areas at different altitudes and
locations. One of the major challenges is to use aerial images
to accurately detect cars and count-them in real-time for traffic
monitoring purposes. Several deep learning techniques were
recently proposed based on convolution neural network (CNN)
for real-time classification and recognition in computer vision.
However, their performance depends on the scenarios where
they are used. In this paper, we investigate the performance of
two state-of-the art CNN algorithms, namely Faster R-CNN and
YOLOv3, in the context of car detection from aerial images.
We trained and tested these two models on a large car dataset
taken from UAVs. We demonstrated in this paper that YOLOv3
outperforms Faster R-CNN in sensitivity and processing time,
although they are comparable in the precision metric.

Index Terms— Car detection, convolutional neural networks,
You Only Look Once, Faster R-CNN, unmanned aerial vehicles,
object detection and recognition

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are being more and

more adopted in surveillance and monitoring tasks due

to their flexibility and great mobility. UAVs produce high

resolution images for wide fields of view in real time.

The adoption of UAVs have been inhibited first by the

low accuracy of object detection algorithms based on the

traditional approaches of machine learning. However, since

the emergence of deep learning algorithms and especially the

convolution neural networks, object detection and recogni-

tion have shown a notable increase of accuracy. This paves

the way towards a widespread adoption of UAVs for data

acquisition and analysis in many engineering fields. This is

why it is estimated that UAV global sales are expected to

surpass $12 billion by 2021 [1].

UAVs have enabled a large variety of applications, such as

tracking [2], [3], surveillance [4] and in particular mapping

and land surveying [5]. They are also used in surveillance ap-

plications given their ability to cover open areas at different

altitudes and provide high-resolution videos and images. In

this paper, we consider the scenario of vehicle surveillance

*This work is supported by Prince Sultan University
1Prince Sultan University, Saudi Arabia bbenjdira@psu.edu.sa
2Prince Sultan University, Saudi Arabia 215110375@psu.edu.sa
3Prince Sultan University, Saudi Arabia/Gaitech Robotics,

China/CISTER, INESC-TEC, ISEP, Polytechnic Institute of Porto,
Portugal akoubaa@psu.edu.sa

4Al-Imam Mohamed bin Saud University, Saudi Arabia
adel.ammar@ccis.imamu.edu.sa

5Research Laboratory Smart Electricity & ICT, SEICT, LR18ES44.
National Engineering School of Carthage, University of Carthage, Tunisia

and traffic monitoring, where a drone is used to detect and

count vehicles from aerial video streams.

With advances of deep learning, and in particular convo-

lution neural network (CNN), in computer vision applica-

tions, the accuracy of classification and object recognition

has reached an impressive improvement. The evolution of

Graphic Processing Units (GPUs) also significantly con-

tributed to the adoption of CNN in computer vision overcom-

ing the problems of real-time processing of computation in-

tensive tasks through parallelization. In addition, latest trends

in cloud robotics [6], [7], [8] have also enabled offloading

heavy computations, such as video stream analysis, to the

cloud. This allows to process video streams in real-time

using advanced deep learning algorithms in the context of

surveillance applications.

Since 2012, several CNN algorithms and architectures

were proposed such as YOLO and its variants [9], [10], [11],

R-CNN and its variants [12], [13], [14], [15]. R-CNN is a

region-based CNN, proposed by Girshick et al.[12], which

combines region-proposals algorithm with CNN. The idea

is to extract 2000 regions through a selective search, then

instead of working on the whole image, the classification will

occur on the selected regions. The same authors improved

their algorithm by overcoming the limitation of R-CNN that

consists in generating a convolutional feature map where

is the input is the image instead of the regions. Region of

proposals are then identified from the convolutional feature

map. Then, Shaoqing Ren et al. [14] proposed Faster R-CNN

by replacing the selective search of region, which is slow, by

an object detection algorithm.

On the other hand, in 2016, YOLO was proposed by

Joseph Redmon using a different approach named: You

Only Look Once[9]. Unlike region-based approaches, YOLO

passes the n by n image only once in a fully convolutional

neural network (FCNN), which makes it quite fast and real-

time. It splits the image into grids of dimension m by m,

and generates bounding boxes and their class probabilities.

YOLOv2[10] overcomes the relatively high localization error

and low recall (measure of how good is the localization

of all objects), as compared to region-based techniques, by

making batch-normalization and higher resolution classifier.

Recently, in 2018, YOLOv3[11] is released and is charac-

terized by a higher accuracy and replaces softmax function

with logistic regression and threshold.

In this paper, we consider the performance evaluation of

these two categories of CNN architectures in the context

of car detection from aerial images, in terms of accuracy

and processing time. We consider the latest approaches of

978-1-5386-9368-1/19/$31.00 ©2019 IEEE

Proceedings of the 1st International Conference on Unmanned Vehicle Systems (UVS), Muscat, Oman, 5-7 February, 2019

the two categories, namely Faster R-CNN for region-based

algorithms, and YOLOv3.
The rest of the paper is organized as follows: Section

2 discusses related works about car detection from UAV

imagery. Section 3 provides an overview of Faster R-CNN

model and the YOLOv3 model, and discusses a theoretical

comparison between them. Section 4 presents the perfor-

mance evaluation of the algorithms for car detection from

aerial images. Section 5 concludes the paper and discusses

the main results.

II. RELATED WORKS

In this section, we present an overview of the main works

related to car detection problem using Convolutional Neural

Networks.
Chen et al. [16] proposed a new model named hybrid deep

neural network (HDNN). This model is based on sliding

windows and deep CNN. The key idea of the model was

to replicate the convolutional layers at different scales to

make the model able to recognize cars at different scales.

They used a modified sliding-window search that is able to

center sliding-windows around cars. Although the originality

of the idea and the improved car detection rate compared to

other solutions at the time, their approach is highly time-

consuming as it needs about 7 seconds to process one image

even using GPU acceleration.
Ammour et al. [17] used two-stage method for the car

detection problem. The first phase is the candidate region

extraction stage and uses mean-shift algorithm to segment the

image. The second phase is the car detection stage that uses

the VGG16 [15] model to extract region feature, followed

by a Support Vector Machine (SVM) classifier that uses

this feature to classify it if it is car or non-car. Although

the contribution surpasses competitors in terms of accuracy

but it is still time-consuming and could not be used for

real time applications. Indeed, the algorithm takes around

12 minutes to process 3456*5184 image. This is due to

the different stages that the model uses (mean-shift [18]

segmentation, VGG16 [19] feature extraction, SVM classi-

fication). The main computation load is resulted from the

mean-shift segmentation, which is their core contribution for

object localization. It is comparable to the R-CNN approach

where the algorithm suggested for the object localization

is the region proposal algorithm and both suffer from the

computation load due to the object localization problem. We

will show in the next section how this problem is solved by

Faster R-CNN[14], [15] and YOLOv3[11].
In this paper, we consider Faster R-CNN and YOLOv3,

which are the state of the art algorithms of CNN for

object detection. We selected them due to their excellent

performance and our objective is to compare between them in

the context of the car detection problem. In this next section,

we will present a theoretical overview of the two approaches.

III. THEORETICAL OVERVIEW FASTER R-CNN AND

YOLOV3

Faster R-CNN and YOLOv3 are the state of the art

algorithms used for generic object detection and were suc-

Fig. 1. Faster R-CNN architecture

cessfully adapted to many recognition problems. This paper

aims to make a deeper look at the differences between these

two algorithms and precisely the use of these algorithms for

the car detection problem.

A. Faster R-CNN

The Faster R-CNN model is divided into two modules: the

region proposal network (RPN) and a Fast R-CNN detector.

RPN is a fully convolutional network used the generate re-

gion proposals with multiple scales and aspect ratios serving

as an input for the second module. Region proposals are

the bounding boxes inside the input image which possibly

contain the candidate objects. The RPN and the Fast R-CNN

detector share the same convolutional layers. Faster R-CNN,

by consequence, could be considered as a single and a unified

network for object detection. To generate high quality object

proposal, we can use a highly descriptive feature extractor

(VGG16 [19] for example) in the convolutional layers. The

Fast R-CNN detector uses as input many regions of interest

(ROIs). Then, the ROI pooling layer extracts for each ROI a

feature vector. This feature vector will constitute the input for

a classifier formed by a series of fully connected (FC) layers.

Finally, we get two outputs. The first output is a sequence of

probabilities estimated over the different objects considered.

In our case we will have the probabilities of the classes

car and background. The second output is the coordinates

of the bounding-box (bbox) values. Concerning the RPN, it

generates from the UAV image a list of bounding boxes. Each

one is associated with an objectness score. The objectness

measures membership of the selected portion of the image to

a set of object classes versus background[15]. In this paper,

the Inception ResNet v2 [20] model is used as the shared

convolutional network in Faster R-CNN.

Proceedings of the 1st International Conference on Unmanned Vehicle Systems (UVS), Muscat, Oman, 5-7 February, 2019

B. Architecture of YOLOv3

YOLOv3 [11] is an improvement made over its prede-

cessors: YOLO v1 [9] and YOLO v2 [10] (named also

YOLO9000).
1) Description of YOLO v1 algorithm: YOLO contains 24

convolutional layers followed by 2 fully connected layers.

Some convolutional layers use convolutions of size 11 to

reduce depth dimension of the feature maps. A faster version

of YOLO, named Fast YOLO, uses only 9 convolutional

layers but this impacts the accuracy. The general architecture

is displayed on Fig 2.
YOLO divides the input image into an S × S grid. A

grid cell can only be associated to one object and it can

only predict a fixed number B of boundary boxes, each

box is associated with a one box confidence score. So, the

information to be predicted for each bounding box contains

5 values(x, y, w, h, box confidence score). Concerning the

detected object, the grid cell will be associated to a sequence

of class probabilities to estimate the classification of the

object over the C classes of the model. The central concept

of YOLO v1 was to build a single CNN Network to predict

a tensor of dimensions:

S × S × (B ∗ 5 + C)

S × S: is the number of the grid cells of the system
B: is the number of the bounding boxes per grid cell.
C: is the number of the classes we train our network on.

For evaluating the YOLO on PASCAL VOC [21], they used

for values [9]: S=7 ,B=2, C=20 (as PASCAL VOC [21] has

20 classes of objects). We get finally a (7,7,30) tensor. In the

final prediction, we keep only high box confidence scores

and the object class with highest probability. Indeed, this the

major contribution made by YOLO over the existing CNN

architectures: to design a CNN network to predict S × S ×

(B ∗ 5 + C) tensor.
To choose the right bounding box for the grid cell, we

select the one with the highest IoU (intersection over union)

with the ground truth. To calculate loss, YOLO uses sum-

squared error between the predictions and the ground truth.

The total loss function is composed of three loss functions:

the confidence loss (the objectness of the box), the local-

ization loss (the sum-squared error between the predictions

and the ground truth) and the classification loss (the squared

error of the class conditional probabilities for each class).
To remove duplicate detections for the same object, YOLO

uses non-maximal suppression. If we have IoU ≥ 0.5
between any of the predictions in the image, non-maximal

suppression delete the prediction with the lowest confidence

score.
When introduced, YOLO outperforms other CNN archi-

tectures in term of speed, keeping or outperforming the

state of the art mAP (mean Average Precision). Although it

makes more localization errors but it is less likely to predict

false positives. It outperforms state of the art methods in

generalization.
The training of YOLO is composed of 2 phases. First, we

train a classifier network like VGG16 [19] . Like all of the

state of the art methods, the classifier network is pre-trained

on ImageNet using image input at 224× 224. Secondly, we

replace the fully connected layers with a convolution layer

and make a complete training from end to end for the object

detection.

2) Improvements made in YOLO v2: A new competitor

for YOLO is appeared, the SSD [22] (Single Shot MultiBox

Detector). This algorithm outperforms YOLO in accuracy

for real-time object detection. Thus, YOLO v2 is introduced

applying many improvements to increase accuracy and pro-

cessing time.

First improvement made is the Batch Normalization (BN)

[23] technique, introduced in 2015. It is used to normalize

the input layers by adjusting and scaling the activations. By

adding batch normalization on all convolutional layers in

YOLO, mAP is improved by 2%. Also, using BN, Dropout

[24] technique can be removed from the model without

having overfitting.

Second improvement made is the use of High Resolution

Classifier. The size 224× 224of the input image in the first

phase of YOLO training is replaced by the size 448× 448.

This increases the mAP by 4%.

Third improvement made is the use of convolutional with

anchors boxes. The fully connected layers responsible for

predicting the boundary box is removed and we move the

class prediction form the grid cell level to the boundary

box level. The adoption of the anchor boxes makes a slight

decrease in the mAP by 0.3 % but improves the recall from

81% to 88% increasing the chance to detect all the ground

truth objects.

The fourth improvement made is the use of dimension

clusters. We use the K-means clustering on the training set

bounding boxes to automatically find the best anchors boxes.

Instead of the Euclidean distance, the IoU scores are used

for the clustering.

The fifth improvement made is the direct location predic-

tion. The predictions are made on the offsets to the anchors.

We predict five parameters (tx, ty, tw, th, to) and then apply

a function to predict the bounding box. This makes the

network more stable and easier to learn. The fourth and the

fifth improvements increase the mAP by 5%.

The sixth improvement made is the fine-grained features.

To improve the capability of detecting small objects, YOLO

adopts an approach named pass-through layer. This concate-

nates the high resolution features with the low resolution

features, similar to the identity mapping in ResNet [25]. This

improve the mAP with 1%.

The seventh improvement made is the Multi-scale training.

Instead of fixing the input image size, every 10 batches the

network randomly chooses a new image dimension size. This

helps to predict well across a variety of input dimensions.

3) Improvements made in YOLO v3: The first improve-

ment made with YOLOv3 is the use of the multi-label classi-

fication, which is different from the mutual exclusive labeling

used in the previous versions. It uses a logistic classifier to

calculate the likeliness of the object being of a specific label.

Previous versions use the softmax function to generate the

Proceedings of the 1st International Conference on Unmanned Vehicle Systems (UVS), Muscat, Oman, 5-7 February, 2019

Fig. 2. YOLO v3 Architecture

probabilities form the scores. For the classification loss, it

uses the binary cross-entropy loss for each label, instead of

the general mean square error used in the previous versions.

The second improvement made is the use of different

bounding box prediction. It associates the objectness score

1 to the bounding box anchor which overlaps a ground

truth object more than others. It ignores others anchors that

overlaps the ground truth object by more than a chosen

threshold (0.7 is used in the implementation). Therefore,

YOLOv3 assigns one bounding box anchor for each ground

truth object.

The third improvement made is the use of prediction

across scales using the concept of feature pyramid networks.

YOLOv3 predicts boxes at 3 different scales and then ex-

tracts features from those scales. The prediction result of

the network is a 3-d tensor that encodes bounding box,

objectness score and prediction over classes. This is why

the tensor dimensions at the end are changed from previous

versions to:

N ×N × (3 ∗ (4 + 1 + C))

N ×N : is the number of the grid cells of the system

3: to decode the features extracted from each of the 3

scales

4 + 1: to decode the bounding boxes offsets + objectness

score

C: is the number of the classes we train our network on.

This allows to get better semantic information from the

up-sampled features and finer-grained information from the

earlier feature map.

The fifth improvement made is the new CNN feature

extractor named Darknet-53. It is a 53 layered CNN that

uses skip connections network inspired from ResNet [25]. It

uses also 3× 3 and 1× 1 convolutional layers. It has shown

the state of the art accuracy but with fewer floating point

operations and better speed. For example, it has less floating

point operations than ResNet-152 but the same performance

at a double speed.

IV. EXPERIMENTAL COMPARISON BETWEEN FASTER

R-CNN AND YOLOV3

In this section we will describe the dataset used (training

set and test set). We will specify the used hardware and

software in our experiments. The evaluation of the algorithms

is based on five metrics described below. The video demon-

stration of a real time car detection from UAV is available

at[26]. A screenchot of the application of Faster R-CNN and

Yolo v3 on UAV images are shown on Fig 3 and Fig 4

respectively.

A. Description of the Dataset

To perform the experimental part of our study, we built a

UAV imagery dataset divided into a training set and a test

set. The training set contains 218 images and 3,365 instances

of labeled cars. The test set contains 52 images and 737

instances of cars. This dataset was collected from images

taken by an UAV flown above Prince Sultan University

campus and from an open source dataset available in Github

[27]. We tried to collect cars from different environments and

scales to assure the validity of our experiment and to test the

genericity of the algorithms. For example, some images are

taken from an altitude of 55m and others are taken from

above 80m.

B. Description of the Hardware and Software tools

Concerning the training of Faster R-CNN [14], [15], we

used as software the Tensorflow Object Detection API [28].

We chose the provided model of Faster R-CNN with con-

volutional backend the Inception ResNet v2 CNN network.

We optimized the training of Faster R-CNN using stochastic

gradient descent with momentum set to 0.89. The learning

rate is set to 0.00019. We trained for 200K steps. In the

preprossessing phase, we set for image resizing operation,

the minimal dimension to 600 and the maximal dimension

to 1024. For data augmentation, we used only a random

horizontal flip operation among the training set. We set the

batch size to one. For the specific parameters belonging to

Proceedings of the 1st International Conference on Unmanned Vehicle Systems (UVS), Muscat, Oman, 5-7 February, 2019

Fig. 3. Car detection using Faster R-CNN

Fig. 4. Car detection using Yolo v3

Faster R-CNN itself, we set the value 300 as maximal object

proposal in total and 100 as maximal object proposal per

class. The algorithm is trained to recognize only one class

which is the class ”car”.

Concerning the training of YOLO v3, we used the YOLO

v3 provided code [11]. Concerning the parameters, we used

the yolov3 default configuration. We optimized the training

using stochastic gradient descent with momentum set to 0.9.

The learning rate is set to 0.001 and the weight decay is

set to 0.005. The value for both height and width is set to

608. The batch size is set to 64. Concerning the YOLO v3

parameters, the input image is subdivided to 16*16 grids.

Anchors that overlaps the ground truth object by less than a

threshold value (0.7) are ignored.

Concerning the configurations of the computer used in this

research, they are:

• CPU: Intel Core i9-8950HK (six cores, Coffee Lake

architecture)

• Graphic card: Nvidia GTX 1080, 8GB GDDR5

• RAM: 32 GB RAM

• Operating system: Linux (Ubuntu 16.04)

C. Performance evaluation and metrics

To compare the performance between the two algorithms,

we have used five parameters (Precision, Recall, F1 Score,

Quality and processing speed). The four first parameters are

defined below:

• Precision = TP

TP+FP

Measure
Faster R-CNN

(test dataset)

YOLOv3

(test dataset)

TP (True positives) 578 751
FP (False positives) 2 2
FN (False negatives) 150 7
Precision (TPR) 99.66% 99.73%
Sensitivity (recall) 79.40% 99.07%
F1 Score 88.38% 99.94%
Quality 79.17% 98.81%
Processing time (Av. in ms) 1.39 s 0.057 ms

TABLE I

EVALUATION METRICS OF FASTER R-CNN AND YOLOV3

• Recall = Sensitivity = TP

TP+FN

• F1Score = 2∗Pecision∗Recall(Precision+Recall)
• Quality = TP

TP+FP+FN

Where TP (True Positives) indicates the number of cars

successfully detected by the algorithm. FP (False Positives)

indicates the number of non-car objects that are falsely

detected as cars. FN (False Negative) indicates the number

of cars that the algorithm did not recognize them as cars.

D. Comparison between Faster R-CNN and YOLO v3

Here we will try to evaluate both of the algorithms based

on the five metrics we identified. Table I contains all the

values measured for each algorithm.

The evaluation metrics show that both of the algorithms

has high precision rate (99.66% for Faster R-CNN vs 99.73%

for YOLOv3). This high value indicates that when they

classify an object as car, it is very highly probable that this

object is a car. So, the ability of the algorithms to detect

true cars is very high. Percentage that the algorithms classify

non-car objects as car is very rare (0.34% for Faster R-CNN

versus 0.27% for YOLOv3). But when comparing the recall,

we note that YOLOv3 outperforms clearly Faster R-CNN

(79.40% for Faster R-CNN versus 99.07% YOLOv3). The

recall measures the ability of the algorithm to detect all the

instances of cars in the image. YOLOv3 is more capable to

extract all the instances of cars in one image, Faster R-CNN

misses some instances more than YOLOv3. This is due to

the high number of FN (False Negatives) which is 150 for

Faster R-CNN versus 2 for YOLOv3. Considering F1, which

is a harmonic average of the precision and recall that gives

a global idea about robustness of the algorithm (his ability

to extract all the instances of cars and to not falsely extract

non-car objects). We note here that YOLOv3 outperforms

Faster R-CNN as it has higher recall. The quality measure is

a similar metric to measure the robustness of the algorithm.

This measures indicates similarly the robustness of YOLOv3

versus Faster R-CNN.

Concerning the processing time, we measured the process-

ing time for one-time detection (detection of number of cars

in one image) for 15 sizes of input image (form the size of

100px*100px to 1500px*1500px, increasing by 100 pixels at

each size). For YOLOv3, the processing time for each image

ranges between 0.056 ms and 0.060 ms with an average of

0.057 ms. For Faster R-CNN, the processing time for each

Proceedings of the 1st International Conference on Unmanned Vehicle Systems (UVS), Muscat, Oman, 5-7 February, 2019

image ranges between 1.18 s and 2.90 s with an average of

1.39 s. This shows the great performance gap between the

two algorithms in processing one image per time. We noted

also that the processing time does not depend on the size of

the image. The average is the same independently from the

size.

V. CONCLUSION

In this paper, we have made a comparison between the

state of the art algorithms for object detection (Faster R-

CNN and YOLOv3). We made an experimental comparison

between them in car detection task from UAV images. We

began by a theoretical description of both algorithms, citing

the architectural design and the improvements that precedes

the current design of them. Then, we made an experimental

comparison using a labeled car dataset divided into a train

dataset and a test dataset. This dataset is used to train

both models and test their performance. The performance

evaluation is performance metrics is made using five metrics:

precision, recall, F1 score, quality and processing time.

Based on the results obtained, we first found that both algo-

rithms are comparable in precision, which mean that both of

them have high capability to correctly classify car object in

the image. But we found also that YOLO v3 outperforms

Faster R-CNN in sensitivity which mean that YOLO V3

is more capable to extract all the cars in the image with

99.07% accuracy. Concerning the processing time for one

image detection, we found also that YOLOv3 outperforms

Faster R-CNN. This study serves as a guidance for traffic

monitors that plan to use UAVs for traffic monitoring and

demonstrates that YOLOv3 can be used for traffic monitoring

in UAV imagery. Also, it serves for researchers that need to

choose the best algorithm for object detection according to

their needs.
However, our study be extended for general vehicle de-

tection (bicycle, motorcycle, bus, truck). Besides, the dataset

can be extended to add different lighting conditions (day,

night, morning, evening) and different environmental factors

(urban, rural, crowded traffic, winter, summer).

ACKNOWLEDGMENTS

This work is supported by the Robotics and Internet of

Things Lab of Prince Sultan University.

REFERENCES

[1] “Business Insider. Available online: goo.gl/uUJRWD (accessed on 8
April 18)..”

[2] A. Koubaa and B. Qureshi, “Dronetrack: Cloud-based real-time object
tracking using unmanned aerial vehicles over the internet,” IEEE

Access, vol. 6, pp. 13810–13824, 2018.
[3] M. Khan, K. Heurtefeux, A. Mohamed, K. A. Harras, and M. M.

Hassan, “Mobile target coverage and tracking on drone-be-gone uav
cyber-physical testbed,” IEEE Systems Journal, vol. 12, pp. 3485–
3496, Dec 2018.

[4] G. Ding, Q. Wu, L. Zhang, Y. Lin, T. A. Tsiftsis, and Y. Yao, “An
amateur drone surveillance system based on the cognitive internet
of things,” IEEE Communications Magazine, vol. 56, pp. 29–35, Jan
2018.

[5] A. Tariq, S. M. Osama, and A. Gillani, “Development of a low cost
and light weight uav for photogrammetry and precision land mapping
using aerial imagery,” in 2016 International Conference on Frontiers

of Information Technology (FIT), pp. 360–364, Dec 2016.

[6] A. Kouba, B. Qureshi, M.-F. Sriti, A. Allouch, Y. Javed, M. Alajlan,
O. Cheikhrouhou, M. Khalgui, and E. Tovar, “Dronemap planner: A
service-oriented cloud-based management system for the internet-of-
drones,” Ad Hoc Networks, vol. 86, pp. 46 – 62, 2019.

[7] R. Chaari, F. Ellouze, A. Koubaa, B. Qureshi, N. Pereira, H. Youssef,
and E. Tovar, “Cyber-physical systems clouds: A survey,” Computer

Networks, vol. 108, pp. 260–278, 2016.
[8] A. Koubaa, B. Qureshi, M. Sriti, Y. Javed, and E. Tovar, “A service-

oriented cloud-based management system for the internet-of-drones,”
in 2017 IEEE International Conference on Autonomous Robot Systems

and Competitions, ICARSC 2017, Coimbra, Portugal, April 26-28,

2017, pp. 329–335, 2017.
[9] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You

only look once: Unified, real-time object detection,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2016,

Las Vegas, NV, USA, June 27-30, 2016, pp. 779–788, 2016.
[10] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in

2017 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 6517–6525,
2017.

[11] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hier-
archies for accurate object detection and semantic segmentation,” in
Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pp. 580–587, 2014.
[13] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE International

Conference on Computer Vision, 2015.
[14] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE International

Conference on Computer Vision, 2015.
[15] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-

Time Object Detection with,” IEEE TRANSACTIONS ON PATTERN

ANALYSIS AND MACHINE INTELLIGENCE, 2017.
[16] X. Y. Chen, S. M. Xiang, C. L. Liu, and C. H. Pan, “Vehicle Detection

in Satellite Images by Hybrid Deep Convolutional Neural Networks,”
Ieee Geoscience and Remote Sensing Letters, 2014.

[17] N. Ammour, H. Alhichri, Y. Bazi, B. Benjdira, N. Alajlan, and
M. Zuair, “Deep Learning Approach for Car Detection in UAV
Imagery,” Remote Sensing, vol. 9, p. 312, mar 2017.

[18] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2002.
[19] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks

for Large-Scale Image Recognition,” International Conference on

Learning Representations (ICRL), 2015.
[20] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-

resnet and the impact of residual connections on learning,” CoRR,
vol. abs/1602.07261, 2016.

[21] M. Everingham, S. M. Eslami, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman, “The Pascal Visual Object Classes Challenge: A
Retrospective,” International Journal of Computer Vision, 2014.

[22] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2016.
[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” CoRR,
vol. abs/1502.03167, 2015.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–
1958, 2014.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” Arxiv.Org, 2015.

[26] “Video demonstration of real time car detection from uav images,
[available online at: https://www.youtube.com/watch?v=rlpuhjmkcv4],
[accessed on 18-12-2018].”

[27] “Aerial-car-dataset, available online on:
https://github.com/jekhor/aerial-cars-dataset, accessed on (16-10-
2018).”

[28] “Tensorflow-object-detection-api, available online on:
https://github.com/tensorflow/models/tree/master/research/object detection,
accessed on (16-10-2018).”

Proceedings of the 1st International Conference on Unmanned Vehicle Systems (UVS), Muscat, Oman, 5-7 February, 2019

