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Abstract

This paper describes CarbMetSim, a discrete-event simulator that tracks the blood

glucose level of a person in response to a timed sequence of diet and exercise activities.

CarbMetSim implements broader aspects of carbohydrate metabolism in human beings

with the objective of capturing the average impact of various diet/exercise activities on

the blood glucose level. Key organs (stomach, intestine, portal vein, liver, kidney,

muscles, adipose tissue, brain and heart) are implemented to the extent necessary to

capture their impact on the production and consumption of glucose. Key metabolic

pathways (glucose oxidation, glycolysis and gluconeogenesis) are accounted for in the

operation of different organs. The impact of insulin and insulin resistance on the

operation of various organs and pathways is captured in accordance with published

research. CarbMetSim provides broad flexibility to configure the insulin production

ability, the average flux along various metabolic pathways and the impact of insulin

resistance on different aspects of carbohydrate metabolism. The simulator does not yet

have a detailed implementation of protein and lipid metabolism.
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1 Introduction 1

More than 400 million people world wide suffer from diabetes [1]. People with Type 2 2

Diabetes (around 90% of total diabetic population [1]) usually have at least some ability 3

to produce insulin, however their bodies develop insulin resistance and hence are not 4

able to react strongly enough to the presence of insulin in blood to keep the blood 5

glucose level (BGL) under control. On the other hand, people with Type 1 Diabetes 6

cannot produce insulin endogenously at all and hence must receive external insulin 7

regularly. Keeping BGL under control is a constant struggle for people with diabetes. 8

One wrong meal choice may result in very high BGL and an accompanying feeling of 9

sickness for several hours. Persistently high BGL would ultimately cause a number of 10

severe complications such as heart/kidney failure, blindness and limb amputations. 11

Those using external insulin may suffer life threatening hypoglycemic incidents if too 12

much insulin is injected. Physical exercise allows the muscles to use glucose in the blood 13

even in the absence of insulin but exercise activities need to be carefully coordinated 14

with food and medication intake so as to avoid hypoglycemia. For people with Type 1 15

Diabetes, physical exercise may even worsen the state of hyperglycemia. In general, 16

people with diabetes need help deciding how they should plan their food and exercise 17

activities so as to keep their BGL under control. There is a real need for tools that help 18

diabetic people understand the impact a particular sequence of food and exercise 19

activities would have on their BGL. Continuous BGL monitoring solutions, now offered 20

by a number of vendors, can significantly help but are either not easily available to a 21

vast majority of diabetic people world-wide or are simply too expensive. Clearly, one 22

solution is to build simulation tools that use our vast knowledge of energy metabolism 23

in human beings to give reasonably accurate prediction of the impact of a diet/exercise 24

sequence on some one’s BGL. A few such simulators already exist [2, 3] but are geared 25

towards predicting the impact of individual meals and are not available in a format that 26

can be freely used by individuals. This paper describes CarbMetSim (the Carbohydrate 27

Metabolism Simulator), an open-source and freely available [4] simulation software 28

that predicts minute by minute BGL in response to an arbitrary length sequence of food 29

and exercise activities. While the existing simulation tools are based on continuous time 30

models that use differential and algebraic equations to describe physiological details, 31
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CarbMetSim is based on a discrete event model where the time increments in units 32

(called ticks) one minute long. At the beginning of each tick, CarbMetSim fires the 33

food/exercise events that need to be fired at this time and directs various simulated 34

body organs to do the work they are supposed to do during this tick. The simulator is 35

currently geared for use by people with Prediabetes and Type 2 Diabetes who follow a 36

fixed medication (including long term insulin) regime prescribed by their physicians. 37

Future versions of the simulator will include the ability to specify the dosage of 38

externally injected short term insulin to allow use by people dependent on short term 39

insulin (including those with Type 1 Diabetes). 40

CarbMetSim implements broader aspects of carbohydrate metabolism in human 41

beings with the objective of capturing the average impact of various diet/exercise 42

activities on the BGL of people with different levels of diabetes. The simulator 43

implements key organs (stomach, intestine, portal vein, liver, kidney, muscles, adipose 44

tissue, brain and heart) to the extent necessary to capture their impact on the 45

production and consumption of glucose. Key metabolic pathways (glucose oxidation, 46

glycolysis and gluconeogenesis) are accounted for in the operation of different organs. 47

The impact of insulin and insulin resistance on the operation of various 48

organs/pathways is captured in accordance with published research. CarbMetSim 49

provides broad flexibility to configure the insulin production ability, the average flux 50

along various metabolic pathways and the impact of insulin resistance on different 51

aspects of carbohydrate metabolism. Thus, it is possible to customize the simulator for 52

a particular user by setting appropriate values to various configurable parameters. 53

CarbMetSim is not yet a finished product. The protein and lipid metabolism are 54

implemented in a very simplified manner. The simulator does not yet consider 55

monosaccharides other than glucose and assumes that all dietary carbohydrate gets 56

converted to glucose after digestion. The impact of insulin is captured in a simplified 57

manner and other important hormones (e.g. glucagon) are not yet directly modeled. 58

Impact of externally injected short term insulin is not modeled yet. Only aerobic 59

exercise activities can be simulated at present. Finally, CarbMetSim is not yet capable 60

of translating a user’s diet/exercise/BGL data into the values of simulation parameters 61

governing the behavior of different organs. The simulator has broad applicability 62

beyond its original purpose described above. For example, it is possible to extend the 63
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implementation to study the long term impact of diabetes on various organs or to 64

predict changes in body weight in response to a diet/exercise regimen. 65

2 Modeling Carbohydrate Metabolism in Humans - 66

A Literature Review 67

Existing approaches to model carbohydrate metabolism in human beings can be 68

classified as either data-driven or knowledge-driven [5]. The data-driven (or empirical) 69

models relate a user’s recent BGL values along with other relevant information (e.g. 70

diet, exercise, medication and stress) to the user’s future BGL values using approaches 71

such as neural networks [6–11] and gaussian models [12]. A number of different neural 72

network models exist including those based on multilayer perceptrons [7, 8], radial basis 73

function [9], wavelets [10], time series convolution [6] and recurrent neural 74

networks [6, 11]. Such models consider the human body to be a black-box and do not 75

take in account the physiological aspects of carbohydrate metabolism [13]. 76

Unlike the data-driven models, the knowledge-driven models are based on human 77

physiology. In such models, different factors are treated as different compartments that 78

influence each other and are described by a set of differential and algebraic equations [5]. 79

The earliest such models [14–16] involved two linear compartments - one for glucose in 80

blood and the other for insulin in blood - such that the rates of 81

appearance/disappearance of glucose/insulin were linearly proportional to their level in 82

blood. The next generation of models included non-linear rates and consideration of 83

additional hormones (e.g. glucagon) besides insulin [17]. Foster [18] presented a six 84

compartment model, one each for blood glucose, liver glycogen, muscle glycogen, plasma 85

insulin, plasma glucagon and free fatty acids in plasma, and the addition/removal from 86

each compartment happened in a non-linear fashion. Some of the other notable 87

multi-compartment, nonlinear models were those developed by Cerasi [19], Insel [20], 88

Cramp and Carson [21] and Cobelli et al. [22]. These models were increasingly more 89

complex with many physiological details taken in account. Sorensen [23] provides a 90

good overview of the earliest knowledge-based models (and some of the later models 91

described next). 92
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Bergman et al. [24, 25] designed a method to quantify a) the sensitiviy of an 93

individual’s beta cells to his/her BGL and b) the sensitivity of the individual’s BGL to 94

insulin level in his/her blood. For this purpose, a minimally complex mathematical 95

model was developed that could capture the individual differences in two sensitivities 96

mentioned above. Bergman’s minimal model has been modified in a variety of ways. 97

Furler et al. [26] introduced modifications to allow for absence of insulin production by 98

pancreas and external insulin infusion. Bergman’s model has also been used to study 99

closed [27] and semi-closed [28] loop optimal control algorithms to determine the insulin 100

infusion profile for an individual. Roy and Parker extended Bergman’s model to take in 101

account the level of free fatty acids in plasma [29]. Bergman’s model has also been 102

extended to take in account the impact of physical exercise [30, 31]. 103

Tiran et al. [32] developed a multi-compartment model for glucose circulation where 104

each relevant organ was modeled as a separate compartment. Guyton et al. [33] 105

developed another multi-compartment model consisting of a glucose circulation 106

subsystem (separate compartments for liver glucose, liver glycogen, kidney glucose, 107

brain tissue glucose, brain blood glucose, peripheral (muscles, adipose tissue) blood 108

glucose, peripheral tissue glucose, central (i.e. gastrointestinal tract) blood glucose and 109

central tissue glucose) and an insulin circulation subsystem (separate compartments for 110

liver insulin which represents insulin from pancreatic beta cells, kidney insulin, 111

peripheral blood insulin, peripheral tissue insulin, central blood insulin and central 112

tissue insulin). The model consisted of a total of 32 nonlinear ordinary differential 113

equations (ODEs) with 11 nonlinear ODEs just to model insulin secretion from 114

pancreas [23]. Sorensen [23] presented another physiologically complex, 115

multi-compartment model albeit with a much simplified model for pancreatic insulin 116

secretion. Sorensen’s model consisted of a total of 22 nonlinear ODEs of which 11 ODEs 117

were associated with glucose circulation, 10 ODEs with insulin and 1 ODE with 118

glucagon. Parker et al. [34, 35] updated the Guyton/Sorensen models by accounting for 119

uncertainty in parameter values and by including a model for gastric emptying of 120

carbohydrates in a meal [36]. Hovorka et al. [37] developed a multi-compartment model 121

of glucose and insulin kinetics as part of a model predictive controller for subcutaneous 122

insulin infusion for people with Type 1 Diabetes. This model consists of a 123

two-compartment glucose subsystem (accounting for glucose absorption, distribution 124
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and disposal), a two-compartment insulin subsystem (accounting for insulin absorption, 125

distribution and disposal) and an insulin action subsystem (accounting for insulin action 126

on glucose transport, disposal and endogeneous production). 127

Dalla Man et al. [38] developed a model that related the plasma concentrations of 128

glucose and insulin to various glucose and insulin related rates (the rate of appearance 129

of glucose from the gastro-intestinal tract, the rate at which the glucose is produced by 130

liver and kidney, insulin dependent and independent rates of glucose utilization, the rate 131

of renal extraction of glucose, the rate of insulin secretion by beta cells and the rate of 132

insulin degradation). The parameters of this model were determined using the 133

experimental data collected for 204 normal and 14 Type 2 Diabetic subjects. This 134

model was used to simulate patient behavior in UVA/PADOVA Type 1 Diabetes 135

Simulator [2] aimed at investigating the closed control strategies for insulin pumps. A 136

new version of UVA/PADOVA Type 1 Diabetes Simulator [3] modifies Dalla Man’s 137

model by incorporating glucagon secretion/action/kinetics and nonlinear increase in 138

insulin dependent glucose utlization as BGL dips below the normal range. 139

The CarbMetSim simulator presented in this paper is physiologically complex just 140

like the models presented by Tiran et al. [32], Guyton et al. [33], Sorensen [23] and 141

Dalla Man [38]. The key difference is that CarbMetSim implements the physiological 142

details in software with various body organs implemented as objects whereas the 143

existing models used ODEs to model physiological details. It can be argued that 144

implementing physiological details in software allows for much more complex behavior 145

to be taken in account than what is possible using ODEs. Moreover, it is much easier to 146

modify physiological behavior implemented in software than via ODEs. In that sense, 147

the presented simulator is an improvement over existing ODE based approaches. It is 148

hoped that these benefits coupled with its open-source nature will allow CarbMetSim to 149

emerge as a popular simulation model of human metabolism for both diabetes research 150

and self-management tools for diabetic people. 151

3 Key Aspects in CarbMetSim Design 152

In the following, we describe some of the key aspects of CarbMetSim’s design. 153
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3.1 Food, Exercise and Human Subject Description 154

In CarbMetSim, a food is described in terms of its serving size and the amount of 155

rapidly available glucose (RAG), slowly available glucose (SAG), protein and fat per 156

serving. The RAG contents include sugars and the rapidly digestible starch (i.e. starch 157

that gets digested in vitro within 20 minutes [39, 40]). The SAG contents include the 158

slowly digestible starch (i.e. starch that gets digested in vitro between 20 and 120 159

minutes [39, 40]). In general, the starch with high amylopectin to amylose ratio is 160

classified as rapidly digestible starch whereas the one with high amylose to amylopectin 161

ratio is classified as slowly digestible starch. The non-starch polysaccharide (also known 162

as dietary fiber) part of the carbohydrates is currently ignored (even though the fiber 163

contents of the food are known to have an impact on the gastric emptying). 164

CarbMetSim currently does not have a detailed implementation of the protein and lipid 165

metabolism. However, it does model the impact of protein and fat contents of food on 166

gastric emptying. Hence, the food description should include the total amount of protein 167

and total amount of fat per serving. CarbMetSim currently does not characterize 168

protein in terms of its amino acid contents. Since only 3 of the 20 amino acids have 169

branched chains, a general assumption is made that 85% of amino acids resulting from 170

protein digestion have unbranched chains and the remaining have branched chains [41]. 171

CarbMetSim can currently simulate only aerobic exercises. In CarbMetSim, an 172

exercise activity is described in terms of its intensity in units of Metabolic Equivalent of 173

Task or MET s, where 1 MET is 1 kcal of energy expenditure per kg of body weight per 174

hour. By convention, 1 MET is considered equivalent to 3.5ml of oxygen consumption 175

per kg of body weight per minute. Each individual has a certain maximal rate at which 176

he/she can consume oxygen. This individual-specific maximal rate, called V O2max, 177

depends on the gender, age and fitness level of the individual [54]. The intensity of an 178

exercise activity in terms of the associated oxygen consumption rate (described as the 179

%age of the individual’s V O2max, henceforth referred to as %V O2max) determines to 180

a large extent the relative fraction of the glucose and fatty acids oxidized to meet the 181

energy needs of the exercising muscles. Thus, CarbMetSim needs to know the gender, 182

age and (self-assessed) fitness level within the age group.of the human subject being 183

simulated. This information is used to estimate the V O2max for the human subject 184
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using the tables in Kaminsky et al. [54]. 185

3.2 Modeling Insulin Production 186

The insulin level in blood generally depends on the BGL. If the BGL is high, the insulin 187

level increases as well so as to signal the liver and the muscles to absorb glucose from 188

the blood stream and also to signal both the liver and the kidneys to slow down or stop 189

the endogeneous glucose production via glycogen breakdown and gluconeogenesis. Also, 190

the insulin level in blood decreases in response to physical exercise [65, 73–76] so as to 191

signal the liver and the kidneys to ramp up the endogeneous glucose production. In 192

CarbMetSim, the current insulin level in the blood is represented by a variable called 193

insulinLevel (inside the Blood object) that assumes values between 0 and 1. The value 194

of insulinLevel depends on the current BGL, the current exercise intensity (in 195

%V O2max) and a number of configurable parameters: minGlucoseLevel (typical 196

hypoglycemic BGL), baseGlucoseLevel (typical fasting BGL), highGlucoseLevel 197

(typical peak BGL) (minGlucoseLevel < baseGlucoseLevel < highGlucoseLevel ), 198

baseInsulinLevel (representing the typical fasting insulin level), peakInsulinLevel 199

(representing typical insulin level when BGL is at peak) (where 0 ≤ baseInsulinLevel ≤ 200

peakInsulinLevel ≤ 1), , restIntensity (the oxygen consumption rate in %V O2max 201

when the individual is not exercising, by default 2 MET s converted to %V O2max) and 202

intensityPeakGlucoseProd (the exercise intensity in %V O2max at which the liver and 203

kidney produce glucose at the maximum rate, by default 20%). The following rules 204

govern the value of insulinLevel : 205

• If the current BGL is less than or equal to the minGlucoseLevel , the insulinLevel 206

stays at value zero. 207

• If the current BGL is between the minGlucoseLevel and the baseGlucoseLevel , 208

the insulinLevel depends on whether the individual being simulated is currently 209

engaged in exercise or not. If the individual is exercising and 210

– if the exercise intensity is greater than or equal to intensityPeakGlucoseProd , 211

the insulinLevel stays at zero. 212

– otherwise, the insulinLevel depends on the exercise intensity. As the exercise 213
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intensity decreases from intensityPeakGlucoseProd to the the restIntensity , 214

the insulinLevel increases linearly from zero to the baseInsulinLevel . 215

If the individual is not exercising, as the BGL increases from minGlucoseLevel to 216

baseGlucoseLevel , the insulinLevel increases linearly from zero to the 217

baseInsulinLevel . 218

• As the BGL increases from the baseGlucoseLevel to the highGlucoseLevel , the 219

insulinLevel increases linearly from the baseInsulinLevel to the peakInsulinLevel . 220

• If the BGL is greater than or equal to the highGlucoseLevel , the insulinLevel 221

stays at the peakInsulinLevel value. 222

In CarbMetSim, the peakInsulinLevel represents the peak ability to produce insulin. 223

A value 1 for peakInsulinLevel means normal (or excessive, as in the case of initial 224

stages of Type 2 Diabetes) insulin production, whereas a value 0 means that the 225

pancreas does not produce any insulin at all (as in people with Type 1 Diabetes). A 226

value x (between 0 and 1) for peakInsulinLevel means that peak insulin production is 227

just x times the normal peak. 228

As described in the later sections, the insulinLevel variable has a profound impact 229

on the operation of different organ objects in CarbMetSim. So, its value should be 230

interpreted in terms of the impact it has on various organ objects, rather than the 231

actual insulin concentration it corresponds to for a particular person. So, it is entirely 232

possible that two very different actual insulin concentrations for two individuals map to 233

the same value for the insulinLevel because they have the same impact on carbohydrate 234

metabolism related functions of the organs. 235

In CarbMetSim’s current implementation, the insulinLevel variable is tightly coupled 236

with the BGL in the manner described above. A future implementation will allow the 237

insulinLevel to vary in a configurable manner by allowing the user to specify the dosage 238

of externally injected short term insulin. This would allow the simulator to be useful for 239

diabetes patients dependent on short term insulin injections or insulin pumps. 240
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3.3 Modeling Glucose Transport 241

Glucose crosses cell membranes using either active transporters or passive ones. The 242

active transporters, such as Sodium GLucose coTransporters (SGLTs) are able to move 243

glucose from a low concentration to a high concentration. The passive transporters, 244

such as Glucose Transporters (GLUTs) move glucose from a high concentration to a low 245

concentration. CarbMetSim models the operation of active transporters in an organ by 246

specifying the average amount of glucose transferred per minute via active transport. 247

The actual amount transferred is a poisson distributed random variable. The simulator 248

uses Michaelis Menten kinetics to determine the amount of glucose transferred in a 249

minute via passive transport. As per the Michaelis Menten kinetics, the rate of 250

transport (V ) across a membrane depends on the difference in the substrate 251

concentration (Y ) across the membrane in the following manner: V = Vmax
Y

Y+Km

, 252

where Vmax is the maximum rate of transport and Km is the substrate concentration 253

difference at which the transport rate is half the maximum. The Vmax value associated 254

with a GLUT transporter in an organ indicates the number of transporters involved. 255

Hence, the simulator treats Vmax associated with a particular GLUT in a particular 256

organ as a poisson distributed random variable with a configurable mean. 257

3.3.1 Modeling GLUT4 Operation in Muscles 258

Among the GLUTs, the GLUT4 transporters are of particular importance because they 259

allow the muscles to absorb glucose from the bloodstream. When the human body is 260

engaged in exercise, the physical activity itself activates sufficient number of GLUT4 261

transporters [42–44] and the muscles are able to absorb the desired amount of glucose 262

from the bloodstream. CarbMetSim replicates this behavior. However, in the resting 263

state, the number of active GLUT4 transporters depends on the insulin level in the 264

bloodstream. When the insulin level is low (because of low BGL), GLUT4 transporters 265

are inactive and the muscles do not absorb much glucose from the bloodstream. As the 266

insulin level rises in the blood (in response to increase in BGL), GLUT4 transporters 267

become active proportionately and allow the muscles to quickly absorb excess glucose 268

from the blood. 269

In CarbMetSim, GLUT4 activation during the resting states is modeled by 270
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manipulating the Vmax value associated with GLUT4 transporters in the following 271

manner: 272

• Since a large fraction of the absorbed glucose is converted to glycogen inside 273

muscles and there is a limit on how much glycogen can be stored inside muscles, 274

the current amount of muscle glycogen impacts the Vmax value. Specifically, as 275

the muscle glycogen storage increases from zero to a configurable maximum value, 276

the Vmax value reduces linearly from a configurable maximum (7 mg/kg/min by 277

default) to a configurable minimum (3.5 mg/kg/min by default). 278

• The impact of insulin level is captured by multiplying the Vmax value with a 279

factor (between 0 and 1) that increases in value with increase in the insulinLevel. 280

Currently, the insulinLevel itself is used as the value of this factor. Since vigorous 281

physical exercise causes temporary increase in glucose absorption by muscles [79] 282

to make up for the glycogen lost during exercise), the insulinLevel does not 283

impact the Vmax value in the first hour after an intense physical exercise activity 284

(unless the current BGL drops below the baseGlucoseLevel ). 285

• The impact of insulin resistance in reducing the activation of GLUT4 transporters 286

is modeled by multiplying the the Vmax value with a configurable parameter 287

(glut4Impact ) that assumes values between 0 and 1 (by default 1.0). 288

3.4 Modeling Glycolysis 289

Glucose serves as a key source of energy for various tissues, which either oxidize it 290

completely or consume it anaerobically via glycolysis. Complete oxidation of glucose 291

yields 15 times more energy than anaerobic glycolysis but can only be done if oxygen is 292

available. Tissues with access to plenty of oxygen oxidize glucose for their energy needs 293

whereas others (possibly in the same organ) use glycolysis. Glycolysis results in the 294

generation of lactate, which serves as a key substrate for endogenous glucose production 295

via gluconeogenesis (described later). 296

The following organs in CarbMetSim use anaerobic glycolysis as an energy source: 297

Muscles, Liver, Kidneys, Intestine and Blood. The amount of glucose consumed for 298

glycolysis increases with the glucose availability, which is signaled by the insulin level in 299

the bloodstream. This is modeled in the simulator in the following manner. Each organ 300
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using glycolysis as an energy source has two configurable parameters: glycolysisMin 301

and glycolysisMax (in units of mg of glucose consumed per kg of body weight per 302

minute). At each tick, the organ generates a poisson distributed random number (min) 303

with glycolysisMin as the mean value and glycolysisMax as the maximum value. Then, 304

subject to the glucose availability in the organ, the amount of glucose consumed in a 305

tick for glycolysis is given by: min+ insulinImpact× (glycolysisMax −min). Here, 306

insulinImpact is a factor (between 0 and 1) that increases in value with increase in the 307

insulinLevel. This factor is calculated using a sigmoid function, which is currently the 308

CDF of a normal distribution with a configurable mean and standard deviation. The 309

simulator also uses configurable multiplicative parameters glycolysisMinImpact and 310

glycolysisMaxImpact (with default values 1.0) to modify the values of glycolysisMin 311

and glycolysisMax parameters associated with each organ. These parameters can be 312

used to model the impact of diabetes on glycolysis flux. A fraction (by default 1) of the 313

glucose consumed for glycolysis is converted to lactate, which is added to the Blood 314

object. Table 1 shows the default values for glycolysis related parameters for different 315

organs. Here, the relative contributions of different organs towards overall glycolysis 316

flux were set as suggested in [52,53]. The default values of various configurable 317

parameters in CarbMetSim were determined experimentally to provide a close match 318

with published measurements performed on non-diabetic human subjects before and 319

after a meal event [51]. 320

Organ glycolysisMin glycolysisMax
(mg/kg/minute) (mg/kg/minute)

Blood 0.0315 0.1135
Kidneys 0.0315 0.1135
Liver 0.0630 0.5675
Muscles 0.0630 0.8512
Intestine 0.0315 0.1135

Table 1. The default values for glycolysis related parameters in various organs.

3.5 Modeling Gluconeogenesis 321

Gluconeogenesis is a metabolic pathway that allows the liver and kidneys to produce 322

glucose from lactate, glycerol, glutamine and alanine [40, 48]. This pathway assumes 323

special significance as the only source of glucose when no new glucose is arriving in the 324

body via food and the glycogen store in the liver has been exhausted. 325
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Normally, gluconeogenesis occurs when the insulin level is low (i.e. in the 326

post-absorptive state). However, diabetic people may experience high gluconeogenesis 327

flux even in the post-prandial state when the insulin level is high [49,50]. 328

In CarbMetSim, the Liver and the Kidneys produce glucose via gluconeogenesis at 329

configurable average rates (gngLiver and gngKidneys respectively, 0.16 mg/kg/minute 330

each by default) using substrates mentioned above. When the insulinLevel is above the 331

baseInsulinLevel (i.e. the BGL is more than the baseGlucoseLevel ), the average 332

gluconeogenesis flux is multiplied by a factor (between 0 and 1) that decreases in value 333

with increase in the insulinLevel as per an inverse sigmoid function (currently, the 334

complementary CDF of a normal distribution with a configurable mean and standard 335

deviation). This allows us to model the decrease in gluconeogenesis flux with increase in 336

the insulin level. On the other hand, if the insulinLevel is below the baseInsulinLevel 337

(i.e. the BGL is below the baseGlucoseLevel ), the average gluconeogenesis flux is 338

multiplied by a factor that decreases in value from a configurable maximum (gngImpact 339

≥ 1, by default 6.0) to the minimum value 1 as the insulinLevel increases from zero to 340

the baseInsulinLevel . This allows us to model the increased gluconeogenesis flux when 341

BGL is low and gluconeogenesis is probably the only source of glucose for the body. 342

The simulator currently assumes that the substrates are always available in sufficient 343

quantity to allow gluconeogenesis to take place in the manner described above. 344

3.6 Modeling Liver Glycogen Synthesis & Breakdown 345

In human body, the liver helps maintain glucose homeostasis by storing excess glucose 346

in blood during the post-prandial state (when the insulin levels are high) as glycogen 347

and releasing glucose to the blood during the post-absorptive and exercising states 348

(when insulin level is low) by breaking down the stored glycogen. Diabetes may effect 349

both glycogen synthesis and breakdown in the liver. 350

Subject to the availability of glucose, the amount of glycogen synthesized by the 351

Liver object in CarbMetSim simulator during each tick is a poisson distributed random 352

variable with a configurable average (glucoseToGlycogenInLiver , 4.5 mg/kg/min by 353

default) that is modified multiplicatively by two factors. The first factor models the 354

impact of insulin on glycogen synthesis. This factor (with values between 0 and 1) 355
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increases in value with increase in the insulinLevel and is calculated using a sigmoid 356

function, which is currently the CDF of a normal distribution with a configurable mean 357

and standard deviation. The second factor called liverGlycogenSynthesisImpact (by 358

default 1.0) simply modifies the configured average multiplicatively and can be used to 359

model the impact of diabetes on glycogen synthesis in the liver. The Liver object has a 360

finite capacity to store glycogen and hence any excess glycogen is converted to fat and 361

stored in the AdiposeTissue object. 362

Glycogen breakdown in the liver serves as the key source of glucose when no new 363

glucose is entering the body via food or when the glucose needs of the body increase 364

due to intense physical exercise. Accordingly, in CarbMetSim, the amount of glycogen 365

stored in the Liver that is broken down to glucose during a tick closely depends on the 366

insulinLevel (and hence on the current BGL). When the insulinLevel is above the 367

baseInsulinLevel (i.e. the BGL is more than the baseGlucoseLevel ), the average 368

glycogen breakdown flux in the Liver (glycogenToGlucoseInLiver , 0.9 mg/kg/min by 369

default) is multiplied by a factor (between 0 and 1) that decreases in value with increase 370

in the insulinLevel as per an inverse sigmoid function (currently, the complementary 371

CDF of a normal distribution with a configurable mean and standard deviation). This 372

allows us to model the decrease in liver glycogen breakdown with increase in the insulin 373

level. On the other hand, if the insulinLevel is below the baseInsulinLevel (i.e. the 374

BGL is below the baseGlucoseLevel ), the average Liver glycogen breakdown flux is 375

multiplied by a factor that decreases in value from a configurable maximum 376

(liverGlycogenBreakdownImpact ≥ 1, by default 6.0) to the minimum value 1 as the 377

insulinLevel increases from zero to the baseInsulinLevel . This allows us to model the 378

increased liver glycogen breakdown when BGL is low. 379

4 CarbMetSim Design and Implementation 380

CarbMetSim is a discrete event simulator implemented in an object-oriented manner. At 381

the top level, CarbMetSim consists of a SimCtl (SIMulation ConTroLler) object and a 382

HumanBody object. The SimCtl object maintains the simulation time (in ticks, where 383

each tick is a minute) and contains a priority queue of food/exercise events sorted in 384

order of their firing times. At the beginning of the simulation, the SimCtl object reads 385
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all the food/exercise events into the priority queue. At each tick, the SimCtl object fires 386

the events whose firing time has arrived (by invoking appropriate methods on the 387

HumanBody object) and then causes each organ to do its work during that tick (again 388

by invoking a HumanBody object method). 389

In the following, we describe the implementation and operation of various objects 390

that together implement the CarbMetSim simulator. The default values of various 391

parameters listed here were determined experimentally to provide a close match with 392

published measurements performed on non-diabetic human subjects before and after a 393

meal event [51]. Validation of simulation results against these and other published 394

measurements is described in later sections. Table 1 shows the default values for 395

glycolysis related parameters for different organs. Default values of configurable 396

parameters that determine the impact of insulinLevel on various metabolic processes 397

are shown in Table 2. 398

Parameter Default Value
insulinImpactOnGlycolysis Mean 0.5
insulinImpactOnGlycolysis StdDev 0.2

insulinImpactOnGNG Mean 0.5
insulinImpactOnGNG StdDev 0.2

insulinImpactGlycogenBreakdownInLiver Mean 0.1
insulinImpactGlycogenBreakdownInLiver StdDev 0.02
insulinImpactGlycogenSynthesisInLiver Mean 0.5
insulinImpactGlycogenSynthesisInLiver StdDev 0.2

Table 2. Configurable parameters (and their default values) for the mean and standard
deviation of normal distributions to determine the impact of insulinLevel on various
metabolic processes.

4.1 HumanBody 399

The HumanBody object serves as the container for following organ objects: Stomach, 400

Intestine, PortalVein, Liver, Kidneys, Muscles, AdiposeTissue, Brain, Heart and Blood. 401

At the beginning of a simulation, the HumanBody object does the following: 402

• It reads the description of various foods: their composition in terms of 403

rapidly/slowly available glucose (RAG/SAG), protein and fat. 404

• It reads the description of various exercise activities: their intensity in units of 405

MET s. 406
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• It estimates the maximal rate of glucose consumption (V O2max, see Section 4.8) 407

associated with the individual being simulated using the tables in Kaminsky et 408

al. [54] given this individual’s gender, age and self-assessed fitness level within 409

his/her age group, which are all supplied as simulation parameters. 410

• It reads other simulation parameters that affect the operation of different organs. 411

The HumanBody contains methods that cause the food to be added to the stomach 412

when SimCtl fires a food event and update the energy needs of the body when SimCtl 413

fires an exercise event. When an exercise event gets over, the HumanBody resets the 414

energy needs to the resting state. When the Stomach has no food left, it informs the 415

HumanBody about the situation. Thus, at any given time, the HumanBody remembers 416

whether the stomach has some undigested food (Fed) or not (PostAbsorptive) and 417

whether the body is currently engaged in some exercise (Exercising) or not (Resting). 418

Accordingly, there are four body states: Fed Resting, Fed Exercising, 419

PostAbsorptive Resting and PostAbsorptive Exercising. Different body states allow 420

different values to be in effect for the configurable parameters governing the operation 421

of the organs. 422

As mentioned before, the HumanBody object provides a method, which is invoked by 423

the SimCtl object at each tick and causes methods to be invoked on individual organ 424

objects that allow the organs to do their work during that tick. 425

4.2 Blood 426

The Blood object represents the bloodstream and interacts with various organs to 427

exchange glucose, amino acids and other substrates. The Blood object maintains the 428

following substrate variables: glucose, lactate, branchedAminoAcids (consumed by 429

muscles, adipose tissue and brain) and unbranchedAminoAcids. The Blood object also 430

maintains the insulinLevel variable discussed earlier and a fluidVolume variable 431

representing the blood volume (5 liters by default). Hormones other than insulin are not 432

currently maintained. At each tick, the Blood object updates the insulinLevel in the 433

manner described in Seection 3.2. Also, some glucose is consumed for glycolysis in the 434

manner described in Section 3.4. 435
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4.3 Stomach 436

The gradual emptying of stomach contents into the intestine, also known as gastric 437

emptying, is a complex phenomenon affected by a number of factors such as the volume, 438

particle size, viscosity, osmolarity, acidity and nutritional contents of the meal [55–57]. 439

A variety of models have been suggested in the past for the emptying of food from the 440

stomach into the intestine. Many of these models were based on mathematical functions 441

such as exponential [58, 59] and power exponential [60]. Lehmann and Deutsch [36] 442

presented a simple model for gastric emptying of carboydrates in a meal, where the rate 443

of gastric empyting has three phases - a linear increase phase, a constant maximum rate 444

phase and a linear decrease phase. Dalla Man et al. [61] presented a three-compartment 445

model of the gastrointestinal tract where the gastric emptying rate follows a 446

trough-shaped pattern (initially high followed by a non-linear decrease to a minimum 447

value followed by a non-linear increase back to the initial maximum value). 448

In CarbMetSim, when a food event is fired, the eaten food enters the Stomach 449

instantaneously, where its contents are added to any existing stores of RAG, SAG, 450

protein and fat. The simulator currently uses a simple model for gastric emptying where 451

all the food in the stomach is assumed to be in the chyme form and the amount of 452

chyme leaking to the intestine each minute consists of one part determined using a 453

poisson distribution (with default mean 500 mg) and another part proportional to the 454

total amount of chyme currently present in the stomach. This proportionality constant 455

increases linearly with decrease in the energy density of the chyme. The minimum value 456

of this proportionality constant (0.03 by default) represents the fraction leaking out of 457

stomach each minute when the chyme consists entirely of fat (with energy density 9.0 458

kcal/g). On the other hand, the maximum value (9.0/4.0 times the minimum value) 459

represents the fraction leaking out of stomach each minute when the chyme consists 460

entirely of carbs (with energy density 4.0 kcal/g). The nutritional composition of leaked 461

chyme is same as that of chyme present in the stomach. This simple model, inspired 462

from [62], allows us to take in account the fat/protein induced slowdown of gastric 463

emptying. There are many other factors that affect the gastric emptying process (the 464

solid/liquid nature of food, fiber content, osmolarity, viscosity etc.) which CarbMetSim 465

currently does not take in account. Thus, a bolus of chyme leaks from the Stomach into 466
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the Intestine every tick (i.e. every minute) until the Stomach is empty. 467

4.4 Intestine 468

Carbohydrate Digestion: The intestine digests the carbohydrate in the chyme using a 469

number of enzymes to produce monosaccharides such as glucose, fructose and 470

galactose [40]. Currently, the Intestine object in CarbMetSim converts all the 471

carbohydrate in the chyme to just one monosaccharide - glucose. The Intestine receives 472

a bolus of chyme from the Stomach every tick as long as there is some food in the 473

Stomach. The Intestine maintains a list of Chyme objects where each object contains 474

the undigested RAG/SAG contents of each bolus received from the Stomach and the 475

time when the bolus was received. At each tick, the Intestine digests some amount of 476

RAG/SAG from each Chyme object. The amount digested from a particular Chyme 477

object is determined using normal distributions (default mean & standard-deviation: 2 478

minutes & 0.5 minutes for RAG and 30 minutes & 10 minutes for SAG) such that most 479

of the RAG and SAG contents of a bolus are digested within 20 and 120 minutes 480

respectively after the bolus’s entry into the Intestine. The glucose resulting from 481

digested RAG/SAG is added to the glucoseInLumen variable in Intestine, which 482

represents the total glucose present in the intestinal lumen. This glucose is processed as 483

described later in this section. 484

Fat and Protein Digestion: As a chyme bolus enters the Intestine from the Stomach, 485

its fat contents are simply added to the AdiposeTissue and its protein contents are 486

added to a common protein pool in Intestine. At each tick, the Intestine digests a small 487

amount of this protein (determined as per a poisson distribution with default mean 488

1mg) and transfers the resulting amino acids to the PortalVein. The simulator does not 489

keep track of the amino acid contents of dietary protein and makes a simple assumption 490

that 85% of these amino acids are unbranched and the remaining 15% are branched. 491

Glucose Absorption from Intestine to PortalVein: The glucose moves from the 492

intestinal lumen to the enterocytes across the brush border membrane and then from 493

the enterocytes to the portal vein across the basolateral membrane. The transfer from 494

the intestinal lumen to the enterocytes takes place via a combination of active (SGLT-1) 495

and passive (GLUT2) transporters, where the number of GLUT2 transporters in action 496
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depends on the glucose concentration on the lumen side. The transfer from the 497

enterocytes to the portal vein takes place solely via passive GLUT2 transporters [40]. 498

The Intestine object maintains two variables: glucoseInLumen and glucoseInEnterocytes, 499

which represent total glucose present in the intestinal lumen and in enterocytes 500

respectively. At each tick, the Intestine moves some glucose from glucoseInLumen to 501

glucoseInEnterocytes. The amount moved has an active transport component (poisson 502

distributed with default mean 30 mg/minute) and a passive transport component 503

determined using Michaelis Menten kinetics (assuming configurable volumes for the 504

lumen and the enterocytes). The Vmax value used for Michaelis Menten kinetics 505

increases with glucose concentration in the lumen with default maximum value 800 506

mg/minute. The Km value used is 20 mmol/l by default [40]. Glucose transport from 507

the enterocytes to the portal vein is modeled by moving some glucose from 508

glucoseInEnterocytes to the PortalVein at each tick. The amount moved is determined 509

using Michaelis Menten kinetics (average Vmax = 800 mg/minute, Km = 20 mmol/l by 510

default [40]). 511

Glycolysis: The intestinal cells get some of their energy via glycolysis of glucose to 512

lactate in the manner described in Section 3.4. If the glucose in enterocytes 513

(glucoseInEnterocytes) is not sufficient, the extra glucose needed for glycolysis comes 514

from the bloodstream (the Blood object). 515

4.5 PortalVein 516

The portal vein carries blood that has passed through the intestinal tract to the liver. 517

Due to its special status as the conduit from the intestine to the liver, CarbMetSim 518

maintains the portal vein as a separate entity (the PortalVein object) from rest of the 519

circulatory system (represented by the Blood object). The glucose and amino acids 520

resulting from the food digestion in the Intestine travel to the Liver via the PortalVein. 521

Since the portal vein is a part of the circulatory system, it must have the same 522

glucose concentration as rest of the circulatory system when no new glucose is being 523

received from the intestine. This is achieved in CarbMetSim in the following manner. 524

At the beginning of a tick, there is no glucose in the PortalVein. During each tick, the 525

following sequence of actions take place: 526

October 29, 2019 19/52

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/491019doi: bioRxiv preprint 

https://doi.org/10.1101/491019
http://creativecommons.org/licenses/by-nc-nd/4.0/


• The PortalVein imports glucose from the Blood so that the glucose concentration 527

in the PortalVein matches that of Blood before the import. The PortalVein’s 528

volume, used to calculate the glucose concentration, is a configurable parameter 529

with default value 5 dl. 530

• Glucose transfer takes place from the Intestine to the PortalVein (as described 531

previously in Section 4.4) and then from the PortalVein to the Liver (as described 532

next in Section 4.6). 533

• Finally, any remaining glucose in the PortalVein is moved back to the Blood. 534

All the amino acids received from the Intestine into the PortalVein during a tick are 535

moved to the Liver during that tick itself. 536

4.6 Liver 537

The hepatocytes in the liver absorb glucose from the portal vein via GLUT2s when the 538

glucose concentration in the portal vein is higher. The absorbed glucose is 539

phosphorylated to glucose 6-phosphate, which is used either for glycogen synthesis or for 540

glycolysis. Insulin and glucose activate the enzymes associated with glycogen synthesis 541

and inhibit those associated with glycogen breakdown. Insulin also activates glycolysis 542

of glucose 6-phosphate in hepatocytes to form pyruvate, some of which is oxidized and 543

the remaining is converted to lactate and released to the bloodstream. On the other 544

hand, lack of insulin (and presence of glucagon) activates glycogen breakdown (to 545

glucose) as well as gluconeogenesis (which again produces glucose). The gluconeogenesis 546

flux increases with the availability of the substrates (such as lactate, alanine and 547

glycerol) in the bloodstream even if the insulin level is high. Excess glucose in the 548

hepatocytes is either used for glycogen synthesis (if the insulin level is high) or leaves 549

the cells via GLUT2s and possibly other means (if the insulin level is low). High insulin 550

level also causes some of the excess glucose to be converted to lipid. Thus, the liver 551

absorbs glucose during the fed state and uses it for glycogen synthesis and glycolysis. 552

On the other hand, the liver releases glucose to the bloodstream during the 553

post-absorptive and exercising states via glycogen breakdown and gluconeogenesis. 554

Another important aspect of the liver operation is its oxidation of unbranched amino 555

acids which provides for almost half of the liver’s energy requirements. 556
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CarbMetSim implements the liver operation in the Liver object. The simulator 557

allows the initial amount of glycogen stored in the Liver as well as the maximum amount 558

it can hold to be set via configurable parameters. By default, the Liver has sufficient 559

glycogen at the beginning of a simulation to produce 100 grams of glucose. Also, by 560

default, an amount equivalent to 120 grams of glucose is the upper limit on the amount 561

of glycogen that the Liver object can store. At each tick, the Liver does the following: 562

• Glucose Absorption/Release: If the glucose concentration in higher in the 563

PortalVein than in the Liver, some glucose will be absorbed in the Liver via 564

GLUT2s. Similarly, if the glucose concentration is higher in the Liver than in the 565

Blood, some glucose will be released to the Blood via GLUT2s. The amount of the 566

glucose absorbed/released is determined using Michaelis Menten kinetics (with 567

default average Vmax=50mg/kg/min and default Km=20 mmol/l [40]). 568

• Glycogen Synthesis/Breakdown: The Liver performs glycogen synthesis or 569

breakdown in the manner described in Section 3.6. 570

• Lipogenesis: If the glycogen storage in the Liver exceeds its maximum configured 571

value, the excess glycogen is converted to fat, which is stored in AdiposeTissue. 572

• Glycolysis and Gluconeogenesis: The Liver consumes some glucose for glycolysis 573

in the manner described in Section 3.4 and produces glucose via gluconeogenesis 574

in the manner described in Section 3.5. 575

• Amino Acid Consumption: The Liver consumes 93% of unbranched amino acids 576

received from the PortalVein and releases the rest (along with all the branched 577

amino acids) to the Blood object. 578

4.7 Kidneys 579

The kidneys filter the blood and require significant amount of energy for this task. 580

Their outer layer (the cortex ) is well supplied with oxygen and hence meets its energy 581

needs via oxidation of glucose and fatty acids absorbed from the bloodstream. The 582

inner core (the medulla) uses anaerobic glycolysis for energy. The kidneys also generate 583

glucose via gluconeogenesis. CarbMetSim implements the kidney operation in the 584

Kidneys object. At each tick, the Kidneys do the following: 585
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• Glycolysis: The renal medulla in Kidneys meets its energy requirements via 586

glycolysis, which is implemented in the manner described in Section 3.4. The 587

glucose consumed for glycolysis is absorbed from the Blood object and the 588

resulting lactate is released to the Blood object. 589

• Gluconeogenesis: The Kidneys produce glucose via gluconeogenesis in the manner 590

described in Section 3.5 and release it to the Blood object. 591

• Glucose Excretion in Urine: As the the glucose concentration in Blood increases 592

from one threshold (11 mmol/l [52, 64] by default) to another (22 mmol/l by 593

default), the glucose excretion in urine increases linearly from zero to a certain 594

peak level (100 mg/min by default). The simulator supports a configurable 595

parameter excretionKidneysImpact (with default value 1) to multiplicatively 596

modify the amount of glucose excreted per tick in urine. 597

4.8 Muscles 598

The skeletal muscles have two types of cells or fibers: the red fibers oxidize substrates 599

(fatty acids, glucose) absorbed from the bloodstream to meet their energy needs while 600

the white fibers rely on glycolysis of glucose 6-phosphate obtained from the glycogen 601

stored within the white fibers for energy. The glucose absorption from the bloodstream 602

occurs mainly via insulin-sensitive GLUT4 transporters with some basal level 603

absorption taking place via GLUT1 transporters. The skeletal muscles also use some 604

branched chain amino acids absorbed from the bloodstream to meet their energy needs. 605

Muscles Operation During Rest [40,47,65]: In the resting state, the muscles meet 606

85− 90% of their energy needs via the oxidation of fatty acids. About 10% of the 607

energy comes from oxidation of glucose and 1− 2% from amino acids. The glucose is 608

absorbed from the bloodstream using GLUT4 and GLUT1 transporters as mentioned 609

earlier. The absorbed glucose is used for oxidation, glycogen synthesis and 610

glycolysis [66]. The glucose oxidation and glycolysis in muscles under resting conditions 611

increases with the insulin level in the bloodstream. 612

Muscles Operation During Aerobic Activity [40,47,63]: Oxidation of glucose and 613

fatty acids is the main source of energy for exercising muscles. The relative fraction of 614

these substrates used to meet the energy needs depends on the exercise intensity, which 615
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in turn is decided based on the rate at which the individual consumes oxygen while 616

doing this exercise. Each individual has a certain maximal rate at which he/she can 617

consume oxygen. This individual-specific maximal rate, called V O2max, depends on 618

the gender, age and fitness level of the individual [54]. So, the intensity of an exercise 619

activity can be described by the oxygen consumption rate (as the %age of the 620

individual’s V O2max) associated with this exercise. The exercise intensity can also be 621

described in an individual-independent manner in units of Metabolic Equivalent of Task 622

or MET s, where 1 MET is 1 kcal of energy expenditure per kg of body weight per hour. 623

By convention, 1 MET is considered equivalent to 3.5ml of oxygen consumption per kg 624

of body weight per minute. So, an exercise with a certain intensity in terms of MET s 625

may translate to very different intensities in terms of %V O2max for different 626

individuals. 627

Romijn et al. [63] reported that about 10% of the energy needs during aerobic 628

exercise are met by oxidizing glucose absorbed from the blood via GLUT4/GLUT1 629

transporters. The aerobic activity is sufficient to activate GLUT4 transporters. So, 630

their action is not dependent on the insulin during the aerobic exercise [42–44]. For low 631

intensity (e.g. 25%V O2max) exercise, almost all of the remaining energy needs are met 632

by oxidizing fatty acids [63]. For moderate and high intensity exercise, a significant 633

fraction of energy needs is met by oxidation of glucose derived from the glycogen stored 634

locally in the exercising muscles. Romijn et al. [63] reported about 30% of the energy 635

coming from the oxidation of glucose derived from locally stored glycogen when the 636

intensity of the aerobic exercise was 65%V O2max. Horton [47] reported oxidation of 637

glucose (absorbed from the blood and derived from local glycogen) providing for about 638

50% and almost 100% of the energy needs when the exercise intensities were 639

50%V O2max and 100%V O2max respectively. Most of the remaining energy needs are 640

met by oxidation of fatty acids [67]. Once the glycogen stored in the liver and the 641

muscles is over, it becomes impossible for the individual to perform very high intensity 642

exercise. A small fraction of the energy needs is met by glycolysis of glucose 643

6-phosphate derived from locally stored glycogen. The glycolysis level increases linearly 644

with exercise intensity. Finally, a very small fraction of energy needs is met by 645

consuming branched amino acids absorbed from the blood [67]. 646
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4.8.1 Implementation in CarbMetSim 647

In CarbMetSim, the skeletal muscles are implemented as the Muscles object. Currently, 648

the simulator implements response to the resting condition and the aerobic exercise only. 649

Specifically, exercise with a significant anaerobic component cannot yet be simulated. 650

Also, it is not yet possible to distinguish among different muscle groups. 651

At the beginning of a simulation, the HumanBody object estimates the V O2max 652

associated with the individual being simulated using the tables in Kaminsky et al. [54] 653

given this individual’s gender, age and self-assessed fitness level within his/her age 654

group, which are all supplied to the simulator as input parameters. When an exercise 655

event is fired, the exercise intensity is translated from the units of MET s into 656

%V O2max. The exercise intensity determines the fraction of the energy needs met via 657

oxidation of glucose derived from locally stored glycogen. The simulator allows the 658

initial amount of glycogen stored in the Muscles as well as the maximum amount it can 659

hold to be set via configurable parameters. By default, both these parameters have 660

values equivalent to 500 grams of glucose. 661

When the HumanBody is in Fed Exercising or PostAbsorptive Exercising state 662

during a tick, the Muscles object performs the following actions: 663

• Oxidation of glucose absorbed from the Blood: The Muscles absorb a random 664

amount of glucose from the Blood (up to a configurable limit which is 665

30µmol/kg/min by default) so that it can be oxidized to meet on average 10% of 666

the energy needs during this tick. This absorption does not depend on the current 667

insulinLevel in the Blood. 668

• Oxidation of glucose derived from local glycogen: The exercise intensity (in 669

%V O2max) is used to determine the fraction of energy needs that will be met by 670

oxidizing glucose derived from locally stored glycogen. As the exercise intensity 671

increases from 0%V O2max to 100%V O2max, a value between 0 and 0.9 is 672

determined using a sigmoid function (currently, the compressed CDF of a normal 673

distribution) such that exercise intensities 50%V O2max and 100%V O2max yield 674

values close to 0.4 and 0.9 respectively. This value is then used as the mean to 675

generate a random value that gives the fraction of energy needs during this tick to 676

be met by oxidizing glucose derived from local glycogen (as long as a sufficient 677
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amount of local glycogen is available). 678

• Glycolysis: The glycolysis flux during the tick increases linearly from a (poisson 679

distributed) random value (with glycolysisMin as the mean) to glycolysisMax as 680

the exercise intensity increases from 0%V O2max to 100%V O2max. The glucose 681

6-phosphate consumed for glycolysis comes from locally stored glycogen. The 682

resulting lactate is added to the Blood object. 683

• Fatty Acid Consumption: If glucose oxidation and glycolysis described above do 684

not meet the current energy needs, Muscles consume fat (representing fatty acids) 685

from the AdiposeTissue to meet the remaining energy needs. 686

When the HumanBody is in Fed Resting or PostAbsorptive Resting state during a 687

tick, the Muscles object performs the following actions: 688

• Glucose Absorption: GLUT4 based glucose absorption [40] occurs in the manner 689

described in Section 3.3.1. Also, basal absorption via GLUT1s occurs at a 690

configured rate (by default zero). 691

• Glycolysis: A fraction of the absorbed glucose (determined as described in Section 692

3.4) is consumed via glycolysis and the resulting lactate is added to the Blood 693

object. 694

• Glycogen Synthesis: If the glycogen store of the Muscles is less than the maximum 695

amount that Muscles could hold [40], a (poisson distributed) random amount of 696

the absorbed glucose (with a configurable mean, 7.0mg/kg/min by default) is 697

converted to glycogen. 698

• Oxidation: Remainder of the absorbed glucose is considered consumed via 699

oxidation. 700

• Fatty Acid Consumption: If glycolysis and glucose oxidation described above do 701

not meet the energy needs during the resting state, Muscles consume fat 702

(representing fatty acids) from the AdiposeTissue to meet the remaining energy 703

needs. 704
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4.9 Adipose Tissue 705

CarbMetSim does not yet have a detailed implementation of lipid metabolism. Currently, 706

the AdiposeTissue object serves as the storage for fat. The Intestine object directly 707

adds the fat contents in chyme to the AdiposeTissue object. Similarly, the Liver object 708

converts excess glycogen to fat to be stored in the AdiposeTissue object. The Muscles 709

object directly removes fat from the AdiposeTissue in accordance with its energy needs. 710

4.10 Brain 711

The brain meets its energy needs by oxidizing glucose (although under starvation 712

conditions it can also use ketone bodies). The nerve cells in the brain use GLUT3 713

transporters to absorb glucose from the bloodstream. Since the Km value associated 714

with GLUT3 transporters is quite low, the rate of glucose absorption by the nerve cells 715

does not change much with glucose concentration in the bloodstream (unless it drops 716

way below the normal levels). The brain oxidizes about 120 g of glucose per day, 717

equivalent to absorption of about 83.33 mg of glucose per minute [40, 66]. In 718

CarbMetSim, the brain operation is modeled as the Brain object which consumes a 719

(poisson distributed) random amount (with mean 83.33 mg) of glucose every minute 720

from the Blood object. 721

4.11 Heart 722

The heart meets most of its energy needs by oxidizing fatty acids. Depending upon 723

their availability, up to 30% of the heart’s energy needs are met by consuming glucose 724

and lactate [68]. A much smaller part of the energy needs is met from amino acids and 725

ketone bodies. The heart uses both GLUT1 and GLUT4 transporters to absorb glucose 726

from the bloodstream. The Heart object in CarbMetSim models the heart operation. It 727

absorbs a poisson distributed random amount of glucose (with default mean 14 728

mg/minute [66]) from Blood and oxidizes it to meet its energy needs. 729
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5 Validation of CarbMetSim For a Meal Event 730

In order to determine the default values of various configurable parameters for normal 731

subjects and to illustrate CarbMetSim’s ability to model carbohydrate metabolism in 732

normal subjects and those with Type 2 Diabetes (T2D) in post-absorptive and 733

post-prandial phases, we configured the simulator to provide a close match with 734

measurements reported in Woerle et al. [51]. Woerle et al. [51] did extensive 735

measurements on 26 subjects with Type 2 Diabetes and 15 age/weight/sex-matched 736

subjects without diabetes to determine the flux along different pathways for glucose 737

arrival and consumption following a standard meal. The T2D subjects included 16 men 738

and 10 women with following characteristics: age 53± 2 years, body weight 93± 4 kg, 739

BMI 30± 1kg/m2, body fat 34± 3 %, average HbA1c 8.6± 0.3%. The normal subjects 740

included 7 men and 8 women with following characteristics: age 49± 3 years, body 741

weight 89± 4 kg, BMI 30± 1kg/m2, body fat 36± 3 %. All the subjects consumed a 742

standard breakfast, consisting of 84 g of glucose, 10 g of fat and 26 g of protein, at 743

10am on the day of the measurements after a fast of more than 14 hours. Measurements 744

were performed for the post-absorptive phase before the breakfast and the post-prandial 745

phase assumed to be six hours in duration after the breakfast. 746

Two sets of simulations were performed using CarbMetSim: one for a normal subject 747

and one for a T2D subject (see Table 3). Each set consisted of 30 simulations with 748

different seeds for random number generation. Default values were used for most of the 749

configurable simulation parameters. These values (already reported in the previous 750

sections) were set so that the normal subject simulations achieves a close match with 751

measurements reported in [51]. In particular, the impact of insulin level on the 752

gluconeogenesis flux was disabled because insulin level did not seem to influence the 753

gluconeogenesis flux in the reported measurements. Configurable parameters for which 754

the default values were not used are shown in Table 3. In all the simulations reported in 755

this section and the remaining ones, the parameters did not change in value with the 756

body state (although the simulator is capable of using different values for a parameter 757

depending on the body state). Simulation parameters bodyWeight and age were set to 758

the average values reported for subjects in each category in [51]. Parameters age , 759

gender and fitnessLevel are used to determine V O2max, the maximal rate of oxygen 760
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consumption for the subject being simulated and are not relevant for the simulations 761

reported in this section. The following parameters were set as per the data reported 762

in [51] (see Tables 4 and 5): 763

• The baseGlucoseLevel and highGlucoseLevel values were set to the reported 764

values for the fasting and the peak BGL [51]. 765

• The peakInsulinLevel values were set according to the reported peak plasma 766

insulin levels [51]. 767

• The average glycogen breakdown flux in the Liver (glycogenToGlucoseInLiver ) 768

values was set to achieve a good match with the reported values for the 769

post-absorptive glycogen breakdown flux and the total glycogen breakdown in the 770

liver during the post-prandial phase. 771

Each simulation ran for 18 hours of simulated time: from 12am in midnight till 6pm in 772

the next evening with one meal (consisting of 84 g of glucose, 10 g of fat and 26 g of 773

protein) intake event happening at 10am. There were no other events during the 774

simulated time and the simulated subject was already in the post-absorptive state when 775

the simulation started at 12am. 776

Normal Type 2 Diabetic
age (years) 49 53
gender 0 (male) 0 (male)

fitnessLevel (%ile) 50 50
bodyWeight (kg) 89 93

minGlucoseLevel (mg/dl) 50 50
baseGlucoseLevel (mg/dl) 90 210
highGlucoseLevel (mg/dl) 145 360

baseInsulinLevel 0.001 0.001
peakInsulinLevel 1.0 0.6

glut4Impact 1.0 0.25
glycolysisMinImpact 1.0 4.0
glycolysisMaxImpact 1.0 1.5

excretionKidneysImpact 1.0 1.3
glucoseToGlycogenInLiver (mg/kg/min) 4.5 6.75
glycogenToGlucoseInLiver (mg/kg/min) 0.9 1.25

gngLiver (mg/kg/min) 0.16 0.38
gngKidneys (mg/kg/min) 0.16 0.38

Table 3. Configuration parameters for simulations for a single meal event.

Fig 1 shows the minute-by-minute values of interest in two simulations with a 777

particular seed value (for random number generation): one for the normal subject and 778
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the other for the T2D subject. Fig 1a shows that the gastric emptying is complete 779

within 45 minutes of meal intake. The fat contents of the meal was responsible for some 780

of the delay in gastric emptying. Fig 1b shows the rapid digestion of glucose as it 781

arrives in the Intestine and Fig 1c shows the appearance of digested glucose in the 782

PortalVein as described in Section IV-D. Fig 1d shows the change in BGL throughout 783

the post-prandial phase starting from the post-absorptive levels before 10am. 784

Post-Absorptive Phase: During the post-absorptive phase (before 10am), the 785

insulinLevel (Fig 1e) is low enough to ensure that the glucose production via glycogen 786

breakdown in the Liver (Fig 1g) takes place at the peak level, there is no glycogen 787

synthesis in the Liver (Fig 1f) and glucose consumption via oxidation (Fig 1j) & 788

glycolysis (Fig 1i) in various organs is at their minimum levels. Gluconeogenesis 789

(Fig 1h) takes place in the Liver and the Kidneys, unaffected by the insulinLevel (as 790

reported in [51]), at the configured rates specified in [51] and provides the second source 791

of glucose during the post-absorptive phase. While the minimum glucose oxidation flux 792

is largely determined by the needs of the Brain and Heart, the configured values for the 793

minimum glycolysis flux are chosen so that total glucose consumption during the 794

post-absorptive phase matches the glucose production during this phase. Accordingly, 795

the glycolysisMinImpact parameter was set to value 4.0 in simulations for the T2D 796

subject and hence the glycolysis flux for the T2D subject during the post-absorptive 797

phase is much higher than that for the normal subject (Fig 1i). Thus, during the 798

post-absorptive phase, total glucose production (glycogen breakdown + gluconeogenesis) 799

is matched closely by the total glucose consumption (oxidation + glycolysis + excretion 800

in urine) and the BGL stabilizes to a value near the baseGlucoseLevel . Since the 801

glycogen breakdown in Liver is configured to rapidly slow down with increase in the 802

insulinLevel, any temporary mismatch between glucose production and consumption is 803

quickly corrected. 804

Post-Prandial Phase: The post-prandial phase in these simulations begins with the 805

meal intake at 10am. The BGL begins to rise (as shown in Fig 1d) with the arrival of 806

the digested glucose in the PortalVein. Increase in the BGL causes the insulinLevel to 807

increase (Fig 1e) which rapidly brings glycogen breakdown in the Liver to a halt 808

(Fig 1g). However, the influx of digested glucose (≈ 700 mg/minute at peak) is more 809

than sufficient to compensate for the halt in glycogen breakdown (peak value ≈ 120 and 810
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Fig 1. Simulating a Meal Event for a Normal Subject and a Subject with Type 2
Diabetes (T2D): Minute-by-minute Values For Important Processes In Simulations
With a Particular Seed for Random Number Generation.

80 mg/minute for T2D and normal subjects respectively) and the BGL (and hence the 811

insulinLevel) continues to rise. Glucose production via gluconeogenesis (Fig 1h) 812

continues as before unaffected by the increase in the insulinLevel (as reported in [51]). 813

In the simulation for the normal subject, increase in the insulinLevel causes a 814

proportional increase in the GLUT4 activation and hence in the glucose absorption by 815
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Muscles (Fig 1l). The glucose absorbed by the Muscles is consumed via glycolysis and 816

oxidation. Since the glycogen stores in the Muscles are already full, none of the 817

absorbed glucose is stored as glycogen in the Muscles. Increased oxidation flux seen in 818

Fig 1j between 10am and 1pm in the normal subject is mainly due to the increased 819

glucose oxidation in the Muscles. Impaired GLUT4 activation in the T2D subject 820

(caused by glut4Impact value 0.25) means that the diabetic Muscles are not able to 821

absorb as much glucose as the normal Muscles (Fig 1l). Also, almost all of the glucose 822

absorbed by the diabetic Muscles is consumed via glycolysis (since the oxidation flux 823

shown in Fig 1j does not show any rise in the post-prandial phase for the T2D subject). 824

This is because of the much higher value of the minimum glycolysis flux in the T2D 825

subject than for the normal subject (caused by the glycolysisMinImpact parameter 826

having value 4.0 for the T2D subject and 1.0 for the normal subject). Increase in the 827

insulinLevel causes glycolysis flux to increase in other organs too (Fig 1i). The peak 828

glycolysis flux for the T2D subject is configured to be higher than that for the normal 829

subject (by setting glycolysisMaxImpact to 1.25 for the T2D subject) so as to achieve a 830

close match with reported results in [51] for the total glycolysis flux during the 831

post-prandial phase assumed to be between 10am and 4pm (see Table 5). As the BGL 832

approaches the highGlucoseLevel (and insulinLevel approaches the peakInsulinLevel ), 833

glycogen synthesis in the Liver starts and quickly ramps up to its peak level (see Fig 1f) 834

thereby significantly slowing down any further increase in BGL. Note that the total 835

glycogen storage during the post-prandial phase as reported in [51] (and shown in 836

Tables 4 and 5) is higher for the T2D subjects than for the normal subjects even though 837

the T2D subjects have much smaller peak insulin levels. As described in Section 3.6, the 838

insulinLevel has a big impact on glycogen synthesis in the Liver. In order to 839

compensate for lower insulin levels in the T2D subjects, the glucoseToGlycogenInLiver 840

parameter in the simulations is assigned a much higher value for the T2D subject than 841

for the normal subject (6.75 mg/kg/min versus 4.5 mg/kg/min). For the T2D subject, a 842

significant amount of glucose is also lost via excretion in urine (see Fig 1k). Thus, BGL 843

stays around the highGlucoseLevel as long as the digested glucose is appearing in the 844

PortalVein at the peak rate. As the digested glucose appearance in the PortalVein 845

slows down, the BGL begins to drop and the glycogen synthesis in the Liver quickly 846

comes to a halt thereby slowing down the rate at which the BGL falls. Decrease in BGL 847
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also causes decrease in the glycolysis flux, the glucose absorption by the Muscles and 848

the glucose excretion in the urine, which further slows down the rate of BGL decrease. 849

As BGL approaches the baseGlucoseLevel , the glycogen breakdown in the Liver quickly 850

ramps up to prevent any further decrease in the BGL and another post-absorptive 851

phase begins. 852

Comparison with Measurements from Woerle et al. [51]: Tables 4 and 5 show the 853

key measurements from [51] for normal and T2D subjects respectively along with the 854

corresponding results from the simulations. The simulations were configured to use the 855

post-absorptive (peak) glycogen breakdown and gluconeogenesis flux values reported 856

in [51]. With appropriate settings for other configurable parameters (Table 3), the 857

post-absorptive BGLs in the simulations were close to the values reported in [51] for 858

both normal and T2D subjects. The simulations were configured to ensure that the 859

insulinLevel does not have any impact on gluconeogenesis flux (as reported in [51]). 860

Accordingly, the gluconeogenesis flux in simulations 90 minutes after the breakfast was 861

same as that before the breakfast matching the numbers reported in [51]. The glycogen 862

breakdown 90 minutes after the breakfast was still substantial in [51] but had 863

completely halted in the simulations. Overall, the peak post-prandial BGLs in 864

simulations matched the ones reported in [51]. Total glucose produced/consumed along 865

various pathways in the simulations for the normal subject during 6 hours after the 866

breakfast was similar to values reported in [51]. The only exception was glycogen 867

breakdown. It is clear from Fig 1 that the post-prandial phase in simulations was over 868

by 1pm and hence glycogen breakdown happened at the peak level between 1pm and 869

4pm (Fig 1g). Apparently, this was not the case during measurements reported in [51] 870

and the average glycogen breakdown flux during 6 hours after the breakfast was quite 871

low. This combined with the fact that the glycogen breakdown was still substantial 90 872

minutes after the breakfast (when insulin levels were at their peak) means that glycogen 873

breakdown process is relatively slow in reacting to the insulin levels. We observed a 874

similar mismatch between the simulation results for the T2D subject and the values 875

reported in [51] for total glycogen breakdown during 6 hours after the breakfast. Also, 876

for the T2D subjects, [51] reported somewhat higher total gluconeogenesis flux during 6 877

hours after the breakfast (26.9± 2.2 g) than what we observed in the simulations 878

(23.069± 0.001 g). Since gluconeogenesis flux in the simulation had same values during 879
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both post-prandial and post-absorptive phase, higher total flux reported in [51] means 880

that gluconeogenesis flux actually increased during the post-prandial phase (perhaps 881

due to higher availability of gluconeogenesis substrates). The simulator currently does 882

not support increase in gluconeogenesis flux due to increased availability of substrates. 883

Other results for T2D subjects in [51] were quite similar to what we observed in the 884

simulations. Overall, it can be said that the simulation results closely matched those 885

reported in [51] for both normal and T2D subjects. 886

Woerle et al. [51] Simulations
Before Breakfast

BGL 4.7± 0.1 mM (84.6± 1.8 mg/dl) 91.937± 0.010 mg/dl
Glycogen Breakdown 5.5± 0.6µmol/kg/min (88.1± 9.6 mg/min) 80.064± 0.171 mg/min

Gluconeogenesis 2.6± 0.2µmol/kg/min (41.6± 3.2 mg/min) 41.720± 0.053 mg/min
90 Minutes After Breakfast

Plasma Insulin 290± 29 pM 0.993± 0.001
Glycogen Breakdown 1.3± 0.6µmol/kg/min (20.8± 9.6 mg/min) 0 mg/min

Gluconeogenesis 2.6± 0.2µmol/kg/min (41.6± 3.2 mg/min) 41.824± 0.051 mg/min
Peak Post-prandial BGL 8 mM (144 mg/dl) 144.826± 0.046 mg/dl

Total Glucose Consumed/Produced During 6 Hours After The Breakfast
Gluconeogenesis 15.3± 1.2 g 15.041± 0.001 g

Glycogen Breakdown 4.3± 1.7 g 16.241± 0.002 g
Glucose Excretion in Urine 0.7± 0.4 g 0 g

Oxidation 45.6± 2.6 g 47.055± 0.008 g
Glycolysis 21.5± 2.2 g 22.614± 0.002 g

Glycogen Storage 40.6± 3.6 g 45.616± 0.008 g

Table 4. Normal Subjects: Key Measurements From Woerle Et Al. [51] and
Corresponding Results From 30 Simulations with Different Seeds. ”Before Breakfast”
Simulation Results Were Observed at 9.59AM. All Values Expressed as Mean ± Std
Error.

Woerle et al. [51] Simulations
Before Breakfast

BGL 11.7± 0.6 mM (210.6± 10.8 mg/dl) 219.820± 0.063 mg/dl
Glycogen Breakdown 7.0± 0.4µmol/kg/min (117.2± 6.7 mg/min) 116.089± 0.183 mg/min

Gluconeogenesis 3.8± 0.3µmol/kg/min (63.6± 5 mg/min) 64.092± 0.078 mg/min
90 Minutes After Breakfast

Plasma Insulin 179± 19 pM 0.6± 0.000
Glycogen Breakdown 3.8± 0.7µmol/kg/min (63.6± 11.7 mg/min) 0 mg/min

Gluconeogenesis 3.8± 0.3µmol/kg/min (63.6± 5 mg/min) 64.127± 0.084 mg/min
Peak Post-prandial BGL 20 mM (360 mg/dl) 363.064± 0.076 mg/dl

Total Glucose Consumed/Produced During 6 Hours After The Breakfast
Gluconeogenesis 26.9± 2.2 g 23.069± 0.001 g

Glycogen Breakdown 10.1± 1.2 g 22.648± 0.006 g
Glucose Excretion in Urine 17.4± 2.7 g 16.750± 0.007 g

Oxidation 32.8± 2.8 g 35.039± 0.001 g
Glycolysis 28.7± 2.2 g 31.386± 0.010 g

Glycogen Storage 46.3± 3.3 g 46.514± 0.007 g

Table 5. Subjects with Type 2 Diabetes: Key Measurements From Woerle Et Al. [51]
and Corresponding Results From 30 Simulations with Different Seeds. ”Before
Breakfast” Simulation Results Were Observed at 9.59AM. All Values Expressed as
Mean ± Std Error.
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6 Validation of CarbMetSim for an Exercise Event 887

Carbohydrate metabolism during and after an exercise event has been extensively 888

studied for both normal and diabetic subjects [44, 47,69–72]. As described in Section 889

4.8, glucose oxidation plays a major role in meeting energy needs during physical 890

exercise. The exercising muscles get the glucose they need by breaking down locally 891

stored glycogen and by absorbing glucose from the bloodstream. The glucose absorption 892

from the bloodstream does not depend on the insulin levels since the physical exercise 893

itself is sufficient to activate GLUT4 transporters [42–44]. 894

In case of normal people, physical exercise inhibits insulin secretion [65,73–76] and 895

promotes secretion of other hormones such as glucogon [65, 75–77]. These changes allow 896

the liver to break sufficient glycogen to meet the increased glucose needs. So, as long as 897

glycogen is available in the liver and in the exercising muscles, the glucose production 898

via glycogenolysis (in the liver and the exercising muscles) and gluconeogenesis (in the 899

liver and kidneys) generally matches the glucose consumption by exercising muscles 900

(and other organs) and the blood glucose level stays in the normal range [44,47]. The 901

blood glucose level will drop once the glycogen stores have been exhausted and 902

gluconeogenesis alone is not sufficient to match the glucose consumption by the 903

exercising muscles. In case of people with Type 2 Diabetes or insulin-treated Type 1 904

Diabetes, physical exercise fails to sufficiently reduce insulin level in the blood and as a 905

result the glycogen breakdown in the liver may not be sufficient to meet the additional 906

glucose needs [78]. Thus, the blood glucose level may drop significantly during physical 907

exercise. Finally, people with Type 1 Diabetes with too little insulin in their system 908

may experience an increase in BGL (which was already high before the exercise) when 909

they indulge in physical exercise. This may happen because the secretion of glucagon 910

and other hormones during exercise increases glucose production via glycogen 911

breakdown in the liver to a rate much higher than the impaired rate at which the 912

exercising muscles absorb glucose in some people with Type 1 Diabetes [44–47]. 913

In order to demonstrate CarbMetSim’s ability to simulate the impact of aerobic 914

physical exercise, we report in this section the simulations where normal male subjects 915

perform a long aerobic exercise following an overnight fast. These simulations replicate 916

the experiments reported in [79] and [80]. Ahlborg and Felig [79] observed 20 normal 917
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male subjects as they performed a leg exercise at intensity 58 %V O2max for 3 to 3.5 918

hours after a 12 to 14 hour overnight fast. In a later study, Ahlborg et. al. [80] observed 919

12 normal male subjects as they performed a leg/arm exercise at intensity 30 920

%V O2max for 2 hours after a 12 to 14 hour overnight fast. The characteristics of these 921

subjects are shown in Table 6. For each subject, the concentrations in the blood were 922

recorded for a number of substrates and hormones including glucose. The relevant BGL 923

data reported in [79] and [80] is shown in Table 7 and Fig 2. In the following 924

subsections, we interpret each set of BGL data and demonstrate that with proper 925

configuration CarbMetSim can be made to replicate each pattern. 926

Average Standard Error Range
20 Subjects Doing Leg Exercise at 58%V O2max [79]

Age (years) 26 0.7 20-31
Weight(Kg) 71 1.6 57-82
Height(cm) 182 1.4 169-187

V O2max(liters/min) 3.8 .13 2.6-4.8
6 Subjects Doing Arm Exercise at 30%V O2max [80]

Age (years) 27 1 24-29
Weight(Kg) 80 6 61-100
Height(cm) 186 4 171-198

V O2max(liters/min) 4.1 .3 3.3-4.8
6 Subjects Doing Leg Exercise at 30%V O2max [80]

Age (years) 27 2 19-31
Weight(Kg) 74 4 62-93
Height(cm) 181 3 170-194

V O2max(liters/min) 3.9 .2 3.3-4.8

Table 6. Characteristics of Subjects Reported in [79] and [80].

Blood Glucose Level (mmol/l): Average ± Standard Error
Leg Exercise at 58%V O2max [79] Arm Exercise at 30%V O2max [80] Leg Exercise at 30%V O2max [80]

Rest 4.39±0.08 4.00±0.11 4.33±0.09
Exercise:40min 4.09±0.10 4.01±0.31 4.28±0.10
Exercise:90min 3.86±0.28 4.06±0.20 4.07±0.16
Exercise:120min 3.55±0.11 3.98±0.23 3.81±0.15
Exercise:180min 2.78±0.13
Exercise:210min 2.56±0.13
Recovery:10min 3.12±0.13 3.96±0.31 4.06±0.25
Recovery:20min 3.19±0.13 3.76±0.29 4.11±0.25
Recovery:40min 3.18±0.10 3.83±0.25 4.13±0.21

Table 7. BGL Measurements Reported in [79] and [80].

6.1 Exercise at Intensity 58 %V O2max 927

In the case of experiments involving physical exercise at intensity 58 %V O2max, Table 928

7 and Fig 2 show that there is a continuous drop in the BGL as the exercise progresses. 929

The BGL approaches hypoglycemic levels towards the end of the exercise. Also, there is 930
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Fig 2. Average BGL Measurements (After Conversion to mg/dl) Reported in [79]
and [80].

only a modest recovery from hypoglycemic BGL once the exercise concludes. These 931

observations, coupled with the fact that the exercise began after a long fast, indicate 932

that the liver glycogen was exhausted some time after the start of the exercise and that 933

the local glycogen and the gluconeogenesis were the only sources of glucose for the 934

exercising muscles. The BGL dropped continuously because the gluconeogenesis alone 935

was not sufficient to compensate for the absorption of glucose from the blood by the 936

exercising muscles. After the completion of the exercise, gluconeogenesis continues to be 937

the only source of glucose and is insufficient to bring the BGL to pre-exercise level. 938

We generated 20 age and weight value pairs for normal male subjects to simulate 939

using the average and standard error values specified in [79] (see Table 6) and simulated 940

the described experiment on these subjects. Each simulation started at simulated time 941

12am and had the subject perform a 210 minute long exercise (at intensity 58 942

%V O2max) starting at 12pm. Each simulation ended at simulated time 5pm and used 943

the same seed value for the random number generation. We adjusted the simulation 944

parameters so as to cause the liver glycogen exhaustion early on in the exercise and thus 945

match the BGL trends reported in [79]. The simulation parameters (that differed from 946

the default values) for the simulated subjects are shown in Table 8. In each simulation, 947

the initial glycogen store in the Liver was set to 60 grams so that very little glycogen 948

was left in the Liver by the time the exercise event began at 12pm. The gngImpact 949

parameter was set to values between 13.2 and 15.5 so as to appropriately limit the 950

glucose production via gluconeogenesis during the exercise event. 951

Fig 3 shows the results of CarbMetSim simulations replicating the physical exercise 952
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Subject # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
age (years) 23 26 26 30 22 25 26 24 24 22 20 23 31 26 26 30 21 29 25 26

gender (0=Male) 0
fitnessLevel (%ile) 50
bodyWeight (kg) 57 63 59 78 60 71 75 76 72 64 74 82 71 62 64 70 78 65 65 74

minGlucoseLevel (mg/dl) 40
baseGlucoseLevel (mg/dl) 79
highGlucoseLevel (mg/dl) 145

baseInsulinLevel 0.001
peakInsulinLevel 1.0

gngImpact 15.5 15.1 15.35 13.2 15.35 14.75 14.5 14.5 14.7 15.1 14.55 14.3 13.5 15.25 15.1 13.5 14.35 15 15 14.6
Initial Liver Glycogen (g) 60.0

Table 8. Configuration parameters for simulations for a single exercise event at
intensity 58 %V O2max.

event at intensity 58 %V O2max as reported in [79]. The BGL values for each simulated 953

subject, along with the average BGL values reported in [79] , are shown in Fig 3a. As 954

this figure shows, the BGLs in the simulations have a close match with the 955

measurements reported in [79]. For all subjects, the BGL hovered around its 956

pre-exercise level for some time once the exercise began and then dropped continuously 957

throughout the exercise duration with final values being in the hypoglycemic range. 958

After the conclusion of the exercise activity, the BGL recovered but failed to reach its 959

pre-exercise level. 960

Fig 3b shows the amount of glycogen left in the Liver for a particular simulated 961

subject. As mentioned before, the initial amount of glycogen in the Liver was set so 962

that all this glycogen would be exhausted in the early stages of the exercise activity. As 963

is clear from Fig 3b, all the glycogen in the Liver was exhausted by 1pm after which the 964

gluconeogenesis was the only source of glucose for this particular subject. Fig 3c and 965

Fig 3d show the glycogen breakdown flux in the Liver and the combined 966

gluconeogenesis flux in the Liver and Kidneys for this particular subject. Note that the 967

glycogen breakdown flux and the gluconeogenesis flux fluctuated between high and low 968

values once the exercise began (and before the Liver glycogen was exhausted). This 969

behavior is in accordance with the manner in which the insulinLevel varies (Section 3.2) 970

and the manner in which the glycogen breakdown in the Liver (Section 3.6) and 971

gluconeogenesis in the Liver and Kidneys (Section 3.5) react to the insulinLevel. As 972

described in Section 3.2, when the BGL falls below the baseGlucoseLevel , the 973

insulinLevel becomes zero if the body is engaged in an exercise at an intensity higher 974

than the intensityPeakGlucoseProd (default value 20 %V O2max). Since the exercise 975

intensity (58 %V O2max) was indeed higher than the intensityPeakGlucoseProd , the 976

insulinLevel fell to zero whenever the BGL fell below the baseGlucoseLevel . This 977

caused both glycogen breakdown in the Liver and gluconeogenesis in the Liver and 978
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Fig 3. Results of simulations involving a physical exercise event at intensity 58
%V O2max as reported in [79].

Kidneys to proceed at the highest levels. When the BGL exceeded the 979

baseGlucoseLevel , the insulinLevel exceeded the baseInsulinLevel and the glycogen 980

breakdown & gluconeogenesis fluxes dropped down to the regular levels. 981

Once the liver glycogen was exhausted, the gluconeogenesis alone (even when 982

occurring at the highest level) was not sufficient to push BGL above the 983

baseGlucoseLevel and hence the insulinLevel stayed at zero level for rest of the exercise 984

duration and the gluconeogenesis continued to occur at its highest level as the only 985

source of glucose for the blood. Once the exercise was over, the insulinLevel increased 986

to a positive value below baseInsulinLevel (as per the rules described in Section 3.2) 987

and in response the gluconeogenesis flux assumed a value between the regular and the 988

highest levels (as per the rules described in Section 3.5). Gluconeogenesis at this level 989

allowed the BGL to climb up from the hypoglycemic range to a level below the 990
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baseGlucoseLevel . 991

6.2 Arm Exercise at Intensity 30 %V O2max 992

In the case of experiments involving an arm exercise at intensity 30 %V O2max, it is 993

clear from Table 7 and Fig 2 that the BGL largely maintains its pre-exercise level during 994

the entire exercise duration (although there is a small drop in the BGL during the 995

recovery phase). These observations indicate that the liver glycogen was not exhausted 996

during the exercise and that the breakdown of liver glycogen and gluconeogenesis 997

together were sufficient to meet the needs of the exercising muscles. Once the exercise 998

was over, the liver glycogen breakdown and gluconeogenesis returned to their 999

pre-exercise levels and accordingly the BGL also returned to its pre-exercise level. 1000

We generated 6 age and weight value pairs for normal male subjects to simulate 1001

using the average and standard error values specified in [80] for the arm exercise 1002

experiments (see Table 6) and simulated the described experiment on these subjects. 1003

CarbMetSim does not currently distinguish between different muscles and hence the arm 1004

exercise was simulated as a regular exercise. Each simulation started at 12am and had 1005

the subject perform a 120 minute long exercise (at intensity 30 %V O2max) starting at 1006

12pm. Each simulation ended at 5pm and used the same seed value for the random 1007

number generation. The simulation parameters (that differed from the default values) 1008

for the simulated subjects are shown in Table 9. In each simulation, the initial glycogen 1009

store in the Liver was set to 100 grams so that the liver glycogen does not get 1010

exhausted during the exercise. The gngImpact parameter was set to value 15.0 so that 1011

the glucose production via gluconeogenesis can ramp up to a high enough level when 1012

required during the exercise. 1013

Fig 4 shows the results of CarbMetSim simulations replicating the arm exercise 1014

event at intensity 30 %V O2max as reported in [80]. The BGL values for each simulated 1015

subject, along with the average BGL values reported in [80], are shown in Fig 4a. As 1016

this figure shows, the BGLs in the simulations have a close match with the 1017

measurements reported in [80]. For all subjects, the BGL hovered around its pre-exercise 1018

level throughout the exercise duration and then went back to the pre-exercise level. Fig 1019

4b shows the amount of glycogen left in the Liver for a particular simulated subject. As 1020
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Subject # 1 2 3 4 5 6
age (years) 24 29 28 27 27 28

gender (0=Male) 0
fitnessLevel (%ile) 50
bodyWeight (kg) 61 100 97 62 88 87

minGlucoseLevel (mg/dl) 40
baseGlucoseLevel (mg/dl) 72
highGlucoseLevel (mg/dl) 145

baseInsulinLevel 0.001
peakInsulinLevel 1.0

gngImpact 15.0
Initial Liver Glycogen (g) 100.0

Table 9. Configuration parameters for simulations for a single ”arm” exercise event at
intensity 30 %V O2max.

desired, the liver glycogen did not get exhausted during the exercise and in the recovery 1021

phase. Fig 4c and Fig 4d show the glycogen breakdown flux in the Liver and the 1022

combined gluconeogenesis flux in the Liver and Kidneys for this particular subject. As 1023

was the case with the 58 %V O2max simulations reported in the previous section, the 1024

glycogen breakdown flux and the gluconeogenesis flux fluctuated between high and low 1025

values once the exercise began. The explanation for this behavior was provided in the 1026

previous section. These oscillations explain the BGL oscillations throughout the exercise 1027

duration. Once the exercise was over, the insulinLevel increased to the baseInsulinLevel 1028

(as per the rules described in Section 3.2) and in response the liver glycogen breakdown 1029

and gluconeogenesis fluxes (and hence the BGL) assumed their pre-exercise levels. 1030

6.3 Leg Exercise at Intensity 30 %V O2max 1031

Finally, we have the experiments involving a leg exercise at intensity 30 %V O2max. In 1032

these experiments, the BGL dropped modestly during the exercise and then seemed to 1033

climb back to the pre-exercise level (see Table 7 and Fig 2). The fact that the 1034

post-exercise BGL approached pre-exercise level indicates that the liver glycogen was 1035

not exhausted during the exercise or in the recovery phase. However, the fact that the 1036

BGL dropped modestly throughout the exercise indicates that glucose production 1037

during exercise (via liver glycogen breakdown and gluconeogenesis) was a little less than 1038
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Fig 4. Results of simulations replicating a physical exercise event involving arms at
intensity 30 %V O2max as reported in [80].

the amount absorbed from the blood by the exercising muscles. Clearly, in these 1039

experiments, the physical exercise was not able to stimulate liver glycogen breakdown 1040

and gluconeogenesis sufficiently so that their combined glucose production could match 1041

the demands of the exercising muscles. 1042

We generated 6 age and weight value pairs for normal male subjects to simulate 1043

using the average and standard error values specified in [80] for the leg exercise 1044

experiments (see Table 6) and simulated the described experiment on these subjects. As 1045

mentioned before, CarbMetSim does not currently distinguish between different muscles 1046

and hence the leg exercise was simulated as a regular exercise. Each simulation started 1047

at 12am and had the subject perform a 120 minute long exercise (at intensity 30 1048

%V O2max) starting at 12pm. Each simulation ended at 5pm and used the same seed 1049

value for the random number generation. In these simulations, we wanted to precisely 1050
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control the glucose production via liver glycogen breakdown and gluconeogenesis during 1051

exercise. The total glucose production during exercise had to be just a little less than 1052

what the exercising muscles were absorbing from the blood. To achieve this end, we 1053

reduced the liverGlycogenBreakdownImpact (that controls the liver glycogen breakdown 1054

during exercise; see Sections 3.6 and 3.2) to value 1.0 (i.e. no extra glycogen breakdown 1055

in the Liver during the exercise) while increasing the glycogenToGlucoseInLiver 1056

parameter (that controls the regular glycogen breakdown in the Liver) value 1057

appropriately. The gngImpact parameter (that controls the gluconeogenesis flux during 1058

exercise; see Sections 3.5 and 3.2) was also set appropriately to limit glucose production 1059

via gluconeogenesis during exercise. All simulation parameters (that differed from the 1060

default values) for the simulated subjects are shown in Table 10. In each simulation, the 1061

initial glycogen store in the Liver was set to 100 grams so that the liver glycogen would 1062

not be exhausted during the exercise or the recovery phase. 1063

Subject # 1 2 3 4 5 6
age (years) 20 31 22 29 30 25

gender (0=Male) 0
fitnessLevel (%ile) 50
bodyWeight (kg) 62 93 68 70 82 71

minGlucoseLevel (mg/dl) 40
baseGlucoseLevel (mg/dl) 78
highGlucoseLevel (mg/dl) 145

baseInsulinLevel 0.001
peakInsulinLevel 1.0

gngImpact 6.2 5.6 6.2 6.2 5.6 6.1
Initial Liver Glycogen (g) 100.0

glycogenToGlucoseInLiver (mg/kg/min) 1.4 0.9 1.3 1.25 1.05 1.25
liverGlycogenBreakdownImpact 1.0

Table 10. Configuration parameters for simulations for a single ”leg” exercise event at
intensity 30 %V O2max.

Fig 5 shows the results of CarbMetSim simulations replicating the leg exercise event 1064

at intensity 30 %V O2max as reported in [80]. The BGL values for each simulated 1065

subject, along with the average BGL values reported in [80], are shown in Fig 5a. As 1066

this figure shows, the BGLs in the simulations have a reasonably good match with the 1067

measurements reported in [80]. As desired, for all subjects, the BGL dropped modestly 1068

during the exercise duration and then went back to the pre-exercise level. Fig 5b shows 1069

the amount of glycogen left in the Liver for a particular simulated subject and Fig 5c 1070
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shows the glycogen breakdown flux in the Liver for this subject. As desired, the liver 1071

glycogen flux did not increase during the exercise. Fig 5d shows the combined 1072

gluconeogenesis flux in the Liver and Kidneys for this particular subject. Since the 1073

BGL was always below the baseGlucoseLevel throughout the exercise duration and the 1074

exercise intensity was greater than intensityPeakGlucoseProd , the insulinLevel was zero 1075

throughout the exercise duration and hence the gluconeogenesis took place at its highest 1076

level throughout the exercise duration. However, the zero value of the insulinLevel was 1077

not able to stimulate liver glycogen breakdown because the 1078

liverGlycogenBreakdownImpact was set to value 1. The combined glucose production 1079

via gluconeogenesis and liver glycogen breakdown was just below the glucose absorbed 1080

from the blood by the exercising muscles and hence the BGL dropped modestly 1081

throughout the exercise duration as desired. Once the exercise was over, the 1082

insulinLevel increased to the baseInsulinLevel and in response the gluconeogenesis flux 1083

(and hence the BGL) assumed their pre-exercise level. 1084

7 Conclusion 1085

This paper described CarbMetSim, a discrete event simulator that models the 1086

carbohydrate metabolism in human beings and allows tracking of a normal or Type 2 1087

Diabetic subject’s BGL in response to a timed sequence of diet and exercise activities. 1088

The paper also validated CarbMetSim’s behavior in response to single meal and exercise 1089

events and demonstrated its ability to emulate actual BGL patterns with appropriate 1090

configuration. Our future work on CarbMetSim will include more validation of its 1091

behavior against real BGL data, expanding its functionality to correct some of its 1092

current limitations identified towards the end of Section 1 and building web/smartphone 1093

apps that will allow diabetes patients to use the simulator. CarbMetSim can also serve 1094

as the underlying engine for a variety of diabetes self management and education tools. 1095

With its open source nature and ease of modification/extension, CarbMetSim also has a 1096

good potential to emerge as a popular simulation framework for diabetes research. 1097
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Fig 5. Results of simulations replicating a physical exercise event involving legs at
intensity 30 %V O2max as reported in [80].
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