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The paper is concerned with modelling car drivers. The context of the work presented is
explained. Then, previous research on the application of optimal linear preview control theory
to driving road vehicles with only modest excursions from a straight-running equilibrium state
is extended into the general large-lateral-motion arena. Optimal controls are found for steady-
cornering trim states of an exemplary car at a given speed as a function of cornering effort,
up to the practical limit. The manner in which the optimal controls change as the cornering
vigour changes is discussed. Simulations of the virtual driver-controlled car are shown to
demonstrate the closed-loop system following lateral path demands and the advantages of
employing gain-scheduled adaptive control over a fixed control scheme are demonstrated.
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Nomenclature

a, b car dimensions, figure 1
g acceleration due to gravity
k discrete-time counter
n number of preview points
q diagonal weighting matrix
r car yaw rate
u car forward speed
v car lateral speed
x, y displacements of car reference point from origin
z full system state vector
A, B, C, E state-space matrices
Bm, Cm, Dm, Em Magic Formula tyre lateral force parameters
Fx, Fy tyre shear forces, figure 1
G steering gear ratio
Iz car yaw inertia
J cost function
K optimal control gain vector
M car mass
P Riccati matrix
Q weighting matrix
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R control weighting constant
T discrete time step
α lateral slip ratio
δsw steering wheel angle
η road lateral displacement from x-axis reference
τ control input
τ∗ optimal control
subscripts f, front; l, left; r, rear or right or road; v, vehicle;

1, feedback; 2, preview; dem, demand

1. Introduction

The work described is about modelling car drivers. Such work can be motivated
by requirements to:

(i) understand driving and the interactions between car and driver;
(ii) simulate car manoeuvres that are defined by trajectory rather than control
input;

(iii) evaluate and improve car handling qualities;
(iv) understand system performance degradation through tiredness, alcohol con-
sumption etc.;
(v) reconstruct accident events;
(vi) use a driver model to explore the full capabilities of a car in a virtual world.

These various motivations are discussed in substantial reviews of driver modelling,
see [1–3].
Here the objective is in category (vi) above, connected with the rapid computa-

tion of the fastest lap possible for a defined race-car on a defined circuit. In previous
research, the fastest lap problem has been treated as simply involving optimiza-
tion, [4–14] and, although successful outcomes have been achieved, particularly by
Gerdts et al in their recent work, the necessary computations have been both com-
plex and lengthy. In that prior work, the path to be followed by the vehicle was
part of the optimization problem. However, if the path is given, it appears possi-
ble to solve the minimum-time problem by combination of a high-quality tracking
controller with a learning process to set speed targets, such that the capacity of
the vehicle is fully exploited.
It has become the conventional wisdom that effective driving involves using in-

formation from ahead of the vehicle for control purposes [1–3], so-called preview,
model-predictive or receding-horizon control [15–19]. At an anecdotal level, one
only has to imagine trying to drive in the dark, guided by headlights which illu-
minate the road only to the side of one’s vehicle, to appreciate the loss of facility
implied by the lack of any preview information.
Although nonlinear model-predictive control (NMPC) theory has been developed

and used extensively [15, 16, 20, 21], general truths about optimal preview control
come more readily from linear theory [22–32]. Among these truths are that:

(i) beyond a problem-dependent extent, the returns available from increasing
the preview available diminish towards zero. Thus finite-horizon control will
approximate infinite-horizon control to arbitrary accuracy;
(ii) tight and loose controls can be designed by varying the relative weightings
of tracking accuracy and control power. Optimal linear preview control is not
just one scheme but is one of a whole family of schemes, for a given problem;

(iii) tight control requires relatively short previews and yields relatively large
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control efforts and conversely;
(iv) optimal linear quadratic preview controls for time-invariant systems are of
state-feedback form and can be found off-line. The state which is fed back is
that of the plant augmented with a shift register or delay-line, thus involving
the preview information;
(v) near-perfect tracking occurs with optimal linear systems within a frequency
range that extends as the control tightness increases. The best that can be
achieved depends on the problem, of course.

The development, through the application of linear optimal preview control the-
ory, of high-quality longitudinal controllers is documented in [29, 32] and of lateral
controllers in [26–28, 30, 31]. Longitudinal and lateral problems have recently been
combined in [33] but attention here will be focused on the lateral problem only. Our
car will be controlled to travel at substantially constant speed by a simple feedback
controller. The obvious limitation of linear controls arises from the essential nature
of tyre shear forces, the main source of external influence, which limit and then
decrease with increasing slip.
The dynamic characteristics of a car vary strongly with speed, especially when the

performance limits are extended by aerodynamically generated downforce, increas-
ing the frictional coupling between the tyres and the ground. Within an operating
range around the straight-running state, a linear representation of a (good) car can
be expected to be accurate. As manoeuvring severity increases, tyre shear forces
saturate in a smooth and progressive manner. Optimal controls derived assuming
linearity can be expected to work well for gentle manoeuvring and not so well for
limit operation therefore. A racing driver can be expected to know the dynamics
of his/her car perfectly, since an important part of his/her function is to contin-
ually update his/her internal model of the system, based on recent experience.
Optimality of controls is vital. Robustness is not so important.
Neglecting practical issues relating to computing time, standard NMPC theory

would provide virtual racing driver designs, in numerical form, straightforwardly
[34]. Such theory involves discretising the description of the path demands ahead
of the vehicle and of the control history within the preview/control horizon. Then,
at each computational step, a complex optimization problem has to be solved
on-line. Convergence to the global optimum is not guaranteed. From any solution
obtained, only the first step is used for control. The process is slow and extravagant.
Compromise between accuracy of solution and speed of computation is essential.
Methods for simplifying NMPC calculations include:

(i) shortening the preview and control horizons. Using foreshortened previews
may spoil the results, even yielding instability for the controlled system [15, 16].
In the limit, single-point preview and a single control level may be employed
but the results are likely to be poor [1];
(ii) linearizing the plant model for control calculation purposes [2, 17–19];
(iii) using a simplified plant model for control design purposes, especially if a
system with special and useful features approximating the real plant can be
found [35, 36].

Many examples of successful (virtual) tracking incorporating such simplifications
can be found in the literature but it should be noted that modest tracking capabil-
ities are quite easy to realize, while racing-driver performance levels are very high
and will not be achieved readily.
Worthy of note in connection with (ii) above are the approaches of [17] and

of [18, 19]. In the former, a simplified car, being nonlinear only in respect of its
tyre-force characteristics at front and rear axles, is represented on-line as having
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linear tyres appropriate to the region local to the current axle sideslip values. The
predicted motion over the optimization horizon is computed as a superposition of
the car trajectory from the current state for zero steer input, the complementary
function, and the response to the steering input applied over the control horizon, the
particular integral. The driver starts with a knowledge of tyre cornering stiffnesses
for a number of combinations of front and rear axle sideslips. While this approach
to nonlinear vehicle control is effective at the simple car model level used, it seems
likely that the method will become infeasible if the vehicle model is more general,
containing a substantially greater number of nonlinearities.
In the latter case, the nonlinear system is linearized for small variations from

the present state at each time step, yielding a family of linear systems, varying
with time in a manner that can only be known on-line. The response predicted is
obtained by superposition of the locally linearized system’s response to variations
from the current control input plus the nominal state trajectory, which is that
corresponding to the current control input being sustained without change. The
current optimization requires that the trajectory of the locally linearized system
stay close to that of the nonlinear system of real interest over the optimization
horizon, which implies some conflict between the need for a long optimization
horizon, to deal with the preview information properly, and the need for the locally
linearized car to stay close to the trajectory of the nonlinear car. The tracking
quality reported appears to be rather poor, suggesting that the preview is not
fully utilised in the computations completed. Several parameters are influential,
including the discrete time step, the optimization horizon and the control horizon,
and it might be that changes to the parameters would improve the quality.
To obtain the desired balance between speed of computation and vehicle control

capability, we employ off-line-computed optimal linear controls, with adaptation
to deal with the progressive and smooth saturating nonlinearity of the tyre shear
forces. We suppose that the well-controlled behaviour of a car always involves op-
eration close to a trim state. Our theoretical driver pulls from memory a control
design that is appropriate to current operating conditions. The various control
schemes needed are prepared off-line, through the generation of many trim states
by simulation, linearization for small perturbations about each trim state and ap-
plication of linear optimal preview control software. Optimal control sets are stored
and retrieved as required for manoeuvring simulations. With the present restriction
to constant-speed running, the family of trim states necessary to cover general run-
ning conditions is parametrized by forward speed and front-axle-lateral-slip ratio.
In the next section, the car model is described. The linear optimal preview con-

trol theory relied upon is then outlined. After that, we describe the use of open-loop
simulation runs to find trim or dynamic equilibrium states for the vehicle. Optimal
controls are then discussed. Simulations of the closed-loop lateral path-tracking sys-
tem are described subsequently, with evaluation of the control adaptation. Finally,
conclusions are drawn.

2. Vehicle Model

The car model employed involves longitudinal, lateral and yaw freedoms of a single
rigid body, this being a standard in vehicle dynamics [37, 38]. The model needs to
be written such that the absolute lateral displacement of the car reference point
is an output, since this displacement has to be compared with that of the road, in
an inertial reference frame, in setting up the optimal steering control problem, see
[26–28, 30, 31]. The car is illustrated in figure 1. Steering wheel rotation controls
the notional front road wheel steer angle, δ, through a gear ratio, G.
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Figure 1. Plan view of simple car confined to plane motion with 3 degrees of freedom.

The kinematic equations for the car are:

ẋ = u cosψ − v sinψ

ẏ = v cosψ + u sinψ

ψ̇ = r

while the dynamic equations are:

M (u̇− vr) = Fx − (Fylf + Fyrf ) sin δ

M (v̇ + ur) = Fylr + Fyrr + (Fylf + Fyrf ) cos δ

Iz ṙ = b (Fylr + Fyrr)− a (Fylf + Fyrf ) cos δ

The forward speed of the car is maintained at a constant level by the action
of a proportional, integral, differential (PID) controller, giving rise to the driving
force at the mass centre, Fx, resulting from speed error. The two tyres of each
axle are lumped together with respect to shear force development and are taken to
generate only lateral forces in response to lateral slip, with Magic Formula style
[38]. Specifically:

Fy = 2Dm sin [Cm arctan (Bmα− Em (Bmα− arctan (Bmα)))]

with lateral slip ratio, α, ignoring small differences between left and right sides of
the car, given by

αf =
u sin δ − (v + ar) cos δ

u cos δ + (v + ar) sin δ
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Table 1. Parameters, symbols and values for car and tyres.

Parameter Symbol Value

Mass M 1050 kg
Yaw inertia Iz 1500 kgm2

Mass centre to front axle distance a 0.92m
Mass centre to rear axle distance b 1.38m
Steering gear ratio G 17
Stiffness factor (per tyre) Bm 17.5
Shape factor (per tyre) Cm 1.68
Peak factor (per tyre) Dm 3900N
Curvature factor (per tyre) Em 0.6

for the front and

αr =
br − v

u

for the rear, with δ = δsw
G

, δsw being the steering wheel angle and G being the
steering gear ratio. Parameter values of the car and tyres are given in Table 1 and
the tyre lateral force versus slip relationship is shown in figure 2. The lateral force
available at each axle is 7800N, which exceeds the static axle loads of 6180.3 N front
and 4120.2 N rear by some margin. The car is therefore capable of front-axle-limited
steady-state cornering at 7800g

6180.3 = 12.38m/s2 lateral acceleration.
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Figure 2. Lateral force as a function of lateral slip ratio for each tyre.

3. Optimal Linear Preview Control Theory

In studies of preview steering control already completed, a linear vehicle model is
arranged to include the absolute lateral displacement of its reference point as a state
and to have steering torque or steering displacement as a primary control input.
The model is put into discrete-time form, using a time step of T say. Through each
time step, the vehicle travels uT where u is the specified speed. A roadway lateral
profile is defined by discrete points uT apart longitudinally in the inertial reference
system, so that all the road profile points in front of the vehicle approach it by uT
through each time step. In this inertial reference system, illustrated in figure 3, the
road dynamics are those of a shift register or delay line and the equations describing
these dynamics are of the same form as the equations of the vehicle. The two sets of
equations are combined to yield a compound system, with its state-vector having
a partition for the vehicle and a partition for the road. At this first stage, there is
no coupling between the parts.
Suppose the vehicle equations are:

xv(k + 1) = Avxv(k) +Bvτ(k)
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Figure 3. Diagrammatic representation of a car tracking a roadway path at constant speed, with the
whole system referenced to ground. Such a description implies that the road sample values pass through

a serial-in, parallel-out shift register operation at each time step. ydem is the previewable lateral
displacement signal. K1 represents the full car-state feedback control, while K2 represents the preview

control, in the form of feedback of the shift register states.

yv(k) = Cvxv(k)

with discrete-time counter k, vehicle state vector xv and single control input τ ,
and let the road equation be:

ηr(k + 1) = Arηr(k) +Brηrn(k)

with road state ηr and road sample values that enter the system at time kT being
ηrn, a scalar representing y-displacement demands. For n preview points, ηr is (n
x 1).
To represent the road shift register process, Ar is (n x n) and has the form:

Ar =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . 1
0 0 0 . . . 0















and Br is (n x 1), corresponding to the single previewable disturbance, and has
the form:

Br =
[

0 0 0 0 0 0 . . . 0 1
]T

Combining vehicle and road equations together, the full dynamic system is defined
by:

[

xv(k + 1)
ηr(k + 1)

]

=

[

Av 0
0 Ar

] [

xv(k)
ηr(k)

]

+

[

Bv

0

]

τ(k) +

[

0
Br

]

ηrn(k)

which takes the standard discrete-time form:

z(k + 1) = Az(k) +Bτ(k) +Eηrn(k)

y(k) = Cz(k)

If ηrn is a sample from a white-noise random sequence, the time-invariant optimal
control which minimizes a quadratic cost function J , given that the pair (A,B) is
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stabilizable and that the pair (A,C) is detectable [39], is:

τ∗(k) = −Kz(k)

where K =
(

R+BTPB
)

−1
BTPA, given that the cost function J is:

J = lim
n→∞

n
∑

k=0

{zT (k)Qz(k) + τ2(k)R}

and P satisfies the matrix-difference-Riccati equation:

P = ATPA−ATPB
(

R+BTPB
)−1

BTPA+Q

Here Q = CT qC and q is a diagonal weighting matrix, diag[q1, q2, . . .], with
terms corresponding to the number of performance aspects contributing to the
cost function, and R is a scalar weighting on the control input, the steering wheel
angle. C is chosen such that the quadratic term zT (k)Qz(k) in the cost function
J penalizes the sum of the squares of the differences between the y-coordinate of
the car’s reference point and the corresponding absolute lateral displacement of
the road, over the optimization horizon.
The optimal controls are found by first solving the standard non-preview lin-

ear quadratic regulator problem to yield the car-state-feedback control and then
using a recursive computation to give each preview gain in sequence, applying to
points further out from the car as the sequence progresses. The method is de-
scribed in more detail in [25, 26, 29, 31, 40]. A recently available alternative for
finding optimal preview controls is provided by a toolbox for MATLAB [41], see
also http://code.google.com/p/preview-control-toolbox/. The preview gains K2,
see figure 3, inevitably fall to zero as the preview distance increases, so that the
number of preview points included can be chosen, by trials, so that effectively
the full benefit available is obtained. This is referred to as full preview. Only full
preview control is of interest in the present context.

4. Trim States

Dynamic equilibrium or trim states are generated by simulations designed to take
the vehicle through manoeuvres, in each of which the state changes so slowly that
any snapshot of the conditions can be taken to represent equilibrium. Variations
over a full range of speeds and steer angles need to be covered. Simulation runs in-
volve choosing the speed, relying on the PID speed-error-feedback controller of the
driving force to maintain the desired condition, see figure 3, and slowly ramping up
the front-axle-lateral-slip-ratio demand over the full range of interest. A slip-error
proportional steering controller is incorporated into the model at this stage, so that
the steering input is controlled to give the slip demanded. Trim states are stored, af-
ter quality checking, for increments of 0.002 in the front-axle-lateral-slip scheduling
parameter. Then, a family of linear models, each representing the neighbourhood
of a particular trim state is established numerically. Optimal preview controls are
subsequently found for each trim.
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5. Optimal Controls

Examples of optimal controls are shown in this section. Frequency responses of
selected optimally-controlled systems are also depicted. Each set of controls gener-
ated requires the setting of:

(i) the discrete time step, here always 0.01 s;
(ii) the trim state from which small perturbations are considered to occur. Each
trim state is defined by a car speed and a front-axle-lateral-slip ratio. Initially,
the lateral acceleration was thought of as the second scheduling parameter,
but for high values of the lateral acceleration, there are two trim states corre-
sponding to one value of the acceleration. The front-axle-slip ratio is better in
this respect;

(iii) y-tracking error weighting relative to the fixed weighting on control power.
All the results shown are for a weighting of 100 on the tracking error, that is
q1=100, and no other performance-cost element. Tighter and looser controls
can be engaged by increasing or decreasing respectively this weighting. The
closed-loop system bandwidth is higher for tighter control and conversely [27,
32];

(iv) the number of preview points to be used.

Corresponding to each trim state, there is a linearization and, with defined
weightings, a set of optimal control gains. K1 is the vector of car-state-feedback
gains, while K2 is the vector of shift-register-state-feedback or preview gains. Such
preview gain sequences, for a speed of 30m/s, are shown in figure 4 as functions
of front-axle-lateral-slip ratio. A selection of car-state-feedback gains relating to
lateral velocity and yaw velocity for the same speed is shown in Table 2 and, for
clarity, the two-dimensional slices of figure 4 belonging to the same front-axle-slip
ratios as for Table 2, are shown in figure 5.

Figure 4. Three-dimensional plot of K2 preview gain sequences as functions of front-axle-lateral-slip
ratio, representing the cornering-effort level.

As the cornering effort increases, the control authority decreases and the influence
on the preview control is to reduce the gains and to lengthen the preview needed
for full performance. When the front-axle-slip ratio exceeds that for maximum
force, see figure 2, the relationship between slip ratio change and force change is
the reverse of the normal one. Correspondingly, the preview gains change sign. On
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Table 2. Car-state-feedback gains relating to lateral and

yaw velocities for a car speed of 30m/s and four different

trim states defined by front-axle-slip ratio.

Slip ratio 0 0.04 0.06 0.40

Lateral velocity 0.5971 1.3639 2.4931 -5.7844
Yaw velocity 0.9767 1.9513 3.1738 -5.7633

the contrary, the reducing control authority causes the optimal feedback gains to
increase but the sign reversal occurs here also, see Table 2.
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Figure 5. Two dimensional plot of K2 preview gains, for car speed of 30m/s and trim states defined by
four different front-axle-slip ratios.

Frequency responses of the closed-loop, driver-controlled car at 30m/s speed are
shown in Bode form in figure 6, for four levels of cornering effort defined by the
front-axle-lateral-slip ratio. Deriving from the decreasing control authority as the
car corners more vigorously and uses up tyre friction forces in the trim condition,
the system bandwidth decreases progressively. The results illustrate how a real
driver needs to drive a little short of the absolute limit in the interests of retain-
ing some control capability, the best drivers requiring to leave only the smallest
margins.

10
−2

10
−1

10
0

10
1

−30

−25

−20

−15

−10

−5

0

G
ai

n 
(d

B
)

 

 

10
−2

10
−1

10
0

10
1

−2500

−2000

−1500

−1000

−500

0

P
ha

se
 (

D
eg

)

Circular frequency (Rad/s)

Front tyre side slip= 0

Front tyre side slip= 0.04006

Front tyre side slip= 0.06009

Front tyre side slip= 0.40064

System
lag

Transport
lag

Figure 6. Frequency responses in Bode plot form for driver-controlled car at 30m/s speed and trim
states defined by four different front-axle-slip ratios.

6. Tracking Simulation Results

To demonstrate the application of the optimal preview controls, tracking a lateral
position target sequence at a challenging speed by the driver-controlled car is sim-
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ulated on a variety of paths. The same manoeuvre with both non-adaptive-driver
control corresponding to the straight-running trim state only, and with adaptive-
gain-scheduled control, corresponding to the range of trim states depicted in fig-
ure 4, are shown and contrasted. At the commencement of each manoeuvre, the
reference trim state involves straight running, which remains the case when non-
adaptive control is employed. When the control is adaptive, the reference trim state
changes, implying not only discrete gain changes but also changes in the way in
which the preview path errors are measured. The situations are depicted in figure 7.

ydem4 from curved reference line

ydem3 from curved reference line

IC

reference line for straight-running trim state

reference line for cornering trim state

road path

ydem2

ydem3

ydem4

ydem1

path tangent for cornering trim state

Figure 7. Illustration of the implications of adapting the controls to the trim state. The basis for
measuring the previewed path errors becomes a circular arc when the reference state involves turning.
Also, the steering wheel angles derived from the controller are increments that have to be added to the

appropriate trim-state value to get the actual steer angle.

To further illustrate the gain-scheduling process, suppose that schedule “i” is
in place and that, at the end of the next simulation step, the front-axle-slip ratio
indicates schedule “i+1” to be the nearest to the new running state. The current
car states and input must be expressed as increments from the “i+1” trim states,
the feedback control operating on these increments, using the “i+1” trim-state K1

values. The preview errors are obtained by transforming the road data in front
of the car into a driver’s view frame of reference and sampling the road ahead
relative to the driver’s curved optical lever, see figure 7, with the curvature being
that belonging to the trim state “i+1”. The preview errors are operated on by the
“i+1” trim-state gains, K2, to give the feedforward contribution to the steering
input.
Under some circumstances, the switching from one reference system to another

neighbouring one can contribute to the vehicle and controls becoming oscillatorily
unstable. The driver has infinite bandwidth, so that all the changes are instan-
taneous at a switching point, and this is an important part of the problem. The
instability can be prevented by including rate limiting on the steering wheel motion,
a reasonable limit from the real world of car driving being 9 rad/s [42]. This limit
is sufficiently high to not interfere with the steering control required to follow the
path but it is also stabilizing. Further, it is non-critical, since the tracking results
are similar for rate limits down to 3 rad/s. A steering wheel rate limit of 9 rad/s is
included in the simulation studies to be shown, irrespective of the employment of
gain switching.
The controlled cars were asked to track three challenging paths: a hair-pin bend,

a lane-change and a double s-bend, see figure 8. The paths were designed to show
the capability of the adaptive controls to achieve good tracking, while the fixed-gain
system loses control.
The hair-pin starts with a straight section, 72.6m long. This is followed by a

change in curvature which is uniform with distance, a clothoid curve, to a radius of
72.6m. The curvature is then constant over an arc of 0.75π rad. and subsequently
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reduces uniformly, another clothoid, until it reaches zero, when a straight section
follows.
The lane change begins and ends with a straight section, each 300m in length

and parallel to one another. The finishing straight has a lateral offset of 5m and a
longitudinal offset of 10m relative to the end of the starting straight. A sinusoidal
spline is used to bridge the gap between these two sections.
The double s-bend starts with a straight section 330m in length. This is followed

by a right-handed semi-circular section with a radius of 80m. After a short straight,
30m in length, a left-handed semi-circular section follows, also with a radius of
80m. Another short straight, 30m long, completes the first s-bend. The second
s-bend is similar to the first but has circular arcs with a tighter radius of 75m. The
last circular arc is formed over an angle of 0.9π rad. A straight section tangential
to the end of the last arc completes the track.
The speed demanded, 30m/s, is such that perfect tracking of each path would

require slightly more side-force from the front axle than is available, so that control
at the absolute limit is exercised.
Tracking errors connected with fixed-gain and gain-scheduled controls when

tracking the hair-pin, lane-change and double s-bend are plotted in figures 9, 11
and 13 respectively. Corresponding time histories for front-axle side-slip and steer-
ing wheel angle are shown in figures 10, 12 and 14.
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Figure 8. Path demand for 3 manoeuvre simulations showing points at 1 s intervals along them. (a) A
hair-pin. (b) A lane-change. (c) A double s-bend.
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Figure 9. Lateral tracking errors in simulated hair-pin manoeuvre at 30m/s speed with non-adaptive
(fixed-gain) or adaptive (gain-scheduled) controls.
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Figure 10. Front-axle side-slip and steering wheel angle histories for hair-pin manoeuvre of figure 8 with
non-adaptive (fixed-gain) or adaptive (gain-scheduled) controls.

In the hair-pin tracking simulation, the front-axle side-force reaches its peak at
about 5 s into the run as seen in figure 10. The non-adaptive controller fails to
appreciate what is needed to maintain good tracking and the car starts to go out
of control. The adaptive controller, on the other hand, adjusts the steering angle
such that the front-axle side-force continues at the peak of its capability. The car
is going too fast for it to be possible to track the desired course precisely but it
does the best that it can. As soon as it becomes possible for the car to align with
the path again, it does so. The fixed-gain driver ends using full lock, set at 9 rad
in the simulation model, in an attempt to get more side-force, while the adaptive
driver uses much more modest control inputs.
A similar situation is observed during the tracking of the lane-change manoeu-

vre. When the car arrives at the start of the lane-change, about 9.5 s into the
simulation, the non-adaptive controller initially follows the same steering demand
as the adaptive controller. However, as the lateral error grows, the non-adaptive
controller continues to demand a larger steering angle in an attempt to rectify
the tracking error. This saturates the front-axle side-force which exacerbates the
problem. The steering lock limit is eventually reached and the car loses control as
seen in figure 12. The adaptive controller, having knowledge of the full non-linear
dynamics of the car, uses a more measured driving style. As a result, the car ne-
gotiates the lane change whilst maintaining control and keeping lateral deviation
to a minimum.
On the double s-bend, the non-adaptive controller is able to negotiate the first

s-bend without loss of control. However, the tracking error in the period between
11 and 27 s in figure 13 shows the poorer tracking performance of the non-adaptive
controller when compared to its adaptive counterpart. The non-adaptive controller
fails on entry to the second s-bend where, as in previous simulations, it demands
more from the front axle when it is already close to saturation. As a result, the non-
adaptive controller loses control soon after 30 s. The adaptive controller, however,
keeps the front axle very close to its peak side-force capacity and maintains control.
After negotiating the tighter second s-bend, the controller restores the car to the
intended path.
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Figure 11. Lateral tracking errors in simulated lane-change manoeuvre at 30m/s speed with
non-adaptive (fixed-gain) or adaptive (gain-scheduled) controls.
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Figure 12. Front-axle side-slip and steering wheel angle histories for lane-change manoeuvre of figure 8
with non-adaptive (fixed-gain) or adaptive (gain-scheduled) controls.
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Figure 13. Lateral tracking errors in simulated double s-bend manoeuvre at 30m/s speed with
non-adaptive (fixed-gain) or adaptive (gain-scheduled) controls.

7. Conclusion

The work described is motivated by a desire to construct a perfect virtual racing
driver, which will be capable of exploiting the full capacity of a racing car. The
strategy used depends on the adaptive employment of linear-optimal-preview con-
trols. Prior research has shown how such controls can be found and applied, when
only small perturbations from a trim state are involved and the linear control de-
sign is based on the relevant trim state. Here, the previous work is extended by
the generation of optimal control sets for a full range of cornering effort, as a way
of accommodating the saturating nonlinearity of the tyre lateral forces. Optimal
control sets vary in a systematic and interesting manner as the tyres work harder.
The variations and their interpretation have been discussed. The path-tracking fre-
quency response properties of selected driver-controlled cars have been calculated
and discussed also.
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Figure 14. Front-axle side-slip and steering wheel angle histories for double s-bend manoeuvre of figure 8
with non-adaptive (fixed-gain) or adaptive (gain-scheduled) controls.

Tracking of three challenging paths at a fixed, high speed by a car and driver
with controls based on straight-running only and with an adaptive, gain-scheduling
driver have been simulated, with parametrization of the running condition of the
car by front-axle-lateral-slip level. Controls for trim states which are very close to-
gether have been utilised. To maintain system stability, rate limiting on the steering
wheel motion has been found necessary. With rate limiting sufficient for stability
but not interfering with required control inputs, gain-switching noise observable
in the results is very small. An obvious alternative to discrete gain changing is
to use interpolation, which would allow a coarser grid of stored gains to be em-
ployed. Excellent path tracking of the adaptive system has been demonstrated,
under circumstances for which the fixed-gain controls are inadequate.
Remaining tasks include application of the adaptive controls to variable speed

conditions, including limit braking and accelerating, application of the methods to
more elaborate vehicles and the inclusion of learning control, so that the driver’s
speed ambition can be properly related to the tyre-force utilisation observed.
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