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Abstract: Car-following model has important applications in traffic and safety engineering 
e.g. for traffic simulation, Advance Vehicle Control and Safety System etc. A great deal of 
investigation works were conducted in the last five decades to model the longitudinal 
interaction between adjacent vehicles as a result numerous models are available now. A 
performance based benchmarking of these models might be useful to evaluate their 
capabilities in representing real driving behavior. Data precision is the key factor to make any 
such evaluation meaningful. RTK GPS is the latest technology in data acquisition that makes 
it possible to acquire high resolution vehicular movement data at an outstanding level of 
accuracy. Several car-following models were evaluated based on test track experiment data 
using a GA based optimization method. It was interesting to see a simple linear model 
performing better than some sophisticated models. 
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1. INTRODUCTION 
 
Since the early investigation on car-following dynamics started in mid 50’s, numerous models 
have been developed (for review see Brackstone et al. (1999)). The model is an essential 
component in microscopic traffic simulation programs that are widely preferred for 
applications in traffic and safety engineering e.g. for capacity analysis, traffic impact studies, 
junction design, accident analysis, network analysis etc. The model has been given more 
importance in recent years for its scope in some intelligent transportation systems.  
 
With nearly hundred models proposed so far, not much works were done towards evaluating 
their capabilities and limitations. A few models were calibrated and validated also with 
limited scope in terms of data used and models dealt. It might be because there were 
limitations on data acquisition and calibration techniques as well. The data quality was not 
satisfactory or it is not mentioned clearly in the most of previous investigations. This suggests 
a need for benchmarking these models using precise vehicular movement data that will be 
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helpful to evaluate their strengths and weakness, hence providing a ground for further 
improvements. For any benchmarking to be meaningful, a reasonable quality of data is a 
prerequisite.  
 
The data acquisition techniques have witnessed significant advancements in the last few 
decades. The real time kinematic (RTK) GPS is the latest advancement that is capable of 
measuring vehicular movement data at an outstanding level of accuracy and much 
conveniently than ever before. A few years ago, we have conducted extensive car-following 
experiments in a test track located in Hokkaido, Japan. The RTK GPS receivers were used to 
measure position and speed of moving vehicles. These receivers measure position based on 
differential GPS technique while speed based on Doppler’s principle. These data particular 
suitable for this study for two reasons: first, its outstanding accuracy features and second, it is 
well recognized in different research communities, for example those from USA, Germany, 
Spain, South Korea, Thailand, Sri Lanka and Japan. Some published works include 
Gurushinghe et al. (2001, 2002), Suzuki et al. (2002), Ranjitkar et al. (2003), Brockfeld et al. 
(2004) etc. 
 
In our previous attempt (Ranjitkar et al. (2004)) we investigated six car-following models. 
Here we expand our research further to include some other models in this benchmarking 
process. Previously, the models were compared based on how well they fit with spacing 
(between vehicles) and speed data, while in this study acceleration will also be used in 
parallel to evaluate the models. A genetic algorithm based optimization method is adapted to 
calibrate the models. The optimized performance of the models will be compared vis-à-vis 
using percentile error as performance index. 
 
The car-following experiments conducted in a test track is explained in the next section that 
includes information about the test track, experimental arrangements, drivers’ characteristics, 
speed patterns and data accuracy. The models investigated in this study are described under 
section three. This includes the conceptual backgrounds of the models, their formulations and 
parameters to be optimized. The model evaluation set up is described in section four. The 
analysis results are presented in section five under two different subheadings: model 
calibration and validation. Finally, the outcomes of this study will be summarized in the last 
section. 
 
 
2. DATA SETS 
 
A test track was chosen for these experiments mainly to ensure simple driving conditions as 
assumed in car-following theories. The purpose was to avoid complications that exist in real 
highways due to several influencing factors such as traffic signs, vehicles on adjacent lanes 
etc. The test track consists of two 1.2 km long straight sections connected by two semicircular 
curves 150 m each. A schematic layout is shown in Figure 1. Ten drivers/passenger cars 
participated in these experiments, each car equipped with a RTK GPS receiver. The receiver 
outputs position and speed data at every 0.1 second interval with a position accuracy of 10 
mm + 2ppm and speed accuracy of less than 0.2 km/h. 
 
All drivers were young college students between 22 to 30 years, except the lead vehicle’s 
driver who was at his late 50’s. They were queued up in a row before driving and instructed 
not to overtake the vehicle in front, while the leader was instructed to follow some 
predetermined speed patterns as shown in Figure 2. The first four are sine wave speed 
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patterns with wave lengths vary from 267 to 1600 m, while other two are random and 
constant speed patterns. The drivers were arranged in two different order patterns A and B. In 
patterns A, the drivers were arranged in an order with D1 followed by D2, D3, D4, D5, D6, 
D7, D8, D9 and D10, while in pattern B, they were arranged as D1 followed by D8, D7, D6, 
D5, D4, D3, D2, D9 and D10. 
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Figure 1. Schematic layout of the test track 
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Figure 2. Speed patterns tested for the leader vehicle 
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The position and speed data measured by the receivers were processed to computer other car-
following variables such as spacing (space headway), relative speed and acceleration. 
Acceleration was computed from speed measurements by polynomial fitting technique. 
Gurushinghe et al. (2003) have confirmed the accuracy of these data after comparing them 
with those taken by distance meter, speedometer and accelerometer.  
 
These data represents wide range of uninterrupted driving conditions with different level of 
disturbances. The data shows that the drivers were mostly preferred to remain in car-
following situations maintaining close to comfortable following distance from the vehicle in 
front that typically vary from 20 to 50 m with speed ranging from 30 km/h to 80 km/h. Table 
1 presents the number of data sets analyzed from each speed patterns. In total 47 data sets 
were analyzed 20 from pattern A and 27 from pattern B, each representing a single run in a 
straight section. The data from curves were not analyzed for possible effects of curves in 
driving behavior. For further details on these experiments please refer Ranjitkar (2004). 
 

Table 1. The data sets used in this study 
 

Drivers’ order pattern 
P.N. Speed patterns 

A B 

1 Half wave 4 6 

2 One wave 4 4 

3 Two wave 2 6 

4 Three wave 4 5 

5 Random 4 4 

6 Constant speed 2 2 

Total 20 27 
 
 
3. THE MODELS 
 
Table 2 presents a list of the models investigated that can be classified into the following 
groups based on the concept behind the model: 

• Stimulus response model (Chandler model (1958), generalized GM model (1961)) 
• Safe distance model (Gipps model (1981), Krauss model (1997)) 
• Psychophysical model (Leutzbach model (1986)) 
• Cell based model (cellular automata model (Nagel (1992)) 
• Optimum velocity model (Bando et al (1995)) 
• Trajectory based model (Newell model (2002)) 
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Table 2. A list of car-following models investigated 
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3.1 Stimulus Response Model 
 
Chandler et al. (1958) was first to propose a linear model based on stimulus response concept. 
It was stated that the response of a driver is proportional to the stimulus he perceives. The 
relative speed was defined as the only stimulus. The response of the following driver comes at 
a time delayed by the response time T. The proportionality factor λ was called sensitivity 
factor. A series of investigations on this model by researchers associated with General 
Motor’s laboratory incorporated spacing and speed into the sensitivity term giving the model 
a nonlinear form. Later, Gazis et al. (1961) generalized the nonlinear form of the model that is 
termed here as generalized GM (GGM) model. The parameters α, m and l are termed as 
sensitivity parameters. The Chandler model have only two parameters to be optimized i.e. 
response time T and sensitivity factor λ, while for GGM there are sensitivity parameters also 
to be optimized. Previously, Ranjitkar et al. (2003) have investigated the stability of traffic 
flow based on the GM model. 
 
3.2 Safe Distance Model 
 
The first model based on safe distance concept came from Kometani and Sasaki (1959). It 
was stated that the driver of following vehicle chooses his speed based on a safe following 
distance to avoid possible collision with the vehicle ahead. Later, Gipps (1981) proposed a 
modified model that can be calibrated using common sense assumptions about driving 
behavior such as acceleration, deceleration, maximum speed etc. The model is widely 
preferred for simulation purpose. In this model, 2.5 and 0.025 are arbitrarily chosen 
parameters as proposed by its developer, while acceleration rate a, jammed spacing s can be 
assigned with some fixed values but the parameters like response time T, braking rate b, 
maximum desired speed V and assumed braking rate need to be optimized. Recently, Kruass 
(1997) proposed a model which is a variant of the Gipps model. This is a stochastic model as 
it includes a stochastic term that was set to zero to unify the comparison. All the parameters to 
be optimized are same as of Gipps model i.e. response time T, braking rate b and maximum 
desired speed V. 
 
3.3 Psychophysical Model  
 
Leutzbach et al. (1986) proposed a model that considers psychophysical aspects of driving 
behavior. The model is well recognized especially for simulation purpose. It has two 
parameters to be optimized i.e. response time T and desired spacing S. What different from 
other models is that this model considers acceleration an-1(t) of the vehicle ahead as a stimulus 
for the following vehicle, in addition to the difference between the current spacing and desired 
following distance S. 
 
3.4 Cell Based Model 
 
This type of model was first introduced by Nagel-Schereckenberg (1992). It is commonly 
known as cellular automata. Some simulation software developed recently has preferred this 
model. The model has two parameters to be optimized i.e. acceleration a, and desired 
maximum speed V, while other parameters can be assigned with some fixed values (presented 
in the next section). 
 
 
 

Journal of the Eastern Asia Society for Transportation Studies, Vol. 6, pp. 1582 - 1596, 2005

1587



 

3.5 Optimum Velocity Model 
 
Bando et al. (1995) was first to propose a model based on the optimum velocity concept. It 
was stated that the following driver’s response is proportional to the difference between his 
optimum speed (for the given spacing) and his speed at that time. We have modified the 
optimum speed term that depends on the spacing from the vehicle ahead. The modified model 
is presented in Table 2. It has two parameters to be optimized i.e. the response time T and a 
sensitivity term α.  
 
3.6 Trajectory Based Model 
 
Newell (2002) proposed a simple model based on the concept that the driver of following 
vehicle drives as a shifted space trajectory of the vehicle ahead. It was stated that the space 
trajectory of the following vehicle is same as that of the vehicle ahead except for a translation 
in space and in time. This model also has two parameters to be optimized i.e. the time lag τ 
and a distance lag Dn. 
 
 
4. EVALUATION SET UP 
 
The models will be evaluated based on their optimized performance i.e. after calibrating them 
against the given data sets. Calibration is the optimization of model parameters so that the 
model can make better predictions. Among several methods available for this purpose, genetic 
algorithm (GA) is well-recognized for its effectiveness in escaping local minima particularly 
when the objective function has a lot of peaks (a common problem faced by many 
optimization methods). It is based on the mechanism of natural selection of natural genetics. 
GENECOP III is the latest version of a GA based optimization program proposed by Z. 
Michalewicz (1992). We have modified this program to implement in car-following models. 
Its major features include operation by floating-point number, flexibility in dealing with 
constraints and boundary conditions, and systematic application of mutations and crossovers. 
 
A percentile error function is used as the objective function to be minimized. 
 

∑
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=

=
−
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1i
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ŷy
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Where, y is the objective variable. iy  and iŷ  are the measured data and predicted values for 
the objective variable. n is the total number of data points in the data set. For car-following 
models either of spacing, speed or acceleration can be the objective variable. The vehicular 
motion data (including spacing, speed, acceleration) of a vehicle is predicted using the 
respective model formulation, where the motion data of the vehicle in front is supplied as 
input. For a particular set of parameters, the percentile error in the prediction of the objective 
variable is computed as given in equation (1). The parameter set that produce the lowest 
percentile error is the optimal one. We have calibrated the models using three different 
objective variables i.e. spacing, speed and acceleration one by one. Once the parameters are 
optimized for a given data set, the respective percentile error values are computed that will be 
used to compare of the performances of the models.  
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The following are some general boundary conditions set to optimize the model parameters,  
• Response time (T) = 0.5 to 3 sec 
• Maximum acceleration (a) =1.5 m/sec2 
• Maximum deceleration (b and b*) = - 3 to -4.5 m/sec2 
• Maximum desired speed (V) = 20 to 25 m/sec 
• Jam headway (s) = 7.5 m 
• Minimum desired spacing (S) = 10 to 50 m 

 
The constraint used to avoid collision is:  

xn-1 ≥ xn + minimum gap 
 
 
5. SIMULATION RESULTS 
 
 
5.1 Model Calibration 
 
Table 3 presents mean values and the respective standard deviation (SD) and coefficient of 
variation (COV) for the percentile error in the prediction of spacing, speed and acceleration 
using the same as objective variable. All models produce relatively lower percentile error in 
speed prediction and higher for acceleration prediction. It might be because the acceleration 
data have a lot more fluctuations than the speed data. The mean percentile errors in spacing 
prediction vary from 10.93% for CA to 21.39% for Leutzbach model with COV vary from 35 
to 56%. For speed prediction, the mean percentile errors vary from 3.46% for Chandler model 
to 4.71% for Newell model with COV in the range of 25 to 33%. While for acceleration 
prediction, the mean values vary from 52.22% for Chandler model to 64.89% for Leutzbach 
model with relatively low COV that vary from 20 to 26%. 
 

Table 3. Mean, standard deviation and coefficient of variation of the percentile errors 
 

Data Descriptor Models 
Base   Chandler GGM Gipps Krauss OVM Newell CA Leutzbach

Spacing Mean 12.73 12.13 12.20 12.20 14.52 12.91 10.93 21.39 
  SD 6.35 6.84 4.65 4.65 6.38 5.13 4.08 7.51 
  COV 50% 56% 38% 38% 44% 40% 37% 35% 

Speed Mean 3.46 3.52 4.30 4.30 3.66 4.71 4.06 4.70 
  SD 0.95 1.03 1.09 1.09 1.00 1.54 1.08 1.25 
  COV 27% 29% 25% 25% 27% 33% 27% 27% 

Acceleration Mean 52.22 52.96 64.49 64.49 55.53 63.55 63.46 64.89 
  SD 10.97 10.88 14.11 14.11 11.00 16.40 14.25 14.97 
  COV 21% 21% 22% 22% 20% 26% 22% 23% 
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Figure 3a presents breakdown of the mean percentile error in spacing prediction for each 
driver and model separately, while Figure 3b presents the respective standard deviations. 
There are significant interpersonal variations in the models’ performance. For example, 
Chandler model and GGM perform better than others for the drivers D2 and D3 while for D4, 
D5, D6, D8, D9 and D10 CA, Gipps and Krauss models perform better than others. 
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b) Standard deviation of % error 
 

Figure 3. Percentile error in the estimation of spacing between adjacent vehicles 
 
Figure 4 presents the mean and standard deviation of the percentile error in speed prediction 
for each driver and model separately using the same as objective variable. The interpersonal 
variations are dominant here also for an example almost all model gives higher percentile 
error for the driver D7. This is an indication of individual’s influence in car-following 
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process. In general, the models are more completive than the previous case, while Chandler 
model and GGM perform better than other models for almost all drivers.  
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Figure 4. Percentile error in the estimation of speed 
 
Figure 5 presents the mean and standard deviation of the percentile error in acceleration 
prediction for each driver and model separately using the same as objective variable. Here 
also Chandler model and GGM produce relatively lower percentile error than other models. 
While for other models the performance varies case by case. Different from the previous case, 
it is difficult to claim significant influence from individual drivers. 
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Figure 5. Percentile error in the estimation of acceleration 
 
 
5.2 Statistical Verification 
 
The differences seen in the models’ performances are further analyzed to verify them 
statistically. The F-test is conducted to see the difference in the variances, while T- test is 
conducted to see the difference in the means.  
 
Table 4 presents F- test and T- test results for the percentile error data using spacing as the 
objective variable. The shaded cells represent the case where F- value or T- value exceed the 
F- critical or T- critical values respectively. In this case, the variances of the percentile errors 
computed in the case of Leutzbach model are different from those for all other models, while 

Journal of the Eastern Asia Society for Transportation Studies, Vol. 6, pp. 1582 - 1596, 2005

1592



 

for those cellular automata model are not different from other models. The results of T- test 
show that the mean percentile error estimated for chandler model, generalized GM, Gipps 
model and Krauss model are statistically same, while those for other models are different 
from these models in most of the cases. In other words, these results validate better 
performances of these four models compared with other models in this case. 
 
Table 5 presents F- test and T- test results for the percentile error data using speed as 
objective variable. The F-test results show the variances of the estimated percentile errors are 
different in the many cases. While the results from T- test show the mean values also different 
in the most of the cases. That means though the differences in mean values are not much 
statistically the differences are valid. 
 
Table 6 presents F- test and T- test results for the percentile error data using acceleration as 
objective variable. Several shaded cells in F-test results show the variances are different in 
those cases. Except a few cases, t-values have exceeded the critical value, showing 
differences in the mean values estimated for the percentile error using acceleration data. That 
means the models can be evaluated based on the mean and standard deviations estimated in 
this case. 
 

Table 4. F- test and T- test results for percentile error estimated using spacing data 
 

  F-test Results 
  Chandler GGM Gipps Krauss OVM Newell CA Leutzbach

Chandler  1.16 0.54 0.51 1.01 0.65 0.41 1.40 
GGM 1.31  0.46 0.44 0.87 0.56 0.36 1.21 
Gipps 1.36 0.18  0.95 1.89 1.22 0.77 2.61 
Krauss 1.79 0.21 0.50  1.99 1.28 0.81 2.75 
OVM 4.06 5.21 5.99 6.45  0.65 0.41 1.39 

Newell 0.46 1.87 2.10 2.59 4.00  0.63 2.15 
CA 4.85 3.06 4.18 3.71 9.66 6.16  3.40 

T
-t

es
t R

es
ul

ts
 

Leutzbach 17.94 18.57 21.19 21.71 14.19 18.99 24.93  
 
 

Table 5. F- test and T- test results for percentile error estimated using speed data 
 

  F-test Results 
  Chandler GGM Gipps Krauss OVM Newell CA Leutzbach

Chandler  1.19 1.32 1.56 1.13 2.66 1.31 1.73 
GGM 0.99  1.11 1.31 0.95 2.24 1.11 1.46 
Gipps 11.87 10.49  1.18 0.86 2.02 1.00 1.32 
Krauss 9.83 8.61 1.38  0.72 1.71 0.84 1.11 
OVM 2.99 1.90 8.77 6.94  2.36 1.17 1.54 

Newell 14.11 13.02 4.49 5.50 11.64  0.49 0.65 
CA 8.53 7.28 3.14 1.62 5.52 7.04  1.32 

T
-t

es
t R

es
ul

ts
 

Leutzbach 16.13 14.76 4.93 6.04 13.20 0.16 7.86  
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Table 6. F- test and T- test results for percentile error estimated using acceleration data 

 
  F-test Results 
  Chandler GGM Gipps Krauss OVM Newell CA Leutzbach

Chandler  0.98 1.65 2.89 1.01 2.24 1.69 1.86 
GGM 0.97  1.68 2.94 1.02 2.27 1.72 1.89 
Gipps 13.99 13.19  1.75 0.61 1.35 1.02 1.13 
Krauss 14.77 14.11 2.98  0.35 0.77 0.58 0.64 
OVM 4.34 3.39 10.20 11.65  2.22 1.68 1.85 

Newell 11.70 10.97 0.88 3.58 8.27  0.75 0.83 
CA 12.73 11.94 1.05 3.86 8.97 0.08  1.10 

T
-t

es
t R

es
ul

ts
 

Leutzbach 13.90 13.14 0.39 2.58 10.26 1.22 1.40  
 
 
 
6. SUMMARY AND DISCUSSION 
 
With rapid growth of computer technology, the processing speed of computers has increased 
significantly in the last few years. The microscopic traffic flow simulation models have more 
important role to play in traffic and safety engineering. It is possible now to acquire a network 
level representation of traffic movements without compromising on its indigenous driving 
behavior such as car following and lane changing behavior. Recognizing the needs of next 
generation traffic simulation, Federal Highway Administration (FHA) has recently proposed a 
Next Generation Simulation (NGSIM) program (2003). The efforts are to develop core 
research in behavioral algorithms to support traffic simulation with a primary focus on 
microscopic modeling.  
 
This paper has evaluated the performance of several car-following models based on how well 
they represent real driving behavior. The data were taken from car-following experiments 
conducted in a test track where the driving conditions were kept as simple as considered in the 
car-following theories. A genetic algorithm based optimization method is adapted to calibrate 
the models based on three different objective variables i.e. spacing, speed and acceleration. 
These three cases are analyzed separately to benchmark the models’ performances using 
percentile error value as performance index.  
 
Among the eight models investigated, in general speaking Chandler model and generalized 
GM model performed better than others producing lower percentile errors for speed and 
acceleration predictions. However, cellular automata performed better than others for the 
prediction of spacing. Some sudden drops were seen in the acceleration data predicted by this 
model. The Gipps model and Krauss model have performed well behind the leading models 
described earlier for spacing and speed prediction, while for acceleration the percentile error 
were relatively higher. The modified optimum velocity model performed well with speed and 
acceleration predictions, while for spacing the percentile error was relatively higher. The 
Newell model produced competitive percentile error values for spacing prediction, while the 
same for speed and acceleration prediction were relatively higher. The percentile error for 
Leutzbach model was generally higher, while for some drivers the model was competitive 
with others e.g. for the driver D2, D6 and D9 in the case of acceleration prediction. These 
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differences in the performances of the models were verified statistically using F-test and T-
test. The results show clear difference in the mean percentile errors in many cases.  
 
All models produce relatively lower percentile error for speed predictions and higher values 
for spacing and acceleration predictions. The higher error values for acceleration prediction 
might be due to the fact that one can expect a lot more fluctuations with acceleration data than 
the speed or spacing data, making it difficult for the models to predict in a close range. The 
spacing data is computed from the position measurements of the adjacent vehicles. This gives 
possibility of increase in error size due to addition effect. While for the speed data, the 
measurements taken by the receivers is used directly without any computations. The higher 
values of standard deviation and coefficient of variations in the case of spacing predictions 
shall be noted in this regard.  
 
Besides the observations discussed above, it is important to note that the interpersonal 
variations are influential particularly in the case of speed predictions. The same models 
performed differently from driver to driver. Such interpersonal variations are much higher 
than inter-model variations. While in the case of acceleration predictions, these variations are 
not that dominant.  
 
As for the application of this study in real world is concerned, we would like to emphasize 
that these results are based on some particular diving conditions tested in the test track that 
might not necessarily represent real world driving behavior. In fact, the driving conditions in 
real world are much more complicated than the one analyzed here.  
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