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Abstract: Klebsiella pneumoniae is a Gram-negative opportunistic pathogen responsible for a variety
of community and hospital infections. Infections caused by carbapenem-resistant K. pneumoniae
(CRKP) constitute a major threat for public health and are strongly associated with high rates of
mortality, especially in immunocompromised and critically ill patients. Adhesive fimbriae, capsule,
lipopolysaccharide (LPS), and siderophores or iron carriers constitute the main virulence factors
which contribute to the pathogenicity of K. pneumoniae. Colistin and tigecycline constitute some
of the last resorts for the treatment of CRKP infections. Carbapenemase production, especially K.
pneumoniae carbapenemase (KPC) and metallo-β-lactamase (MBL), constitutes the basic molecular
mechanism of CRKP emergence. Knowledge of the mechanism of CRKP appearance is crucial, as
it can determine the selection of the most suitable antimicrobial agent among those most recently
launched. Plazomicin, eravacycline, cefiderocol, temocillin, ceftolozane–tazobactam, imipenem–
cilastatin/relebactam, meropenem–vaborbactam, ceftazidime–avibactam and aztreonam–avibactam
constitute potent alternatives for treating CRKP infections. The aim of the current review is to
highlight the virulence factors and molecular pathogenesis of CRKP and provide recent updates on
the molecular epidemiology and antimicrobial treatment options.

Keywords: carbapenem-resistant Klebsiella pneumoniae; molecular epidemiology; antimicrobial agents;
virulence factors

1. Introduction

Klebsiella pneumoniae is a non-motile Gram-negative opportunistic pathogen respon-
sible for approximately 10% of nosocomial bacterial infections. Infections caused by
carbapenem-resistant K. pneumoniae (CRKP) isolates are a major threat for public health.
Such infections can increase the mortality rates of critically ill and debilitated patients
hospitalised in intensive care units (ICUs) and can have a negative impact on the financial
costs of their hospitalisation all over the world [1–4]. Remarkably, the mortality rate among
patients with pneumonia caused by K. pneumoniae is about 50% [5]. Another major topic
for public health is the effect of CRKP infections in disability-adjusted-life-years (DALYs)
per 100,000 population, with a median of 11.5 in the European Union, and Greece being
among the countries with the highest numbers [6]. The rate of carbapenem resistance for K.
pneumoniae isolates reached 66.3% in 2020 in Greece [7]. A recent meta-analysis shows that
the prevalence of CRKP colonisation ranges worldwide from 0.13 to 22% with a pooled
prevalence of 5.43%, while the incidence of CRKP colonisation ranges from 2% to 73% with
a pooled incidence of 22.3% [8]. CRKP isolates are usually classified as multidrug-resistant
(MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR), which cause even
more difficulty in treating infections. According to the European Center for Disease Preven-
tion and Control (ECDC), MDR is defined as ‘acquired non-susceptibility to at least one
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agent in ≥ three antimicrobial categories, XDR is defined as ‘non-susceptibility to at least
one agent in all but≤ two antimicrobial categories (i.e., bacterial isolates remain susceptible
to only one or two categories)’ and PDR is defined as ‘non-susceptibility to all agents in all
antimicrobial categories’ [9]. The molecular epidemiology of CRKP isolates is significant as
it can determine potential treatment options [10].

The aim of the current review is to highlight the virulence factors and molecular
pathogenesis of CRKP and provide recent updates on the molecular epidemiology and
antimicrobial treatment options.

2. Genomic Pool

Despite the unclear reasons for the high frequency of infections caused by K. pneumo-
niae compared to other Gram-negative opportunistic bacterial pathogens, there are some
suggestions comprising genetic element exchanges with human microbiome populations
through DNA molecules, mobile genetic element exchanges bearing genes associated
with virulence enhancers and antimicrobial resistance, inherent antimicrobial resistance,
starvation tolerance and surpassing other bacterial competitors, which may explain the
occurrence of this feature [11–15].

According to genomic investigations, the pan-genome of K. pneumoniae involves a size
of about five to six Mbp bearing five to six kilogenes to be encoded. From this number
of encodable genes, about seventeen hundred genes are recognized as core genes. The
core genome is conserved among bacterial species of K. pneumoniae. Typically, the core
genes are present in ≥95% of the members pertaining to a given species. However, the rest
genomic pool includes accessory genes. In other words, the accessory genome is known as
dispensable, flexible, adaptive or supplementary genome, which varies among Klebsiella
spp. The accessory genes are typically present in <95% of the members pertaining to a
given species [16–18].

Indeed, progression and development in microbial taxonomic approaches provides
easier diagnostic and detective methodologies in association with epidemiological studies,
public health surveillance and outbreak investigations. Due to this knowledge, effective
approaches such as core genome multilocus sequence typing (cgMLST) can be recruited for
new advanced techniques, including dual barcoding approach [19–21].

The K. pneumoniae species complex based on genomic phylogenetic structure is catego-
rized into seven major phylogroups comprising Kp1 (K. pneumoniae subspecies pneumoniae or
K. pneumoniae sensu stricto), Kp2 (K. quasipneumoniae subsp. quasipneumoniae), Kp3 (K. vari-
icola subsp. variicola), Kp4 (K. quasipneumoniae subsp. similipneumoniae), Kp5 (K. variicola
subsp. tropica), Kp6 (K. quasivariicola) and Kp7 (K. africana) [17,19]. In this regard, seven
housekeeping genes including gapA, inf B, mdh, pgi, phoE, rpoB and tonB are sequenced.
Moreover, the K-typing or capsule typing can be achieved through wzi gene sequencing or
serotyping methods [11].

So, through the MLST typing of the above seven housekeeping genes, several phylo-
genetic lineages, e.g., clonal groups (CGs) and/or sequence types, exist [22].

As mentioned above, the antimicrobial-resistant and hypervirulent strains of K. pneu-
moniae have raised great concern worldwide. On the other hand, Klebsiella spp. are known
as significant bacterial agents isolated from patients with ventilator-associated pneumonia
(VAP) in ICUs. According to reported results from previous studies, 83% of hospital-
acquired pneumonias are associated with VAP [5,23].

Although ß-lactam antimicrobials are known as the first choice for treatment of infec-
tions caused by K. pneumoniae, the number of ß-lactamase and especially carbapenemase-
producing strains considerably increases. Due to this knowledge, the dissemination of
ST258 CRKP is a global concern, as ST258 strains are not completely sensitive towards a
wide range of antimicrobials comprising aminoglycosides, fluoroquinolones, etc. [24–30].

In accordance with the latest studies, the clonal complex (CC) of CC258 is known as
the main CRKP comprising ST11, ST258, ST340, ST437 and ST512. Moreover, there are
a wide range of MDR clonal groups (CGs), e.g., CG101, CG490, CG147, CG307, CG152,
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CG14/15, CG231, CG43, CG17/20, CG37 and CG29, which are distributed around the
world [31–34].

According to recorded reports, about 7.5% of STs (or >115 STs) pertaining to CPKP
strains have been recognized in different global geographical regions. In addition, CG258
is thepredominant global CPKP strain with 43 ST members. Among them, ST258, ST11,
ST340, ST437 and ST512 are the most predominant members of CG258 worldwide. ST11
ranks first in America (Latin) and Asia, while ST258 are the predominant CRKP strains in
America (Latin and North) and some European countries. The ST340 has been reported in
Greece and Brazil, and ST512 has been identified in Israel, Italy and Colombia [35].

The latest studies depict ≥1452 STs associated with K. pneumoniae, in which 1119 STs
are recognized as known strains while the remaining 333 are detected as novel STs. In
addition to CG258, CG15 and ST307 carry a huge range of antimicrobial resistance genes
that are globally disseminated and are associated with healthcare infectious diseases and
nosocomial outbreaks [22].

3. Virulence Factors and Molecular Pathogenesis

In accordance with the latest categorization, K. pneumoniae strains are classified into
two major pathotypes, including classical K. pneumoniae and hypervirulent K. pneumoniae
(HVKP). Although the classical type is frequent pathogenic agent relating to hospital
acquired pneumoniae (HAP), it has limited virulence capability. Furthermore, the classical
pathotype easily tends to exchange mobile genetic elements such as plasmids to create
MDR strains, while HVKP is recognized as a causative agent of fulminant and invasive
diseases and infections in communities. In addition, the HVKP pathotype is capable of
bearing plasmids of hypervirulence or carbapenem resistance [36–39]. Hence, the capability
of virulence gene acquisition of CRKP is known as a major means of hypervirulent CRKP
strains production [40,41]. According to the latest reports, the main portion of HVKP
strains is composed of antibiotic-sensitive populations excluding ampicillin; however, in
recent years the number of convergent K. pneumoniae strains is promoting. The convergent
K. pneumoniae strains are recognized as MDR HVKP strains bearing aerobactin synthesis
locus (iuc) and producing ESBL or carbapenemase enzymes. The convergent K. pneumoniae
strains may originate either from those hypervirulent strains which obtained an MDR
plasmid or from MDR strains which acquired a virulence plasmid [42].

It is necessary to mention that the identified CPKP strains may bear different genes
such as blaIMP, blaKPC and blaNDM, while the blaKPC-bearing CPKP strains involve the
major portion of the isolated cases from clinical samples worldwide [43,44]. As an effective
example, blaKPC transmission may occur through a wide range of processes including clonal
spread, plasmids and mobile small genetic elements such as transposon (e.g., Tn4401) [35].
Indeed, the Tn4401 is a Tn3-based transposon with a length of 10 Kb which is ended via
two genes of Tn3 transpoase (tnpA) and Tn3 resolvase (tnpR), and two insertion se-quences
of ISKpn6 and ISKpn7 [35,45]. The blaKPC is known as a plasmid-borne gene which can
be carried by > 40 plasmids. These plasmids originate from different incompatibility (Inc)
groups such as A/C, ColE, FIA, I2, IncFII, L/M, N, P, R, U, W and X. The blaKPC carrier
plasmids bear a significant number of antimicrobial resistance genes [35,43]. Moreover,
K-typing is normally recruited for HVKP categorization. Although the K1 and K2 types
are mostly (~70%) belonging to HVKP and may cause invasive infections, some strains of
K1 and K2 types do not pertain to HVKP types [5,46–48]. K1, K2, K16, K28, K57 and K63
capsule types are recognized among HVKP strains. The typical phenotypic characteristic
of K1 and K2 types is the hypermucoviscous exhibition which can be recognized through a
viscous string with a length of more than 5 mm on medium agar [5,49].

Indeed, the integrative conjugal elements and giant plasmids are the effective ge-
netic elements which support the high virulence characteristics in HVKP strains [50–52].
K. pneumoniae encompasses four important and effective virulence factors, e.g., adhe-
sive fimbriae (including type 1 type 3 fimbriae), capsule, lipopolysaccharide (LPS) and
siderophores [5,23,53–55].
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Adhesive fimbriae: K. pneumoniae is armed with two important types of fimbriae in-
cluding type 1 (encoded by fimBEAICDFGH operon) and type 3 (mrkABCDF/mrkABCDEF)
fimbriae, which are involved in pathogenesis of the bacteria through attachment to the
biotic (human host urothelium) and abiotic (urinary catheter) surfaces to start the process
of colonisation, biofilm formation and bacterial invasion (Figure 1) [14,18,56].
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fimbriae are involved in pathogenesis of the bacteria through attachment to the biotic (human
host urothelium) and abiotic (urinary catheter) surfaces to start the process of colonisation, biofilm
formation and bacterial invasion. The polysaccharide capsule in K. pneumoniae is known as a pivotal
virulence factor which acts as the outermost layer in a bacterial cell and interacts with the host.
Lipopolysaccharide (LPS) is an effective protective structure against serum complement proteins in
parallel with the presence of capsule.

Capsule: The polysaccharide capsule in K. pneumoniae is known as a pivotal virulence
factor which acts as the outermost layer in a bacterial cell and interacts with the host
(Figure 1). All types of this acidic polysaccharide capsule are the product of Wzx/Wzy-
dependent polymerization pathway encoding by the cps gene cluster. The virulence factor
of the capsule covers the K. pneumoniae bacterial cells against the host immune system
responses such as phagocytosis, complement proteins, opsonophagocytosis, oxidative
killing and antimicrobial peptides. In another word, the encapsulated bacterial cells of
K. pneumoniae are capable of evading the host’s immune system through their capsule
antigens mimicking the host glycans to survive [27,49,54,55,58,59]. As aforementioned,
the K-antigen belonging to K. pneumoniae capsule is an effective criterion for classifica-
tion and serotyping of the pathogenic strain of K. pneumoniae. Indeed, sequencing of six
genes comprising galF, orf2 (cpsACP), wzi, wza, wzb and wzc located at the 5′ end of the
cps gene cluster has shown that these genes are highly conserved, while the mid zone of
the cps loci encompasses a variable region of nucleotide sequences producing proteins
which participate in assembly and polymerization of capsule blocks. Due to this fact, the
K-typing method is considered an effective categorization technique. Up to now, >80
serotypes are recognized among pathogenic strains of K. pneumoniae according to K-antigen
capsule [49,55,58,60,61]. However, up to 70% of K. pneumoniae isolated bacterial cells are
able to produce a novel capsule or not capable to express any capsule. Hence, this portion
of K. pneumoniae strains are not typeable through serological methods. Instead, through the
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contribution of molecular techniques and sequencing technologies, we are able today to
investigate the capsule synthesis loci or K-loci belonging to more than 2500 whole genomes
of K. pneumoniae. The recorded results from previous investigations show 134 distinct K-loci
encoding minimally 134 different K-types which can be effective in epidemiological studies
in association with K. pneumoniae [62]. Capsule is involved in bacterial biofilm formation;
the results reported from previous studies depict that unencapsulated strains of K. pneu-
moniae are highly sensitive to host immune responses. Furthermore, the unencapsulated
strains of K. pneumoniae show reduction in their pathogenicity in mice models [23,54].

The gene clusters encoding capsule are located on chromosome or plasmids. In this
regard, the wzy-K1, wzx, wzc, wza, wzb, wzi, gnd, wca, cpsA, cpsB, cpsG and galF encode
exopolysaccharide portion of capsule and are located on chromosome (wza, wzb, wzc, gnd,
wca, cpsA, cpsB, cpsG and galF constitute the cps chromosomal operon gene), while the rmpA,
rmpB and rmpA2 genes involved in capsule biosynthesis are locatedon both chromosome
and plasmid. Moreover, the genes of kvrA, kvrB, rcsA, rcsB, c-rmpA and c-rmpA2 contribute
to capsule biosynthesis and are situated on chromosome. Finally, the genes of p-rmpA and
p-rmpA2, which participate in capsule biosynthesis, are plasmid-borne. C-rmpA, c-rmpA2, p-
rmpA and p-rmpA2 and wzy-K1 positively regulate the process of hypercapsulation through
affecting the transcripts producing via cps chromosomal operon gene. KvrA, kvrB and
rcsB genes regulate the capsule production through controlling effect on rmpA promoter.
Indeed, rmpA and rmpA2 regulate the mucoidal property in K. pneumoniae [54].

Lipopolysaccharide (LPS): LPS is a Gram-negative bacterial endotoxin which is com-
posed of lipid A, O-antigen and an oligosaccharide core. Each constructive part of LPS
is respectively encoded by lpx, wbb and waa gene clusters. LPS is an effective protective
structure against serum complement proteins in parallel with the presence of capsule (Fig-
ure 1). LPS is also a bacterial protector in opposition to the human host humoral immune
system. Furthermore, LPS is known as an important inducer biomolecule for toll-like
receptor 4 (TLR4), which may activate the expression and secretion of different cytokines
and interleukins [23,54,63–67].

Siderophores or iron carriers: The pivotal role of iron related to virulence and patho-
genesis of pathogenic microorganisms has been detected. In this regard, there are effective
interactions between the iron metabolism and immune cells which affect the pathogene-
sis of microbial agents (Figure 1) [68–70]. Iron molecules are recognized as competitive
resources for pathogenic bacteria, e.g., K. pneumoniae survival within their host during a
successful infection. Therefore, acquiring and recruiting host iron metals by the pathogenic
bacteria is an effective strategy to survive and establish infection within the host in the
presence of immune cells, e.g., macrophages (MΦs and neutrophils) and molecules. Indeed,
as a first line defensive mechanism in a healthy human host immune system, the iron
molecules are normally not free within the plasma. To protect the host from the virulence
of pathogenic bacterial cells of K. pneumoniae, the iron metals are linked to iron transporters
of transferrins and iron-binding immunoglycoproteins of lactoferrins [23,68,70–73].

Iron as an essential element is necessary for both human and microbial pathogens.
Iron contributes to different biological features including DNA biosynthesis or replication,
transcription, production of energy within mitochondria, central metabolism and enzymatic
reactions [73,74]. Hence, the human host body has iron-chelating proteins to bind the
iron metals while the pathogens encompass siderophores or iron carriers which bind to
iron metal with high affinity. Interestingly, bacterial iron binding proteins are effective
competitors to human host iron-chelating proteins. Some bacterial pathogens such as K.
pneumoniae possess stealth iron carriers. Up to now, several iron scavengers known as
siderophores have been recognized among Gram-negative microbial pathogens including
enterobactin, aerobactin, yersinobactin, salmochelin, etc., with different levels of affinity
for iron molecules. However, K. pneumoniae is able to recruit these four iron carriers.
According to previous reported results, enterobactin as a highly conserved iron scavenger
is the most common siderophore secreted by ~90% of isolated Enterobacterales members.
Among the aforementioned iron carriers, enterobactin (encoded by entABCDEF gene



Antibiotics 2023, 12, 234 6 of 23

cluster upon the chromosome and transported via fepABCDG) has the strongest affinity
for iron molecules [54,73,75–78].

4. Mechanisms of Antimicrobial Resistance

K. pneumoniae isolates present resistance to antimicrobial agents through one or more
of the following mechanisms:

(a) production of specified enzymes (e.g., β-lactamases or aminoglycoside modifying
enzymes) [79,80].

(b) decreased cell permeability through loss of Omps [81].
(c) overexpression of efflux pumps, which are transmembrane proteins, with the an-

timicrobial agent being usually excreted out of the bacterial cell through an energy-
consuming process. For example, an efflux pump called KpnGH contributes to
antimicrobial resistance in K. pneumoniae [82].

(d) modification of the target of the antimicrobial agent [83].

4.1. B-Lactams—Ambler Classification of β-Lactamases

B-lactam antimicrobials contain a β-lactam ring in their chemical structure. In this
group, the following antimicrobials are classified: (a) penicillin and its derivatives (semisyn-
thetic penicillins), (b) cephalosporins and cephamycins, (c) monobactams and (d) carbapen-
ems (imipenem, meropenem, ertapenem and doripenem). B-lactamases are enzymes that
hydrolyse the β-lactam ring, inhibiting the action of these antimicrobials [84].

There are two classification schemes of β-lactamases. Initially, according to the initial
functional classification system proposed by Bush, β-lactamases are classified in three
major groups, based on their substrate and inhibitor profiles. These functional attributes
have been associated with molecular structure in a dendrogram for those enzymes with
known amino acid sequences [85].

However, the revised molecular classification proposed by Ambler is the most widely
used. Based on this classification, only amino acid sequence determination could provide
information upon which a molecular phylogeny could be based. According to preliminary
data, β-lactamases have a polyphyletic origin. Thus, they are classified in four different
classes, designated A, B, C and D [86,87].

Class A β-lactamases are serine-based enzymes. This class includes simple β-lactamases,
such as sylfhydryl variable (SHV), temoneira (TEM), cefotaxime hydrolysing capabilities
(CTX-M), Pseudomonas extended-resistant (PER), Guiana extended-spectrum (GES), Viet-
namese extended-spectrum β-lactamase (VEB), integron-borne cephalosporinase (IBC),
Serratia fonticola (SFO), Brazil extended-spectrum (BES), Belgium extended-spectrum (BEL)
and Tlahuicas Indians (TLA). All these β-lactamases are inhibited both in vivo and in vitro
by β-lactamase inhibitors (clavulanate, tazobactam, sulbactam). SHV and TEM can act, due
to point mutations, as extended spectrum β-lactamases (ESBLs), while CTX-M is considered
the newest ESBL. All the rest could act as ESBLs with milder hydrolytic capacity. ESBLs
can potentially be inhibited by clavulanate, but they have an in vivo therapeutic effect only
for urinary tract infections (UTIs). Inhibitor-resistant TEMs (IRTs) and inhibitor-resistant
SHVs (IRSs), as well as carbapenemases called K. pneumoniae carbapenemases (KPCs), are
classified in this group [88,89]. KPCs are distinguished in 12 subtypes [90].

Class B β-lactamases include carbapenemases which are called metallo-β-lactamases
(MBLs). Their action is based on zinc ions (Zn+2). MBLs hydrolyse all β-lactams except
aztreonam, which belongs to monobactams. The most well-known MBLs detected so far are
Imipenemase (IMP), Verona integron-encoded MBL (VIM), German imipenemase (GIM),
Sao Paulo MBL (SPM), Seoul imipenemase (SIM), Australia imipenemase (AIM), Dutch
imipenemase (DIM), New-Delhi MBL (NDM), and the recently detected Tripoli MBL (TMB)
and Florence imipenemase (FIM) [91–99]. MBLs are classified further in three subgroups:
B1, B2 and B3 [87].

Class C β-lactamases include serine-based enzymes, called cephalosporinases or
AmpC β-lactamases. They are distinguished as stable and inducible, and they can be
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either chromosomally or plasmid-located (AmpC-like). The production of inducible AmpC
depends on whether the inducer is weak or strong. They are not inhibited by β-lactamase
inhibitors, and they are sensitive to cefepime and carbapenems. K. pneumoniae strains
mainly transfer AmpC-like enzymes, which are considered to have been transmitted from a
bacterial chromosome through plasmid conjugation. AmpC β-lactamases are distinguished
in various classes [100].

Class D β-lactamases include serine-based enzymes which are called oxacillinases
(OXA). These enzymes are characterized by high heterogeneity regarding their structure
and their biochemical characteristics. Therefore, they display a large variety concerning
their hydrolytic potential depending on the subtype they belong. They are not inhibited by
β-lactamase inhibitors. Some of them act as carbapenemases with a milder hydrolytic ca-
pacity compared to carbapenemases belonging to other classes. However, they can provide
a high grade of resistance when they co-exist with other resistance mechanisms [101].

4.2. Decreased Cell Permeability through Loss of Omps

The contribution of OMP deficiency is considered a secondary mechanism conferring
mainly a low level of resistance itself. OmpA, OmpK35, OmpK36 and OmpK37 are the most
important OMPs in K. pneumoniae strains, with a global concern [102].

OmpA alterations confer resistance to antimicrobial agents, but not to carbapen-
ems [103]. The mutations of OmpK35 in combination with these of OmpK36 usually act as a
supplementary mechanism of resistance in the emergence of CRKP isolates [104,105]. The
downregulation of OmpK37 has a minor contribution to the appearance of CRKP [106].

4.3. Transport of Antimicrobial Resistance Genes

The antimicrobial resistance genes are encompassed in mobile elements such as plas-
mids, transposons and integrons. These elements are crucially important, as they are
involved in the vertical transmission of these genes from K. pneumoniae to its descendants,
as well as in the horizontal transmission of the genes from a certain K. pneumoniae strain
to another.

Most plasmids are usually circular double-stranded DNA molecules, but linear plas-
mids are also detected. The conjugative plasmids are crucial in the transport of antimicrobial
resistance genes from a specific K. pneumoniae strain to another and they encode all the
appropriate factors for this transfer [107]. There is a strong correlation between specific
antimicrobial resistance genes and their integration in certain plasmids. Several of them
can transfer many copies of these resistance genes, providing even higher grade of resis-
tance [108]. Transposons are small DNA fragments. They are transported from one DNA
site to another but do not have the ability of self-replication. The transfer can be conducted
either through transposon duplicate and transport of the copy or through cut and transfer
of the whole transposon [109].

Integrons are larger genetic elements which can encompass antimicrobial resistance
cassettes and are classified in five classes [110]. They can also be incorporated in other
mobile genetic elements such as transposons and conjugative plasmids [111].

5. Trends in Molecular Epidemiology

The first MBL detected in a CRKP isolate was IMP-1 in 1996 in Singapore [112]. Since
then, CRKP isolates producing IMP have been isolated globally, but mainly in south and
southeastern Asia [79,113,114]. VIM MBLs are the most prevalent on a global level. In
2004, an outbreak caused by VIM-1 producing CRKP strains took place in France, after the
hospitalisation of a patient in Greece [115]. Since then, several VIM subtypes have been
identified, such as VIM-12, VIM-19, VIM-4, VIM-27, VIM-26 and VIM-39, especially in
endemic countries for CRKP. These VIM variants are genetically related between them, and
they can emerge one from another due to minor genetic events, such as point mutations.
The blaVIM genes are commonly integrated in a class 1 integron [116]. The ST147 according
to the Institut Pasteur scheme has been the most frequently detected among VIM-producing



Antibiotics 2023, 12, 234 8 of 23

K. pneumoniae isolates [117,118]. NDM MBL is a very virulent carbapenemase, as it has
a huge capacity to penetrate within the community [119]. A possible explanation could
be the presence of a community pool contributing to autochthonous acquisition [120]. It
was initially detected in a CRKP isolate in Sweden from the clinical specimen of a patient
previously hospitalised in New Delhi, India [121]. Since then, it has disseminated globally
and constitutes a threat of major concern [122]. Since its first emergence, ST11 has been the
predominant type among NDM producers [123]. All other MBLs are isolated mainly in
specific areas and show minor epidemiological concern [91,94–99].

KPC is the most prevalent of all carbapenemases. KPC-1 was initially isolated in
the United States of America in 1996 and has expanded rapidly to the east coast. It is
considered endemic in many parts of New York [90]. However, the major spread of KPC-
producing CRKP began in 2007 after an outbreak of CRKP isolates producing KPC-2 in
Crete, Greece. These isolates displayed clonal expansion and they were found to be clonally
related with the clone of New York which was previously described [124,125]. Since then,
this clone has predominated and was named ‘hyperepidemic Greek clone’ [126]. According
to the Center for Disease Control and Prevention (CDC), around 70% of KPC-2 producing
CRKP isolates are assigned to ST258 [127]. ST258 has been associated with multidrug
resistance to antimicrobials [128]. However, ST258 KPC-2 producing CRKP isolates are
considered low-virulent and are opportunistic pathogens, as only a low proportion of
patients colonised with these isolates develop an infection. These CRKP isolates create
extended reservoirs with the virulence and mortality rates being relatively low [129].
Patients with co-morbidities and chronic diseases are more vulnerable in suffering from an
infection [130]. Recently, KPC-2 CRKP belonging to ST39 have emerged [131].

CRKP isolates harbouring concurrently VIM-1 and KPC-2 are usually assigned in
ST147, meaning that they are commonly related with VIM-1 [132]. However, CRKP isolates
producing concurrently VIM-1 and KPC-2 have recently been assigned to ST39, implying
some kind of relatedness with KPC-producers [133].

Regarding class D carbapenemases, the most prevalent carbapenemase is OXA-48,
initially detected in Turkey in 2001. OXA-48 hydrolyses carbapenems in a mild way,
conferring a low level of resistance and its action is accompanied with additional resistance
mechanisms. Since 2007, OXA-48 producing CRKP isolates have been detected in many
countries in Europe and north Africa. However, these isolates are not considered highly
virulent. ST11 is the most prevalent among OXA-48 producers [79,134,135]. OXA-162,
initially detected in Turkey is a variant of OXA-48, as well as OXA-181 which is the second
most prevalent OXA detected worldwide [79,136]. One of the latest OXA subtypes detected
is an OXA-48 variant, designated OXA-370, isolated in Brazil in 2014 [137].

The contribution of Omp loss to CRKP emergence is trivial. Omp loss is usually a
secondary mechanism which provides low levels of resistance to antimicrobial agents and
can act along with carbapenemase action. The most significant Omps in K. pneumoniae
isolates are OmpA, OmpK35, OmpK36 and OmpK37 [102]. Changes in OmpA are generally
associated with antimicrobial resistance, but not with CRKP appearance [103]. The role of
OmpK35 in carbapenem resistance has been highlighted since 2003, and the contribution
of OmpK36 around 2005 [81,138]. Since then, there has been global concern concerning
the role of point mutations in genes encoding OmpK35 and OmpK36 as a complementary
mechanism in the emergence of CRKP [104,105]. However, in 2012 an outbreak which took
place in Greece led to the emergence of clonally related CRKP isolates with resistance to
ertapenem exclusively due to down-regulation of OmpK35 and mutated OmpK36 [139]. The
reduced expression of OmpK37 has not been associated with the emergence of CRKP [106].

6. Trends in Antimicrobial Treatment
6.1. Colistin

Colistin is an antimicrobial which was discovered in 1949 and belongs to polymyxins
(polymyxin E) (Table 1). Its use was abandoned at the beginning of the 1980s due to the
high nephrotoxicity observed during its administration [140]. However, due to the spread
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of antimicrobial resistance and the appearance of CRKP and MDR K. pneumoniae (MDRKP),
it has revived and is used as first-line treatment for infections caused by these isolates [141].

Colistin has been used widely for the treatment of VAP, bacteremias, abdominal in-
fections and UTIs caused by CRKP and MDRKP [10]. However, the implementation of
colistin monotherapy against these infections has been associated with a negative out-
come, the emergence of antimicrobial resistance with the emergence of colistin-resistant
CRKP [142,143]. Therefore, colistin is usually administered in combined therapeutic pro-
tocols along with tigecycline or aminoglycosides, in triple combined schemes along with
tigecycline and carbapenems, fosfomycin or aminoglycosides, and in quadruple treatment
schemes [1]. In CRKP isolates with a relatively low grade of resistance to carbapenems,
therapeutic schemes combining colistin with carbapenems seem to be more effective, while
in CRKP isolates with a high grade of carbapenem-resistance, therapeutic regimens in-
cluding colistin and high dosages of tigecycline, fosfomycin and aminoglycosides present
more satisfying results [144]. The advance of knowledge around the dosage of intravenous
colistin administration and the progress in the pharmacokinetics of colistin have led to more
satisfying therapeutic effects and reduced nephrotoxicity [10,145] As far as the treatment
of infections caused by colistin-resistant CRKP isolates is concerned, the combination of
colistin with carbapenems of rifampicin has been proven a possible option during the
previous years [146,147].

However, it is worth mentioning that despite the fact that colistin is widely used
in real-world practice, it is not considered a first-line agent for the treatment of CRKP
infections [148,149].

6.2. Tigecycline

Tigecycline is a derivative of minocycline and belongs to glycylcyclines. It has a
broad spectrum of action and has been used for the treatment of CRKP infections achiev-
ing high concentrations in various biological fluids such as lung, skin, soft tissues and
bones [150]. When combined with colistin, it presents bactericidal action against CRKP
isolates (Table 1) [142,150,151].

6.3. Fosfomycin

Fosfomycin is an old antimicrobial agent which has been re-introduced for the treat-
ment of uncomplicated CRKP UTIs (Table 1) [152]. When combined with colistin, its
bacterial killing efficacy is greater against CRKP [153].

Over the last five years, several antimicrobials with various activity against MDR
Gram-negative bacteria have been launched and approved by the U.S. Food and Drug
Administration (FDA) and the European Medical Agency (EMA). These drugs are pla-
zomicin, eravacycline, cefiderocol and temocillin, a β-lactam which has only been approved
in Belgium and the United Kingdom. Moreover, ceftolozane–tazobactam, meropenem–
vaborbactam, imipenem–cilastatin/relebactam and ceftazidime–avibactam (CAZ-AVI) are
antimicrobials that combine β-lactams with β-lactamase inhibitors and are potent alterna-
tives [154].
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Table 1. General Characteristics of Antimicrobials [155].

Antimicrobial PubChem CID Molecular Formula Synonyms Structure Mode of Action

Colistin 44144393 C52H98N16O13 Polymyxin E
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6.4. Plazomicin

Plazomicin is a synthetic aminoglycoside which was approved in 2018 for the treat-
ment of complicated UTIs (cUTIs) and pyelonephritis [154]. Plazomicin is effective against
CRKP and has been correlated with excellent activity against KPC-producing isolates
(92.9%), and OXA-48 isolates (87.0%). However, its action against MBL-producing isolates
is limited (40.5%) (Table 1) [156].

6.5. Eravacycline

Eravacycline is a fluorocycline which is two- to fourfold times more active than
tigecycline (Table 1) [157]. Eravacycline is active against carbapenem-resistant Gram-
negative bacteria (Johnston et al., 2020) and moreover, against a major proportion of NDM-
and VIM-producing CRKP (61.3% and 66.7%, respectively) [158]. However, appearance of
eravacycline resistance among CRKP due to over-expression of efflux pumps has already
occurred [159].

6.6. Cefiderocol

Cefiderocol is a catechol-substituted siderophore (Table 1). It has been approved by
the FDA for the treatment of cUTIs in 2019 and for the treatment of ventilator-associated
pneumonia (VAP) in 2020 [160]. Cefiderocol inhibits the overwhelming majority of MDR
Gram-negative bacteria and is active against CRKP isolates, independently of the existing
resistance mechanism [161]. Resistance to cefiderocol has already emerged, especially in
MBL-producing CRKP isolates [162]. In addition, co-resistance to cefiderocol and other
antimicrobials in KPC-producing CRKP has already been described [163].

6.7. Temocillin

Temocillin is 6-α-methoxy derivative of ticarcillin. Some initial pharmacokinetic
properties have displayed some action against KPC-producing CRKP causing UTIs (Ta-
ble 1) [164]. However, the susceptibility of temocillin against KPC-producing CRKP causing
UTIs varies among studies. A study in Poland shows 0% susceptibility, while another one
in Greece displays only 8.6% [165,166]. However, a study performed in the UK displays
an increased susceptibility of 50.8% [167]. In addition, it is not active against MBL- and
OXA-48 producing CRKP isolates [166].

6.8. Ceftolozane–Tazobactam

Ceftolozane–tazobactam is a combination of β-lactam with b-lactamase inhibitor
which was approved by the FDA in 2014 for the treatment of cUTIs and intra-abdominal
infections (IAI) (Table 1). Furthermore, the approval was extended for VAP in 2019 [154].
However, ceftolozane–tazobactam is mainly active against K. pneumoniae isolates producing
ESBL, but not against CRKP strains [168].

6.9. Imipenem–Cilastatin/Relebactam

Imipenem–cilastatin/relebactam was approved in 2019 by the FDA for the treatment
of cUTIs and IAIs (Table 1). In 2020, it obtained approval for VAP [154]. Relebactam
inhibits class A and C β-lactamases. Therefore, it is active against KPC-producing CRKP
isolates. However, the addition of relebactam does not restore the activity of imipenem
against MBL-producing CRKP [169]. In addition, it does not inhibit adequately OXA-48
producing CRKP [170]. However, resistance to this agent has recently emerged due to
genetic rearrangement [171].

6.10. Meropenem–Vaborbactam

Vaborbactam is a cyclic boronate derivative (Table 1). When combined with meropenem,
it increases the activity of meropenem against KPC-producing CRKP. It has been approved
for the treatment of cUTIs, IAIs and VAP [172]. However, it is ineffective against MBL-
producing CRKP, while its action against OXA-48 producers is limited [173]. However,
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resistance to meropenem–vaborbactam has lately appeared because of mutated OmpK35
and OmpK36 [174].

6.11. Ceftazidime–Avibactam

Avibactam (formerly NXL104, AVE1330A) was patented in 2011 and is a non-β-lactam
β-lactamase inhibitor which is active in vitro against Ambler class A and C β-lactamases
and displays some activity against some OXA-type β-lactamases, classified in Ambler
class D. Avibactam binds covalently to β-lactamases through the creation of a carbamate
bond between avibactam’s position 7 carbonyl carbon and the same active-site serine that
participates in acyl bonding with β-lactam substrates (Table 1) [175].

An initial study conducted in China during 2011–2012 has highlighted the in vitro
activity of CAZ-AVI against CRKP and other carbapenem-resistant Gram-negative bac-
teria producing ESBL, AmpC and KPC. These isolates were clinically the cause for IAIs,
UTIs, VAPs and bloodstream infections (BSIs) [176]. Some other studies reach the same
conclusions [177,178]. It has also been proven to be active against hypervirulent CRKP
isolates [179]. CAZ-AVI is normally not active against MBL-producing CRKP. However,
it has been combined with aztreonam in the treatment of some cases of NDM-producing
CRKP [180,181]. This combination has been applied recently in a patient with complications
of SARS-CoV-2 nosocomial infection [182]. Apart from KPC-producing CRKP, CAZ-AVI
has been proved effective and safe in vivo against OXA-48 producers [183].

Several clinical randomised control trials (RCTs) have attempted to investigate the
efficacy and safety of CAZ-AVI in treating complicated IAIs and UTIs [184,185]. CAZ-AVI
was approved by the FDA in the beginning of 2015 for the treatment of cIAIs (combined with
metronidazole) and cUTIs at a dose regimen of 2.5 g every eight hours intravenously [186].
The dosing regimens have been later reviewed again in critically ill patients [187]. In
addition, CAZ-AVI has been used in many cases as off-label indication or salvage therapy,
with promising clinical and microbiological cure rates [188,189].

In addition, the testing of CAZ-AVI against MDR Gram-negative bacteria causing
VAP has showed satisfying results [190]. It has been classified as an emerging drug for the
treatment of HAP [191]. Since then, a specific RCT has highlighted the efficacy of CAZ-AVI
in the treatment of VAP. Based on the results of this study called pivotal phase III REPROVE
trial, the FDA approved the use of CAZ-AVI for treatment of patients with HAP/VAP [192].

In addition, some initial attempts of successful treatment of CRKP BSI have been
reported [193]. The in vitro activity of CAZ-AVI against CRKP causing BSIs in cancer
patients was later revealed [194]. It has also been effective in vivo against CRKP causing
BSIs in hematologic patients [195]. Several studies have highlighted CAZ-AVI with higher
clinical cure rates and survival than other drugs in treating CRKP BSIs [196].

However, resistance to CAZ-AVI among KPC-producing CRKP has appeared. Some
previous studies underline the inability of avibactam to inhibit several KPC-2 variants [197].
Resistance to KPC-3 variant has been also detected early [198–200]. In addition, resistance
has also emerged due to selective pressure during treatment with CAZ-AVI for a KPC-2
CRKP infection [131].

Resistance to CAZ-AVI seems to have a lesser impact on vaborbactam, implying the use
of meropenem–vaborbactam previously described as a potent treatment alternative [201].
Notably, meropenem–vaborbactam has been used successfully in combination with aztre-
onam for the treatment of ceftazidime-resistant CRKP isolates causing BSIs [202]. Moreover,
CAZ-AVI resistance could emerge when administered simultaneously with meropenem–
vaborbactam for treating CRKP infections [203]. The appearance of ceftazidime-resistant
KPC-producing CRKP is very alarming, as it can cause severe outbreaks in SARS-CoV-2
ICUs [204].

6.12. Aztreonam–Avibactam

Aztreonam–avibactam is a combination antimicrobial agent with activity against MBL-
producing CRKP. However, it has not been yet approved by FDA [205]. According to recent
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studies, it is considered an option for the treatment of BSIs caused by colistin-resistant and
CAZ-AVI-resistant CRKP isolates [206].

6.13. Guidelines for the Treatment of CRKP Infections

According to the latest guidelines of the European Society of Clinical Microbiology
and Infectious Diseases (ESCMID) for patients with severe CRKP infections, meropenem-
vaborbactam or ceftazidime–avibactam are recommended, if active in vitro. For patients
with CRKP infections due to MBL-producing strains, cefiderocol is conditionally recom-
mended. For non-severe CRKP infections, the use of old antimicrobials is advisable de-
pending on the source of infection, while for cUTIs, aminoglycosides including plazomicin
are recommended. If necessary, tigecycline could be used in high doses for the treatment of
CRKP pneumonia, but not for BSIs and HAP/VAP [148].

The Infectious Diseases Society of America (IDSA) proposes ciprofloxacin, levofloxacin,
trimethoprim–sulfamethoxazole, nitrofurantoin, or a single dose of an aminoglycoside for
the treatment of uncomplicated cystitis caused by CRKP, and ciprofloxacin, levofloxacin
or trimethoprim–sulfamethoxazole for cUTIs. For patients with severe CRKP infection
outside the urinary tract system, ceftazidime–avibactam, meropenem–vaborbactam, and
imipenem–cilastatin–relebactam are recommended, while for patients with a diagnosed
MBL-producing CRKP infection, ceftazidime–avibactam plus aztreonam, or cefiderocol
as monotherapy are proposed. Tigecycline and eravacycline are not recommended as
monotherapy for the treatment of CRKP UTIs and BSIs, while according to IDSA, colistin
should be avoided for the treatment of CRKP infections due to increased mortality and
high nephrotoxicity compared to other antimicrobial options [149].

7. Conclusions

CRKP infections constitute a significant threat for public health. The knowledge of the
exact mechanism of CRKP emergence is crucial for the selection of the most appropriate
antimicrobial among those most recently launched. Plazomicin, eravacycline, cefidero-
col, temocillin, ceftolozane–tazobactam, imipenem–cilastatin/relebactam, meropenem-
vaborbactam, ceftazidime–avibactam and aztreonam–avibactam constitute potent alterna-
tives for treating CRKP infections. The evolution of the molecular epidemiology of CRKP
strains is dynamic and data and information around it should be continuously updated to
diminish the spread of these isolates.
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