
 Open access Journal Article DOI:10.1023/B:DAPD.0000009431.20250.56

Caramba—A Process-Aware Collaboration System Supporting Ad hoc and
Collaborative Processes in Virtual Teams — Source link

Schahram Dustdar

Institutions: Vienna University of Technology

Published on: 01 Jan 2004 - Distributed and Parallel Databases (Kluwer Academic Publishers)

Topics: Project management 2.0, Team effectiveness, Teamwork, Project management and Workflow

Related papers:

 Business activity patterns: a new model for collaborative business applications

 Workflow Patterns

 Adept _flex —Supporting Dynamic Changes of Workflows Without Losing Control

 Worklets: a service-oriented implementation of dynamic flexibility in workflows

 Mining of ad-hoc business processes with TeamLog

Share this paper:

View more about this paper here: https://typeset.io/papers/caramba-a-process-aware-collaboration-system-supporting-ad-
ows0j4xmlx

https://typeset.io/
https://www.doi.org/10.1023/B:DAPD.0000009431.20250.56
https://typeset.io/papers/caramba-a-process-aware-collaboration-system-supporting-ad-ows0j4xmlx
https://typeset.io/authors/schahram-dustdar-jahxn0g6t4
https://typeset.io/institutions/vienna-university-of-technology-2d4hwglj
https://typeset.io/journals/distributed-and-parallel-databases-3v3es02k
https://typeset.io/topics/project-management-2-0-2wim39xs
https://typeset.io/topics/team-effectiveness-1znsn281
https://typeset.io/topics/teamwork-2fku10fu
https://typeset.io/topics/project-management-1i6xsfsj
https://typeset.io/topics/workflow-1at2jgig
https://typeset.io/papers/business-activity-patterns-a-new-model-for-collaborative-17pjmgege1
https://typeset.io/papers/workflow-patterns-424ymf0al1
https://typeset.io/papers/adept-flex-supporting-dynamic-changes-of-workflows-without-97u9r3xhao
https://typeset.io/papers/worklets-a-service-oriented-implementation-of-dynamic-2a44u53euj
https://typeset.io/papers/mining-of-ad-hoc-business-processes-with-teamlog-2zukgt26mp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/caramba-a-process-aware-collaboration-system-supporting-ad-ows0j4xmlx
https://twitter.com/intent/tweet?text=Caramba%E2%80%94A%20Process-Aware%20Collaboration%20System%20Supporting%20Ad%20hoc%20and%20Collaborative%20Processes%20in%20Virtual%20Teams&url=https://typeset.io/papers/caramba-a-process-aware-collaboration-system-supporting-ad-ows0j4xmlx
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/caramba-a-process-aware-collaboration-system-supporting-ad-ows0j4xmlx
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/caramba-a-process-aware-collaboration-system-supporting-ad-ows0j4xmlx
https://typeset.io/papers/caramba-a-process-aware-collaboration-system-supporting-ad-ows0j4xmlx

Distributed and Parallel Databases, 15, 45–66, 2004

c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Caramba—A Process-Aware Collaboration System

Supporting Ad hoc and Collaborative Processes in

Virtual Teams

SCHAHRAM DUSTDAR dustdar@infosys.tuwien.ac.at

Distributed Systems Group, Information Systems Institute, Vienna University of Technology

Recommended by: Dimitrios Georgakopoulos

Abstract. Organizations increasingly define many business processes as projects executed by “virtual (project)

teams”, where team members from within an organization cooperate with “outside” experts. Virtual teams require

and enable people to collaborate across geographical distance and professional (organizational) boundaries and

have a somewhat stable team configuration with roles and responsibilities assigned to team members. Different

people, coming from different organizations will have their own preferences and experiences and cannot be

expected to undergo a long learning cycle before participating in team activities. Thus, efficient communication,

coordination, and process-aware collaboration remain a fundamental challenge. In this paper we discuss the

current shortcomings of approaches in the light of virtual teamwork (mainly Workflow, Groupware, and Project

Management) based on models and underlying metaphors. Furthermore, we present a novel approach for virtual

teamwork by tightly integrating all associations between processes, artifacts, and resources. In this paper we

analyze (a) the relevant criteria for process-aware collaboration system metaphors, (b) coordination models and

constructs for organizational structures of virtual teams as well as for ad hoc and collaborative processes composed

out of tasks, and (c) architectural considerations as well as design and implementation issues for an integrated

process-aware collaboration system for virtual teams on the Internet.

Keywords: process-aware collaboration, Workflow, Groupware, virtual teams, Knowledge Logistics, interaction

management

1. Introduction

Companies operating in highly competitive markets have an intensive need for continuous

innovation and faster time-to-market for their products and services. Those products and ser-

vices are the result of complex and expensive business processes, often executed by “virtual

project teams”. Such teams can be characterized by having (geographically dispersed) team

members collaborating on shared projects. Virtual team members are frequently embedded

in different organizations and collaborate across multiple business processes, time zones,

and locations. Involved processes are ad hoc and highly dynamic and require the interaction

of many domain experts. Virtual team managers on the other hand demand facilities for man-

agement and control. The outcomes are highly knowledge intensive and therefore require

sophisticated tools for capturing and managing knowledge capital within the enterprise,

with partnering organizations, and with customers. Prospective process-aware cooperative

tools are required to record, map, and manage processes involved in knowledge work.

46 DUSTDAR

Software systems such as Workflow Management Systems (WfMS), Groupware, Knowl-

edge Management (KM), Process Modeling, and Project Management (PM) have been

used to automate or to augment business processes in organizations. In recent years there

have been considerable attempts to merge or to integrate some of the categories mentioned

above [e.g. 5–8, 18, 25–27] based on the understanding that for achieving effective and

efficient virtual teamwork flexibility and control need to be integrated. Future systems aim-

ing at supporting collaborative knowledge work for virtual teams need to be process-aware

[e.g. 4], cover intra-organizational as well as inter-organizational processes (e.g. product

value-chains) considering to enact all activities associated in those processes on the Internet

regardless of location (mobility) and regardless of devices used [e.g. 15]. Every day the need

for creating and replicating collaborative and innovative processes of the organization rises.

Solutions required for highly efficient and effective “Knowledge Logistics” (i.e. who does

what, when, how, why, using which resources) [7] require novel conceptual abstractions

and revisited metaphors for collaboration and coordination, as well as novel technologi-

cal solutions, which go well beyond current collaborative software systems [11] such as

Groupware [e.g. 8], Workflow [1, 2, 30, 31], Project [8]—and Knowledge Management

[25, 29], which constitute a highly fragmented collaborative systems market (e.g. figure 1).

The reason is that processes in virtual teams are highly integrated and flexible in respect

to the associations between artifacts, resources, and processes and therefore do not ad-

here to boundaries suggested by traditional software systems mentioned above. In this

paper we discuss some current shortcomings of approaches (mainly Workflow, Groupware,

and Project Management) based on models and underlying metaphors. Furthermore, we

present a novel coordination model including new coordination primitives and abstractions

for virtual teamwork. In particular we analyze (a) the relevant criteria for process-aware

collaboration system metaphors (b) models and constructs for organizational structures of

virtual teams as well as for ad hoc and collaborative processes composed out of tasks, and

(c) design requirements and implementation issues for an integrated process-aware collab-

oration system for virtual teams on the Internet. Our approach will be reflected in the light

of industrial requirements and case studies.

The remainder of this paper is structured as follows: The next section briefly outlines

a motivating example for virtual teamwork and provides an overview of our proposed

approach based on a categorization of collaborative systems and their underlying metaphors,

coordination models and abstractions. Section 3 discusses related work in categorization

of collaborative systems and distills our contribution in relation to related work. Section 4

discusses the underlying conceptual and pragmatic issues for the design and implementation

of process-aware collaborative work management systems. Section 5 presents architecture,

design, and implementation of such as a system—Caramba, which started as a research

project in 1997 and evolved into a commercial product in late 2001. Finally, Section 6

summarizes and concludes the paper.

2. Motivation and context

Consider the following simplified virtual (project) team example scenario as a basis for

this paper: An IT consulting team consists of 25 team members from five companies being

CARAMBA—A PROCESS-AWARE COLLABORATIVE SYSTEM 47

Figure 1. Conceptual technology framework.

responsible for IT systems consulting and implementation for many customers (projects).

The virtual team consists of a project manager and team members with various responsi-

bilities, tasks [e.g. 10], and skills. The program manager (managing multiple projects) and

the project manager need to stay informed on all work activities and status information at

all times. All team members have to work on customers’ premises many hours a week and

the project managers are travelling frequently as well. The presented scenario, although

simplified, shares many characteristics with other virtual teams in many industries: Virtual

team members (i) require status information on all work activities performed by other team

members for a joint project (process-awareness); (ii) are increasingly mobile; (iii) jointly

work on artifacts such as documents or databases (mostly asynchronously); (iv) require

knowledge about the multiple relationships (associations or links) between the artifacts and

the context in which they were created, shared, and distributed (i.e. who, what, when, in

which context); and (v) team leaders require on-demand access on project status and arti-

facts as well as critical communications between team members and between team members

and customers. Groupware systems, in most cases, follow a shared workspace metaphor

(see next section) utilizing shared folders (e.g. web-based folders) and do not provide in-

formation on the relationships between artifacts and the associated activities of business

processes (e.g. activity “presentation for customer Davis”) or on the status of other team

members’ work activities. However, this relationship information is of paramount impor-

tance for knowledge-intense business processes of virtual project teams in order to provide

contextual information on knowledge artifacts for processes such as new product develop-

ment, which cannot be modeled using a traditional WfMS, due to the frequent ad hoc nature

and multiple exceptions that would occur permanently.

To fully understand the context of collaborative technologies relevant for Internet-enabled

process-aware collaboration systems, it is important to first analyze current systems. Our

48 DUSTDAR

conceptual framework analyzes collaborative technologies along two orthogonal dimen-

sions: Knowledge Usage and Knowledge Context as shown in figure 1. Each axis has a

continuum of characteristic features.

Knowledge Usage describes the “paradigm” in which knowledge is used. In its simplest

form knowledge is only retrieved. The next stage allows (in addition to retrieval) the shar-

ing of knowledge, for example by using shared editor for synchronous joint editing. The

following stage (includes the steps before), enables users to create workspaces by orga-

nizing knowledge artifacts using files in folder hierarchies. The distribution stage enables

knowledge workers (in addition to the previous features) to distribute knowledge artifacts

(objects) by using push/pull mechanisms. Finally, the link stage allows retrieval, sharing,

workspaces, distribution, and in addition allows links between all knowledge artifacts.

The second dimension Knowledge Context reveals contextual information on knowledge

artifacts. Generally we can say that the higher contextual information is the more process

awareness is stored together with artifacts. In its simplest stage it allows auditing of artifacts.

For example users may view timestamp information on creation and routing of artifacts. The

second stage enables organizational modeling, i.e. to define persons, roles, departments, and

other organizational constructs required to design organizational structure. Organizational

models allow organizations to define a set of access rights and rules for artifacts. The third

stage additionally enables process modeling. Process tracking enables administrators to

view the progress of business processes and the progress of activities as the building blocks

of processes. Finally Reporting and Analysis supports analysis of all previously explained

stages, and statistical comparisons between them. We find it useful to relate technologies

on the market today to those two dimensions in order to elaborate our proposed approach.

Groupware systems usually provide very low knowledge context information but provide

relatively high knowledge usage capabilities, since they enable users to retrieve, share,

organize their work in workspaces, and to distribute artifacts. Document Management sys-

tems are increasingly integrated with WfMS as recent mergers demonstrate (e.g. Lotus

Notes/OneStone). Project management (PM) software is still mostly viewed as software for

individuals (i.e. project managers) and rarely offers collaborative or business process aware

solutions. Moreover, in most cases PM software is not integrated with corporate information

systems and in fact is only utilized as a graphical modeling tool for outlining tasks. Most

Knowledge Management (KM) systems on the market today are workspace-centered and

provide only very simple forms to model organizational structures (e.g. using roles only, but

not skills). To the best of our knowledge, few KM systems provide interfaces to business

process modeling and enactment systems (the domain of WfMS) [19, 20, 30, 43]. Most

KM systems enable users to retrieve artifacts from repositories (workspace metaphor), but

rarely allow distribution and process awareness. Future work on the integration of Work-

flow and Groupware benefits from a process-oriented Knowledge Management approach,

where Knowledge Management Processes (KMPs) define the interaction between knowl-

edge works in a process-oriented manner and consist of activities that are supported by

knowledge management key actions, such as searching, categorizing, and storing informa-

tion [e.g. 29]. We suggest a new domain “Knowledge Logistics” [7], which—in addition

to providing retrieval, sharing, workspaces, and distribution- allows for tight integration of

artifacts and their relationships (e.g. data flow) (see Knowledge Usage axis). Furthermore,

CARAMBA—A PROCESS-AWARE COLLABORATIVE SYSTEM 49

systems in this domain support reporting and analysis of communications and coordina-

tion patterns in a real time manner. In short, a process-aware collaboration system such

as Caramba is one example of a Knowledge Logistics system and will be discussed in

Sections 4 and 5.

3. Related work

Throughout the last 30 years, there has been a lot of work on classification models for

collaborative systems, however, no “one and agreed upon” taxonomy of analyzing and un-

derstanding collaborative systems has been proposed so far. Academia and industry suggest

various classification schemes. In industry for example, people frequently use the term

e-mail and Groupware interchangeably. More generally, there is the tendency to classify

categories of collaborative systems by naming a product (e.g. often many use the term

Lotus Notes and Groupware interchangeably). Academic research has suggested many

different classification models. For a recent extensive survey of collaborative application

taxonomies see Bafoutsou and Mentzas [3]. DeSanctis and Gallupe [12], Ellis et al. [17] and

Johansen [24] suggest a two dimensional matrix based on time and place, where they differ-

entiate between systems’ usage at same place/same time (e.g. electronic meeting rooms),

same place/different time (e.g. newsgroups), different place/different time (e.g. Workflow,

e-mail), different place/same time (audio/video conferencing, shared editors). This classi-

fication model helps to easily analyze many tools on the market today; however, it fails

to provide detailed insights on collaborative work activities themselves as well as their

relationships to business processes. Ellis [16] provides a functionally oriented taxonomy

of collaborative systems, which assists in understanding the integration issues of Workflow

and Groupware systems. This classification system provides a framework to understand

the characteristics of collaborative systems and their technical implementations. The first

category (Keepers) provides those functionalities related to storage and access to shared

data (persistency). The metaphor used for systems based on this category is a “shared

workspace”. A shared workspace is basically a central repository where all team members

put (upload) shared artifacts (in most cases documents) and share those among the team

members. Technical characteristics of “Keepers” include database features, access control,

versioning, and backup/recovery control. Popular systems examples include BSCW [e.g. 5],

IBM/Lotus TeamRoom [23] and the Peer-to-Peer workspace system Groove [21]. The sec-

ond category (Communicators) groups all functionality related to explicit communications

among team members. Basically this boils down to messaging systems (e-mail). Its fun-

damental nature is a point-to-point interaction model, where team members are identified

only by their name (e-mail address) and not by other means (e.g. by skills, roles or other

constructs, as in some advanced Workflow systems). The third category (Coordinators) is

related to ordering and synchronization of individual activities that make up a whole pro-

cess. Examples of Coordinator systems include Workflow Management Systems. Finally,

the fourth category (Team-Agents) refers to (semi-)intelligent software components that

perform domain-specific functions and thereby help the group dynamics. An example for

this category is a meeting scheduler agent. Most systems in this category are not off-the-

shelf standard software. Both evaluation models presented above provide guidance to virtual

50 DUSTDAR

teams on how to evaluate products based on the frameworks. Current systems for virtual

teamwork have their strength in one or two categories of Ellis’ framework. Most systems

on the market today provide features for Keepers and Communicators support or are solely

Coordinator systems (e.g. Workflow Management Systems) or are Team-Agents.

Combining workflow and groupware metaphors and primitives is not trivial. To our

knowledge very few approaches exist today, which support highly dynamic processes such

as in virtual teams or task forces [e.g. 8, 19, 24]. Well known, successful academic research

has been undertaken in the area of adaptive workflow and research prototypes have been

developed [e.g. 2, 9, 18, 27–30]. Adaptive workflow approaches allow for the dynamic

modification of instantiated processes. Our approach is fundamentally different compared

to approaches presented by many commercial WfMS and adaptive workflow systems, since

our experience (grounded in many industrial case studies) is that most virtual teams begin to

work on processes without modeling them in advance. The mechanisms adaptive workflow

research prototypes such as Chautauqua [18], ADEPTflex [27], and WASA [30] build on is

that single workflow instances can be adapted in exceptional cases. However, as far as virtual

teamwork is concerned our industrial case studies (e.g. with consulting teams and new prod-

uct development teams) show that “exceptions are the rule”. Our goal is to provide a support-

ing environment (not automatisms) to solve “exceptions”. Therefore, process remodeling or

instance change propagation are not the preferred way of supporting virtual team members,

who work in a loosely-coupled style and most of the time have no support from process

modeling specialists. Hence Caramba currently does not provide automatisms if deviations

from a modeled process occur and arrive at “inconsistencies” (compared to the modeled pro-

cess) of the work case. The trail of all activities (control flow and data flow) is visible to team

members and coordination primitives are provided to solve underlying problems in work

activities. Similar requirements were presented in the area of crisis mitigation [19]. The CMI

system [4, 19] is focused on task forces for crisis mitigation scenarios. Caramba and CMI

share many requirements regarding flexibility for process templates. CMI provides similar

concepts such as placeholder primitives for activities (“Tasks” in Caramba) and delegation

principles (see Section 4.4). CMI supports the notion of process escalation, i.e. processes

are dynamically extended and refined by the process participants. Caramba supports the

notion of ad hoc and semi structured processes as well as combinations and does not require

modeling of process templates before enactment. The notion of scoped roles provided by

CMI has only limited support by Caramba and may serve as an area for future research. A

detailed evaluation of current collaboration systems (academic and commercial) is out of the

scope of this paper and the reader is referred to the literature [e.g. 3, 11]. From a functional

perspective we suggest that a process-aware work collaboration system for virtual teams

needs to (a) provide organizational constructs (e.g. persons, roles, skills, groups, tasks etc.)

in order to flexibly model an organizational structure and responsibilities of virtual teams;

(b) to provide constructs for modeling generic tasks and associated document-templates or

applications in order to enact them for particular team members; (c) to provide the means to

graphically model a control flow for business processes on a high granularity. From a techni-

cal perspective two requirements are fundamental for virtual teams: (i) cross-organizational

process enactment for ad hoc and collaborative processes including analysis of interac-

tion patterns between team members; and (ii) integration (and communications-references)

CARAMBA—A PROCESS-AWARE COLLABORATIVE SYSTEM 51

of database repositories as an important resource for artifact management. We designed

and implemented the above suggestions. Our goal for the next section is to discuss the

conceptual foundations and required constructs, to outline architectural considerations, and

to present some issues on design and implementation of Caramba [7].

4. Process-aware collaborative work management

4.1. Team organization

Process-aware collaborative work management requires structural as well as process-

oriented information. Based on the five aspects depicted above we have implemented

Caramba, which allows virtual team members to fulfill the outlined activities. Three ob-

ject categories build Caramba’s core: Organizational-, Dynamic-, and Business Objects

(summarized in Table 1). Organizational Objects enable the modeling of organizational

structures and responsibilities for virtual teams and consist of the following objects cate-

gories: Persons, Roles, Groups, Skills, Units, Organization, Tasks, and Documents. Each

object may be associated with all other objects. The reason to introduce multiple grouping

constructs is that virtual teams based in various vertical industries have different interaction

Table 1. Object categories and their characteristics.

Objects Characteristics

Organizational Objects

Persons Properties of persons involved in a virtual team.

Roles Properties and Descriptions of Roles in the form of responsibility inside the

organization (e.g. Manager of R&D, Marketing Director).

Groups Properties of Groups (e.g. department names or informal working groups or

task forces).

Skills Properties and descriptions of Skills (a) found in the team or (b) required to

fulfil tasks.

Units Properties of organizational units (in some organizations equal to department

names).

Organization Properties of the organization.

Tasks Properties of “reusable” tasks (e.g. write an offer, call customer, write

specification).

Documents (templates) Properties of document templates (e.g. Word, Excel, or any application or

URI) associated to Tasks.

Dynamic Objects

Processes Properties of modeled business processes templates (design- time) including

time and cost related information.

Workcases Properties of instantiated (run time) business processes including knowledge

trail of who, what, when, why, and how.

Business Objects Database tables included by the organization to be utilized in coordination of

work activities (e.g. product or customer database).

52 DUSTDAR

Figure 2. Organizational modeling of virtual teams—MatrixEditor and ObjectCenter.

patterns which are reflected in structural constructs. The end-user component MatrixEdi-

tor allows organizational modeling by choosing two object categories and establishing a

relation as depicted in figure 2. The relationship can either be a predefined relationship

symbolized with an “X” in the cell or modeled with a “named identifier” (e.g. “only basic

knowledge of”).

The ObjectCenter component provides views on objects and their properties and en-

ables to view associations between a selected object to other objects mentioned above. The

possible relationships of selected objects are visualized by in the Object Center and accord-

ing the organizational model defined in the meta model (see Section 5.3) they are visualized

in the end user component. The model can be customized depending on the requirements

and access rights of the virtual team member.

In some vertical industries team members only, for example, require Groups and Roles.

In other industries, e.g. in virtual teams working in human resources organizations, the

Skills construct is a benefit, since team members can coordinate their work by sending

a work to be done to Skills. Based on many interviews, which are out of scope of this

paper, we devised a model which provides constructs for most virtual teams: A Person

may have multiple Accounts (to access the systems’ workspace), be member in many

Groups, have many Skills, be responsible for many Tasks, have many Roles, and work

in many Units. Each Task may be associated with (n)one or many Templates (e.g. Ap-

plications). Currently modeling of organizational hierarchies for virtual teams is limited.

It can only be modeled using a “named identifiers” for the relation. As a minimum re-

quirement, a project manager or responsible administrator will first define who (Persons)

works with this project (process). Furthermore, other constructs (e.g. Roles, Skills, Groups,

etc.) may be configured. By utilizing Organizational Objects, team members and man-

agers will have more access to contextual information generated during enactment of pro-

cesses. Dynamic Objects provide information on processes (process templates) and work

CARAMBA—A PROCESS-AWARE COLLABORATIVE SYSTEM 53

cases (enacted process templates) including their properties, Organizational Objects (e.g.

Persons) working on them, used artifacts, as well as time and cost information. Busi-

ness Objects provide the option to include database tables of corporate information sys-

tems in order to use them in collaborative work activities (e.g. refer to a particular prod-

uct in a database as an attachment and asking a consultant on more information on that

product).

4.2. Processes and activities

Business Processes are a fundamental part of collaborative work and require thorough

management. A business process can be defined (design-time) by a directed graph of con-

nected activities using process modeling languages such as Petri-Nets or UML-Activity

diagrams. Activities constitute pieces of work that form logical steps within processes [30].

They may be manual or automated in nature. Activities are performed (enacted) by one

or many actors. Actors themselves may be persons or machines. In this paper our focus

is on human actors. In order to reach business goals, activities need to be executed. Most

WfMS impose ACID (Atomicity, Consistency, Isolation, Durability) properties on them,

i.e. that activities are considered to be atomic and either carried out completely or not at

all. Unfortunately, in most WfMS the user is forced to use either all or none of the ACID

functionality. In this paper we propose a far less rigid approach. However, in most real-

world collaborative work scenarios activities in virtual teams, which are routed between

actors of one process, can be non-atomic. Georgakopoulos et al. [20] raise this issue stat-

ing that the ACID transaction model enforces task isolation, i.e. it does not permit task

cooperation. This aspect is fundamental to understanding the way virtual teams coordinate

and collaborate on joint activities. We refer to those pieces of activities being routed to

other actors of the process as work items. Generally speaking, we can distinguish between

modeled, semi-structured, and ad hoc processes. In modeled processes the information

flow (control flow) between activities can be modeled before execution (instantiation or

enactment). However, sometimes collaborative work processes cannot be modeled in ad-

vance simply because the flow cannot be defined in advance. In those cases where the

control flow between activities cannot be modeled in advance but simply occurs during

enactment time (run time), we speak of ad hoc processes. In most cases we have stud-

ied, virtual teams mainly require support for (semi-structured) ad hoc processes. In Virtual

Teams (e.g. in consulting teams) a general process flow on a coarse-grained level of gran-

ularity can be defined, however, not specified to more detailed levels. Similar experiences

were reported in [19]. Caramba aims at supporting the whole process continuum ranging

from ad hoc processes with no underlying process model to modeled processes, including

combinations thereof. The main focus, however, is on ad hoc processes. This represents

one of the most difficult challenges, both, technically and conceptually for the end user.

For example, it should be possible for a virtual team to initiate an ad hoc process and,

from one particular activity, to provide a link to a defined process model. Additionally,

the system should also allow starting from a process template and to deviate from this

model, simply by deleting activities modeled in the process template or by adding new

activities from a given task library (see Table 1). In most cases virtual teams operate with

54 DUSTDAR

Figure 3. Process modeler.

ad hoc activities with some combination of modeled process templates. Those circum-

stances make it rather difficult, if not impossible, to apply traditional Workflow systems to

the domain of virtual teamwork. In Caramba virtual team members do not need to model

a process in advance in order to achieve process-awareness. The team members simply

coordinate activities using the provided Organizational Objects constructs (for details see

next two sections). For those cases, where a project manager is able to model a process

template, a Process Modeler component is provided. It supports modeling of processes

by building directed graphs consisting of “Tasks” (see Organizational Objects) and their

relationships using the UML Activity diagram notation. When process templates are en-

acted (executed) we speak of work cases. Figure 3 depicts an example of a simple process

template, which can be enacted in the course of the collaborative work efforts of the virtual

team.

We distinguish between Tasks (see Organizational Objects) and activity instances. Tasks

are entities on a generic (template) level, and when they are executed (instantiated) they

become activity instances (referred to as activities, for short) and therefore are associ-

ated with Persons and other Organizational Objects. The intention is to model a business

process template using generic task descriptions including their associated applications

and/or document templates (i.e. invoked applications) and the associated Organizational

Objects. Since modeled templates are generic they may be reused and instantiated by

the owner of the “Begin-Activity” in the process template. In Caramba deviations from

modeled processes (e.g. one Task can be skipped in a particular work case) do not re-

quire re-modeling and re-enactment of the process itself. The process participants may

CARAMBA—A PROCESS-AWARE COLLABORATIVE SYSTEM 55

Figure 4. Coordination of activity instances.

choose, depending on the context, to coordinate the activity instances to other Organi-

zational Objects, without changing the underlying process template. Figure 4 depicts a

scenario where the responsible person who initiated the process template sends the activ-

ity instance to the next steps. Caramba proposes the succeeding three activity instances

to the user, who can agree with the proposed next steps or add/delete Organizational Ob-

jects as receivers. The overall idea is to provide process templates in the form of “best-

practice process libraries” as part of the collaborative work management environment and

to add flexibility to the team members in cases of exceptions to a process template. It is

not required to model business process templates in advance in order to utilize process-

aware information. When members of the system start (enact) a new process, which is

not based on a modeled process template, an “ad hoc” process-template consisting of a

“Begin-Activity” is automatically generated. The team members may use any Organiza-

tional Object to coordinate activities thereafter. This mechanism enables the system to keep

track of all activities even without advanced modeling. To summarize the relationships

between our proposed constructs: An activity may be non-atomic and may be composed

of many work items (e.g. if the activity is split and routed to other team members). A

work item may have many Actions. Actions are pieces of individually performed work

on work items. In our above example two actions might be (a) invoking application XYZ

and calculating the statistics, and (b) calling an expert and interpreting the results. In this

case both actions can be stored and associated to the appropriate work item and activity

respectively. We suggest that for a process-aware collaborative work management system

56 DUSTDAR

Figure 5. Time and cost related information for actions.

it is relevant to capture the relationships between activities, work items and individual

actions.

4.3. Actions and scheduling

Participants of processes receive activities (or work items) from other team members and

are often required to work on them. For process-aware collaborative work management

it is of paramount importance to retain all relationships between received activities and

the personal work being performed based on the activities. We refer to this individual

work activities performed based on work items as actions. One activity may have many

actions associated with it. Actions themselves may be associated with document templates

or applications which can be launched, when the user selects the appropriate activity, and

selects the option to work on it (action). For each action time and cost related information

may be entered, as depicted in figure 5. The reason for differentiating actions and work

items is solely based on gained user experiences. It provides a “logical way” for end users

to differentiate between a work item they receive and the (multiple) actions they perform

based on or for that particular work item. Furthermore, it provides a “natural way” for users

to select a particular work item and to view all actions they performed on that activity.

In some cases, team members also require scheduling their actions on selected activities.

A process-aware collaborative work management system should enable the other team

members to retrieve all relevant scheduling information of their colleagues in order to

increase awareness of dependencies of work activities.

CARAMBA—A PROCESS-AWARE COLLABORATIVE SYSTEM 57

Sender Addressee Recipient
(1) Mapping to Person

(2) Distribution Type

[All|One|Load Balancing|Random]

Figure 6. Coordination abstraction.

4.4. Coordination model and abstraction

Process-aware collaborative systems are based on a coordination model and a commu-

nication paradigm. The coordination model is the glue that binds separate activities into

an ensemble [22]. Basically literature differentiates between three distinct paradigms: (i)

Shared memory, (ii) Message passing, and (iii) Event-based. These approaches differ in

the way they treat information exchange (communication). In shared memory approaches

the communication takes place through read and write operations on a shared pool of data

objects. Members of the shared memory space can access the edited data objects. This

mechanism provides a comfortable abstraction for exchanging data, however, additional

mechanisms need to be taken into account to provide notification to the receiver on in-

formation arrival or modification. In message passing systems processes or activities send

and retrieve messages in order to communicate. A fundamental property of message-based

systems is that the sender needs to know the receiver’s address. Event-based systems follow

a publish/subscribe pattern of interaction (metaphor). In this case processes and activities

are required to subscribe (register) for particular objects and in case of changes on the

subscribed objects, the event service sends a notification to the subscribed objects.

We follow a hybrid approach, which we will outline in the following paragraphs. As shown

in Section 4.1, the underlying organizational model is known to all members of the system.

This implies that the addresses of all objects (Organizational-, Dynamic-, and Business-

Objects) are known to the system and have distinct addresses (shared memory). Our hybrid

coordination model implements a messaging based system on top of the underlying shared

memory. Figure 6 illustrates the coordination model abstraction.

The sender is required to identify an “addressee”. The addressee may be any Caramba

Object (Organizational-, Dynamic-, and Business-Object). For instance, the sender may

send work to a Role or a Skill (or any Organizational Object) or to a process, i.e. its “Begin-

Activity” (Dynamic Object). The sender may not be aware or in fact may even not care about

who has the selected Role or Skill. Since the mapping between Addressees and Caramba

Objects is m : n, the sender needs to select a Distribution Type (see Table 2) for the work

being sent. Consider the following situation: Persons A, B, and C are members of Skill “Java

Table 2. Distribution types.

Distribution types Characteristics

One Activity instance is sent to one addressee, i.e. the first available who is online.

All Activity instance is sent to all members of the class addressee.

Load balancing Activity instance is sent only to certain members of the addressees, based on a

defined load balancing algorithm.

Random Activity instance is sent to a random member of the addressee list.

58 DUSTDAR

Table 3. Coordination primitives and semantics.

Types Characteristics

Ad hoc coordination Creates an ad hoc coordination based on selected activity instance.

Coordination Sends (coordinate) activity instance to other member of the work team after

completing working on the activity.

Forward Sends activity instance to other members of the work team before working on the

activity yourself.

Return The activity instance can be returned to the sender. The receiver does not agree to

work on the received activity instance.

Delegate The activity instance can be delegated to other actors (e.g. Organizational Objects).

The new receiver will be responsible for the activity instance.

Reply Creates a reply for selected activity instance.

Action Creates entries for (sub) activities instance based on selected activity. Actions may

include information on created artifacts, time, date, and cost.

Programming” (they have the skill). The sender does not know who inside a project team has

those Java programming skills (e.g. since this information is maintained by other people).

However, since many persons may have this skill, a distribution mechanism needs to be

specified by the sender. Choosing a Distribution Type [All | One | Load Balancing | Random]

Caramba maps the Addressee to Recipient(s) (i.e. Person). This abstraction mechanism

combines a shared memory approach with an explicit (user initiated) messaging approach.

Furthermore, in order to increase efficiency of collaborative work management we in-

troduce explicit mechanisms describing means of coordination inside and between teams.

Caramba provides a set of coordination primitives in addition to the well known such as

Reply and Forward. For example, Delegation allows explicit delegation of work activities to

other Organizational Objects (e.g. Persons, Roles, Skills, etc.). The coordination primitives

are visible to all and the trail of activity coordination between team members is traceable

for all team members involved in a project, depending, of course, on authorization settings.

The coordination primitives and their characteristics are summarized in Table 3.

Traceability of associated activities, work items, performed actions including artifacts,

and coordination primitives are of paramount importance. However, since many stakehold-

ers work with this system (e.g. external partners, customers, freelance project partners, etc.)

it is important to define coordination types for coordination primitives. Consider for ex-

ample that the Sender (S) decides to use the coordination primitive Delegation for activity

(A) which S sends to Recipient (R). The intention of S is to delegate a piece of work (an

activity and its sub activities) to R. Since Caramba allows traceability of work activities

team members are well aware of the fact that S delegated A to R. In this example the Co-

ordination type Team is utilized. However, external partners should not see this delegation.

If only S and R should know about this delegation, the coordination type Private would be

used. If even outside Caramba users (in our example an external partner having access to

the Caramba space via a portal) should be allowed to have access to the delegation informa-

tion, the coordination type Public should be chosen. Table 4 summarizes the coordination

types.

CARAMBA—A PROCESS-AWARE COLLABORATIVE SYSTEM 59

Table 4. Coordination types.

Coordination types Characteristics

Public Activity and related knowledge trail may be accessed from any Caramba user.

Team Activity and related knowledge trail may be only accessed from users participating in

the work case.

Private Activities and related knowledge trail may only be addressed by sender and receiver.

Figure 7. Activity state-transition diagram.

At any point in time activity instances have well defined states. Figure 7 presents a state-

transition diagram for activities that is a graphical representation of activity states and their

valid changes.

When a Task is enacted (instantiated) it becomes an activity (instance). Its first initial

state is new. The read state shows that an activity has been “opened” in the user’s work list

and read. After having read an activity the user may change the state to either suspended

(i.e. pausing work on the activity) or to continue working. When the user starts to work on

an activity its state becomes active by explicitly changing the state so that team members

are aware of the status. Activities which are delegated to other team members have the

status delegated. The operational semantics of this state implies that the responsibility for

the selected activity changed accordingly. Activities may be sent to other team members

with the aim to keep them informed. The state for this activity is forwarded. The semantics

of this state implies that the responsibility for the activity did not change and still remains

with the sender. As the user starts to invoke applications associated with an activity its

status changes to applied. In those cases where the activity cannot be routed to an addressee

the no route state is triggered. One example this might occur is when activities are sent to

non-Caramba users and the activity could not be delivered via the built in SMTP gateway.

When work on an activity is finished the user has to set the state to done. This state will

60 DUSTDAR

Table 5. Notification types.

Notification types Characteristics

To Do Activity instance requires work from receiver.

Confirmation Sender requires confirmation from receiver on the activity instance (e.g. signature for

budget approval).

Discussion Received activity instance requires further discussion (e.g. sender suggests that the

activity needs to be discussed further (e.g. in a weekly team meeting).

Comment Activity instance needs further comments from receiver.

Information Activity instance is for information purposes only.

Other Activity instance has none of the above notification types (e.g. activity is automatically

converted from an e-mail and associated with the appropriate work case) into the

knowledge trail.

trigger automatic coordination of the selected activity to the next process step (following a

process template if it is a modeled process template). In this case the user may decide on

the appropriate coordination primitive to be applied (see Table 3). When work on a selected

activity is no longer required its state may be changed to archived. The activity will be

automatically moved to a defined archive folder. All changes regarding states of activities

are visible and traceable by the users of Caramba, if they are members of the appropriate

project (process) and have the appropriate reading rights.

The coordination model we present in this paper is based on sending messages between

Caramba Organizational Objects (e.g. Persons, Tasks, etc.). In order to increase efficiency

of collaborative work, we introduce notification types, similar to those organizations use in

office procedures. For instance, if sender S sends an activity to recipient R using the notifi-

cation type confirmation, S expects a confirmation for that particular activity (e.g. signature

required for purchase). Other notification types include To Do, Discussion, Comment, In-

formation, and Other. The recipient receives the activities in the appropriate folder in his

Caramba Inbox. In case S sends an activity with the notification type To Do, R receives it in

his Inbox “To Do” folder. He then may decide to organize it according to different seman-

tics (e.g. project name). By introducing notification types we can increase the semantics

of activities being coordinated between team members. Notification types do not (directly)

effect the states of activities (figure 9). State transitions are always triggered explicitly by

users. Notification types help users to determine what is expected from them. The purpose

of Notification Types is to increase efficiency in virtual teamwork by enhancing semantic

information of work activities. Activity states enable team members to view on work items

and their complete trail. Table 5 summarizes the supported notification types.

5. Design and implementation of Caramba

5.1. Software architecture

The goal of this section is to provide a brief overview of the design goals and to outline

architectural considerations of Caramba [13–15]. Caramba manages all involved processes

CARAMBA—A PROCESS-AWARE COLLABORATIVE SYSTEM 61

in knowledge work for project teams: from creating ideas, via using enterprise applications

to support this work, up to coordinating and making this processes visible and reusable

both within, and between organizations. The main design goals encompass tight integration

of many Workflow, Groupware, and Project Management features outlined in previous

sections and to provide means for linking processes with artifacts and resources. Therefore

support for meta modeling the team structure as well as the ability to integrate “Business

Objects” (e.g. DBMS-tables such as product databases) is essential. Secondly, traceable

and continuous support regarding the relationships between people, artifacts, and business

processes is of paramount importance. Thirdly, different levels of corporate integration with

other information systems (e.g. SMTP-server, web server, etc.) should be possible. Finally,

the system should allow outside project partners to be integrated with the project team

as tightly as possible, allowing access to all information provided by a CarambaSpace, if

security policies allow. Various access mechanisms such as using a web-browser, Java client

application, or mobile device have to be provided. The software (middleware and client)

is written in Java based on JDK 1.4 for enhanced GUIs using the Java Foundation Classes

(JFC) and to support drag and drop.

Software architectures typically include the description of components, connectors, and

configurations. For this it is important to decompose a system into a well-defined set of

components that have clear responsibilities. Since architectures for virtual teams have to

integrate with various corporate information systems installed in organizations, we decided

to strive for a middleware style rather than a classical client-server style. Caramba services

are hosted on a Caramba middleware (server). Clients may access the project’s team-space

(CarambaSpace) using Java client applications or via a built in HTML/XML portal. In cases

where tight integration with corporate information systems and databases is required, the

administrator utilizes the Caramba meta modeler and relation wizard (see Section 5.3) to

integrate corporate DBMS and other resources such as SMTP-mail servers and company

web servers. The following descriptions will point out the respective architectural style

used in a particular layer or component. The Caramba software architecture (depicted in

figure 8) is composed of multiple layers: middleware, client suite, and a persistence store.

HTTP/HTML HTTP/CSObject JRMP/CSObject

Servlets & JSP Servlets Java RMI

Object Access Layer (AL) incl. Protocol Adaptors

Object Meta Model

(Structure, Relations,

Presentation)

Object Manipulation

(read, write, update)

Object Observers

(e.g. Wf-engine)

Object Notification

Object Mapping and Object Transformation

CarambaSpace (CS)

JDBC Java Mail JNDI

RDBMS POP/IMAP and SMTP LDAP

Persistence Layer (PL) incl. Protocol Adaptors

CarambaSpace

CSObjects

Caramba Middleware

Mail Management

Security Management

Resource Management

Data Management

Notification Management

Knowledge Portal

CSConnection

Mail Server

Database Management

System

Web Browser

Caramba Java Client Suite
Caramba Administrator Client

Suite

Figure 8. Conceptual architecture.

62 DUSTDAR

Objects and services are accessed through the Object Access Layer (AL) from the Caram-

baSpace platform. Depending on access mechanisms and the requested services (e.g. via

Java client with RMI protocol or via Web browser with http), Caramba provides a unique

way to handle requests using a meta model framework to describe content and separating

presentation, logic, and data. This model permits high flexibility, enables customization,

and extensions as well as the adoption of new devices or technologies. The goal of this

layer is to offer transparent access to a CarambaSpace. The AL utilizes various services

to transform, describe, manipulate, and observe objects. All objects managed through a

CarambaSpace are well described using a meta-model description framework. Objects can

be customized in their structure (e.g. adding columns to tables, adding relations to objects)

and their presentation by adopting their meta model description. Any changes are dynam-

ically reflected by client components. Based on the meta-model description framework,

Caramba enables various options to customize data and content as well as to integrate data

from different resources (e.g. corporate databases). This layer also provides facilities for

fine-grained object notification services and the implementation of customized services

based on object observers. The middleware however, does not manage states and persis-

tence of objects itself. Objects are stored, manipulated, and retrieved via the Persistence

Layer (PL). Caramba leverages and adopts standard Java based technologies (e.g. JDBC,

JNDI, HTTP, etc.) to access and integrate data. This architecture provides the required flex-

ibility for flexible virtual teams where team members mostly connect using a web browser

while still require access to all relevant context information provided by Caramba, such as

who performed which activities (including sub-activities and time/cost information), which

resources were utilized for this activities and how the activities are related to the overall busi-

ness process. As stated earlier, Caramba provides a shared object space (CarambaSpace),

which provides functionalities for fundamental operations and transformations required, as

well as the communications needed with the other middleware components such as security

management (authorization and access control), resource management, data management,

mail management (i.e. integration and mapping of Caramba activities to e-mails), notifica-

tion management, and a knowledge portal engine (providing servlets and Java Server Pages

based access on a CarambaSpace). The detailed discussion of middleware components and

their architecture would go beyond the scope of this paper.

5.2. Authorization and access control

A typical set up of a collaborative work management system for virtual teams has to

cater for various account types to provide flexibility and security across organizational

boundaries. Caramba provides an authorization and access control management component

(Security Manager) for internal, administrator, partner, and external account types. The

security management components allows (1) to manage and define access rights to all

Caramba objects: Read (R), Insert (I), Update (U), and Delete (D); (2) definition of security

roles (not to be confused with the Roles used in Organizational Objects) and the association

between security roles and rights and (3) definition of the association between access rights

and accounts. Access rights can be modified for each Caramba object by configuring the

meta model. The database model allows not only human actors to have Caramba accounts

CARAMBA—A PROCESS-AWARE COLLABORATIVE SYSTEM 63

but also software systems. The system provides four account types with a preconfigured

set of access rights to Caramba objects: (a) Internal, (b) Administrator, (c) Partner (e.g.

partnering organization such as supplier), and (d) External (e.g. freelancers, domain experts).

Authorization is granted by a login which is encrypted, where the account login name and

password have to be provided. Accounts may be activated with time stamps and their status

can be retrieved and changed according to events.

5.3. Administration and user components

Caramba’s administrator components allow customization and extension of Caramba. The

administrator toolset comprises a set of components, which allow modification of the default

meta model (e.g. organizational model of teams and their relationships) and integration of

company-wide information systems such as databases, SMTP server, or web server. It

consists of six components: (i) meta model administrator for managing and customizing

the models (i.e. Caramba objects, their visibility, and the visibility of object attributes); (ii)

JDBC wizard for database integration; (iii) relation wizard for modeling relations between

objects; (iv) security manager for managing authorization and control; (v) mail integration

wizard for specifying e-mail integration and forwarding; (vi) web server configuration

wizard for specifying the web server to be used for web access to Caramba. A discussion

of all administration components in more detail would go beyond the scope of this paper.

Caramba offers a suite of software components for end-users to support collaboration,

coordination, and cooperation for virtual teams. The suite comprises Java applications and

a web client. It consists of the following components: (i) ActivityCenter (see figure 4)

for managing communications and coordination of work activities; (ii) ObjectCenter (see

figure 2) for viewing and linking objects; (iii) MatrixEditor (see figure 2) for team configu-

ration; (iv) ProcessModeler (see figure 3) for modeling processes; (v) ActivityAnalyzer for

graphically analyzing interaction patterns in GANTT-like charts; (vi) NotificationCenter

for registering and managing object notifications; (vii) Knowledge Portal for accessing the

virtual team processes, artifacts, and resources using a web browser. The ActivityCenter

is the main “collaboration hub” for project team members. Here, project team members,

work on their work activities (including invoking applications, storing actions, scheduling

their work, and providing time and cost information), route them to colleagues, and track

the activity history if required (see Section 4.4 for underlying coordination model and ab-

stractions). This means that Caramba users actively route activities to other team members,

integrate artifacts into the system and link them with their activities. The ActivityCenter

allows continuous traceability of business processes to team members. The ObjectCenter

provides a mechanism to view Caramba objects and their relationships and to link activities

with artifacts, as discussed previously. Utilizing the meta model tool, an administrator is

able to model organizational structures for a virtual team and defining which Organiza-

tional Objects are required for his virtual team and which relationships are required. Each

Organizational Object consists of attributes describing the object. The object class Persons

contains attributes about the Person such as name, address etc. The object class Roles al-

lows definition of organizational roles such as “Head of IT”. The object class Group defines

project settings such as “Product Team IT-Solutions”. Skills enable definition of required

64 DUSTDAR

skill sets such as “Certified Java Developer”. Units describe permanent departments such as

“Marketing”. The ObjectCenter provides means to view all relationships of all Caramba Ob-

jects (i.e. Organizational-, Dynamic-, and Business Objects) and to link (by drag and drop)

the rows of object classes with each other. It also enables project team members to view

relationships between who (Organizational Object) is performing which activities and using

what (artifacts, documents). In order to support the relationship between people, artifacts,

and processes, Caramba supports modeling of simple process models and their enactment

by implementing a workflow engine and modeling component (Process Modeler), utilizing

the information presented in the section above (ObjectCenter), using Tasks and their as-

sociated Organizational Objects in directed graphs. For example the Caramba Knowledge

Portal provides a detailed view on the “knowledge trail” on selected activities inside any

instantiated process (i.e. work case) and the associated participants (virtual team members),

their scheduling information and actions (if chosen to be visible by others) and artifacts

(i.e. documents and business objects) used. This knowledge trail is dynamically built in real

time and offers control flow and data flow information, including all work case artifacts and

their relationships, providing added value to virtual team members. Due to space limitation

not all components and their relationships can be discussed in more depth in this paper.

6. Conclusion

The contribution of this paper was to present conceptual foundations as well as design and

implementation issues for process-aware collaborative work management systems. The

system we presented—Caramba—supports virtual teams in their ad hoc and collaborative

processes, by enabling links between artifacts (e.g. documents and database objects), busi-

ness processes (activities), and resources (Organizational Objects such as Persons, Skills

etc.). We discussed and applied a novel coordination model by introducing new coordi-

nation primitives and abstractions for virtual teams. We have presented the underlying

motivation for process-aware collaborative work management systems for virtual teams

(e.g. for a consulting team) and discussed the architecture and some implementation is-

sues of Caramba aiming at improving process-awareness and traceability of collaborative

work activities. Caramba was successfully used in many research groups as well as in

commercial organizations throughout the last years. Our future work includes research on

providing the presented functionalities using a service oriented architecture and support for

loosely-coupled peer-to-peer scenarios for virtual teams.

Acknowledgments

All members of Caramba Labs are acknowledged for their role in the realization and the

conceptual refinement of Caramba since 1997. I like to thank the anonymous reviewers for

providing valuable comments and detailed suggestions helping to improve the paper.

References

1. W.M.P. van der Aalst, A.H.M. Hofstede, B. Kiepusziewski, and A.P. Barros, “Workflow patterns,” Distributed

and Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003.

CARAMBA—A PROCESS-AWARE COLLABORATIVE SYSTEM 65

2. W.M.P. van der Aalst and A. Kumar, “A reference model for team-enabled workflow management systems,”

Data & Knowledge Engineering, vol. 38, pp. 335–363, 2001.

3. G. Bafoutsou and G. Mentzsa, “Review and functional classification of collaborative systems,” International

Journal of Information Management, vol. 22, pp. 281–305, 2002. Elsevier Science.

4. Baker et al., “Customized process and situation awareness,” International Journal of Cooperative Information

Systems, M. Papazoglou and G. Schlageter (Eds.), World Scientific, March 2002, vol. 11, nos. 3 and 4.

5. R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr, K. Sikkel, J. Trevor, and G. Woetzel, “Basic support

for cooperative work on the World Wide Web,” International Journal of Human–Computer Studies, vol. 46,

pp. 827–846, 1997.

6. G.A. Bolcer, “Magi: An architecture for mobile and disconnected Workflow,” IEEE Internet Computing,

pp. 46–54, May and June 2000.

7. Caramba Labs Software AG, 2002, http://www.CarambaLabs.com

8. K.C.C. Chan and L.M.L. Chung, “Integrating process and project management for multi-site software devel-

opment,” Annals of Software Engineering, vol. 14, pp. 115–142, 2002.

9. F. Casati, S. Ceri, B. Pernici, and G. Pozzi, “Workflow evolution,” Data and Knowledge Engineering, vol. 24,

no. 3, pp. 211–238, 1998.

10. N. Craven and D.E. Mahling,“Goals and processes: A task basis for projects and workflows,” in Proceedings

COOCS International Conference, Milpitas, CA, USA, 1995.

11. U. Dayal, “Business process coordination: State of the art, trends, and open issues,” in Proceedings of the

27th VLDB Confererence, Roma, Italy, 2001.

12. G. DeSanctis and R.B. Gallupe, “A foundation study of group decision support systems,” Management Science,

vol. 23, no. 5, pp. 589–609, 1987.

13. S. Dustdar, “Towards integration of artifacts, resources, and processes for virtual teams,” in Virtual Team:

Projects, Protocols, and Process, David Pauleen (Ed.), Idea Group Publishing, 2003.

14. S. Dustdar, “Collaborative knowledge flow—Improving process-awareness and traceability of work activities,”

in 4th International Conference on Practical Aspects of Knowledge Management (PAKM 2002), December,

Springer LNCS, 2002.

15. S. Dustdar and H. Gall, “Architectural concerns in distributed and mobile collaborative systems,” Journal of

Systems Architecture, Elsevier, vol. 49, pp. 457–473, 2003.

16. C. Ellis (Skip), “A framework and mathematical model for collaboration technology,” in Coordination Tech-

nology for Collaborative Applications—Organizations, Processes, and Agents, Conen and Neumann (Eds.),

Springer Verlag, 1998, pp. 121–144.

17. C.A. Ellis, S.J. Gibbs, and G.L. Rein, “Groupware: Some issues and experiences,” Communications of the

ACM, vol. 34, no. 1, 1991.

18. C.A. Ellis and C. Maltzahn, “The Chautauqua workflow system,” in Proc. 30th Int’l Conf. on System Science,

Maui, 1997.

19. D. Georgakopoulos et al., “Managing escalation of collaboration processes in crisis mitigation situations,” in

Proceedings of the 16th International Conference on Data Engineering, 2000.

20. D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of workflow management: From process

modeling to workflow automation infrastructure,” Distributed and Parallel Databases, vol. 3, pp. 119–153,

1995.

21. Groove, 2002, http://www.groove.net.

22. D. Gelernter and N. Carriero, “Coordination Languages and their significance,” Communications of the ACM,

vol. 35, no. 2, 1992, 97–107.

23. IBM Corporation, http://www.ibm.com.

24. R. Johansen, Groupware. Computer-Support for Business Teams, The Free Press: New York, 1988.

25. F. Maurer and H. Holz, “Integrating process support and knowledge management for virtual software devel-

opment teams,” Annals of Software Engineering, vol. 14, pp. 145–168, 2002.

26. G. Nagypal et al., “Integrating workflow and groupware functionalities for co-operating small and medium

sized enterprises: A case study,” in Proceeding of Seventh International Workshop on Groupware, IEEE

Computer Society Press, Sept. 2001, pp. 38–43.

27. M. Reichert and P. Dadam, “Adeptflex—Supporting dynamic changes of workflows without losing control,”

Journal of Intelligent Information Systems, vol. 10, pp. 93–129, 1998.

66 DUSTDAR

28. G.D. Venolia, L. Dabbish, J.J. Cadiz, and A. Gupta, “Supporting Email workflow,” Microsoft Technical Report

MSR-TR-2001-88.

29. R. Woitsch and D. Karagiannis, “Process-oriented knowledge management systems based on KM-services:

The promote approach,” in Proceedings of the International Conference on Practical Aspects of Knowledge

Management (PAKM), LNAI 2569, Springer-Verlag, pp. 398–412, 2002.

30. M. Weske, “Flexible modeling and execution of workflow activities,” in Proceedings of the 31st Hawaii

International Conference on System Sciences, HICSS, 1998, vol. 7.

31. Workflow Management Coalition (WfMC), Workflow Management Specification Glossary, http://www.

wfmc.org.

