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The tumor microenvironment (TME) is greatly multifaceted and immune escape is an

imperative attribute of tumors fostering tumor progression and metastasis. Based on

reports, the restricted achievement attained by T cell immunotherapy reflects the

prominence of emerging other innovative immunotherapeutics, in particular, natural

killer (NK) cells-based treatments. Human NK cells act as the foremost innate immune

effector cells against tumors and are vastly heterogeneous in the TME. Currently, there

exists a rapidly evolving interest in the progress of chimeric antigen receptor (CAR)-

engineered NK cells for tumor immunotherapy. CAR-NK cells superiorities over CAR-T

cells in terms of better safety (e.g., absence or minimal cytokine release syndrome (CRS)

and graft-versus-host disease (GVHD), engaging various mechanisms for stimulating

cytotoxic function, and high feasibility for ‘off-the-shelf’manufacturing. These effector cells

could be modified to target various antigens, improve proliferation and persistence in vivo,

upturn infiltration into tumors, and defeat resistant TME, which in turn, result in a desired

anti-tumor response. More importantly, CAR-NK cells represent antigen receptors against

tumor-associated antigens (TAAs), thereby redirecting the effector NK cells and

supporting tumor-related immunosurveillance. In the current review, we focus on recent

progress in the therapeutic competence of CAR-NK cells in solid tumors and offer a

concise summary of the present hurdles affecting therapeutic outcomes of CAR-NK cell-

based tumor immunotherapies.
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INTRODUCTION

Currently, natural killer (NK) cell-based immunotherapy has
become a promising and advanced scientific research topic in the
context of cancer immunotherapy, either solid tumors or
hematological malignancies (1). NK cells are innate
lymphocytes holding a spectrum of functional aptitudes,
comprising anti-cancer, anti-viral, and anti-graft-versus-host
disease (GVHD) functions (2). They act as the foremost
effector cells against tumor in innate immunity and are greatly
heterogeneous in the microenvironment. Today, some
restrictions such as the failure of T cells to identify and kill
HLA-I negative tumor cells hinder their clinical efficacy (3); new
strategies for cancer immunotherapy are emphasizing NK cells.

For the first time, NK cells were recognized in the 1970s as an
exclusive lymphocyte subclass capable to identify and rapidly kill
abnormal cells in the absence of prior sensitization or detection
of specific tumor antigens, enabling shrinkage of the tumor (4). A
few years later, it was shown that NK cells could lyse an MHC
class I negative lymphoma cell line, while the original MHC class
I positive cells were resistant to lysis. This delivered the proof of a
hypothesis citing that NK cells are capable of sensing the lack of
“self”MHC class-I molecules on cancerous cells, which is known
as “missing self-hypothesis” (5). Later, this premise was
supported following the discovery of inhibitory (6) and
activating NK receptors (7). Based on the literature, the chief
NK inhibitory receptors are the killer Ig-like receptors (KIRs)
which identify allotypic determinants mutual by groups of HLA
class-I alleles (8), and CD94/NKG2A heterodimer (9) which
recognizes the non-classical HLA-E molecule. The activating NK
cell receptors include a variety of non-HLA-specific receptors
and co-receptors capable to elicit NK cell stimulation via straight
interaction with ligands overexpressed or expressed de novo on
malignant cells (10, 11).

Triggered NK cells can kill cancerous cells by direct cell
cytotoxicity and/or generation of pro-inflammatory cytokines.
In addition to the releases of perforin and granzymes for tumor
cell elimination, NK cells exert antibody-dependent cellular
cytotoxicity (ADCC) by the membrane receptor CD16 or
apoptotic axis intermediated by Fas ligand (FasL) or TNF-
related apoptosis-inducing ligand (TRAIL) (Figure 1) (12, 13).
Furthermore, modulation of anti-tumor immune responses
by NK cells leads to secretion of cytokines and chemokines
including interferon-g (IFN-g) and granulocyte-macrophage
colony-stimulating factor (GM-CSF) (14). Although NK cells
can identify and eliminate tumor cells; malignant cells
continue to advance their mechanisms to avoid identification
by NK cells or limit NK cells activities. Tumor cell immune
evasion is thought to mainly rely on the generation of
immunosuppressive cytokines or chemokines, ranging from IL-
10 and transforming growth factor-beta (TGF-b) to the soluble
IL-2 receptor (sCD25), CXCL9, and CXCL10 (15–17). As well,
transformed cells can attenuate the expression of tumor-

associated antigens (TAAs) (18) and also raise the expression
of MHC class I-related molecules (19) to obstruct NK
cells activation.

Recent observations have indicated that engineering NK cells
to express a chimeric antigen receptor (CAR) can defeat immune
evasion (20). In addition to an array of strategies such as CAR T
cells, checkpoint inhibitors, antibodies, antibody–drug
conjugates, and tumor vaccinations, the progress of “off-the-
shelf” CAR-modified NK cells is considered as an emerging
and rapidly evolving approach in the advancement of potent
anti-cancer immunotherapeutic products (21). These CAR-
modified cells express antigen receptors toward TAAs, which
redirect their effector functions and improve tumor-specific
immunosurveillance (20). A large number of preclinical
studies have been executed, and some clinical trials are being
carried out to address the clinical efficacy of CAR-NK cells in
human tumors. Herein, we will discuss CAR-NK cell’s
therapeutic potential for treating solid tumors, focusing on
in vivo researches, and also will deliver a brief overview of
existing challenges in the context of CAR-NK cell-based
cancer immunotherapy.

NK CELLS IN THE TUMOR
MICROENVIRONMENT

The importance of NK cells in cancer is not limited to only
hematological malignancies. Recent reports indicate that NK
cells contribute to the modification of extravascular tumor
growth, and to the primary steps of oncogenesis. Recent
investigations have revealed that cancerous cells could progress
more rapidly in spontaneous leukemia and prostate cancer
models wherein the NK cells were exhausted, compared to
those with normal NK cell activity (22). Correspondingly, fully
advanced tumors from NK-cell-deficient rodents could present
ligands for NKG2D, while tumors from NK-competent rodents
did not show these ligands, thus signifying that tumors evolving
in these rodents had been modulated by NK cells (22). In this
regard, the prognostic importance of NK cells in patients
suffering from colorectal carcinomas was first evidenced by
Coca et al. (23) showing that patients with lower NK
infiltration experienced shorter survival rates compared with
those with widespread infiltration. Meanwhile, some studies
proposed that the rate of tumor-infiltrating NK cells performed
as an influential factor to determine the survival of patients with
squamous cell lung cancer (24). However, Vaquero et al. study
didn’t support the existence of an association between the rate of
NK-cell infiltration inside resected brain metastases and the
period free of intracranial disease in patients with lung
adenocarcinoma (25). Nevertheless, the number of cancer
types in which a correlation between intratumoral NK-cell
levels and prognosis has been established and is progressively
rising. Indeed, regardless of recruitment into the solid tumors,
NK cells can functionally affect the host–tumor relationship. Sun
et al. found that NK cells density in the blood and tumor tissues
of hepatocellular carcinoma (HCC) patients could be certainly
associated with survival and prognosis. On the other hand, a
cluster of NK cells-related genes in HCC tissues is related with
sustained survival, therefore implying that NK cells and HCC
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development are strongly associated (26). Moreover, it seems
that any abnormalities in NK cells functions in patients with
chronic Hepatitis B virus (HBV) and hepatitis C virus (HCV)
infections affect HCC development, and also depletion of NK
cells that presents lesser cytotoxicity and compromised cytokine
generation may serve as a prognosticator for HCC incidences
(26). Molecular analysis displayed that impairment in NK cells-
exerted cytotoxicity against cancer cells relies on unregulated
signaling and expression of stem cell factor (SCF), c-myc, and
signal transducer and activator of transcription 3 (STAT3) in NK
cells (27). In STAT3 deficiency, NK cells progress typically and in
normal frequencies, while show modifications in the kinetics of
IFN-g generation through direct bindings to IFN-g promoter
(28). In a variety of preclinical models of hematological
malignancies, STAT3 deficiency in NK cells improves tumor
surveillance, recommending that STAT3 inhibitors could trigger
the NK cells-induced cytotoxicity against leukemia (28).
Moreover, a study in 320 patients with stage II colon cancer
suggested that the density of NK cells is linked with the lymph
nodes (LNs) frequencies and is an independent predictive factor
(29). Similarly, a study in 180 gastric cancer patients verified a
significant association between the NK cells percentage and
overall survival of enrolled participants (30). NK cells number
was directly related to lymphocyte count and albumin but was
conversely related to cancer antigen 125 (CA 125) and
neutrophil–lymphocyte ratio. Remarkably, patients at early

clinical stages had superior NK cell numbers over those at
advanced clinical stages of gastric cancer (30).

CARS STRUCTURES AND FUNCTIONS

To date, most CAR-NK cell surveys use CAR constructs designed
for CAR-T cells. Lately, new specific CAR constructs have been
designed for NK cells, and diverse CAR constructs displayed
variable influences on cytotoxicity and cytokine generation in
NK cells (31).

Briefly, CAR is an engineered altered fusion protein based on
the T cell receptor, encompassing an extracellular antigen
identifying domain bonded to a diversity of intracellular
signaling domains (32). The extracellular domain of CARs is
typically an antibody single-chain variable fragment (scFv)
detecting the specific antigen, which is regularly overexpressed
on or is specific to cancer cells, and this detection is in the
absence of presentation by major histocompatibility complex
(MHC) molecules, similarly to an antibody (33). The
intracellular domains commonly consist of CD28, 4-1BB, or
OX40 for sustaining engineered-cell activation, and CD3z for
cytotoxicity. While 4-1BB/CD28-comprising CARs that were
firstly exploited in T cells could stimulate anti-cancer functions
following use in NK cells; NK cells with 2B4 (CD244), a well-
known NK-specific co-stimulatory domain, -comprising CAR

FIGURE 1 | Mechanisms of NK cell cytotoxicity against tumors. The Fc receptor CD16 is presented on NK cells following the identification of antibody-coated cells

stimulates a signal to NK cells, enabling tumor cell eradication by direct lysis and cytokine generation. Despite the secretion of perforin and granzymes for tumor cell

killing, NK cells elicit ADCC via the membrane receptor CD16, or apoptotic axis mediated through FASL and TRAIL. Furthermore, BiKEs and TRiKEs that induce NK

cells toward one or more TAAs are the capable strategies for treating human solid tumors; on the other hand, CARs re-direct NK cells against tumor cells showing

specific antigens, making key opportunities in the battle toward tumors. NKCs, Natural killer cells; BiKEs, Bispecific killer cell engagers; TRiKEs, Trispecific killer cell

engagers; TAAs, Tumor-associated antigens; TRAIL, Tumor necrosis factor-related apoptosis-inducing ligand; FasL, Fas ligand; ADCC, Antibody-dependent cellular

cytotoxicity; CARs, Chimeric antigen receptors.
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showed improved cytotoxic function, triggered rapid
proliferation, augmented cytokine releases, and diminished
apoptosis compared to NK cells bearing the typical 4-1BB
comprising CAR (34). Besides, CARs containing signaling
domain DAP12 showed more prominent anti-cancer potentials
in primary NK cells or NK92 cell lines compared to CD3z
containing CARs (35).

Genetically-altered T cells expressing a CAR can detect CAR-
targeted antigen and thereby induce T cell activation,
proliferation, cytokine secretion, and cytotoxicity toward
tumor cells that express specific antigens (36). Accordingly,
CAR-modified T cell therapy resulted in appreciated
achievement for treating hematological malignancies,
containing lymphoma, chronic lymphocytic leukemia (CLL),
and acute lymphoblastic leukemia (ALL) (37, 38). Especially,
CD19-targeting CAR-T cells lead to complete response rate of 70
to 90% in patients suffering from ALL (39), while display usually
non-significant clinical efficacy for solid tumors (36, 40). Due to
the incidence of GVHD elicited by allogeneic T cells which
impedes their clinical use, patient autologous cells are required
for the construction of CAR-T cells (41). Alike with CAR-
expressing T cells, CAR-NK cells show sustained tumor-
specific targeting and cytotoxicity against cancer cells.
Prominently, NK cells possess various superiorities over T cells
in CAR-targeted immunotherapy, in particular, offering the
chance of allogeneic NK cell application as GVHD rely usually
on T cell, not NK cells. On the other hand, CAR-NK cells seem to
be safer than CAR-T cells since they commonly do not induce
cytokine storms (42, 43). In the next sections, we will explain in
depth the differences between these two types of engineered cells
and their potent advantages and disadvantages.

NK CELLS SOURCE AND TRANSDUCING
PROCESS FOR CAR-NK GENERATION

To generate CAR-NK cells, NK cells have been firstly obtained
from various sources and then transduced using varied vectors
(Figure 2) (44). We will discuss various sources of NK cells and
also evaluate transduction procedures applied typically to
establish effector CAR-NK cells.

Source
NK cells are found in peripheral blood (PB) and umbilical cord
blood (UCB) and also can be derived from stem cell sources,
ranging from hematopoietic stem cells (HSCs) to human
pluripotent stem cells (hiPSCs) (45, 46). The clinical scale
expansion of NK cells enables the production of sufficient cells
for immunotherapy. Further, allogenic NK cells can be utilized as
effector cells because they are not responsible for GVHD but they
improve graft-versus-leukemia (GVL) (47).

While PB-NK cells can be easily obtained, low transduction
efficiency along with poor expansion restrict their use (48).
However, NK cells can be established in large numbers from
hiPSC and are more permissive to engineering (49). Moreover,
UCB-NK cells are more readily engineered because of their

greater proliferative competence, as has been evidenced in the
first available clinical trial of CAR-NK cells (50). Nonetheless, a
potential difficulty is the comparatively immature nature of
UCB-NK cells, leading to condensed cytotoxicity in
comparison to PB-NK cells (51). Compared to PB-NK cells,
UCB-NK cells express comparable levels of CD56, NCRs
(NKp46 and NKp30) and NKG2D but a lower levels of CD16,
adhesion molecules (e.g., CD2, CD11a, CD18, CD62L), KIRs,
DNAM-1, NKG2C, IL-2R and CD57, and CD8 concomitant
with a higher level of inhibitory receptor NKG2A (Figure 3) (52,
53). Although cell lines such as NK-92 are relatively easy to
engineer; there are challenges related to the safety concerns, and
the fact that they must be lethally irradiated before injection,
impedes their persistence in the host consequently (43, 54).
Currently, feeder cell lines are available to expand NK cells ex
vivo. These MHC-negative cell lines, most importantly K562, are
frequently engineered to generate IL-15 and IL-21 and are
irradiated before use (55). Finally, NK cells can be generated
from CD34-positive cells from the BM or UCB. These cells are
usually similar to PB-NK cells and show functionality, the
capability to eliminate leukemic cell lines and patient’s tumor
cells, and also generate cytokines following exposure to various
stimuli in vitro and in vivo, while exhibiting low rates of
inhibitory receptors (56).

Transduction
Transduction denotes introduction of genetic material using
viral vectors, containing the retroviral and lentiviral-based
vectors (57). Throughout the life-cycle of retroviruses, viral
RNAs are reverse transcribed into double-stranded cDNA that
subsequently integrate into the target cell’s genome semi-
randomly. Owing to this fact, this approach usually takes
longer till the genes are expressed (58). Vectors constructed by
these pathogens possess some benefits, which make it
comparatively simple to form complex vectors and then insert
them into the target cells. Normally, these vectors are up to 10 kb
in size without experiencing substantial loss of titer throughout
manufacture, permitting the introduction of up to 7–8 kb (59).
Besides, these vector’s integration support cell’s prolonged
alteration in the lack of antibiotic resistance markers, and then
altered cells typically are upheld in the host during a long
duration (60). Rendering reports, NK cell susceptibilities to
external genetic material accompanying the demanding
procedure of transduction usually leads to low rates of
transduction along with high apoptosis, making the NK cells
transduction efficiency lower than T-cells (59). It is because of
the resistance to viral transduction exerted by the innate immune
system directed by pattern recognition receptors identifying
foreign genetic material (61). Given this problem, the use of
PDK1 inhibitors such as BX795 is recommended as they
negatively regulate the induction of signaling pathways elicited
by RIG-I-like receptors or Toll-like receptor 3 (TLR3) (62), and
eventually promote lentiviral transduction efficiency up to ~4
fold (63). However, to obtain sufficient transgene expression in
this strategy, commonly a series of transduction is required.

Compared to gene expression using viral vectors, CAR
expression via non-viral-based approaches is typically short-
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lived, and lasts for a few days (64). Though, the permanent
expression can be attained when the sequence is integrated
through particular systems, such as transposon-based systems
(64, 65). Moreover, nucleic acid integration is also carried out via
electroporation, a well-known simple and cost-effective tactic,
providing large-scale clinical applications (66, 67). A foremost
drawback of electroporation is that permeabilization of cell
membrane by electric pulses may lead to loss of a large
number of cells due to formation of enduring membrane
leakage (68).

In sum, the insertion of foreign genetic material and
succeeding proliferation of NK cells is challenging, thus
delaying the advances of feasible and reproducible GMP
practices. Accordingly, selection of more appropriate and
effective transfection approaches is an influential step for
conduction of a successful clinical trial.

CAR-NK CELLS SUPERIORITY OVER
CAR-T CELLS

Regardless of the initial success of CAR-T cell therapy,
specifically in hematological disorders, its large-scale clinical
use is restricted through the individualized preparation and
several unwanted effects, encompassing CRS, CNS-related
toxicity, and also on-target/off-tumor effects (37). Given these
problems, NK cells have been suggested to be superior CAR

drivers than T cells. Especially, NK cells pose some benefits to T
cells in the context of CAR-based cancer immunotherapy. In this
regard, CAR-expressing NK cells seem to be safer than CAR-T
cells in clinical application, and NK cell immunotherapy is
considered a safe and feasible therapeutic approach, as shown
by various clinical trials’ outcomes (69). For instance, some phase
I/II trials have indicated that allogeneic NK cell administration is
well-tolerated and does not result in GVHD and other severe
unwanted events (70–72), pointing that NK cells are general
CAR drivers without any restriction to autologous cells.
Moreover, on-target/off-tumor effects mediated by the
persistence of CAR-T cells are chief side effects in CAR-T cell
therapy. For example, CD19 CAR-T-cells boost intense and
ongoing B-cell deficiency, which may depend on the cellular
memory of T cells and activation of either normal mature or
progenitor B cells (73). Conversely, the restricted lifespan of
CAR-NK cells in the circulation supports limited on-target/off-
tumor effects (43). Additionally, there are differences between
cytokines established by NK cells and those generated by T cells.
Stimulated NK cells typically produce IFN-g and GM-CSF, while
the cytokine storm exerted by CAR-T cells is mostly achieved by
pro-inflammatory cytokines (e.g., TNF-a, IL-1 and IL-6) (74,
75). Despite eliminating cancerous cells by a CAR-specific
mechanism which involves tumor-related antigen ’s
identification through scFv, NK cells naturally eliminate
malignant cells by detecting various ligands through a diversity
of activating receptors, such as natural cytotoxicity receptors

FIGURE 2 | Sources and generation procedure of CAR-NK cells. Isolated or established NK cells from various sources (e.g., PB, UCB, HSCs, hESCs, and hiPSCs)

can be activated and genetically modified with CAR-expressing vectors (e.g., lentivirus or retrovirus) and then cultivated in NK cell-specific expansion media with

cytokines for GMP-grade clinical use. UCB, Umbilical cord blood; PB, Peripheral blood; hiPSCs, Human induced pluripotent stem cell; hESC, Human embryonic

stem cell; HSC, Hematopoietic stem cell; CAR-NK, Chimeric antigen receptor-natural killer cells; GMP, Good manufacturing practice.
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(NKp46, NKp44, and NKp30), NKG2D and DNAM-1 (CD226)
(76). Indeed, these receptors typically identify stress-elicited
ligands presented on cancer cells following initial exposure
with immune cells or lasting treatment throughout tumor
development. Also, NK cells facilitate the antibody-dependent
cell-mediated cytotoxicity (ADCC) by FcgRIII (CD16) (77).
CAR-T cells cannot eliminate malignant cells that are vastly
heterogeneous (78); however, CAR-NK cells are capable of
efficiently killing residual malignant cells that can modify their
phenotypes following lasting treatment.

NK cells, as previously described, are found frequently in
clinical samples and can be procured or generated from PB,
UCB, hESCs, iPCSs, and even NK-92 cell lines. NK-92 cells
deliver a homogeneous cell inhabitant and can be simply
cultivated under reliable manufacturing practice standards for
wider clinical use, allowing the “off-the-shelf” construction of
CAR-NK-92 cells (2). Stimulated PB-NK cells present a broader
series of activating receptors and can be infused without
irradiation, permitting them to grow in vivo (79). NK cells
derived from pluripotent stem cells, iPSCs and hESCs, merge
the clinical benefits of PB-NK and NK-92 cells because they show
a phenotype similar to PB-NK cells and are a homogeneous
inhabitant. Notably, CARs are simply expressed in hESC- and/or
iPSC-established NK cells via nonviral gene transfer
strategies (80).

CAR NK CELLS IN SOLID TUMORS

As cited, CAR NK cells re-directed against cancer cells carrying
particular antigens, make a chief prospect in the battle against
cancer. Modified NK cells can be utilized as general CAR cells in
the absence of any requirement for HLA matching or prior
exposure to TAAs. Stimulating results from various studies have

improved attentiveness in the ground of cancer immunotherapy
due to competence of CAR-NK cells in manufacture of “off-the-
shelf” anti-tumor immunotherapeutic products (Tables 1 and 2).

CAR NK in Neuroblastoma (NB)
Neuroblastoma (NB) is the most mutual extracranial tumor in
children with a 5-year mortality rate of ~50% in the high-risk
group (110). Though dinutuximab, a monoclonal antibody
against ganglioside GD2, has revealed promising capacity to
promote overall NB outcomes, it doesn’t considerably improve
the 5-year overall survival of high-risk patients (111). Currently,
it has been suggested that frequency of NK cells may sponsor
improved outcomes in NB. Indeed, NK cells hamper tumor-
associated macrophages (TAMs) and myeloid-derived
suppressor cells (MDSCs), eliminate neuroblasts and cancer
stem cells (CSCs), and vigorously release cytokines to recruit
supplementary immune effectors (112, 113).

NK cells bearing activating receptor NKG2D fused to the
cytotoxic z-chain of the T-cell receptor (NKG2D.z) could target
NKG2D ligands-overexpressing MDSCs within the TME (114).
Significantly, NKG2D.z-NK cells could produce a variety of
proinflammatory cytokines and chemokines in response to
MDSCs at the tumor area and promote recruitment and anti-
cancer activities of subsequently administrated CAR-T cells. In
vivo, NKG2D.z-NK cells produced from patients suffering from
NB could eradicate autologous intratumoral MDSCs which
regularly hinder CAR-T activities (114). Moreover, Seidel and
colleagues found that GD2-CAR-NK-92-scFv (ch14.18)-zeta, in
addition to the exertion of remarkable cytotoxicity toward GD2-
positive CHLA-20 NB cell line in vitro, could elicit a substantial
anti-tumor response in a drug-resistant GD2-positive NB
xenograft murine model (115). GD2-CAR-NK-92-scFv
(ch14.18)-zeta meaningfully improved the median survival rate
of the NB xenograft murine model to 52 days, while the median

FIGURE 3 | Differences between UCB-NK cells and PB-NK cells phenotypic attribute. UCB-NK cells show lower expression levels of CD16, CD2, CD11a, CD18,

CD62L, KIRs, DNAM-1, NKG2C, IL-2R, CD57, and CD8 along with higher expression levels of NKG2A and CXCR4 compared with PB-NK cells. UCB, Umbilical

cord blood; PB, Peripheral blood; KIRs, Killer Ig-like receptors; DNAM-1, DNAX accessory molecule-1; NKG2C, NK cell group 2 isoform C; NKG2A, NK cell group 2

isoform A; CXCR4, C-X-C chemokine receptor type 4.
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survival rate of control groups was 30 days. Observations
indicated that detection of GD2 by CAR is the principal
mechanism contributed to NK-92-scFv (ch14.18)-zeta-achieved
killing and is independent of activating NK cell receptor/ligand
interactions (115). Also, GD2-NK-92-scFv (ch14.18)-zeta could
provide effective detection and eradiation of GD2-positive NB
cells that were resistant to parental NK-92. Intensely boosted
cytotoxicity of the GD2-specific NK cells toward primary NB
cells and GD2-expressing tumor cells of other origins, signify
potential clinical application of the redirected NK cells (94).

CAR NK in Glioblastoma (GB)
Glioblastoma (GB) is the most invasive and most shared primary
brain cancer identified in adults. It displays a poor prognosis,
and existing treatment options are incapable of alleviating
its clinical outcome, emphasizing the importance of developing
innovative therapeutic strategies (116). Unfortunately, GB
microenvironment can suppress immune cell activities via varied
procedures, most importantly, recruitment of cell modulators.
GB immunotherapy consists of diverse immune cells, including

dendritic cells, cytotoxic T lymphocytes, and also NK cells
(117, 118).

Molecular analysis has evidenced that epidermal growth
factor receptor (EGFR) and its mutant form EGFRvIII are
commonly overexpressed in GB, and immunotherapy based on
EGFRvIII-specific vaccine has resulted in promising outcomes in
GB clinical trials (119). Studies have shown that ErbB2 (also
called human epidermal growth factor receptor 2 (HER2))-CAR-
NK-92/5.28.z cells in contradiction of untargeted NK-92 cells
could eliminate ErbB2-positive GB cells in vitro (101). Also,
significant in vivo anti-cancer potential of modified NK cells was
detected in orthotopic GB xenograft models in NSG mice,
as evidenced by the improvement of median survival of
transplanted models with ErbB2-CAR-NK-92/5.28.z cells to
200.5 days compared with 73 days in models treated with
parental NK-92 cells (101). Importantly, another study
suggested that EGFRvIII-CAR-NK-92 cells only could kill
EGFRvIII-positive GB cells, whereas dual-specific NK cells
showing EGFR inhibitor cetuximab-based CAR could trigger
cytotoxic effects toward both EGFRvIII-positive and -negative

TABLE 1 | Overview of in vitro studies based on CAR-NK cell therapy for solid tumors.

Condition Target Ag Main results Ref

Colorectal

cancer

EpCAM Recognition of EpCAM-positive colorectal cancer cells and the secretion of cytokines, such as IFN-g, perforin, and granzyme B,

and showing specific cytotoxicity by EpCAM-CAR-NK-92 (81)

Ovarian cancer aFR The elimination of aFR-positive ovarian cancer cells by aFR-CAR-NK-92 cells

(82)

Hepatocellular

carcinoma

GPC3 Significant in vitro cytotoxicity and cytokine production by GPC3-CAR-NK-92 cells

(83)

liver cancer c−MET Remarkable cytotoxicity against HepG2 cells with high c−MET expression by c−MET−CAR−NK cells in comparison with the lung

cancer cell line H1299 that demonstrate low rates of c−MET expression (84)

Breast cancer EGFR EGFR-CAR-NK cell activation by TNBC cells resulted in cytotoxicity against these TNBC cells

(85)

Colorectal

cancer

CEA Targeting CEA-positive HCT116 cells and stimulating their elimination by CEA-CAR-NK cells

(86)

Gastric cancer HER2 The killing of gastric cancer cells expressing HER2 mediated by the promotion of the cytokine releases by HER2-CAR-NK-92

(87)

Pancreatic

cancer

Mesothelin Successful engraftment of mesothelin-CAR-NK-92 cells along with interferon-g and granzyme B secretion, and specific

elimination of pancreatic cancer cell lines

Breast cancer HER2 Specific elimination of HER2-expressing tumor cells, and serial target cell killing by HER2-CAR-NK-92 cells

(88)

Glioblastoma EGFRvIII Specific elimination of EGFRvIII-positive glioblastoma cells by EGFRvIII-CAR-NK-92 cells

(89)

Lung cancer NKG2D Antitumor function against human lung cancer H1299 cells by NKG2D-CAR-NK cells

(90)

Various cancers HER2 Antitumor function against HER2-positive tumor cells by HER2-CAR-NK-92 cells

(91)

Breast cancer HER 2 Induction of elimination of HER2−expressing human breast cancer cell lines MDA-MB-453 and SKBr3 by HER2-CAR-NK-92

cells (92)

Glioblastoma EGFRvIII Suppression of glioblastoma cell-growth upon induction of apoptosis by EGFRvIII-CAR-NK-92 cells

(93)

Neuroblastoma GD2 Effective recognition and elimination of GD2 expressing neuroblastoma cells by GD2-CAR-NK-92 cells

(94)

Breast cancer EpCAM Promoted selective cytotoxicity against EpCAM-expressing breast carcinoma cells by EpCAM-CAR-NK-92 cells

(95)

Ovarian cancer HER2 Specifically activation of HER2-CAR-NK cells following recognition of HER-2 positive tumor cells concomitant with high levels of

cytokine release and degranulation (96)

Glioma and

Neuroblastoma

Robo1 The specific cytotoxicity of Robo1-CAR-NK-92 cells against glioma and neuroblastoma accompanied by secretion of a variety of

cytokines including IL-6, IL-10, TNF-a and IFN-g (97)

EpCAM, Epithelial cell adhesion molecule; aFR, Folate receptor alpha; GPC3, Glypican 3; EGFR, Epidermal growth factor receptor; CEA, Carcinoembryonic antigen; HER2, Human

epidermal growth factor receptor 2; NKG2D, Natural killer group 2 member D; Robo1, Roundabout homolog 1; TNBC, Triple-negative breast cancer.
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GB cells in vitro (89). In vivo, local application of dual-specific
NK cells showed superiority over treatment with the
corresponding monospecific CAR NK cells in xenografts GB
models, supporting promoted survival without triggering fast
immune escape as commonly detected following treatment with
monospecific effectors (89). Moreover, further modification of
EGFRvIII-specific NK cells with the chemokine receptor CXCR4
could provide particular chemotaxis to CXCL12/SDF-1a-
producing U87-MG GB cells, and consequently improve
survival of xenografts compared to treatment with NK cells
expressing only EGFRvIII-specific CAR (105). Interestingly,
EGFR-CAR-NK cells have shown more prominent cytolytic
competence and IFN-g secretion succeeding co-culture with GB
cells or patient-derived GB stem cells, thus eliciting inhibition of
tumor development leading to the promoted tumor-bearing mice
survival in orthotopic GB xenograft models (108).

CAR NK in Liver Cancers
The great introduction of antigens makes the liver a significant
immunological organ whose exclusive microenvironment forms
both innate and adaptive immune reactions for supporting a
precise balance between immune tolerance and immune
activation. Deregulation of immune responses in the liver is

responsible for the pathogenesis of various hepatic diseases,
containing viral hepatitis, autoimmune disorders as well as
tumors (120). The liver immune system includes varied innate
effectors, including NK cells, NKT cells, gamma delta (gd) T cells,
and adaptive lymphocytes, such as ab T cells and B cells. The
probability of the modification of NK cell activities has recently
been introduced as an innovative treatment option for liver
disorders, as proved for infections and tumors (121).

Recently, glypican-3 (GPC3) has been described as a logical
immunotherapeutic target for hepatocellular carcinoma (HCC).
GPC3-specific NK-92/9.28.z cell treatment could lead to
substantial in vitro cytotoxicity and cytokine generation
against HCC cells (83). As well, modified NK-92/9.28.z cells
were capable of induction of cytotoxicity in multiple HCC
xenografts with either high or low GPC3 expression, but not
GPC3-negative models. Potent infiltration of NK-92/9.28.z cells
reduced the tumor development along with boosted tumor cell
eradication in the GPC3-positive HCC xenografts, which
suggested clinical efficacy of GPC3-specific NK-92/9.28.z cell in
HCC (83). Moreover, evaluating the specificity and efficiency of
c−MET−specific−NK cells against human c−MET−positive
HepG2 revealed that c−MET−CAR−NK cells induced more
specific cytotoxicity against HepG2 cells with high c−MET

TABLE 2 | Overview of in vivo studies based on CAR-NK cell therapy for solid tumors.

Condition Target

Ag

Main results Ref

Colorectal cancer EpCAM Suppression of colorectal cancer growth upon combination therapy with regorafenib and EpCAM-CAR-NK-92 cells in EpCAM-

positive tumor xenografts model

(81)

Ovarian cancer GPC3 The significant therapeutic effect resulted in prolonged survival of the mouse xenograft model of ovarian cancer upon injection

of GPC3-CAR-iPSC-NK cells

(98)

Ovarian cancer aFR Inhibition of cancer cells growth in a mouse xenograft model of ovarian cancer leading to the knowingly extended survival of

tumor-bearing mice by aFR-CAR-NK-92 cells

(82)

Hepatocellular

carcinoma

GPC3 Significant anti-tumor activities of GPC3-CAR-NK-92 cells against hepatocellular carcinoma xenografts with both high and low

GPC3 expression, as showed by reduced tumor proliferation, and boosted tumor apoptosis

(83)

Ovarian cancer NKG2D Significantly improved antitumor activities in mice carrying established peritoneal ovarian cancer xenografts by NKG2D-CAR-

NK cells

(99)

Breast cancer EGFR Inhibition of breast tumors proliferation in mice models by EGFR-CAR-NK cell (85)

Hepatocellular

carcinoma

CD147 Stimulation of apoptosis by CD147-CAR-NK cells in a human CD147 transgenic mouse HCC model (100)

Gastric cancer HER2 Eliminating of small but not larger gastric tumor xenografts by HER2-CAR-NK-92 cells (87)

Glioblastoma HER2 Potent in vivo antitumor responses of HER2-CAR-NK-92 cells in orthotopic glioblastoma xenograft models in NSG mice (101)

Pancreatic ductal

adenocarcinoma

Robo1 Exerting anti-tumor effects on pancreatic cancer in an orthotopic nude mouse model by Robo1-CAR-NK-92 cells (102)

Lung cancer B7-H3 Inhibition of tumor growth in mouse xenografts of non-small cell lung cancer and promotion of survival of transplanted mice by

B7-H3-CAR-NK-92 cells

(103)

Lung cancer NKG2D Eliciting of cytotoxicity against CD73-positive human lung cancer xenograft models by NKG2D-CAR-NK cells (104)

Breast cancer

Renal cancer

HER2 Specific lysis of tumor cells and anti-tumor functions exerted by HER2-CAR-NK-92 cells in orthotopic breast carcinoma

xenografts, and decrease of lung metastasis in a renal cell carcinoma model by HER2-CAR-NK-92 cells

(88)

Glioblastoma EGFRvIII Complete tumor remission resulted in promoted survival by EGFRvIII-CAR-NK cells in the murine model (105)

Breast cancer HER2 Elimination of HER2-positive tumors, as showed by MRI analysis upon systemic injection of HER2-CAR-NK cells (106)

Breast cancer HER 2 Reduction in tumor volume and lung metastasis of nude mice bearing established MDA-MB-453 cells upon injection of HER2-

CAR-NK-92 cells

(92)

Hepatocellular

carcinoma

NKG2D Inhibition of tumor growth in a hepatocellular carcinoma xenograft tumor model by NKG2D-CAR-NK-92 cells (107)

Glioblastoma EGFRvIII Inhibition of tumor growth and promoted survival rate of the orthotopic glioblastoma xenograft mouse models following

intracranial injection of EGFRvIII-CAR-NK-92 cells

(108)

Glioblastoma HER2 Eliciting of endogenous antitumor immunity upon treatment with HER2-CAR-NK-92 cells in glioblastoma xenograft mouse

models

(109)

EpCAM, Epithelial cell adhesion molecule; aFR, Folate receptor alpha; GPC3, Glypican 3; EGFR, Epidermal growth factor receptor; HER2, Human epidermal growth factor receptor 2;

NKG2D, Natural killer group 2 member D; Robo1, Roundabout homolog 1; iPSCs, Induced pluripotent stem cells.
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expression than H1299 cells, a human lung cancer cell line with
low c−MET expression, suggesting that c−MET could be a
rational target for CAR−NK immunotherapy in liver cancer
(84). In another study, T and NK cells transduced with a
CD147-specific CAR could efficiently eliminate several HCC
cell lines in vitro and HCC tumors in xenograft murine
models. The use of logic-gated (log) GPC3-synNotch-inducible
CD147-CAR for reducing on-target/off-tumor toxicity in HCC
showed that LogCD147-CAR could selectively eliminate dual
antigen (GPC3-positive CD147-positive), but not single antigen
(GPC3-negative CD147-positive) positive HCC cells without any
serious on-target/off-tumor toxicity in a human CD147
transgenic murine model (100). Besides, respecting the TGF-b
capability to inhibit NK cell function, Wang and his coworkers
genetically modified NK-92 cells to present a chimeric receptor
with TGF-b type II receptor extracellular and transmembrane
domains associated with intracellular domain of NKG2D,
termed as TN chimeric receptor. In vitro, NK-92 cells
expressing TN receptors displayed potent resistance against
TGF-b-elicited inhibitory signaling, and triggered higher
cytolytic competence and IFN-g secretion toward tumor cells
(107). More excitingly, NK-92 cells presenting TN receptors
demonstrated a higher infiltration rate to tumors expressing
TGF-b, and also reserved the differentiation of human naïve
CD4-positive T cells to regulatory T cells. Also, NK-92-TN cell
infusion resulted in suppressed tumor development in an HCC
xenograft murine model, thereby implying that these chimeric
receptors could be utilized to increase anti-cancer efficacy in NK
cell adoptive therapy (107).

CAR NK in Breast Cancers
The growth of breast tumors is a complicated procedure
comprising several cell types. HER2 has been introduced as a
pivotal oncogene in breast cancer, which its activation is
mediated mainly via gene amplification and re-arrangement
(122–124). Overexpression of HER2 usually is detected in
about 20% of primary breast cancers accompanying by poor
prognosis and mainly promote CSCs proliferation through
PTEN/Akt/mTORC1 axis (125).

In vivo, infusion of NK-92-scFv (FRP5)-zeta cells presenting
HER2-specific CAR resulted in the elimination of HER2-
expressing human breast tumor cells (126). As well,
investigation of the capacity of focused ultrasound (FUS) to
deliver targeted NK-92 cells to the brain using a model of
metastatic breast cancer verified FUS capabilities to augment
the targeting of iron-loaded immune cell therapy of brain
metastases, as shown by MRI test 16 h following treatment
(126). Moreover, studies delivered proof of the concept that
EGFR-CAR-NK cells could be applied for treating patients
suffering from triple-negative breast cancer (TNBC) displaying
heightened EGFR expression. EGFR-CAR-NK cells could
stimulate potent cytotoxicity against TNBC cell lines, HS578T,
MDA‐MB‐468 and MDA‐MB‐231 cells, with upregulated EGFR
expression and selectively stimulated lysis of these cells in vitro
(85). EGFR‐CAR-NK cells co‐cultured with TNBC cells showing
promoted EGFR expression produced greater rates of IFN‐g,
granzyme B and perforin compared to EGFR‐CAR-NK cells in

co-culture condition with the MCF7 cells, a non‐TNBC cell line.
Moreover, there was a consistency between levels of cytokine
generation by modified NK cells and EGFR expression by
experimental cell lines (85). Similarly, modified NK cells
inhibited the tumor growth in breast cancer cell line-derived
xenograft (CLDX) and patient-derived xenograft (PDX) murine
models (85). Besides, genetically modified NK cells to identify a
prominent surface antigen expressed in 50–85% of patients with
TNBC, tissue factor (TF), demonstrated significant efficacy in vivo
for the treatment of mouse models of orthotopic CDX and PDX.
This was evidenced with a striking reduction in tumor weight
between control and treatment groups without any significant
change in mice body weight. In vitro, the analysis proposed that
though TF-CAR-NK cells could kill TF-positive MDA-MB-231
cells, their efficacy could be improved when used in combination
with TF-targeting therapeutic antibody-like immunoconjugates,
such as L-ICON1 (127). As well, Sahm et al. found that effector
NK-92 cells which co-expressed epithelial cell adhesion molecule
(EpCAM), a type I transmembrane glycoprotein identified as a

TAA—specific CAR and IL-15 could proliferate without
exogenous cytokines in vitro and exhibited potent and specific
cell-killing functions against EpCAM-expressing breast
carcinoma cells those were resistant to unmodified NK cells-
induced cytotoxicity (95). In another research, combinatorial
treatment with EGFR‐CAR-NK-92 cells and oncolytic herpes
simplex virus (oHSV) elicited improved cytolytic functions and
IFN-g generation when co-cultured with breast cancer cell lines
MDA-MB-231, MDA-MB-468, and MCF-7 in comparison to the
mock-transduced NK-92 cells. As well, intratumoral injection of
either EGFR-CAR-NK-92 cells or oHSV-1 abrogated tumor
development, while combination of EGFR-CAR NK-92 cells
with oHSV-1 led to more effective elimination of MDA-MB-
231 tumor cells compared to monotherapies in MDA-MB-231
cell bearing mice (128).

CAR NK in Gastrointestinal (GI) Cancers
The particular activity of NK cell in gastrointestinal (GI) cancer
was firstly revealed by a retrospective study with an 11-year
follow-up showing that infiltration and cytotoxicity of NK cells
have a tight association with cancer risk, thus suggesting an
efficient role of NK cell in tumorigenesis (129). Then in
colorectal cancer (CRC), through evaluating NK cells in the
TME and peripheral blood, the lower frequencies of NK cell were
concluded to be allied with a promoted risk of both cancer
incidence and progress with poor prognosis (130).

Recent findings revealed that NKG2D-CAR adoptive NK cell
therapy could increase the cytolytic activity of effector cells
toward CRC cell lines in vitro and deliver therapeutic
advantages to mice with CRC (131). Moreover, intraperitoneal
infusion of NKG2D CAR mRNA-engineered NK cells to three
participants with metastatic CRC verified its safety and efficacy in
two of them. Respecting the results of Doppler ultrasound
imaging, fast tumor deterioration was proven in the liver area,
thereby pointing to a capable therapeutic competence of using
RNA CAR-modified NK cells for treating metastatic CRC (131).
On the other hand, HER2-CAR NK-92 cells significantly
eliminated HER2-positive gastric cancer cells mediated by
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advanced levels of cytokine generation in vitro. In vivo, effector
cells could eradicate small tumor xenografts, while larger gastric
tumors were not significantly affected by HER2-CARNK-92 cells
(87). Nevertheless, NK cells infiltration into large tumor
xenografts and their therapeutic capacity were promoted
following infusion in combination with apatinib, a tyrosine
kinase inhibitor that exclusively suppresses the vascular
endothelial growth factor receptor-2 (VEGFR2) (87). Further,
despite the release of a variety of cytokine (e.g., IFN-g, perforin
and granzyme B) and cytotoxicity induced by EpCAM-specific
CAR-NK-92 cells against EpCAM-positive CRC cells in vitro,
synergistic influences of multi-kinase inhibitor regorafenib and
modified CAR-NK-92 cells were supported in a murine model
with human CRC xenografts. Accordingly, combination therapy
with regorafenib and CAR-NK-92 cells showed superiority over
monotherapy with CAR-NK-92 cells or regorafenib in terms of
inhibition of CRC growth in xenografts (81). Other in vitro
studies proposed that anti- carcinoembryonic antigen (CEA)-
CAR NK-92MI cells selectively recognized and eliminated high
CEA-expressing CRC tumor cell lines (LS174T); without any
cytolytic effects on low CEA-expressing tumor cells (HCT116)
(86). Interestingly, anti-CEA-CAR NK-92MI combination
therapy with either histone deacetylase-inhibitor sodium
butyrate (NaB) or the methylation-inhibitor 5-azacytidine (5-
AZA) caused selective killing of HCT116, which imply the
clinical importance of epidrugs for prompting CAR-NK cell
therapeutic efficacy in human CRC (86).

CAR NK in Ovarian Cancers
Rendering findings, immunotherapy could be an effective therapy
for ovarian cancer (OC), as OC is an immunogenic disorder with
existence of T and NK cell infiltration in the TME. Remarkably,
presence of tumor-infiltrating CD3-positive T cells directly
associates with survival in OC patients (132). Additionally,
CD103-positive tumor-infiltrating NK cells usually co-infiltrate
with CD8-positive CD103-positive T cells, while the involvement
of NK cells in promoting outcome is hard to evaluate (133).
Furthermore, ex vivo-cultivated PB-NK cells of OC patients seem
to be cytotoxic toward autologous primary OC cells (134).

Recently, in vivo study in OC xenograft models has revealed
that NKG2D-CAR- iPSC-derived NK cells with 2B4 co-
stimulatory domain and CD3z signaling domain could exert
robust cytotoxicity against cancerous cells. Meanwhile,
NKG2D-CAR-iPSC-NK cells displayed in vivo function similar
to NKG2D-CAR-iPSC-T cells, while showing less toxicity (135).
Aswell, GPC3-CAR-iPSC-NK cells could produce higher levels of
IFN-g against GPC3-expressing tumor cells in vitro, and also
stimulated substantial therapeutic effect in OCmurine models, as
supported by prolonged survival of these models compared with
the control group. Importantly, infusion of modified cells into
immunodeficient mice caused no acute systemic toxicity or
tumorigenicity (136). Besides, mesothelin (MSLN)-CAR NK92
cells selectively eliminated MSLN-positive OC cells (OVCAR-3
and SK-OV-3), rather than MSLN-negative cells (SK-HEP-1), in
vitro. On the other hand, effector NK cells significantly killed OC
cells in both subcutaneous and intraperitoneal tumor models
resulted in improvement of survival of intraperitoneally tumor-

bearingmice (137). Also, CD24-CAR-NK-92 cells presented great
cytolytic functions towards CD24-positive OC cell lines (SKOV3,
OVCAR3), but not CD24-negative cell lines (A2780, HEK-293T),
suggesting for the first time that anti-CD24-CAR will be assessed
in the future clinical trials as an interesting immunotherapeutic
strategy against OC (138). The importance of CD24, as a small
sialoglycoprotein commonly localized in lipid rafts through its
glycosylphosphatidylinositol (GPI) anchor, in OC therapy relies
on its influential role in development, invasion and metastasis of
OC cells through targeting a variety of signaling axis, in particular,
Akt and ERK pathways (139). Moreover, Klapdor et al. cited that
CD33-CAR-NK-92 cells selectively eliminated CD33-positiveOC
cells in vitro mainly achieved by IFN-g secretion. They also
showed that NK cells retain their cytolytic competencies under
cisplatin treatment and, prominently, successive treatment with
cisplatin followed by CAR-NK cells resulted in the strongest
killing effect, representing an encouraging strategy to prevent
recurrent disease (140).

CAR NK in Other Cancers
There are evidences indicating that intratumoral and intraperitoneal
delivery of GD2-specific CAR-NK cells could not eradicate GD2-
expressing cells in Ewing sarcomas (EwS) xenografts possibly
sustained by upregulation of the immunosuppressive ligand HLA-
G by tumor cells (141). These finding signify that HLA-G is a
candidate immune checkpoint in EwS involved in stimulating
resistance to NK cell therapy (141). Conversely, ErbB2-CAR-NK
cells established robust cytotoxicity against ErbB2-positive sarcoma
cells in 3D tumor spheroids (142). Similarly, ErbB2-CAR-NK cells
selectively activated and eliminated ErbB2-positive melanoma cells,
as shown through high levels of cytokine generation and
degranulation, in both in vitro and in recombination activating
gene 2 (Rag2) knockout mice (96). Likewise, MSLN-specific CAR-
NK-92MI cells selectively eliminated pancreatic cancer lines in vitro
by secreting IFN-g and granzyme B (143), and also Roundabout
homolog 1 (Robo1)-specific CAR-NK cells demonstrated great
cytotoxicity against pancreatic ductal adenocarcinoma (PDAC) in
an orthotopic nude mouse model (102). It has been suggested that
NK cells engineered to express a PD-L1 specific CAR could eradicate
human and murine head and neck cancer cells at low effector-to-
target ratios in a PD-L1-dependent manner (144). Furthermore,
EGFR-CAR-NK-92 cells displayed synergistic therapeutic efficacy
with cabozantinib toward human renal cell carcinoma (RCC)
xenograft models as cabozantinib could improve EGFR and
attenuate PD-L1 membrane surface expression in RCC cells. This
data provided the proof of concept that combination therapy using
chemotherapeutic agents and CAR-modified NK cells is an
operational approach for treating solid tumors (145).

CHALLENGES OF CAR-NK CELLS
THERAPIES IN HUMAN SOLID TUMORS

To date, several clinical trials have been designed and conducted
based on CAR-NK cell therapy for human solid tumors
(Table 3); however, the encouraging consequences displayed in
CAR NK cell therapy of hematological malignancies have not yet
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been shown in solid tumors due to tumor heterogeneity
concomitant with the hostile TME (146). For instance, CD19 is
vastly and homogenously presented on the surface of
transformed B cells in a variety of hematological disorders, and
CD19-specific effectors do not face large anatomical barricades
in the blood before establishing communication with their
targets. However, CAR-NK cells must transfer in the
bloodstream and then migrate into the tissue to finally shape
interaction with the tumor cells while combating several
suppressive molecules in the TME (147). Nonetheless, it seems
that local infusion, intra-peritoneal infusion, and FUS-guided
delivery of CARs into tissues can defeat the anatomical hurdles
faced by the CAR-NK cells in solid tumors (148). CAR NK cell
therapy appears more favorable in breast, ovarian, and prostate
cancers compared with other forms of solid tumors as they are
simply and safely available and devastation of the normal tissue
can be tolerated (88, 149). Besides, in solid tumors, TAAs
commonly are presented by both cells in the tumor and also in
pivotal organs, making it difficult to evade “on-target, off-tumor”
effects (42). On the other hand, though in vitro cultivated NK
cells show remarkable cytotoxicity toward transformed cells, they
lose this capability following administration in vivo due to
existence of immunosuppressive molecules such as TGF-b, IL-
10, PD-1, or arginase, produced by neutrophils, macrophages
and Tregs in the TME (148). Tregs and immunosuppressive
MDSCs are vigorously infiltrated into the TME, wherein they
shape a robust immunosuppressive environment encouraging
tumor development (150). Currently, some reports evidenced
that injection of TGF-b kinase inhibitors in combination with
NK cells conserves the cytotoxic capacity and expression of
activating NK receptors NKG2D and CD16 (151).

Also, transformed malignant cells escape immune surveillance
by expression of checkpoint proteins averting immune responses.
For instance, TIGIT moderates NK cell cytolytic activities by
opposing CD226 (152), and also PD-1-positive NK cells

demonstrate diminished proliferation and effector functions,
while PD-L1-positive cells own improved effector activities
(153). Accordingly, combining CARs with inhibitors of
checkpoint proteins including PD-1, CTLA-4, LAG3 and TIGIT
can support desired outcomes in human solid tumors (127).

CONCLUSION

Current developments in gene manipulation systems have
permitted construction of novel CAR-NK cell products with
effective anti-cancer influences, without toxicity against normal
tissues. Manifold approaches such as CRISPR-based gene
manipulation and introduction of novel genes to modify tumor
microenvironment in CAR structure can result in noteworthy
achievements in this regard. With the improving safety and
sustaining cytotoxicity in preclinical reports and clinical studies
accompanying advanced efforts to address existing hindrances, it
seems that CAR-NK cell therapy can lead to auspicious
therapeutic outcomes in the clinic. Taken together, we believe
promoting CAR construction for ideal NK cell functions and
cytotoxicity, boosting CAR-NK cell infiltration into TME,
modifying these effector cells to defeat tumor inhibition and
escape, generating CAR-NK cells with memory possessions in
vivo for enduring tumor’s surveillance, and also improving CAR-
elicited selective killing are of paramount importance.
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