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Chimeric antigen receptor (CAR) T cells, T cells that have been genetically engineered to

express a receptor that recognizes a specific antigen, have given rise to breakthroughs in

treating hematological malignancies. However, their success in treating solid tumors has

been limited. The unique challenges posed to CAR T cell therapy by solid tumors can

be described in three steps: finding, entering, and surviving in the tumor. The use of dual

CAR designs that recognize multiple antigens at once and local administration of CAR

T cells are both strategies that have been used to overcome the hurdle of localization to

the tumor. Additionally, the immunosuppressive tumormicroenvironment has implications

for T cell function in terms of differentiation and exhaustion, and combining CARs with

checkpoint blockade or depletion of other suppressive factors in the microenvironment

has shown very promising results tomitigate the phenomenon of T cell exhaustion. Finally,

identifying and overcoming mechanisms associated with dysfunction in CAR T cells is of

vital importance to generating CAR T cells that can proliferate and successfully eliminate

tumor cells. The structure and costimulatory domains chosen for the CAR may play an

important role in the overall function of CAR T cells in the TME, and “armored” CARs

that secrete cytokines and third- and fourth-generation CARs with multiple costimulatory

domains offer ways to enhance CAR T cell function.

Keywords: chimeric antigen receptor, solid tumors, T cell, adoptive T cell immunotherapy, engineered T cells

INTRODUCTION

The use of chimeric antigen receptor (CAR) T cells is gaining traction as one of the most promising
advances in cancer immunotherapy. A CAR T cell is a T cell that has been genetically engineered
to express an antigen-specific, non-MHC restricted receptor, composed of the single-chain variable
fragment (scFv) of an antibody fused to a transmembrane domain and an intracellular signaling
domain (1, 2). CARs are introduced to T cells using a plasmid or viral vector, e.g., adenovirus,
retrovirus, or lentivirus, of which lentivirus has become the most common method of transducing
human T cells (3). mRNA electroporated CAR T cells can also be made, with the advantage of
transient CAR expression for easier evaluation of toxicity. Other nonviral vectors for integrating
genes include synthetic DNA or mRNA transposon systems, termed Sleeping Beauty, in which
a transposon vector can be stably integrated into the genome via a transposon plasmid with a
mobilizing transposase protein (4). Importantly, the Sleeping Beauty system has been shown to
be less mutagenic than retro- or lenti-viral vectors, because its genomic integration appears to be
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largely random, while retro- and lenti-viral vector integration
is often biased toward transcriptional sites (5). The earliest
first generation CARs contained only the CD3ζ signaling
domain, while second generation CARs contain an additional
costimulatory signaling molecule, such as 4-1BB, CD28, CD27,
OX40, ICOS or RIAD, and some third- and fourth- generation
CARs with two or more signaling domains have been developed
as well (1, 6).

To date, the success of the CAR T cell has largely been
in hematological malignancies (7, 8). A CAR targeted to
the B cell antigen CD19 was first used successfully to treat
chronic lymphoblastic leukemia (CLL) (9). In August 2017,
the FDA approved the use of CART19 (Kymriah) to treat
pediatric relapsed or refractory acute lymphoblastic leukemia
(ALL) and in October of the same year, another CD19-targeting
CAR (Yescarta) was approved by the FDA for adult relapsed
or refractory large B cell lymphoma (10). Additionally, the
European Medicines Agency (EMA) also approved the use of
both these drugs in June of 2018 (11). However, despite extensive
research, CAR T cell therapy for solid tumors has not been nearly
as successful. Why is it more challenging to target solid tumors
with CAR T cells? While there likely are numerous undiscovered
reasons, the known barriers in solid tumors can be broken
down into three simple categories: finding, getting into, and
surviving in the tumor. This review will briefly characterize these
three challenges, as well as the most recent research strategies
that address them. It will focus particularly on strategies to
mitigate tumor antigen heterogeneity and escape, to increase T
cell trafficking and extravasation to tumor sites, and to encourage
T cell proliferation in the tumor. It will address the evolving
understanding of T cell activation, signaling, and the relationship
between T cell memory and exhaustion phenotypes, all of which
are critical for the development of more effective CAR T cells
against solid tumors. Finally, research on the future of the CAR
T cell, including the advent of universal CAR T cells using novel
gene-editing techniques such as CRISPR/Cas9, and strategies to
improve antigen-binding, optimize T cell signaling, and decrease
immunogenicity, will be described.

FINDING THE TUMOR: TUMOR
ASSOCIATED ANTIGENS, EXPRESSION
LEVEL, AND SUSCEPTIBILITY TO CAR T
CELLS

The first major difference between solid tumors and
hematological tumors is that it is more difficult to find an
ideal target antigen. Unlike cancers such as ALL or CLL in which
the tumor cells universally express the B-cell marker CD19,
solid tumors rarely express one tumor specific antigen. For most
solid tumors, it is more common to find a tumor associated
antigen (TAA) where the antigen is enriched on tumors but also
expressed at low levels on normal tissues (see Table 1). This is
the case for many frequently targeted TAAs for solid tumors,
including CEA, ERBB2, EGFR, GD2, mesothelin, MUC1, and
PSMA (1, 14, 18).

Lack of tumor antigen specificity increases the potential risk
of significant on-target off-tumor toxicity. This was the case for
a patient with metastatic colon cancer who received an infusion
of CAR T cells targeted to the antigen HER2 (ERBB2) and died 5
days later (58). The cause of death was attributed to low levels of
HER2 on the epithelial cells of the lung, which were attacked by
the CARs. Another example of on-target, off-tumor toxicity was
found with a high affinity anti-GD2 CAR for neuroblastoma, in
which low levels of GD2 in the brain resulted in fatal encephalitis
(59). These catastrophic events underscore the importance of
finding a safe TAA, given the possibility that even low levels
of the target antigen on normal tissues can result in significant
toxicity. These acute responses also highlight that the binding
affinity of a CAR is related to both safety and efficacy, and that
higher affinity is not necessarily better. An in vivo study found
that CAR T cells targeting ICAM-1, a marker associated with
many solid tumors including thyroid cancer (but also expressed
on many normal tissues as an adhesion marker), was safer and
more effective when bearing CARs with micromolar affinity than
with those with higher, nanomolar affinity (39, 40). Additionally,
the authors found that the CAR with lower affinity showed
less exhaustion and enhanced proliferation in vivo. In another
approach to limiting CAR toxicity, one group interested in
treating colorectal cancer created a CAR targeting GUCY2C, a
receptor that is conserved in at least 95% of metastatic tumor
at tenfold greater levels, but is not targeted by T cells when
expressed in normal epithelial tissues because it is restricted to
luminal membranes (33). The CAR was shown to be safe and
effective in both immunocompetent mice with metastatic tumors
and human xenograft models. Antigens that are aberrantly or
overexpressed on tumors but are also expressed on normal tissues
can thus be cautiously explored to serve as targets for solid
tumors and their metastases.

Suicide genes [reviewed by (60)] are genes coexpressed
with the CAR construct that can induce cell death when
activated by an agent such as a drug or antibody. Suicide genes
have been integral to improving the safety of CAR T cells,
particularly as they move into clinical trials. These genes include
inducible caspase 9 (iC9) and truncated EGFR (tEGFR or EGFRt)
(Figure 1), which can trigger antibody-mediated cell death, and
herpes simplex virus thymidine kinase (HSV-TK), which disrupts
DNA replication and also induces apoptosis via Fas-mediated cell
death (68).

Many groups have used immunoproteomics to discover TAAs
using autoantibodies against immunogenic antigens expressed
by tumor cells (either on the surface or in the cytosol)
(69). These antigens may be entirely unidentified proteins
(neoantigens) or peptides that are mutated from the wild type
(neoepitopes) (70). A few examples of TAAs identified using
proteomics include the markers PSMA1, LAP3, ANXA3, and
maspin, which were identified by one group as biomarkers
for colon cancer (71). Other novel potentially targetable TAAs
include olfactomedin 4, CD11b, and integrin alpha-2, which
were found to be overexpressed in colorectal cancer with liver
metastases (72). Neoantigens can also be found using DNA
or RNA sequencing or whole exome screening to identify
somatic mutations in tumors (73–75). A study using whole
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TABLE 1 | Common solid tumor associated target antigens, most recent CAR constructs, and the stage of testing they have reached.

Target TAA Solid tumors expressing target TAA Type of CAR Clinical trials* Phase

CD44v6 (Metastasized) colon cancer, soft tissue sarcoma (STS),

possible marker for many metastasizing tumors

(12, 13)

28ζ CAR-CIK/ HSV-TK

suicide gene

Preclinical –

CAIX (carbonic anhydrase IX) Metastatic clear cell renal cell carcinoma (ccRCC)

(14, 15)

CD4TM-γ Study stopped I/II

CEA (carcinoembryonic antigen) Ovarian, gastrointestinal, colorectal, hepatocellular

carcinoma (HCC)

(16–18)

CD3ζ NCT02959151

NCT02850536

NCT02349724

NCT03267173

I/II

Ib

I

Early I

CD133 Ovarian, glioblastoma (GBM), HCC

(17–19)

BBζ

–

NCT02541370

NCT03423992

I/IIa

I

c-Met (Hepatocyte growth factor

receptor)

Breast (50%), melanoma, HCC

(20)

BBζ mRNA

c-Met/PDL-1

NCT01837602

NCT03060356

NCT03672305

Early I

Early I

Early I

EGFR (epidermal growth factor

receptor)

NSCLC, GBM, sarcoma, malignant pleural

mesothelioma (MPM) (79.2%), retinoblastoma, glioma,

medulloblastoma, osteosarcoma, Ewing sarcoma

(21–23)

28/BBζ

α-CTLA-4/PD-1

IL12

BBζ/EGFR806/

tEGFR suicide gene

NCT03152435

NCT03182816

NCT03542799

NCT03638167

NCT03618381

I/II

I/II

I

I

I

EGFRvIII (type III variant

epidermal growth factor

receptor)

GBM (24–67%), glioma, colorectal, sarcoma, pancreatic

(16, 24)

–

tEGFR suicide gene

–

–

BBζ+pembrolizumab

–

NCT03283631

NCT02844062

NCT01454596

NCT03267173

NCT03726515

NCT03423992

I

I

I/II

Early I

I

I

Epcam (epithelial cell adhesion

molecule)

HCC, lung, ovarian, colorectal, breast, gastric, stomach,

esophogeal, pancreatic, liver, prostate, gynecological

cancers, nasopharyngeal carcinoma

(16, 25)

–

–

28ζ

–

–

NCT02915445

NCT03563326

NCT03013712

NCT02729493

NCT02725125

I

I

I/II

I/II

I/II

EphA2 (Erythropoetin producing

hepatocellular carcinoma A2)

GBM, glioma

(26, 27)

– NCT03423992 I

Fetal acetylcholine receptor Osteosarcoma, rhabdomyosarcoma (28) CD3ζ Preclinical –

FRα (folate receptor alpha) Ovarian (90%), urothelial bladder carcinoma

(14)

4SCAR (4th gen) NCT03185468 II

GD2 (Ganglioside GD2) Neuroblastoma, melanoma, osteosarcoma (100%),

rhabdomyosarcoma (13%), Ewing’s sarcoma (20%),

cervical

(29–32)

3rd gen/inducible

Caspase-9/IL-15

28ζ/OX40/iC9/VZV

iC9

C7R (IL-7 receptor)

4SCAR

–

–

–

–

4SCAR/IgT

NCT03721068

NCT01953900

NCT03373097

NCT03635632

NCT02765243

NCT02919046

NCT02761915

NCT03356795

NCT03423992

NCT03356782

I

I

I/II

I

II

I/II

I

I/II

I

I/II

GPC3 (Glypican-3) HCC, squamous cell carcinoma (SCC)

(17)

–

BBζ/tEGFR

–

–

–

–

BBζ

3rd gen

–

–

NCT02959151

NCT03084380

NCT02932956

NCT02905188

NCT02876978

NCT02715362

NCT03130712

NCT03198546

NCT03146234

NCT03302403

I/II

I/II

I

I

I

I/II

I/II

I

N/A

N/A

(Continued)
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TABLE 1 | Continued

Target TAA Solid tumors expressing target TAA Type of CAR Clinical trials* Phase

GUCY2C (Guanylyl cyclase C) Metastatic colorectal (33) ? Preclinical –

HER1 (human epidermal growth

factor receptor 1)

Lung, prostate (1, 34) Preclinical –

HER2 (human epidermal growth

factor receptor 2) (ERBB2)

Breast (25–30%), ovarian (25–30%), osteosarcoma

(60%), GBM (80%), medulloblastoma (40%), gastric,

MPM (6.3%), sarcoma, pediatric CNS

(23, 24, 35–38)

BBζ/tCD19

–

HER2-AdVST +

oncolytic adenovirus

–

–

3rd gen

28ζ

aE7

BBζ/tCD19 TCM
–

–

NCT03696030

NCT02713984

NCT03740256

NCT02442297

NCT03500991

NCT03198052

NCT00902044

NCT03267173

NCT03389230

NCT03423992

NCT02792114

I

I/II

I

I

I

I

I

Early I

I

I

I

ICAM-1 (Intercellular adhesion

molecule 1)

Thyroid (60%)

(39, 40)

3rd gen Preclinical

IL13Rα2 (interleukin 13 receptor

α2)

Glioma, GBM

(41, 42)

–

BBζ/tCD19

NCT03423992

NCT02208362

I

I

IL11Rα (interleukin 11 receptor α) Osteosarcoma

(28)

28ζ Preclinical

Kras (Kirsten rat sarcoma viral

oncogene homolog)

Lung adenocarcinoma (30%), pancreatic

(43)

– Preclinical

Kras G12D Pancreatic ductal adenocarcinoma (PDA), colorectal,

lung

(44)

ACT Clinical

L1CAM (L1-cell adhesion

molecule)

Ovarian

(45)

28ζ Preclinical

MAGE NSCLC (MAGE-A3/6), metastatic melanoma (70%

MAGE-A1-5)

(46, 47)

TCR-directed therapy

MET MPM (67%)

(48)

28ζ Preclinical

Mesothelin PDA (up to 100%), MPM (85%), Ovarian (70%), lung

adenocarcinoma (53%, advanced; 69%, early stage),

GBM

(49–52)

–

?

PD-1/TCR KO

αCTLA-4/PD-1

–

αPD-1

PD-1 KO

–

αPD-1

–

–

BBζ

28ζ

MCY-M11

NCT02930993

NCT02959151

NCT03545815

NCT03182803

NCT01583686

NCT03030001

NCT03747965

NCT03198052

NCT03615313

NCT03267173

NCT03356795

NCT02792114

NCT02414269

NCT03608618

I

I/II

I

I/II

I/II

I/II

I

I

I/II

Early I

I/II

N/A

I

I

MUC1 (mucin 1) HCC, NSCLC, pancreatic, breast, glioma, colorectal,

gastric

(17)

αCTLA-4/PD-1

–

± PD-1 KO T cells

± PD-1 KO T cells

–

–

–

4SCAR-IgT

–

NCT03179007

NCT02587689

NCT03706326

NCT03525782

NCT03198052

NCT03267173

NCT03356795

NCT03356782

NCT03633773

I/II

I/II

I/II

I/II

I

Early I

I/II

I/II

I/II

(Continued)
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TABLE 1 | Continued

Target TAA Solid tumors expressing target TAA Type of CAR Clinical trials* Phase

MUC16 ecto (mucin 16) Ovarian

(18, 53)

TCR-directed

CAR

Clinical

Preclinical

NKG2D (natural killer group 2

member D)

Ewing’s sarcoma, osteosarcoma, ovarian (18, 54) NK-CAR

CAR

Clinical

Preclinical

NY-ESO-1 Liposarcoma (>89%), neuroblastoma (82%), synovial

sarcoma (80%), melanoma (46%), ovarian (43%), breast

(46%), GBM, NSCLC

(47, 55, 56)

TCR-CAR

ACT/TCR-directed

therapies

Preclinical

Clinical

PSCA (prostate stem cell

antigen)

Pancreatic, prostate

(57)

– NCT03198052

NCT03267173

I

Early I

WT-1 (Wilms tumor 1) Ovarian

(17)

– Preclinical

*Recruiting/not yet recruiting studies listed.

FIGURE 1 | A representative figure of an armored 3rd generation CAR in a T cell and a schematic of the transgene, which includes the extracellular scFv, two

intracellular costimulatory domains (4-1BB and CD28), the ζ chain, a 2A linker, and the gene of interest to be coexpressed (61, 62). Examples of “armor” added to the

CAR T cell are the CCR2 receptor (63), which has been shown to increase T cell migration and homing to the tumor site (64, 65) or constitutive secretion of the

cytokine IL-7 and chemokine CCL19, which are important to memory differentiation and T cell migration, respectively (66). CARs that constitutively secrete IL-12 have

also been used in several studies to boost survival and cytotoxicity (67). Also depicted is an example of an inducible suicide gene, tEGFR, which consists of the

truncated transmembrane and extracellular portion of the EGFR protein. When targeted by the antibody Cetuximab, the receptor triggers apoptosis in the cell,

providing a safety switch to protect against potential toxicity (68). Inducible caspase 9 (iC9) and HSV-TK are other common suicide genes that have been coexpressed

with CARs.

exome sequencing of melanoma samples foundmultiple mutated
epitopes in 5 of 8 patients, as well as the presence of T
cell clones reactive to 8 of the 9 neoepitopes (73). Another
study used whole genome sequencing to identify somatic
mutations in glioblastoma multiforme (GBM) samples, and
found neoepitope-specific tumor infiltrating lymphocytes (TILs)

in all five studied patients (70). Whole exome sequencing for
neoantigen prediction was recently employed in a long term
study of PDA patients, and the authors found that greater
numbers of neoantigens, combined with greater numbers of
CD8+ TILs, correlated with increased survival (76). Many of the
neoantigens with lasting immunogenicity in long term survivors
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were contained within the tumor-associated MUC16 antigen;
with metastatic progression, loss of MUC16 clones was seen,
indicating a role for the loss of those neoantigens in tumor
progression and metastasis.

Some studies have explored the use of CD40 agonists to
boost T cell immunity to solid tumors (CD40 is expressed on
dendritic cells and other antigen-presenting cells (APCs) and
binds CD40 ligand on T cells to stimulate immune response)
(77). Using CD40 agonists to augment T cell response to weakly
immunogenic tumor antigens or cold tumors is particularly
useful in cancers such as PDA that tend to lackmutational burden
and often have no baseline immunogenicity. In a murine model
of spontaneous PDA (KPCmice), combining chemotherapy with
CD40 agonists showed T cell infiltration and neoantigen-specific
response and tumor regression (78). The data was consistent
with the hypothesis that CD40 activated pre-existing tumor-
reactive TILs, showing that priming can overcome suboptimal
T cell reactivity to antigen and induce an immune response
with subsequent tumor control. These studies using neoepitopes
show that tumors can induce secondary immune responses
against previously unrecognized antigens, and that endogenous
immunity to neoantigens may control tumor spread. This bears
significance for adoptive T cell therapy including that which is
CAR-based.Many of thesemethods to screen for neoepitopes rely
on identifying pre-existing TCR reactivity and, thus, rely on the
inherent immunogenicity of neopeptides; however, identifying
neoepitopes and using CAR T cells to target them could
theoretically bypass this issue because the scFv of a CAR does not
rely on MHC presentation.

Solid tumors tend to display a large degree of antigen
heterogeneity. Many tumors have only a subset of cells that
express the target antigen. Even in the setting of a uniformly
expressed TAA, there is the possibility of antigen loss or
antigen escape, where the target antigen disappears from the
surviving tumor (79). This has already been observed with CD19
negative relapses in leukemia post CAR19T cell transfer, and
the mechanisms are not well characterized (80). One study
discovered a splice mutation that resulted in a form of CD19 that
was missing the specific epitope targeted by the CD19 CAR (81,
82). In a phase I study using an EGFRvIII-specific CAR to treat
GBM, a single dose of the CAR T cells resulted in downregulation
of the EGFR/EGFRvIII receptor and appeared to promote T
cell resistance, although administration was shown to be safe
and potentially effective (83). In a glioma model, an IL13Rα2
specific CAR T cell that also had transgenic expression of IL-
15 successfully killed tumor, proliferated, and produced cytokine
in vivo; however, recurrent tumors demonstrated IL13Rα2
downregulation (84). Dual or tandem CARs, which recognize
two antigens rather than one, have been created to address both
antigen heterogeneity and the threat of antigen loss. Such dual
CARs have entered clinical trials in hematological malignancies
targeting CD19/CD20 and CD19/CD22 [(85); NCT03241940].
For solid tumors, a CAR specific for both HER2 and MUC1
had promising in vitro results in a breast cancer model, and a
dual-target CAR specific for HER2 and IL13Rα2 showed greater
success than single-target CARs in a xenograft glioma model
(86, 87).

Also relevant to antigen heterogeneity is the concept of
epitope spreading [reviewed by (88)], a phenomenon in which
a different epitope of a previously tolerated antigen becomes
targeted by T cells. In the context of CAR T cell therapy, this
means that even if a tumor does not uniformly express the
originally targeted antigen, lysis of some cells by CARs might
release tumor-specific neoantigens or epitopes that would be
processed and presented by APCs to TILs to induce a secondary
immune response against the tumor. Evidence for epitope
spreading has been shown in melanoma, where TILs reactive
to tumor neoantigens were discovered after vaccination with
melanoma antigens (MAGE) (89). Another study using a viral-
based vaccine for MUC1 and IL-2 induced epitope spreading and
correlated with improved survival of patients with NSCLC (90),
and a case study using mRNA electroporated mesothelin CARs
displayed an immune response that suggested epitope spreading
in two patients with MPM and metastatic pancreatic cancer
(91). In a mouse pancreatic cancer model with tumors of low
mutational burden and no predicted neoepitopes, introduction
of the neoantigen ovalbumin (OVA) spurred a memory immune
response leading to tumor clearance and no evidence of antigen
escape, while the same tumors provoked no T cell response
in immune competent mice without ovalbumin (92). Further
understanding and inducing epitope spreading has significant
potential to bolster the effectiveness of CAR T cells, especially
in tumors with high heterogeneity, low mutational burden, and
evidence of antigen escape.

For traditional CAR T cells, the target antigen must be
expressed on the cell surface in order to engage with a T cell.
However, only about 1% of total cellular proteins are actually
expressed on the cell surface, meaning that a huge number of
potential tumor target antigens are not available to a CAR T
cell (62). Recently, to open the doors to targeting intracellular
antigens with CART cells, Patel et al. (93) showed success in an in
vivomyeloma study with a CAR/TCR hybrid that recognized the
antigen NY-ESO-1 in the context of HLA-A2. These TCR-CARs
were shown to effectively bind an HLA-A2+ T cell artificially
engineered to express NY-ESO-1. TCR-CARs that recognize
antigen in combination withMHC can thus recognize both extra-
and intra-cellular antigens in the way that wild-type or modified
TCRs can. Walseng et al. (62) also created a TCR-CAR composed
of a soluble TCR directed against either the melanoma-associated
antigen MART1 or TGFβR2 (a neoantigen peptide) joined to a
CAR signaling component. The result was a versatile receptor
that bound antigen in an MHC-I restricted manner, but with
signaling and killing similar to that of a CAR. They demonstrated
that this construct could be transduced not only into T cells but
also into a NK cell, with successful in vitro killing.

TUMOR INFILTRATION

Even when a target antigen for a solid tumor is identified, a CAR
T cell must be able to reach the tumor site. In hematological
cancers, circulating CAR T cells in the bloodstream have already
reached their destination. In solid tumors, there are multiple
barriers that a CAR T cell must surmount in order to reach the
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tumor site [for full reviews of the tumor microenvironment, see
(94, 95)]. Chemokine-receptor mismatch can prevent migrating
lymphocytes from following a chemotactic gradient. Surface
markers like selectins on endothelial cells that bind circulating
lymphocytes and induce signaling cascades for subsequent
extravasation into sites of inflammation are necessary, as are
the corresponding receptors on T cells. Additionally, physical
barriers such as cancer associated fibroblasts (CAFs) and
abnormal vasculature at the tumor site can block T cell entry (95).

The presence of blood vessels known as high endothelial
venules (HEVs) are hypothesized to be critical for T cell
infiltration and have been associated with tumor regression in
cancers such as melanoma. However, these blood vessels are
distorted and immature in many solid tumors, particularly at
the core of the tumor where the fewest TILs are found (96).
Anti-angiogenic therapy targeting VEGF, CD276, or endothelin
B receptor has been shown to normalize tumor vasculature and
could be used in combination with targeted therapy like CAR T
cells to increase tumor infiltration (97, 98). Notably, one study
that performed qPCR on melanoma lesions observed that high
HEV density positively correlated with the number of genes
encoding for chemokines known to recruit TILs, including CCL2,
CCL5, CXCL9-13, CCL19, and CCL21 (99). In colorectal cancer,
expression of CXCL9, 10 and 11 were positively correlated with
the presence of CD8+ and CD4+ TILs and with post-operative
survival (100).

Given the importance of chemokines in lymphocytemigration
and homing, varying methods have been used to deliver
chemokines intratumorally to attract TILs. One study employed
a vaccinia virus to deliver the chemokine CXCL11 intratumorally
in a subcutaneous mouse model of MPM and observed
significantly increased levels of T cell infiltration and anti-
tumor efficacy after intravenous mesothelin-directed CAR
T cell injection (101). The same group also developed a
CXCL11/mesothelin CAR that increased intratumoral levels
of CXCL11 but did not improve anti-tumor activity. The
investigators hypothesized that this was due to chronic
chemokine secretion inducing hypofunction in the T cells,
and/or the anti-angiogenic effects that CXCL11 can exert
on its surroundings. However, another study that engineered
“armored” mesothelin CAR T cells that constitutively expressed
both the cytokine IL-7 and the chemokine CCL19 showed
complete tumor regression and prolonged survival in a solid
tumor mouse model (Figure 1) (66). The study also showed
that lymphodepletion before CAR T cell injection decreased
efficacy, suggesting that IL-7 and CCL19 recruited endogenous
anti-tumor TILs as well. CAR T cells have also been transduced
to express chemokine receptors with beneficial results, as in
the case of lentivirally engineered mesothelin CAR/CCR2T
cells that displayed greater than 12-fold increased homing and
tumor regression in subcutaneous human MPM tumors and
a GD2/CCR2b CAR T cells that showed greater than 10-fold
increased homing in neuroblastoma tumors in vivo (Figure 1)
(64, 65).

Another promising approach to augment CAR T cell
infiltration into tumor sites is the development of a CAR
targeting FAP (fibroblast activation protein), which is expressed

on multiple types of stromal cells that are associated with nearly
all epithelial tumors (102). FAP has been shown to play a role in
epithelial-to-mesenchymal transition (EMT) in pancreatic ductal
adenocarcinomas (PDA) among other tumor types (103). In one
study, where humanMPM tumor samples and fibroblast samples
were shown to be positive for FAP by immunohistochemistry,
FAP CAR T cells efficiently killed MPM cells in vitro. The
same CAR T cells inhibited tumor growth and lengthened
the survival of immunodeficient mice with intraperitoneal (IP)
tumor xenografts (104). However, another study showed little
efficacy of a FAP CAR in a syngeneic mouse model usingmultiple
tumor types and observed lethal toxicity, which was attributed
to FAP expression on bone marrow-derived stem cells (BMSCs)
(105). The authors reported that this may have been due to the
use of mouse tumor lines with limited FAP expression, while
robust FAP staining by IHC was observed in multiple human
tumor samples, indicating that human tumor cell lines may have
been better targets for the study.

One method of entirely circumventing the hurdle of
suboptimal T cell homing (and also potentially avoiding
on-target off-tumor toxicity) is regional/local CAR T cell
administration, which has already been tested in patients with
solid tumors with varying degrees of success. One phase 0 study
that enrolled patients with metastatic breast cancer demonstrated
that intratumoral administration of mRNA c-Met CAR T cells
was safe and resulted in tumor cell death, and showed other signs
of anti-tumor inflammation including macrophage recruitment
(20). Recently, in a study using a xenograft mouse model
of human breast cancer metastatic to the brain, intracranial
and intratumoral administration of HER2-specific CAR T cells
showed improved antitumor activity compared with intravenous
delivery, with complete tumor eradication and 100% survival
even after tumor rechallenge (106). Another study showed
that regional delivery of a HER2-BBζ CAR T cell cleared
medulloblastomas in NSG mice and required a significantly
lower dose than intravenous delivery (107). The same CAR
in nonhuman primates with HER2 positive medulloblastomas
showed no toxicity after intraventricular delivery. A mouse study
using a CEA CAR for peritoneal carcinomatosis (colorectal
cancer metastasized to the peritoneal cavity) showed that
regional intraperitoneal (IP) delivery resulted in better antitumor
response than intravenous delivery, even after tumor rechallenge
and at distal tumor sites (108). Finally, a study of intracavitary
administration of pan-ErbB/IL-4 CAR T cells targeting patient
derived MPM xenografts in SCID mice showed tumor regression
or cure in all mice (23).

TIL SURVIVAL IN THE TUMOR
MICROENVIRONMENT

Once a CAR T cell finds its way into the tumor, the battle is
far from over. The tumor microenvironment (TME) has been
extensively characterized as hostile for T cells [see (95, 109),
and (110) for reviews of the tumor microenvironment and the
different cell types it comprises]. The glycolytic metabolism
of tumor cells renders the environment hypoxic, acidic, low
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in nutrients, and prone to oxidative stress (1, 109). In an
inflammatory environment, tumors cells often upregulate ligands
such as programmed cell death ligand 1 (PD-L1) and Galectin-
9 that bind to inhibitory receptors on T cells (see Table 2). The
tumor microenvironment also relies on stromal cells like cancer
associated fibroblasts (CAFs) and suppressive immune cells,
including myeloid-derived suppressor cells (MDSCs), tumor
associated macrophages (TAMs), tumor associated neutrophils
(TANs), mast cells, and regulatory T cells (Tregs) (Figure 2)
(95). These cells and tumor cells secrete soluble factors like
vascular endothelial growth factor (VEGF) and transforming
growth factor β (TGFβ), which contribute to abnormal tumor
vasculature, promote anti-inflammatory polarization of TAMs
and other immune cells, and are implicated in EMT (116). They
also produce reactive oxygen species (ROS) and molecules like
lactate, indoleamine 2,3-dioxygenase (IDO), prostaglandin E2
(PGE2), soluble Fas, and adenosine, which contribute to the
suppression of the T cell immune response (Figure 3) (117, 121).

When they are activated, effector T cells generally switch from
oxidative phosphorylation (oxphos) to glycolysis to facilitate
faster proliferation, while memory T cells and Tregs rely on
oxphos and fatty acid oxidation (FAO) when activated [for a
full review on T cell activation and metabolism see (122)].
However, both of these metabolic resources are limited in the
TME because glucose is depleted by tumor cells, leaving glycolytic
T cells nutrient-deprived. The lack of glucose results in lowered
AKT/mTOR signaling, downregulation of the glucose receptor
Glut1, and reduced capacity for glycolysis (120). Low oxygen
concentrations in the TME limit oxphos as well. Overall, this
results in significant depletion of both major sources of T cell
nutrients. In a study of resected tumor tissue from 54 patients
with clear cell renal carcinoma (ccRCC), CD8+ TILs showed very
low levels of activation and proliferation, and although T cell
Glut1 remained expressed, TILs did not uptake glucose (123).
The study also observed that mitochondria (crucial for T cell

TABLE 2 | Some inhibitory receptors and their known ligands [from Wherry et al.

(111), unless cited in table].

Inhibitory

receptor

Full name Ligand(s)

A2AR Adenosine 2A receptor Adenosine

CTLA-4 Cytotoxic T lymphocyte

antigen-4

CD80, CD86

CD160 Cluster of differentiation

160

MHC Class I, herpesvirus

entry mediator (HVEM) (112)

LAG-3 Lymphocyte activation

gene 3

MHC Class II

PD-1 Programmed cell death 1 Programmed cell death ligand

1 (PD-L1), PD-L2

TIM-3 T cell immunoglobulin-3 Galectin-9 (Gal9),

phosphatidylserine (PtdSer),

high mobility group protein B1

(HMGB1), Ceacam-1 (113)

TIGIT T cell immunoglobulin

and ITIM domain

PVR (CD155) >> PVRL2

(CD112), PVRL3 (113)

activation), undergo remodeling during glycolysis, lose function
and release detrimentally high levels of ROS. This comprehensive
study is one of many to show the effects of TME hypoglycemia
on suppressing T cell activation via glycolytic and mitochondrial
pathways.

The hypoxic conditions in the TME provide particular
challenges for memory T cells, the metabolisms of which rely
heavily on oxygen. Some studies have recently begun to identify
and test modifications to CART cells to improve their function in
low-oxygen conditions. Kawalekar et al. (6) found that BBζ CAR
T cells had increased mitochondrial spare respiratory capacity
(SRC) compared with 28ζ CAR T cells, resulting in greater
metabolic efficiency even in nutrient-poor, oxygen depleted
conditions such as the TME. Because the BBζ costimulatory
has been implicated in promoting memory-associated metabolic
pathways such as fatty acid oxidation as well as increased
persistence (further discussed under “Intracellular signaling
pathways of the CAR” below), the increased SRC observed in
these T cells was hypothesized to aid their survival in low-oxygen
conditions.

One approach designed to protect T cells from the oxidative
stress inflicted by ROS in the TME was the design of a CAR
T cell coexpressing catalase, an enzyme that reduces hydrogen
peroxide to water and oxygen (124). The authors tested both
CEA and HER2 CAR T cells in vitro and found that CAR-CAT
displayed a reduced oxidative state and improved proliferation
and cytotoxicity compared with CAR alone. Another study
harnessed the hypoxia associated with the TME to develop a
CAR coexpressing the oxygen-sensitive domains of HIF1α, a
transcription factor that is stabilized in response to hypoxia (125).
In vitro, the strategy enabled very low CAR expression at normal
oxygen levels, but highly increased levels of CAR expression
together with HIF1α in hypoxic conditions. While this approach
does not address the detrimental effects of low oxygen or ROS
in the TME, it does provide proof of concept for a novel type
of safety switch that uses the hypoxic TME to a therapeutic
advantage.

T cell exhaustion [reviewed by (111)] is characterized by
chronic antigen exposure that spurs loss of effector and memory
phenotypes, inability to produce cytokines like IFNγ, TNFα, and
IL-2, and upregulates expression of inhibitory receptors (IRs) that
further shut down effector functions upon binding to inhibitory
ligands or soluble factors in the TME (Table 2) (109).

Checkpoint Blockade
One of the most popular and successful strategies to combat T
cell exhaustion is the use of checkpoint inhibitors, in which either
an IR or its ligand is blocked with an antibody. Drugs targeting
PD-L1 (atezolizumab), PD-1 (pembrolizumab, nivolumab), and
CTLA-4 (ipilimumab) have been used independently and in
combination with CAR T cell therapy with success in many
patients [reviewed in (126)]. Currently, atezolizumab and
pembrolizumab are used to treat metastatic NSCLC and are
being actively studied for use in other solid tumors as well.
Pembrolizumab was recently approved by the FDA for first line
use in combination with chemotherapy in lung cancer (127,
128). Nivolumab has shown significant responses in a phase
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FIGURE 2 | T cell extravasation into the TME and subsequent exhaustion mediated by inhibitory ligands on tumor and tumor-associated cells. Endothelial cells

experiencing inflammation express adhesion molecules including selectins, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule (ICAM-1).

P- and E-Selectins (the latter shown in the figure) bind cutaneous lymphocyte antigen (CLA), a specially glycosylated form of P-selectin glycoprotein ligand 1 (PSGL-1)

that is expressed on activated T cells (114). VCAM-1 binds very late antigen-1 (VLA-4) and ICAM-1 binds lymphocyte function-associated antigen-1 (LFA-1) (115).

Upon binding endothelial cell ligands, T cells undergo tethering and rolling before adhering to the endothelium and transmigrating through it as shown. Once in the

tumor microenvironment, T cells are in an environment full of tumor-associated, immunosuppressive cells including tumor-associated macrophages (TAMs),

tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), T-regulatory cells (Tregs), and cancer-associated fibroblasts (CAFs) (95). These cells

express inhibitory molecules, including CD80/CD86, which bind the inhibitory receptor CTLA-4 (pictured), and secrete soluble factors that suppress or cause

apoptosis in T cells. CAFs also serve as a physical barrier between T cell and tumor cell. Additionally, tumor cells themselves express ligands such as Gal9 and PDL-1,

which bind to the T cell inhibitory receptors TIM-3 and PD-1, respectively. All these factors serve to promote an “exhausted” phenotype in the T cell, characterized by

upregulation of inhibitory receptors such as PD-1, TIM-3, TIGIT, and LAG-3, loss of CCR7, CD62L, and CD45R0, loss of cytotoxicity, and apoptosis (111).

I/II trial with HCC, among others (17). Ipilimumab was shown
to lengthen the survival of metastatic melanoma patients in a
phase III study from 2010, and it has shown promising results in
mouse mesothelioma models as well as in many other preclinical
studies (129, 130). Ipilimumab has also been used in combination
with VEGF inhibitors to treat metastatic melanoma in phase I
trials. In one study, anti-CTLA-4 therapy combined with anti-
VEGF antibodies resulted in an increase in anti-tumor response
resistant to the immunosuppressive effects of the ligand galectin-
1 (131). Another study by the same authors showed ipilimumab
and anti-CTLA-4 therapy resulted in humoral immunity to
galectin-3, which is also a suppressive tumor ligand (132).

Preclinically, combining CARs with checkpoint blockade
antibodies has shown promising results. CAR T cells have
also been engineered to secrete checkpoint inhibitor antibodies
themselves. Anti CAIX CAR T cells engineered to secrete
anti-PD-L1 antibodies showed significantly improved activity
compared to standard CAR T cells, with increased cytokine
production and immune cell recruitment as well as significantly
reduced tumor size in a human ccRCC mouse model (14).
In another study, a CAR19T cell designed to constitutively
secrete anti-PD-1 also showed enhanced anti-tumor activity in

a CD19+ lung cancer xenograft model, with increased T cell
proliferation and cytotoxicity, and prolonged survival (133). A
similar study also used MUC16-ecto targeting CARs secreting
anti-PD-1 scFvs in syngeneic and xenograft mouse models of
PD-L1+metastatic ovarian cancers, and showed superiority over
CAR T cells plus PD-1 checkpoint inhibitors (134). Along a
similar line of thinking, an anti-PD-L1 CAR has shown in vitro
cytotoxicity (135); it has yet to be seen whether these CARs might
be successful in vivo, either alone or as adjuvant therapy. CAR T
cells engineered to secrete PD-1, CTLA-4, or PD-L1 antibodies
have gone to clinical trials for MUC1, EGFR, EGFRvIII, and
mesothelin expressing cancers (136).

Dominant negative genes for IRs have also been successfully
introduced to CAR T cells in many preclinical studies, as in
the case of a mesothelin CAR T cell (with either a CD28 or 4-
1BB costimulatory domain) overexpressing dominant negative
PD-1 (137). The authors observed tumor clearance with the
dominant negative PD-1 CARs, while repeated doses of PD-1
blocking antibody in combination with either the mesothelin-
28ζ or mesothelin-BBζ CAR was able to prevent growth but not
eradicate the tumor. These results show that a genetic built-
in resistance to checkpoint inhibition has advantages over a
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FIGURE 3 | Some inhibitory soluble factors and molecules secreted by tumor

cells and tumor-associated cells such as MDSCs, TAMs, TANs, CAFs, and

Tregs. High levels of lactate and an acidic environment are generated because

of the tumor cells’ preferential use of glycolysis, which impairs T cell function

(111). The hypoxic environment also limits oxidative phosphorylation, a

metabolic requirement for central memory T cells. High levels of reactive

oxygen species (ROS) are generated by tumor cells and by induced

mitochondrial dysfunction in T cells, which can be toxic to the cell. The soluble

factors VEGF, TGFβ, indoleamine 2,3-dioxygenase (IDO), prostaglandin E2

(PGE2), and adenosine are secreted by tumor and tumor-associated cells and

can have damaging effects on T cells (109, 117). Adenosine enters the T cell

through the receptor A2AR and stimulates production of cyclic AMP, which

inhibits T cell proliferation, trafficking and cytotoxicity (118). PGE2 enters

through the receptor EP4 and inhibits phosphorylation of STAT3, dampening

proliferation, development of favorable memory phenotype, and cytotoxic

function in T cells (119). Competition with glycolytic tumor cells for glucose

results in downregulation of the glucose receptor GLUT1 because of

decreased AKT/mTOR signaling and consequently, the T cell’s metabolic

capacities are further diminished (120).

blocking antibody that must be repeatedly administered and may
cause resistance. Recently, CRISPR/Cas9 technology has been
used to knock out the gene for the IR itself, which has been
done for both PD-1 and LAG-3 in CD19-BBζ CAR T cells. In
both cases, tumors were eradicated in mouse xenograft models
using the IR knockout CAR T cells (138, 139). This approach has
recently been translated to solid tumors as well: CRISPR/Cas9
was used to knock out PD-1 in T cells while simultaneously
transducing them with a CD133-specific CAR, and the resulting
PD-1 KO CARs showed improved tumor control in a mouse
glioma model compared with control CD133 CARs (140).

With the optimization of gene editing methods, CRISPR/Cas9
edited CARs are already moving into clinical trials: a PD-1
knockout CD19 CAR has is being studied in a phase I clinical
trial (NCT03298828).

Switch receptors are designed to mitigate the effects of
inhibitory ligands on T cell function while simultaneously

enhancing T cell activity. In a switch receptor, the ligand-
binding external IR domain is fused to the cytoplasmic signaling
domain of an activating molecule. For example, a PD-1/CD28
switch receptor was engineered into mesothelin-BBζ or PSCA-
BBζ CAR T cells, and both switch-receptor CARs performed
significantly better than wild type CARs at eradicating tumor in
xenograft NSG mouse models (141). In a breast cancer model,
the investigators engineered a MUC1 CAR that coexpressed
a cytokine switch receptor (4/7ICR) with an IL-4 receptor
extracellular domain fused to an IL-7 intracellular signaling
domain (142). The 4/7ICRMUC1 CARs proliferated, suppressed
tumor growth in vivo and did not show markers of exhaustion,
while MUC1 CARs without the switch receptor did. PSCA CAR
T cells that also contained a 4/7ICR switch receptor proliferated
and killed better in the presence of IL-4 and showed significantly
improved tumor reduction compared to T cells with the CAR
alone in NSG mice with subcutaneous pancreatic cancer (57).

Similar to switch receptors are bispecific T cell engagers
(BiTEs), which also subvert suppressive signals from the TME
by binding both a tumor ligand and a T cell marker (i.e., CD3).
Recently, a humanized EGFRvIII-specific scFv linked to an anti-
CD3 scFv showed significant control of glioma xenografts and
prolonged survival of mice (143). Potentially, the use of bispecific
antibodies in conjunction with CAR T cells could play a role
in recruiting TILs and in deterring immunosuppressive signals.
Another strategy is to have a fusion protein bind not to the T
cell but to the tumor itself. Recently, a PD-L1/TGFβR2 fusion
protein was developed for use with TGFβ expressing urothelial
carcinoma (144). In this study, a PD-L1 antibody fused to a
TGFβ receptor was able to accomplish both blockade of PD-L1
on the tumor and binding of TGFβ to attenuate its presence in the
TME. Excitingly, the authors also observed a greater presence of
chemokines like CXCL11 in the tumor as well as antigen-specific
killing by T cells.With the right target tumor ligands, BiTEs could
be a promising strategy to augment the function of CAR T cells
in solid tumors.

Understanding the metabolism and transcriptional profiles
of exhausted or exhausting TILs has significant impacts on
the success of therapies like checkpoint blockade and could
lead to the production of more functional CAR T cells via
metabolic reprogramming. In a mouse melanoma model, one
group showed that promoting fatty acid catabolism in vaccine-
induced CD8+ TILs using a PPARα agonist combined with anti
PD-1 therapy significantly improved anti-tumor activity (145).
Another group showed that CTLA-4, PD-1, and PD-L1 blockade
increased glucose concentrations in the TME to favor glycolysis
in T cells, improving their function in a mouse sarcoma model
(120). These studies provide clues into the roles of ligands
like PD-L1 on tumor metabolism, in addition to their known
inhibitory effects on T cell IRs.

Despite the success of PD-1 therapy in treating NSCLC and
melanoma, as well as its use in multiple other clinical trials, it is
inadequate to characterize markers like PD-1 as solely inhibitory.
Much of what we know about PD-1 in the context of exhaustion
comes from chronic viral infection models, and it has become
clear that PD-1 can in fact be a marker of activation and positive
prognosis if expressed on certain subsets of T cells in cancer,
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while some subsets of exhausted T cells may have low PD-1
expression (111, 141). In the same study by Zhang et al. (145)
that found a synergistic effect of PD-1 blockade with fatty acid
catabolism in a melanoma model, hypoxia-driven hypofunction
in CD8+ TILs was accompanied by lower PD-1 expression (but
increased LAG-3 expression), and increased PD-1 signaling was
hypothesized to be associated with metabolic reprogramming
from glycolysis to FAO in low glucose environments like the
TME. Another study suggested that PD-1 was in fact not linked
to exhaustion, and that prolonged antigen exposure alone could
cause T cells to become exhausted (146). In a recent analysis
of varied NSCLC patient samples, a population of CD8+ TILs
with high PD-1 expression did not appear exhausted, and genes
involved in cycling and proliferation such as Ki-67, as well as
genes involved in trafficking and metabolism, were upregulated
(147). The PD-1 high TILs also showed greater glucose, lipid and
fatty acid uptake than patient TILs with lower PD-1 expression.
This data challenges the understanding of PD-1 being solely
an inhibitory receptor and sheds new light on Zhang et al.’s
observation that an increase in PD-1 expression results in lower
capacity for glycolysis. Further showing a role for PD-1 outside
of exhaustion, a study comparing CD4+ TILs in 34 patients
with metastatic melanoma, grouped into young vs. old, showed
that the younger patients had a greater percentage of memory
T cells that expressed PD-1, Ki-67, and HLA-DR (another
activation marker), compared with age matched controls; these
memory and activation phenotypes were less distinct in older
patients (148). However, supporting the hypothesis of PD-1
as a marker of hypofunction, but not necessarily of terminal
exhaustion, one study demonstrated that mesothelin/BBζ T cells
that had high PD-1 expression and a hypofunctional phenotype
in an vivo human mesothelioma model recovered the ability
to produce cytokines and had lower PD-1 expression after
24 h out of the tumor (126). These data show that PD-1 can
have highly variable functions which likely depend on T cell
phenotype, metabolism, tumor type, and other factors in the
TME, and also helps explain why only a fraction of patients
respond to PD-1 blockade even when their tumors have high
PD-L1 expression.

Transcription Factors
Transcription factors such as T-box transcription factor TBX21
(T-bet) and Eomesodermin (Eomes) are involved in determining
T cell fate and their discovery has led to further insight into the
mechanisms of T cell exhaustion. T cells high in Eomes and PD-
1 have been shown to be terminally exhausted, while those with
high T-bet and medium PD-1 levels appear to retain proliferative
potential despite displaying other classically defined features of
exhaustion (111). Hypoglycemia and hypoxia in the TME have
been shown to decrease T-bet expression in TILs that also lose
effector functions (145). As an example of Eomes’ role in CAR
T cell exhaustion, a case study with a patient with refractory
diffuse large B cell lymphoma (DLBCL) who received CAR19T
cell therapy combined with PD-1 blockade showed decreased
Eomes as well as decreased PD-1 levels in peripheral blood CAR
T cells (149). The patient had a clinically significant response

to the treatment, indicating that PD-1 blockade improved the
efficacy of the CAR T cells.

Other transcription factors and signaling cascades have been
investigated as biomarkers to predict T cell function and patient
prognosis after adoptive transfer of CAR T cells. A study
using IL-18/CEA CAR T cells to treat immunocompetent mice
with advanced pancreatic carcinoma showed that constitutive
secretion of the proinflammatory cytokine IL-18 resulted
in CARs with high T-bet in conjunction with low levels
of the transcription factor FOXO1 and showed improved
antitumor efficacy (150). In an analysis of CAR19T cells
derived from patients with CLL, the circulating CARs from
complete responders had upregulated genes associated with
memory differentiation status, including IL-6 and STAT3, and
were observed to lose function upon IL-6/STAT3 blockade
(119). Nonresponders, on the other hand, had upregulated
genes associated with more of an effector phenotype as well as
glycolysis, exhaustion and cell death by apoptosis. Finally, the
paper showed that CD8+ cells that were CD27 positive and PD-1
negative were positively predictive of response to CAR19T cell
therapy. Investigating the role of these biomarkers in CAR T
cell response for solid tumors and whether they have an impact
on patient survival may elucidate the transcriptional profiles of
functional CARs.

Differentiation and Memory
Naive, central memory and effector memory, and terminally
differentiated effector T cells all have distinct markers of
differentiation. Differential expression of CCR7, CD62L, CD25,
CD45RA, CD45R0, CD95, and IL-7Rα, among others, can
identify subsets of T cells (151, 152). Tregs, CD4+ T cells that
express CD25, CTLA-4, and FOXP3, are another distinct subset
that inhibits T cell effector function; studies have shown that
with CAR T cell therapy, Treg presence lowers CAR antitumor
activity. Checkpoint blockade targeting CTLA-4 may be one
way to address this problem. Other surface markers like IL-2Ra
and KLRG1 have been shown to be associated with effector-like
phenotypes, while IL-7Rα and the chemokine receptor CXCR3
are associated withmemory-like cells (153). Cytokines such as IL-
2, IL-12, IL-27, and IFNγ are also traced to effector-differentiated
T cells, while IL-10, IL-21, IL-7, IL-15, and TGFβ are associated
with a memory phenotype. Genes such as T-bet, Id2, Blimp-1,
Batf and Stat4 have been associated with effector phenotypes,
while Id3, Bcl-6, Tcf-7, Stat3, Foxo1, and Eomes are all proposed
to be upregulated in memory-like T cells (150, 153).

Gattinoni et al. (154) describe a human stem cell memory
T cell (TSCM) population that expresses both the classical
markers of naive cells as well as certain memory cell markers
including CD95 and IL-2Rβ, which the authors determined
to be crucial identifiers of TSCM. These cells were found
in 2–3% of circulating blood lymphocytes of healthy donors,
and could also be induced from naive T cells by culturing
them in the presence of a glycogen synthase kinase 3β
(GSK3β) inhibitor. (Inhibition of GSK3β has been described to
stabilize β-catenin and halt differentiation to effector T cells
while promoting memory characteristics). These TSCM cells
demonstrated increased proliferation in response to the cytokines
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IL-7 and IL-15 compared with effector memory T cells, while still
retaining their phenotype.

The memory phenotype has consistently been shown to favor
T cell survival, proliferation, and prolonged presence of TILs
at tumor sites. However, only a few studies focusing on T cell
differentiation and memory up to this point have been done
in solid tumor models. Still, valuable lessons can be learned
from models of ACT, GVHD, or hematological malignancies.
For example, a study of ACT in both NSG mice and nonhuman
primates showed that purified TCM cells persist better than
standard T cells, and form stable memory pools (155). Cieri
et al. (156) published an in vitro culture protocol for inducing
a stem cell memory-like phenotype in T cells using IL-7 and
IL-15 during CD3/CD28 bead activation of naive precursor
cells. When transduced with a transgenic TCR, these T cells
displayed memory-associated qualities including proliferation,
cytokine production, and expression of CD45R0 upon exposure
to target antigen, while retaining markers indicative of naive T
cells including CD45RA and CD62L. These T cells were very
similar to those described by Gattinoni et al. (154) above, except
for the expression of CD45R0. The authors found enhanced
proliferation in these cells compared with cells expressing
a central memory or effector memory phenotype, and this
translated to increased expansion and cytotoxicity compared
with other subsets of T cells in a mouse GVHD model. The
results of these experiments suggest that, as stated by the authors,
using naive cells for ACT may significantly improve clinical
outcomes. Similarly, using IL-7/IL-15 with naive T cells during
transduction and culture conditions to produce more TSCM
CAR T cells is a promising strategy for the creation of CAR
T cells that both kill and proliferate better in the body. In one
such study for solid tumors, T cells bearing a third-generation
GD2 CAR (signaling domains for CD28 and OX40), as well as an
inducible caspase 9 suicide gene, were activated with CD3/CD28
stimulation along with a variety of cytokines, with the hope of
identifying conditions to promote a memory phenotype (157).
Addition of IL-7 and IL-15 led to the greatest antigen-specific
cytotoxicity in vitro along with the highest percentage of stem cell
memory and central memory subsets as identified by CD45RA,
CCR7, and CD95. The authors predicted better proliferation,
survival, and antitumor activity of GD2-CD28-OX40 CART cells
cultured in IL-7/IL-15.

Clinically, work has been done to determine biomarkers
associated with memory that are predictive of response as
well as to actually manufacture CAR T cells with optimized
differentiation status for infusion into patients. In a study
examining T cell memory in ovarian carcinoma patients, it was
found that increased presence of CD8+ effector memory cells,
as well as the chemokine CXCL9, was significantly associated
with long-term survival (158). The authors also implicated
the signaling proteins STAT5B, PLCγ1, and NFATc2 as being
relevant to survival, with lower levels of these signals correlating
with hypofunctional T cells and shorter survival times in
patients.

In the study by Fraietta et al. (119) discussed above, the
authors looked at both the original unmodified T cells from
CLL patients and the corresponding CAR transduced infusion

products. All sets of T cells from responding patients showed
markers associated with early memory, non-exhausted T cells. As
glycolysis is a hallmark of effector/exhausted T cell metabolism,
and the T cells of nonresponders displayed upregulated genes
for exhaustion and glycolysis, the authors used a glycolysis
inhibitor while manufacturing CAR T cells and observed
increased numbers of memory CAR T cells along with enhanced
proliferation upon exposure to antigen. Blocking glycolysis is
another approach that could be used in solid tumor-targeting
CAR T cells to push formation of memory T cells during
activation and transduction, particularly given (119) evidence
that the initial differentiation status of a patient’s apheresed T
cells may significantly affect the efficacy and persistence of the
infusion product. Memory CAR T cells have been manufactured
for clinical use already in hematopoetic malignancies such as
leukemia; Wang et al. (155) used a protocol using magnetic
separation to select CD8+ CD45RA+ CD62L+ TCM cells to
transduce with a CD19 CAR while culturing with IL-2 and IL-
15, and several variations of these CARs (which have CD28
costimulatory domains) are being tested in a phase I study.
Also for leukemia, a GMP protocol for manufacturing CAR T
cells highly enriched for TCM and TSCM phenotypes has been
recently developed (159) in which, on average, 50% of the T
cells were TCM and 46% TSCM. The authors reported that the
results were consistently achieved even with very few T cells
available to start. The use of CAR T cells enriched for TCM and
TSCM has reached the clinic even in solid tumors: the GD2-
CD28-OX40 CAR manufactured in IL-7/IL-15 (157) is currently
in a phase I trial to treat patients with sarcoma, osteosarcoma,
neuroblastoma, and melanoma (NCT02107963).

Tissue Resident Memory Cells
Another memory T cell subset that may be of special importance,
especially in treating solid tumors, are tissue resident memory
cells (Trms), reviewed in (160). Trms have been shown to
permanently reside at sites of prior infection or inflammation
and quickly respond to pre-recognized antigen, recruiting other
immune cells, and increasing the local anti-tumor immune
response at a very early stage (161). CD8+ Trms are characterized
by high surface levels of CD103 and the activation marker
CD69 and low CD62L and CCR7, and it is believed that TGFβ
and IL-15 are both important soluble factors that promote T
cell differentiation to a Trm phenotype. Despite having many
memory markers, Trms secrete high levels of cytokines such
as granzyme B and perforin. Interestingly, Chang et al. (153)
and Wakim et al. (162) found that Trms do not tend to have
high T-bet as other memory T cells do. Mackay et al. (163)
describe downregulation of T-bet, but with necessary residual
activity, as one of the factors driving skin Trms, in addition to
downregulation of Eomes.

While a significant amount of this research has been done
on Trms in skin, some data shows that analysis of Trms
across various tissues obtained from humans retain similar
phenotypes, particularly in CD8+ Trms (164). One examination
of the transcriptional profiles of Trms in multiple tissue types
showed that the gene Hobit (“homolog of Blimp1 in T cells”)
was upregulated, and together with Blimp1 was a driver of
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a Trm phenotype (165). CD103 was not expressed on all
Trms described, which has also been shown in other tissues
including the brain (162). Interestingly, the genes Hobit and
Blimp1 were also upregulated in activated NK cells, suggesting
a similar signaling pathway during activation of both Trms
and NK cells. Other studies offer support for this parallel,
including one by Lotem et al. (166) that reported regulation
of activation and proliferation in both mature CD8+ T cells
and NK cells by the transcription factor Runx3. High levels of
Runx3 have been shown by several studies to decrease CD4+

and increase CD103 expression on T cells, biasing them toward
a cytotoxic CD8+ Trm phenotype. In a study by Cruz-Guilloty
et al. (167), Runx3 also was reported to drive an increase in
Eomes expression and granzyme B and perforin secretion in
differentiating CD8+ T cells, while T-bet expression peaked
early, at around 2 days, and then decreased over a week of
differentiation. The authors also reported Runx3 to regulate
CD103 in resting NK cells. While ongoing research is required
to parse out more information on Trms, induction of a Trm
phenotype using TGFβ and IL-15, or via a genetic engineering,
could be a powerful way to improve upon ACT or CAR
T cell efficacy. In a study of TILs in lung cancer patients,
transcriptome analysis showed that CD103 and other Trm-
linked markers were significantly increased in the patients with
high numbers of TILs; moreover, having a higher percentage
of Trms was reported to predict better survival (168). In a
study using an orthotopic head and neck cancer model in
mice, a cancer vaccine was more successful after induction
of Trms, and Trms were still detectable at the tumor site 90
days later (169). Additionally, Trms protected against tumor re-
grafting even when recruitment of additional effector T cells
was blocked, showing that Trms alone can mount a successful
antitumor response and tumor rejection upon rechallenge.
These data show that Trms may be critical to successful
tumor infiltration and protection against tumor relapse, and the
induction of a Trm phenotype is likely to increase therapeutic
outcomes.

Overcoming Other Immunosuppressive Factors in the

TME
Administration of cytokines to polarize the tumor mileu to be
more hospitable to T cells and improve CAR T cell recruitment
and functionality has been tested in both preclinical and clinical
trials. Local delivery of IL-12, which induces inflammatory
immune cell recruitment, augmented the anti-tumor activity of
adoptively transferred anti-VEGFR-2 CAR T cells and led to
prolonged survival of mice bearing five different subcutaneous
tumor types (170). In the study, treatment of IL-12 plus
VEGFR2 CAR T cells, but neither alone, reduced VEGFR2-
positive intratumoral MDSCs, providing strong support for the
combination of IL-12 with CAR T cells. Due to positive responses
like these, CAR T cells that constitutively secrete cytokines,
termed “armored” CARs [reviewed by Yeku et al. (171)] have
been created to enhance T cell infiltration and function in
solid tumors (Figure 1). Particularly, the cytokine IL-12 has
been an attractive tool for this. In a mouse xenograft model of
ovarian cancer, MUC16 CAR/IL-12 T cells lengthened survival

and showed increased persistence and tumor cytotoxicity (53).
More recently, in a syngeneic mouse model of peritoneal
carcinomatosis (metastasized from ovarian cancer), IP-delivery
of MUC16 CAR/IL-12 T cells was found to confer longer
survival, even when administered to mice with significant disease
progression (67).

Some other strategies to boost CAR T cell function in
the TME include inhibiting suppressive soluble factors, like
adenosine, IDO1, and VEGF, and protecting against the immune
suppression of non-tumor cells in the TME like MDSCs,
TAMs, and stromal cells. In a study using HER2 CAR T
cells in a syngeneic tumor model, blockade of the adenosine
2A receptor significantly improved the efficacy of the CAR
T cells by enhancing activation and cytokine production
(118). Additionally, the authors reported that PD-1 blockade
further augmented the T cell immune response. Another study
demonstrated significant slowing of tumor growth in a xenograft
colon cancer model by combining blockade of IDO1 (negatively
correlated with patient survival in colon cancer) with EGFRvIII
CAR T cell transfer (172). VEGF blockade has been successful
in solid tumors such as melanoma, and VEGF-targeted CARs
have shown efficacy in multiple preclinical solid tumor models
(131, 132, 170).

Increasing antitumor response can also involve either
depleting anti-inflammatory cells in the TME or inducing more
inflammatory phenotypes in other immune cells. Research in
mouse breast cancer models has suggested that targeting TAMs
may be effective for treating progressive cancer, as TAMs were
associated with more anti-inflammatory activity and tumor
immune evasion (173). Another study demonstrated that in
murine ovarian cancer models, macrophages were associated
with resistance to VEGF blockade. When macrophages were
depleted, survival was prolonged, and in macrophage deficient
mice, resistance was not observed unless macrophages were
reintroduced into the tumors (174). TAMs are, therefore, a highly
active subset of immune cells that seem to promote tumor
survival and immune evasion. In a subcutaneous mouse model of
ovarian cancer, tumor rejection by HER2 CAR T cells was shown
to require the presence of M1 (inflammatory) macrophages and
IFNγ receptors on stromal cells, demonstrating that tumor-
specific attack by T cells, even functional ones, may not be
enough to clear tumors; stromal cell targeting (for example, with
FAP CARs) and recruitment of other types of inflammatory
immune cells may be necessary (175). Depleting MDSCs can
also improve T cell responses, as shown in a study with a
GD2 CAR in which the CAR T cell alone had no anti-tumor
activity in a xenograft sarcoma model, but in combination with
MDSC reduction using all-trans retinoic acid, led to significant
antitumor activity (176). Noman et al. (177) demonstrated in vivo
that hypoxia in the TME plays a significant role in upregulation
of PDL-1 on MDSCs and on their subsequent suppression of
TILs. PDL-1 upregulation was determined to be dependent
on HIF1α, and PDL-1 blockade prevented T cell suppression
by MDSCs. In another study (described in section Tumor
Infiltration) using a CEA CAR, blockade of PD-L1 positive
MDSCs and Tregs in the TME augmented CAR T cell anti-tumor
function (108).
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Intracellular Signaling Pathways of the CAR
It is also important to study the signaling pathway of the CAR
itself, particularly how different costimulatory domains may
affect T cell activation, metabolic needs, differentiation pathways,
and the propensity to exhaust. Adding a costimulatory molecule
to the original CD3ζ cytoplasmic domain revolutionized the
functionality of the CAR T cell; now, there is a broad
array of signaling molecules that can be used. The most
common costimulatory molecules are 4-1BB and CD28, and
depending on the CAR and tumor type, many studies focus
on one or the other. Some have studied adding a third
costimulatory domain, like ICOS or OX40. Some studies have
demonstrated little significant advantage of one design over
another. In a study comparing 4-1BB vs. CD28 in an EphA2
CAR, both CARs displayed equally potent antitumor activity
in a xenograft mouse glioma model, and creating a third-
generation CAR with both domains did not improve T cell
performance over the second-generation CARs (27). In the study
described in section Tumor Infiltration that used mesothelin/IL-
7/CCL19 CARs to treat murine mesothelin-expressing PDA,
there was also no difference between 4-1BBζ and CD28ζ
CARs (66).

Many studies implicate 4-1BB as promoting superior
differentiation phenotype and persistence. A recent study used
phosphoproteomics to report on the kinetics of the 4-1BB
vs. CD28 domains in CAR T cells. The authors found that
4-1BBζ CARs and CD28ζ CARs signaled through the same
intermediates, but CD28ζ CARs had more and faster changes in
protein phosphorylation, which seemed to drive them toward an
effector phenotype. On the other hand, 4-1BBζCARs were shown
to express more memory-related genes and performed better in
vivo than their CD28ζ CAR counterparts (178). Another study
comparing 4-1BB and CD28 signaling in a PSCA CAR to treat
patient derived prostate cancer xenografts found 4-1BB to be
superior to CD28, with 4-1BBζ CARs leading to less exhaustion
and better antigen selectivity (however, in vitro killing was equal
between the two CARs) (179). In the aforementioned study of
a regionally delivered HER2 CAR in xenograft models of brain-
metastasized breast cancer, 4-1BBζ CARs also showed superior
proliferation and less exhaustion than CD28ζ CARs (106). The
evidence for 4-1BB preferentially expressing memory markers
so far has been borne out clinically: an ex vivo study showed
that in both CD19 and mesothelin CARs across multiple donors’
T cells, 4-1BB promoted better proliferation, central memory
differentiation, and greater levels of fatty acid oxidation and
mitochondria generation than CD28, while CD28 was linked
to increased glycolysis and an effector phenotype (6). Other
4-1BB based CARs from in vivo studies described in this
review include HER2 CARs in models of medulloblastoma and
gastric cancer (92,30); GD2 CARs in models of neuroblastoma
and patients with melanoma (29, 30); mesothelin CARs in
preclinical models of mesothelioma (64); and FAP CARs used
in models of tumor associated stroma (102). Clinically, data
is rare so far for solid tumors, but a case study described
by Brown et al. (42) showed tumor regression induced by
T cells expressing a 4-1BBζ IL13Rα2 CAR in a patient with
glioblastoma.

Numerous studies have engineered effective CARs that signal
through the CD28ζ domain, many of which target the same
antigens and are used in similar disease models as 4-1BBζ-
signaling CARs. These include humanized HER2 CARs that
were shown to have a central memory phenotype in the context
of treating breast cancer xenografts (35); IL13Rα2 CARs that
showed proliferation and cytotoxicity in a mouse model of
glioblastoma (41); and FAP CARs in IP mouse models of MPM
(104). Other CARs mentioned in this review that use the CD28ζ
costimulatory domain include L1CAM CARs for ovarian cancer
in mice (45), MET CARs for MPM (48), MUC16 CARs in mouse
models of ovarian cancer and peritoneal carcinomatosis (53, 67),
and NKG2D CARs in Ewing’s sarcoma models (54). Studies have
also used CD28 with dual CARs, such as HER2/MUC1 bispecific
CARs in in-vitro breast cancer models and HER2/IL13Rα2 CARs
in xenograft glioma models (86, 87). Clinically, a HER2/CD28ζ
CAR was used to treat progressive glioblastoma in a phase I trial
that showed efficacy in some patients (38).

Finally, third generation CARs have also been studied in
preclinical and clinical settings. A recent study comparing third
generation GD2 CARs to treat in vivo models of neuroblastoma
found 4-1BB/CD28 CARs to be superior to CD28/OX40ζ CARs
in terms of activation, exhaustion, and in vivo antitumor
efficacy (180). Successful in vivo studies using 4-1BB/CD28
third generation CARs include an ICAM-1 CAR for a mouse
model of thyroid cancer (40), a GPC3 CAR in a patient derived
xenograft of model of HCC (32), and a VEGFR2 CAR against
multiple tumor types in vivo (161). However, the study that
observed fatal toxicity with the use of a FAP CAR in syngeneic
mice used a 4-1BB/CD28ζ third generation CAR, and the case
report (mentioned in section 1) of a patient death was after
administration of HER2 4-1BB/CD28ζ CAR T cells (58). A
third generation mesothelin CAR using ICOS/4-1BBζ showed
significantly better tumor control and better T cell persistence
than ICOSζ or 4-1BBζ CARs alone in a mesothelin-expressing
pancreatic xenograft NSG mouse model (181). This study
also provided significant insight into the signaling pathways
that may be required for optimal CAR T cell activation and
differentiation. Lower surface CAR expression corresponded to
less tonic signaling (signaling in the absence of antigen), which
is linked to exhaustion and has been observed in both CD28ζ
and 4-1BBζ CARs. Additionally, the authors found that ICOS/4-
1BBζ CARs only performed better than second generation
CARs when ICOS was proximal to the transmembrane domain.
In the clinic, GD2 CARs with CD28/OX40 costimulatory
domains are currently in phase I trials for neuroblastoma
(31).

The site of gene integration has also been shown to
have significant impact on CAR function. A study with a
CD19/28ζ CAR used CRISPR to insert the CAR under the
control of the TCR promoter (at the TRAC locus), while
simultaneously knocking out the TCR via insertion of the CAR
gene (182). The results indicated enhanced proliferation, more
memory cells, and much less exhaustion. The TRAC locus
CAR was also hypothesized to have reduced tonic signaling
that would push T cells toward terminal differentiation and
exhaustion.
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Future Directions and Conclusions
CAR T cell therapy remains extremely expensive, and patients
with severely depleted immune systems may not have viable
T cells for autologous CAR T cell generation; additionally,
concerns about immunogenicity of certain CAR designs may
render therapy less effective in patients that develop an immune
response to the CAR. New approaches are needed to make CAR
T cells not only functional, but also more efficient and accessible.

Technology such as CRISPR/Cas9 as a highly specific and
efficient method of genome editing has become translatable to
patients in the past few years. Beyond its use in generating IR
knockout CARs, CRISPR/Cas9 has been used to knock out or
replace the native TCR in CAR and TCR engineered T cells,
which has been shown to provide higher antigen sensitivity
and specificity (183). In addition to its implications for T cell
function, the use of CRISPR is extremely promising in the field
of CAR T cell therapy because it can be used to knock out HLA
as well as the endogenous TCR, meaning CARs can be made
from allogeneic cells without the threat of cross reactivity and
GVHD or rejection. This could dramatically reduce the cost, time
and resources required to generate CAR T cells for every patient
(184). This has recently been done successfully with a TCR and
HLA class I double knockout CAR19 (185). Investigators also
developed a CAR that knocked out Fas as well as the TCR and
HLA-1 genes, which showed enhanced antitumor activity in vivo
against a leukemic cell line, with longer survival than unmodified
CAR T cells. Thus, CRISPR can be used not only to knock out
inhibitory receptors, but also to knock out the TCR and HLA
to generate universal or “off the shelf ” CARs (186). Moreover,
these modifications can be accomplished simultaneously with
high precision and efficiency.

Universal CARs have also been developed using other systems
of genome editing, including transcription activator-like effector
nucleases (TALENs), which create double-stranded breaks in
DNA for efficient gene knockouts. Recently, TALEN-mediated
editing was used to knock out the TCR-α chain in CAR19T
cells. The subsequent universal CAR T cells, which were from
allogeneic donors, induced remission in two infants with B
cell ALL (187). Before the advent of CRISPR/Cas9, zinc finger
nucleases (ZFNs), proteins that recognize three base pairs at a
time to bind to DNA, were also used to remove surface expression
of molecules like HLA from allogeneic T cells (185, 188). (189)
used ZFNs to disrupt both the TCR β- and α-chain genes
while also lentivirally transducing the T cells to express a WT-1
recognizing TCR. This led to superior in vivo antitumor activity
and eliminated off-target reactivity.

In some cases where the scFv is murine-derived, there is
the potential for the development of anti-mouse antibodies that
could reject the CAR T cells. Many studies have adopted the

use of a humanized scFv, and these humanized CARs have also
gone to clinical trials (8). However, humanizing the scFv is a
long and onerous process and few fully humanized sequences
are currently known. Thus, some recent studies have proposed
alternatives to the scFv antigen-recognition domain. One of these
alternatives is an affinity molecule from the type III domain
of human fibronectin (Fn3), which is similar to the scFv of
an antibody but is smaller and has a less complex structure
without disulfide bonds, enabling easier in vitro generation of
specific binding domains (190). Additionally, its smaller size may
enable the Fn3 to recognize epitopes that scFvs cannot. Fn3
domains specific for CD20, CEA, EGFR, IGF-1R, and VEGFR2
have been developed. A VEGFR2-specific Fn3 CARwith a CD28ζ
costimulatory domain showed in vitro antigen-specific T cell
activation and cytotoxicity, and another Fn3 CAR engineered to
target EGFR with both CD28 and 4-1BBζ costimulatory domains
showed efficacy that was comparable to a traditional CAR against
a xenograft lung cancer model (191, 192). Another alternative
to the scFv is the use of antibody mimetic proteins, such as
designed ankyrin repeat proteins (DARPins), synthetic proteins
mimicking naturally occurring ankyrin membrane proteins
that can be generated with antigen-binding specificity and are
smaller and more stable than scFvs. Recently, a HER2-specific
DARPin CAR was shown to perform as well as a traditional
HER2 CAR in vivo against a human ovarian cancer cell
line (193).

Significant research has been done with CAR T cells in terms
of identifying target antigens, avoiding toxicity, improving CAR
T cell trafficking and entry into the tumor site, and promoting
better signaling, less exhaustion, and memory phenotypes in
solid tumors. Additionally, combination therapy with checkpoint
inhibitors, armored CARs, and suppression of other inhibitory
factors in the TME has been shown to aid in CAR T cell
efficacy in solid tumors, with some of these approaches already
being used in clinical trials. Solid tumors pose a wide array of
challenges that hematological malignancies do not, hence the
need for multi-pronged strategies in addressing them. However,
it is clear that our understanding of the TME is increasing at a
rapid rate. As the signaling pathways between T cells and other
TME cellular components, as well as the intracellular signaling
cascades specific to CAR T cell activation and exhaustion,
become further understood, CARs hold the promise for greater
success in treating solid tumors.
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