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ABSTRACT: A set of novel hole-transporting materials (HTMs) based on π-extension through carbazole units was designed and
synthesized via a facile synthetic procedure. The impact of isomeric structural linking on their optical, thermal, electrophysical, and
photovoltaic properties was thoroughly investigated by combining the experimental and simulation methods. Ionization energies of
HTMs were measured and found to be suitable for a triple-cation perovskite active layer ensuring efficient hole injection. New
materials were successfully applied in perovskite solar cells, which yielded a promising efficiency of up to almost 18% under standard
100 mW cm−2 global AM1.5G illumination and showed a better stability tendency outperforming that of 2,2′,7,7′-tetrakis-(N,N-di-p-
methoxyphenylamine)-9,9′-spirobifluorene. This work provides guidance for the molecular design strategy of effective hole-
conducting materials for perovskite photovoltaics and similar electronic devices.
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■ INTRODUCTION

During the last decade, perovskite solar cells (PSCs) have
attracted vast interest in photovoltaic research leading to
enormous enhancement in the power conversion efficiency
(PCE), currently exceeding 25%.1−4 The main advantages of
PSCs are their simple fabrication methods and relatively
inexpensive components that hold great potential for future
low-cost energy production enabling the global transition to a
low-carbon society.5,6 The typical PSC consists of a photo-
active perovskite material sandwiched between an n-type
semiconducting electron transport material and a p-type
semiconducting hole transport material (HTM) with selective
contacts.7−10 To further enhance the performance of the PSC
device, it is vital to optimize each of the functional layers.
Plenty of recent findings have proved that finely modifying the
perovskite composition may contribute to improved device
performance and stability with the current structure of
Cs0.1((CH3NH3)0.15(NHCHNH3)0.85)0.9Pb(I0.85Br0.15) used
as a standard.11−14 Despite the fact that PSCs have skyrocketed
in PCE, there are still several device issues that need to be

resolved, especially improving the long-term stability.15−20 In
this context, small organic molecules are particularly appealing
because they offer a wide range of structural modifications
leading to desired properties and are easy to synthesize, purify,
and process.21−24 Numerous approaches are employed in the
development of such HTMs including linear, star-shaped,
spiro-centered, or cross-linked structures in order to match the
required hydrophobicity, energy levels, and charge carrier
mobility.25−30 To date, 2,2′,7,7′-tetrakis-(N,N-di-p-methoxy-
phenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) domi-
nates the field and despite its high price (∼300 €/g), it is
routinely used as a reference standard for research studies
providing high efficiency, as it has been well-studied and easily
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available because of its commercialization decades ago.31

However, the cost-effective industrial potential is hardly
probable. Therefore, research interests directed toward the
development of novel HTMs have been raised to find an ideal
HTM, which would be amenable to scale-up as well as to
better reveal the relationship between the molecular structure
and the device performance.32,33 As a result of spiro-OMeTAD
success, many research groups have been focused on spiro-type
derivatives in order to improve the performance with slight
structural modifications including spirobifluorene-based DM,34

spirofluorenexanthene-based X5535 and HTM-FX,36 spiro-
fluorenecyclopentadithiophene-based FDT37 and dispiro-
modified DDOF,38 G2,39 and dispiro-OBuTAD.40

Carbazole is known to be a promising core unit for
molecular design because it can be substituted with a wide
range of desired groups, allowing fine-tuning of its linking
topologies and optical and electrochemical properties.41

Various carbazole-structured molecular HTMs have been
widely applied in PSCs and showed a comparable photovoltaic
performance.42,43 Dimethoxydiphenylamine-substituted carba-
zole scaffolds as electron-donating units in the periphery were
routinely used to tune the HOMO level of the final
semiconducting molecule.44 This includes star-shaped SGT
series;45,46 benzodithiazole-,47 bipyridine-,48 pyrene-based49

examples and our previous work, where diphenylamine-
substituted carbazoles were linked by a nonconjugated simple
bismethylenebenzene-binding units using a straightforward
synthetic procedure and showed a photovoltaic performance of
up to 19%.50

In this work, three carbazole-based twin molecules, termed
V1209, V1221, and V1225, and a “half” molecule, V1207,
were designed based on a π-extension through an additional
carbazole unit and successfully synthesized. The effects of

isomeric linking on various properties of newly synthesized
molecules, in comparison to our earlier report, have been
systematically investigated. All these carbazole-based HTMs
have been successfully applied in PSCs.

■ RESULTS AND DISCUSSION

General synthetic routes for the preparation of new hole
transporters V1207, V1209, V1221, and V1225 are shown in
Figure 1. The “half” molecule V1207 was obtained by reacting
3,6-dibromo-9-ethyl-9H-carbazole and 9-ethyl-N-(4-methoxy-
phenyl)-9H-carbazol-3-amine (1) under Buchwald−Hartwig
amination conditions with the utilization of a palladium
catalytic system. In order to obtain twin derivatives, a facile
two-step synthetic procedure was employed. First, commer-
cially available isomeric bis(bromomethyl)benzene linkers and
3,6-dibromocarbazole were reacted in a simple click-type
reaction, as reported previously.50,51 Second, tetrabromo-
functionalized isomeric central fragments were converted to
final products under the same protocol as for V1207. Under
these conditions, V1209, V1221, and V1225 were isolated in
high yields of between 72−77%. We note the simplicity of the
applied synthetic route requiring no expensive starting
materials and tricky purification methods. All detailed synthetic
procedures and methods are described in the Supporting
Information experimental part with the NMR and MS spectra
provided in Figures S10−S17.
Quantum chemical calculations of V1207, V1209, V1221,

and V1225 were performed by means of Gaussian09
software52 in order to establish the most probable molecular
geometry and the corresponding absorption spectrum.
Geometry optimization of the ground state structure was
provided using the density functional theory method B3LYP

Figure 1. Synthesis routes for target molecules V1207, V1209, V1221, and V1225.
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and 6-31G basis without polarization functions. Optimized
molecular structures (after ground state geometry optimiza-
tion) in XY and XZ projections are presented in Figure S1. The
electronic absorption spectrum was simulated using a semi-
empirical TD method (for singlets only). Environmental
effects were not included for all simulations. Table S1
represents the parameters of the four lowest excited states:
S1−S4. Table S2 represents the impact of molecular orbitals on
“spectroscopic” transitions. All transitions between the above-
mentioned lowest excited states and the ground state are
forbidden (oscillator strength about zero). For V1207, the S0
→ S1 transition energy is equal to 2.93 eV and the S0 → S2
transition energy is equal to 3.07 eV. For V1209, V1221, and
V1225 structures, the energies of S0 → S1 and S0 → S2
transitions are approximately equal (2.93 eV, because of
degenerate states, corresponding to the S0 → S1 transition of
V1207), and also the energies of S0 → S3 and S0 → S4
transitions are approximately equal (3.05 eV, corresponding to
the S0→ S2 transition of V1207). Distributions of the electron
density for the HOMO and HOMO−1 as well as the LUMO
and LUMO+1 for V1207, V1209, V1221, and V1225
structures are presented in Figures S2−S5, respectively. CT
charge redistribution behavior was established for V1225 only.
The thermal behavior of HTMs was estimated by

thermogravimetric analysis (TGA) (Figure 2a) and differential
scanning calorimetry (DSC) (Figure S6) measurements. From
TGA, it was found that twin molecules have a similar
decomposition temperature (Tdec) in the range of 430−440
°C, showing their excellent thermal stability, while V1207
decomposes at a significantly lower temperature (Tdec = 385
°C) because of its smaller aromatic system.53 The thermal
transitions of V-series molecules were determined by DSC.
Only the glass transition temperature (Tg) was investigated for

all compounds during both heating scans with very small
variations (184−192 °C) observed in Tg depending on
isomeric central core substitution, while V1207 has a less
stabilized amorphous state with the glass transition detected at
154 °C. In general, DSC traces demonstrate that these HTMs
are fully amorphous, which is desired to form homogeneous
films upon device fabrication.
The UV-visible absorption and photoluminescence (PL)

spectra of the synthesized HTMs are depicted in Figure 2b. All
compounds had two major peaks cantered at around 235 and
300 nm. The intense absorption peak at shorter wavelengths
correspond to localized π−π* transitions, while that at longer
wavelengths arises from less intensive delocalization from the
conjugated scaffold that can be assigned to n−π* transitions.
The change in the central benzene substitution has not
influenced the conjugation, therefore the spectra of all twin
isomers are identical; however, there is a huge difference in the
absorption intensity of the “half” molecule V1207 arising from
the significantly smaller aromatic conjugated system. The PL
spectra of all the HTMs were similar and are normalized at the
peak value centered at 459 nm, showing that comparably large
Stokes shifts of around 150 nm are observed for all molecules
meaning significant changes in the geometry of the molecules
once excited. The optical gaps (Eg) were calculated from the
intersection of absorption and PL spectra and were found to be
identical for all the materials at around 2.78 eV.
For better interpretation of energy level alignment of HTMs

in perovskite-based devices, the solid-state ionization potential
(IP) of thin films was measured by photoelectron emission
spectroscopy in air (PESA) and the experimental data are
shown in Figure 3a. V1209, V1221, V1225, and V1207 were
found to have IP values of 4.93, 4.83, 4.91, and 4.82 eV,
respectively, which are very close to that of spiro-OMeTAD

Figure 2. (a) TGA data (heating rate of 10 °C/min, N2 atmosphere); (b) UV-Vis absorption (solid line) and photoluminescence (dashed line)
spectra of V-series HTMs in THF solution (10−4 M).

Figure 3. (a) Photoemission in air spectra of HTMs and (b) electric field dependencies of the hole-drift mobility (μ) in charge transport layers of
V1209, V1221, V1225, and V1207.
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(5.00 eV) and perfectly align with the valence band energy of
the perovskite (∼5.5 eV) ensuring efficient hole transfer from
the perovskite to the cathode. We next determined the charge
mobility of V-series materials using xerographic time of flight
technique. The dependence of hole drift mobility on electric
field strength is shown in Figure 3b. The zero-field hole drift
mobility (μ0) of V1209 and V1225 was determined to be 3.5
× 10−5 and 3 × 10−5 cm2/V s, respectively, while that of
V1221 was found to be an order of magnitude lower at 3 ×

10−6 cm2/V s, therefore the isomeric substitution change of the
central benzene fragment significantly influences the hole drift
mobility. A similar trend among differently substituted isomers
was previously reported in the literature, showing that m-
isomers typically have a larger energetic disorder.54 Interest-

ingly, V1207 had the highest hole drift mobility value of 5 ×

10−5 cm2/V s, which is slightly below that of spiro-OMeTAD
(μ0 = 1.3 × 10−4 cm2/V s).55 The thermal, optical, and
photoelectrical properties of V-series charge-transporting
materials are summarized in Table 1.
To prove the function of carbazole-rich HTMs in PSCs, we

prepared perovskite cells with mixed triple-cation perovskite as
the photoactive light absorber in a mesoporous configuration
device stack of fluorine-doped tin oxide (FTO)/compact
TiO2/mesoporous TiO2 and SnO2/perovskite/HTM/Au. The
solar cell preparation is fully described in the Supporting
Information following the method that has been previously
optimized for spiro-OMeTAD.50 We then analyzed the surface
of each hole-transporting layer and the cross section of the

Table 1. Thermal, Optical, and Photophysical Properties of the Synthesized Materials

ID Tg [°C]
a Tdec [°C]

a λabs [nm]b λem [nm]b IP [eV]
c Eg [eV]

d μ0 [cm
2 V−1 s−1]e

V1209 187 432 238, 293, 308 459 4.93 2.78 3.5 × 10−5

V1221 184 436 238, 294, 308 459 4.83 2.76 3 × 10−6

V1225 192 441 238, 292, 309 459 4.91 2.78 3 × 10−5

V1207 154 385 239, 292, 310 459 4.82 2.79 5 × 10−5

aGlass transition (Tg) and decomposition (Tdec) temperatures observed from DSC and TGA, respectively (10 °C/min, N2 atmosphere).
bAbsorption and emission (excitation = λabs max) spectra measured in THF solution (10−4 M). cIonization energies of the films measured using
PESA. dEg estimated from the intersection of absorption and emission spectra. eMobility value at zero field strength.

Figure 4. (a) Cross-sectional SEM micrograph of a perovskite device containing V1221 as the HTM and (b) normalized PL decay in the first 150
ns time window, upon excitation at 480 nm.

Figure 5. (a) J−V curves of champion cells employing V1207, V1209, V1221, V1225, and spiro-OMeTAD under AM 1.5 illumination; (b) IPCE
spectra and integrated currents for the devices with V-series HTMs and spiro-OMeTAD; (c) stabilized PCEs using different HTMs at maximum
power point tracking during the 250 s time frame; and (d) stability test of the PSCs under 1 sun illumination.
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following device by high-resolution scanning electron micros-
copy (SEM). As seen from the top-view SEM images (Figure
S7), the perovskite layer was uniformly covered with a smooth
HTM film. Figure 4a shows the cross-sectional image of the
V1221-based PSC, which is made of a 400 nm thick perovskite
on top of a 150 nm thick mesoporous TiO2 layer deposited on
FTO glass with precoated compact TiO2. The device is
completed with an HTM layer with a thickness of around 100
nm and gold as a back contact on the top.
Time-resolved PL decay curves (Figure 4b) for HTM-free

perovskite along with perovskite/HTM films were recorded
using time-correlated single-photon counting (TCSPC) under
pulsed excitation at 480 nm. During this procedure, traps were
filled, so the decay is associated with the electron−hole
recombination processes. The HTM-free perovskite sample
shows a long-living component extending out of our time
frame. Differently, after the introduction of the hole transport
layer the PL decay increases, significant quenching is visible in
the first 10 ns. The TCSPC traces were fitted and the obtained
time constants are listed in Table S3. Effective quenching of
the long-lived species suggests efficient transport of positive
charges at the HTM/perovskite interface.
The current density−voltage (J−V) curves extracted for

PSCs using the hole-transporting layers of V1207, V1209,
V1221, and V1225 under AM1.5G illumination are provided
in Figure 5a. Across the V series, the devices using m- and p-
isomers V1221 and V1225 as the HTMs showed the highest
performance with the identical PCE of 17.81% (16.95%
stabilized efficiency, Figure 5c), and the best devices having Jsc
= 23.6 mA/cm2, Voc = 1.03 V, and FF = 73, respectively, while
the other twin isomer o-substituted V1209 exhibited a slightly
lower performance of 17.31%. However, based on the
statistical data, V1221 shows the highest reproducibility
among the series. Interestingly, the “half” molecule V1207
showed a comparable PCE of 16.44%, which is several times
higher than the observed trend between the twin and “half”
systems in our previous report.50 One possible explanation
could be that the extension of the π-conjugated system with
two extra carbazole units improves the charge transport in the
film and facilitates the hole extraction. For comparison, we also
fabricated a standard device with a spiro-OMeTAD reference,
which showed a PCE of 19.34%. The corresponding
photovoltaic parameters are summarized in Table 2. In order

to reveal the impact of hysteresis on the device performance,
J−V curves collected by scanning the applied voltage at 0.1 V
s−1 from a forward bias to a short circuit and the other way
around are reported in Figure S9. J−V curves with the
corresponding performance parameters for each HTM showed
negligible hysteresis.

The incident photon conversion efficiency (IPCE) of the
perovskite devices as a function of wavelength with integrated
Jsc values (Figure 5b) shows that the devices with new HTMs
convert around 90% of incoming photons in the whole
wavelength range from 400 to 800 nm. The integrated
photocurrents calculated from the overlap integral of the IPCE
spectra are consistent with those obtained from the
experimental J−V measurements and show similar trends.
We conducted the stability test at a maximum power point
(MMP) under AM 1.5G illumination of 250 s, as shown in
Figure 5c. All new HTM devices exhibit less than 5% PCE
reduction, while the devices maintain very stable output.
Finally, the stability assessment of the devices containing novel
HTMs was carried out. In Figure 5d, the maximum power
point tracking of each HTM-based perovskite devices is shown.
During the testing, unsealed devices were kept in an argon
environment under a constant illumination of 100 mW cm−2.
The devices were maintained at the maximum power point
during aging and the J−V curves were recorded automatically
every 3 h. The testing revealed that all HTMs show similar
stability, where V1207 and V1221 have the lowest resistance
to light soaking and lost almost 20% of the initial efficiency
after 250 h, while V1209 and V1225 showed a better tendency
and only a slight decrease in the device efficiency is observed
during the testing period. Importantly, all newly developed
HTMs show better resistance to light soaking and outperform
spiro-OMeTAD, as shown in Figure S18.

■ CONCLUSIONS

In summary, we present the synthesis of a series of novel
carbazole-terminated hole-transporting materials and a system-
atic study of the impact of an isomeric-linking unit on thermal,
optical, photophysical, and photovoltaic properties. Twin
molecules V1209, V1221, and V1225 exhibit excellent thermal
stability up to 440 °C combined with suitable ionization
energies that properly align with the valence band of the
perovskite absorber. Additionally, the hole drift mobility values
of isomers reached 10−5 cm2/Vs order of magnitude, which is
comparable with spiro-OMeTAD. The most efficient perov-
skite devices contained double-armed HTMs V1221 and
V1225 reaching a PCE of 17.81%; however, V1221 shows
slightly higher reproducibility based on the statistical data.
Importantly, all newly developed HTMs show better resistance
to light soaking and outperform spiro-OMeTAD, and therefore
hold a great prospect for practical wide-scale applications in
optoelectronic devices.
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