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Abstract

This paper addresses the problem of Car Make and
Model recognition as an example of within-category ob-
ject class recognition. In this problem, it is assumed
that the general category of the object is given and the
goal is to recognize the object class within the same
category. As compared to general object recognition,
this problem is more challenging because the varia-
tions among classes within the same category are sub-
tle, mostly dominated by the category overall charac-
teristics, and easily missed due to pose and illumination
variations. Therefore, this specific problem may not be
effectively addressed using generic object recognition
approaches. In this paper, we propose a new approach
to address this specific problem by combining global
and local information and utilizing discriminative in-
formation labeled by a human expert. We validate our
approach through experiments on recognizing the make
and model of sedan cars from single view images.

1 Introduction

The problem of object recognition captures a lot of
interest in the computer vision community. This term
usually refers to a whole set of problems of finding an
object in a scene and classifying it into one of a set of
general broad categories representing the generic na-
ture of the object such as vehicles, mugs, or humans.
Hence, the main role of object recognition approaches is
to build a general model for a category that captures the
overall global characteristics of that category as com-
pared to other categories. For example, a perfect recog-
nition technique would learn how a sedan car would ap-
pear, regardless of the specific car make and model.

On the other hand, many applications require the
finer level of object identity recognition, such as car
make and model recognition. In such applications, the
global category of the object is given, and it is required
to recognize the exact object class among similar ob-

jects within the same category. We refer to this problem
as within-category object class recognition. The generic
object recognition approaches may appear to be appli-
cable to within-category scenarios. However, the per-
formance of these approaches fall down considerably in
this case. These failure cases are expected, since the
variations between the within-category objects are of-
ten subtle and minor as compared to variations induced
by clutter and illumination changes.

In order to overcome these challenges, we propose
in this paper a novel approach for within-category ob-
ject class recognition. The first step of our approach
is to extract visually discriminative parts from the
query images corresponding to human-annotated parts
in the gallery images. The correspondence is found us-
ing global shape descriptors, since the within-category
classes share the same global shape and part configura-
tions. The second step is to describe the extracted dis-
criminative parts using local shape and appearance de-
scriptors. Finally, the final matching score to a gallery
image is found by a weighted sum of the global and
local scores. We validate our approach through experi-
ments on recognizing the make and model of sedan cars
from single view images.

2 Related Work

Despite the overwhelming amount of work on global
object recognition, few papers [1, 2] have investigated
the more specific problem of within category object
recognition. In [1], the problem is investigated in the
domain of subordinate-level categorization in the avian
domain. A volumetric framework is used in combi-
nation with an appearance model. Another interesting
form of the problem is investigated in [2], where the au-
thors refer to the problem as visual identification and
attempt to learn discriminative appearance patches.

In the car recognition domain, few attempted the
finer classification problem of identifying car make and
model. However, all of these approaches have treated
the problem in a manner similar to the general object



categorization. For example, [3] attempted to directly
identify car make and model from projected images of
a 3D CAD model. The matching is done based on
features similar to SIFT features but with rotation in-
variance deliberately disabled. [4] also attempted to
identify car make and model but from frontal images
only. Different types of features are extracted from
pre-defined regions and compared to the database cars.
A shape based approach was presented in [5], where
cars are identified from back views only by using fea-
tures extracted from the car backlights and measure-
ments from the car global shape. More recently, [6]
attempted to tackle the problem of within-class car
recognition by combining SURF features and bag-of-
words model with structural verification techniques and
validated their approach on realistic-looking toy car
datasets.

3 Combining Global and local descriptors

The algorithm starts with an edge map sketch of a
gallery image, a group of points uniformly spanning
the edge maps are selected. For each selected edge
point, a global shape descriptor is computed. Another
local shape descriptor is computed for edge points be-
longing to manually-annotated local parts. In addition,
appearance features and their descriptors are extracted
from the manually-segmented regions in each gallery
image. Those parts and regions, annotated by a human
expert, are visually discriminative across different ob-
ject classes of the same category. Finally, the appear-
ance descriptors are indexed in a KD-tree.

In the query phase, an edge map is first computed
using probabilistic boundary detector [7]. The global
shape descriptors of all edge points are computed and
then used to perform a global registration of the query
image to each of the templates, and compute a global
dissimilarity measure. We also use the registration cor-
respondences to extract the corresponding parts to the
manually-annotated discriminative parts of the gallery
images. Local shape and appearance descriptors are
computed for each of these parts, and matched to the
corresponding local descriptors in the gallery images.
The query is assigned to the class with the minimum
weighted sum of the global and local dissimilarity mea-
sures.

3.1 Global shape context descriptor

Shape context (SC) [8] is an effective shape
descriptor for global shape description and finding
correspondence between two set of points belonging to
different objects. The SC descriptor hi at a given object

point pi ∈ {p1...pK} describes the distribution hi of
other object points relative to it. The cost of matching
pi to qj ∈ {q1...qK} belonging to another object is

given by: c(pi, qj) = 1
2

∑K
k=1

[hi(k)−hj(k)]2

hi(k)+hj(k) , while
the correspondence between the two sets of points
can be formulated as an optimal assignment problem
qj = π(pi). This assignment attempts to minimize the
global dissimilarity measure defined by:

Cg =

K∑
i=1

c(pi, qπ(i)). (1)

Due to the global shape similarity between all the
within-category objects, equivalent points of objects
of the same category tend to have close SC descrip-
tors leading to robust registration even in the presence
of outliers. However, the dissimilarity measure Cg in
most cases cannot discriminate between similar look-
ing inter-class objects, mainly due to the coarse quanti-
zation and the log scaling of h.

3.2 Local shape descriptor

Consider an arbitrary sequence of points p∗ =
{p∗1...p∗S} that belongs to a contour labelled by a hu-
man annotator to be visually discriminative across dif-
ferent instances of the same class. Using SC match-
ing, a corresponding sequence q̂∗ = {q̂∗1 ...q̂∗S} is es-
timated. We chose not to use histograms to describe
the shape of local contours to achieve more detailed
and uniform description. Instead, two matrices sim-
ilar to those described in [9] are computed for each
of the two sequences. The first matrix D represents
all pairwise distances, while the second Θ represents
all pairwise orientations among different points of the
same sequence. Pairwise distances and orientations

are defined as Dp∗(i, j) =
S2‖p∗i−p

∗
j ‖2∑S

i=1

∑S
j=1(Dp∗ (i,j))

and

Θp∗(i, j) =
26 (p∗i−p

∗
j )

π ∈ [−π, π] respectively. Two
local dissimilarity measures can be then estimated us-
ing the sum over pairwise distances.

3.3 Local appearance matching

While local shape matching can capture some dis-
tinctive local features such as the shape of the con-
tour of the rear window, it fails to capture the distinc-
tive appearance features of some car parts such as the
backlights or the make logo. Hence, we combine lo-
cal shape matching with local appearance matching to
capture most of the distinctive local parts information.



3.3.1 Parts Segmentation

Since we need to find interest points in the local parts
only of the query image, such as the backlights, we first
segment the relevant part out of the image. A convex
polygon can be estimated to include all contour points
of q̂∗ = {q̂∗1 ...q̂∗S}, provided that S ≥ 3 and the points
are not collinear. This convex polygon is then used as
a segmentation mask to black-out all the query image
except for the relevant local part. This masked image is
then utilized for feature extraction as described next.

3.3.2 Appearance Feature Points Detection, De-
scription, and Matching

Given an image of a local part, we detect a set of key-
points K = {K1,K2, . . . ,KL} using the FAST detec-
tor [10]. Then, these points are described using one
of the DAISY decriptors [11]. We choose to use the
T2 8a 2r6s PCA32 descriptor that gives a good blend
of speed, low error rate, and low dimensions. For fea-
ture matching, the state-of-the-art approach is to match
the set of keypoints K to a database of features using a
K-nearest neighbor (NN) approach with an efficient in-
dexing scheme such as a KD-tree, while using the NN
ratio for discarding outliers as in [12]. For this purpose,
after feature extraction and description of the gallery
images, all the feature descriptors are stored in one KD-
tree corresponding to the local part (e.g. backlights).

The matching between a query image and the top M
matches of the gallery images is then done using a vot-
ing scheme. Consider the jth keypoint Kj in the query
image, the nearest neighbors in the gallery keypoints
macthing Kj , in terms of Euclidean distance, are iden-
tified using a ratio test procedure similar to [12]. For
each keypoint Pi in the gallery, the Euclidean distance
between the descriptor of Pi and the descriptor of Kj is
calculated and then normalized by the outlier distance.
Due to the shell property of high dimensional spaces,
the non-matching points in the gallery images all tend
to lie approximately the same descriptor space distance
away from the query point Kj . This distance is called
the outlier distance. Using the KD-tree, the outlier dis-
tance can be found as the distance to the kth nearest
neighbor. The acceptance of a point Pi can then be done
based on a ratio test, where the ratio, is defined as

Ratio(Kj , Pi) =
‖Desc(Kj)−Desc(Pj)‖

outlier distance
(2)

where Desc(X) is the descriptor of a feature point X .
The ratio test then accepts all the points Pi that have
a ratio, as defined in equation (2), that is higher than
a certain threshold (the ratio test threshold parameter,
R0). We can then define the strength of a match as the

reciprocal of the ratio defined in equation (2). Our vot-
ing scheme then ranks the individual gallery images by
aggregating the strength scores of their individual key-
point matches. Finally, the dissimilarity measure CA
for appearance matching for a gallery image is taken as
the reciprocal of the sum of the strengths of the feature
match pairs belonging to that gallery image, where the
match strength is the reciprocal of the ratio defined in
equation (2). Hence,

CA =
( ∑

Pi∈P,Kj∈K
Ratio(Kj ,Pi)>R0

1

Ratio(Kj , Pi)

)−1
(3)

where P is the set of feature points in a gallery image,
K is the set of feature points in a query image, and R0

is the ratio test threshold parameter.

4 Experimental results

We performed experiments on detecting the make
and model of the ‘car’ category of the Savarese et al.
3D object recognition dataset [13]. We opted for this
dataset because it contains 10 different car makes and
models of Sedan type at different scales, poses, lighting
conditions. Only the rear view was investigated in our
experiments (total of ten cars each having three differ-
ent images)1, and to exclude the effect of background
clutter, we manually segmented the car images in this
dataset from the background. Template descriptors are
built by collecting example images of the 10 different
car makes and models in this dataset from the Inter-
net. We manually cleaned up one image for each class
and used it for extracting edge map sketches used for
global shape descriptors. We manually annotated the
left backlight of each template and used it as a discrimi-
native part. A local descriptor for this part in each class
is computed using the sketch edge points, and the part
images for all the classes constituted the gallery from
which appearance features were extracted and stored in
the parts KD-trees.

Over all the query images, the segmentation preci-
sion was 62.53% and the recall was 79.09% compared
to manual segmentation. This proves the success of the
SC global shape descriptor in establishing correspon-
dence between query and template discriminative parts.
Correct classification rates using different dissimilarity
measures are shown in Table 1. It can be seen that our
proposed approach improves the correct classification
rate over the cases where global or local descriptors

1It is worth noting that the rear view was chosen as an example
view to serve as a proof for the concept of combining local and global
cues.



Desc Global SC
(Cg)

Local angular
(CΘ)

Local
distance

(CD)

Combining
local and global
(Cg, CD, CΘ)

Appearance
(CA)

Our approach
(Cg, CD, CΘ, CA)

Top-1 43.3% 33.3% 26.7% 36.7% 23.3% 53.3%
Top-2 53.3% 53.3% 46.7% 53.3% 40% 60%
Top-3 56.7% 53.3% 56.7% 76.7% 50% 70%

Table 1. Top matches correct classification rates for different similarity measures.

Query First match Second match Third match

√

√

√

√

√

Figure 1. Examples of top-3 matches from
our approach.

alone are used. Some examples of our classification re-
sults are shown in Figure 1.

5 Conclusion and Future Work

In this paper we proposed a new method for within-
category fine grained object class recognition by com-
bining both global and local object information. We in-
vestigated the effectiveness of our approach in the prob-
lem of detecting the make and model of sedan cars.
Though the proposed approach achieved satisfactory
performance results, it would be interesting to test the
the approach with a larger dataset and to measure per-
fromance for different poses, and with other object cat-
egories.
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