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Abstract

The carbody plays an important role in rail vehicle dynamics. This thesis aims at
developing validated modelling methods to study its dynamics, how it is excited on track
and how it interacts with the passengers. The primary interest is ride comfort,
considering vibrations up to 20 Hz. In this frequency range, the structural flexibility of
the carbody is of major concern. The models are intended for use in time-domain
simulation, calling for small-sized models to reduce computational time and costs. Key
parameters are proposed to select carbody eigenmodes for inclusion in a flexible
multibody model, and to quantify the interaction between passengers and carbody.

Extensive comparisons between measurements and corresponding simulations are
carried out in a case study. On-track measurements are performed to obtain operating
deflection shapes and power spectral densities of the accelerations in the carbody. The
complete vehicle is modelled using the pieces of software GENSYS (flexible multibody
model) and ANSYS (finite element model of the carbody). Actual, measured track
irregularities are used as input. In order to investigate the influence of passenger load,
experimental modal analysis of the carbody is performed with and without passengers.
Also, amplitude dependence is examined. Simple models, based on human-body models
from literature, of the passenger-carbody system are proposed and validated. Vertical
seating dynamics is considered. The models are implemented and tested in the case
study. Finally, ideas on model reduction and approximation are presented and applied.

The main conclusions drawn from the study are that
- the structural flexibility of the carbody must be taken into account when predicting

vertical vibration comfort. It is possible to predict which carbody modes that will
contribute most to the vibrations.

- the carbody dynamical properties depend on the excitation amplitude.
- passengers and carbody interact significantly.
- the proposed models describe the interaction quite well. The proposed passenger-

carbody model gives an upper boundary on the interaction.
- the proposed passenger-seat-carbody model can be used to study the influence of the

seat parameters on the interaction. This merits to be investigated further, however.

Keywords: Carbody, Experimental modal analysis, Human-body dynamics, Model
reduction, Multibody dynamics, Operating deflection shapes, Rail-vehicle dynamics,
Ride comfort, Seating dynamics, Structural dynamics.
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1       Introduction

1.1      Carbody, passengers and ride comfort

If you as a passenger riding in a rail vehicle do not think about vibration, that is because
rail-vehicle-dynamics engineers have succeeded in achieving good ride comfort. A low

vibration level is one of the important factors of a good ride comfort [58]1. The
vibrations are mainly caused by track irregularities, from which they are transmitted via
the bogies and the carbody to the passengers. The carbody is not rigid, but bends and
twists from the excitation coming from the bogies. In some cases, this carbody structural
flexibility accounts for half of the perceived vibrations, the rest being due to rigid body
motions [13]. The current trend towards lighter vehicles and higher speeds makes the
issue of carbody structural flexibility crucial in the design and development of
competitive vehicles. Also, the demand for a high comfort standard calls for a better
understanding of the passenger-carbody interaction.

Engineers have two tools to assess vibrations: measurements and simulations.
Measurements are, however, not possible during the design phase of a new vehicle. Here,
simulations based on rail vehicle dynamics models offer a possibility to predict ride
comfort, but, in order to be reliable, the simulation models must be validated. There is,
therefore, a need for validated methods in analysing and modelling the structural
dynamics of the carbody.

The present work addresses the issue of carbody structural dynamics. It examines the
role played by the structural flexibility of the carbody, and, in particular, it aims at
developing validated modelling methods to analyse the dynamics of the carbody, how it
is excited on track and how it interacts with the passengers.

Figure 1-1 below shows a common Swedish rail vehicle, the SJ-B7M, which serves as a
case study in the present work. Measurements were also carried out on a variant of it
furnished for office-working, the SJ-S4M. The carbody and the bogies are indicated in
the figure.

Figure  1-1 The SJ-B7M (SJ-S4M) rail vehicle. Length 26.4 metres.

1. References are found in Appendix A.

Carbody

Bogie Bogie
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1.2      Related fields and work

The subject of “carbody and passengers in rail vehicle dynamics” deals with the areas of
rail-vehicle dynamics, structural dynamics, ride comfort, human-body dynamics and
seating dynamics. Each area is a vast field of its own. For instance, quoting [44], “human
vibration involves physics, psychology, mathematics, physiology, engineering, medicine
and statistics”.

Rail-vehicle dynamics is a subject of its own [8][26], and the study of rail-vehicle
dynamics dates back to the 19th century. Then, vehicle stability [30] was one of the main
interests. Of more recent date is the study of rail-vehicle dynamics based on simulation
and applied to ride comfort, which began in the late 1960s with the advent of sufficiently
powerful computers. Many of the computer codes for rail-vehicle dynamics that are
commercially available today [27] have roots in that time. The simulation codes have
been developed in industry, as well as at universities. Rail-vehicle dynamics and carbody
structural flexibility is well supported by the framework of flexible multibody-dynamics
[23][35].

The study [12] reviews structural dynamics models for rail vehicle dynamics. There are
several studies on carbody structural flexibility, e.g. [19][20][21][22][25][31][32][33]
and [34], often with application to ride comfort. Floating floors have been investigated
[37]. The models range from simple beam models to detailed finite-element models. In
most cases, modal models obtained from experimental modal analysis and finite-element
calculation are used in the analysis. The number of investigations made by rail-vehicle
manufacturers on the issue ought to be significant, but are seldom published.

The first international standard on ride comfort and whole body vibrations was published
in 1975 [56], but already in 1941 [55] “equivalent comfort contour” curves for seated
persons vibrated in the frequency range of 1 to 12 Hz were produced. These curves were
developed to become the “Wertungsziffer” (Wz), which, for a long time, was widely
used by European railways. The current standard is a modified ISO-2631 from 1997
[57]. There are, however, differing opinions, in particular on the “weighting filters”
prescribed by this standard and a new standard is proposed [53]. Traditionally, only
frequencies up to 20 Hz have been considered, but current standards also take higher
frequencies into account, up to 80 Hz [37]. A thorough discussion on ride comfort is
found in [44] and [54].

The sensitivity to vibration must not be confused with the actual vibration of the human
body and its interaction with the carbody. There are early contributions to the field of
human-body modelling and measurements [38], but the most quoted early experiments
are the investigations of Dieckmann 1957 [42] and Coermann 1964 [40]. They worked
independently on single-degree-of-freedom and two-degree-of-freedom models of the
human body subjected to vertical vibrations. Coermann based his modelling on
measurements of eight men. Miwa [48] extended the work and studied factors that might
influence the measurements, such as body posture. The ISO-5982 standard 1981 [47]
reports 39 people having been measured in the sitting position up to that date. This
standard prescribes two-degree-of-freedom models for the human body in sitting,
standing and supine (outstretched) position. Extensive studies including measurements
of 60 people were recently performed by Wei and Griffin [51].
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A whole chapter is devoted to seating dynamics in [44]. The interest in seating dynamics
has, so far, been low in the rail vehicle industry, but “increased focus on customer seat
comfort can be foreseen in the future” according to [49]. Seat models consisting either of
filters or of mass-spring-damper systems are sometimes used in industry to better match
predicted floor acceleration to the reaction of the seated passengers.

Only a couple of studies on passenger-vehicle interaction are found in the literature. In
an experimental study [7], the natural frequency of the vertical bending mode was
measured at various stages during manufacture of a passenger rail vehicle. The influence
of 53 sitting, and then standing, passengers was examined. For standing passengers, there
is no change in natural frequency, but for sitting passengers there is a slight increase in
the vertical-bending natural frequency. Based on these few observations, the
investigators drew the conclusion that the passenger mass should not be modelled as
unsprung. Moreover, they claim that it is hardly worthwhile to model passengers and
seats as sprung masses. This claim is not motivated, however, and the investigators did
not consider the influence on damping, for instance. In [11], an example is given of how
to modify a carbody modal model to simulate passenger loading, where the passengers
are modelled as unsprung masses, but the prediction is not compared to measurements.

1.3      This thesis

1.3.1     Aim and approach

The present work aims at developing modelling methods to study the dynamics of the
carbody in the frequency range of 0 to 20 Hz, how it is excited on track and how it
interacts with the passengers. The models are to be used in time-domain simulation of
rail-vehicle dynamics and, since such a simulation tends to require extensive computing
time, an important aspect is the possibility of obtaining small, reduced models.
Therefore, an important goal has been to find key parameters that describe the important
properties of the dynamical system, in order to achieve small-sized models. A theme of
this work is “the combination of two dynamical systems”; in the first part of the work,
the combination of carbody and bogies when studying track-induced vibrations, and, in
the second part, the combination of carbody and passengers.

The approach towards the subject is, on the one hand, based on the traditional methods
used in rail vehicle dynamics, such as on-track measurements, experimental modal
analysis (EMA), multibody modelling and finite-element modelling (FEM). On the other
hand, mathematical analysis and numerical experiments (using MATLAB [61]) are used
to find the essential features of rail vehicle carbody dynamics.

The work focuses on three of the topics identified in the pilot study [12], namely on the
importance of structural vibration, on model reduction and on the modelling of
passengers.
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1.3.2     Thesis contributions

The thesis draws attention to parameters that play an important, but often forgotten, role
in the interaction between two dynamical systems. Here, they are called “modal
contribution factor” and “passenger load parameter”. The parameters serve as guides
performing model reduction. Criteria to accomplish model reduction from a practical
point of view are also proposed. More specifically, the proposed criteria are intended to
help identify important carbody eigenmodes.

The thesis work also extends traditional rail-vehicle measurements to include new
features, namely operating-deflection-shape (ODS) analysis of carbody structural
vibrations and experimental modal analysis including the passengers. The comparison
made between simulation models and full-scale measurements strengthens the
conclusions drawn from the thesis.

In particular, this thesis is believed to contribute to the fields of rail-vehicle dynamics and
modelling as regards the following aspects:
- On-track measurements of carbody operating-deflection shapes, identifying excited

carbody mode-shapes and their contribution to the vibration level on different track
sections.

- Modelling of the same rail vehicle combining finite-element and multibody models and
including the actual track irregularities. A thorough comparison between measured and
simulated results with emphasis on the structural flexibility of the carbody, comprising
acceleration time-histories and spectra, as well as comfort-weighted r.m.s. values.

- Proposal and test of criteria for model reduction of the carbody model, in particular
what carbody modes to be retained for ride-comfort simulation.

- Experimental modal analysis of a similar carbody with and without passengers to
investigate the passenger-carbody interaction. Investigation of the dependence on
excitation amplitude.

- Proposal and validation of small-sized models of the passenger-carbody interaction and
of key parameters to estimate the interaction.

- Modelling of vertical seat-dynamics. Proposal and validation of a simple seat model
and studies on the influence of the seat properties on passenger-carbody interaction.

- Ideas on how to reduce and approximate passenger-carbody and similar systems, e.g. a
generalized passenger model.

1.3.3     Present reports and papers

The full research work is documented in five reports, cf. Figure 1-2:

In the pilot study [12], common modelling and measurement methods in structural
dynamics are presented. A review of structural flexibility models for rail vehicles found
in literature is made. Finally, research topics are identified.

The report [13] presents an investigation of the Swedish passenger vehicle SJ-S4M. The
aim is twofold: to get a picture of the structural dynamics of a common vehicle and to
test various methods for evaluation of data, for modelling and for simulation. The report
contains the following parts: on-track measurements, selection and processing of data,
analysis of measurement results (repeatability, power spectral densities, operating
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deflection shapes and comfort filtering), vehicle modelling (finite-element modelling and
multibody modelling) and, finally, a comparison between simulation and measurements
including sensitivity analysis. Attention is paid to differences between simulation and
measurement results.

In [14] general equations of motion for a flexible body in an accelerating reference
system are derived. Suitable approximations for rail vehicle dynamics applications are
then made. Model reduction by global-deformation-shape representation is discussed in
a finite-element context. Both free-body eigenmodes and arbitrary deformation-shapes
are considered. Algorithms that orthogonalize arbitrary deformation-shapes for use in
time-domain simulation are presented and tested.

The author’s licentiate thesis [15] summarizes the reports [12], [13] and [14].

The present report constitutes the author’s doctoral thesis and extends the work to
passenger-carbody interaction, cf. Section 1.3.4.

Parts of the work have also been published as papers [16][17][18].

Figure  1-2 Present work.

1.3.4     Outline of doctoral thesis

Chapter 2 summarizes previous work of [13] and [15].

Chapter 3 presents measurements carried out to investigate the passenger-carbody
interaction on a vehicle similar to the one in [13].

Pilot Study

On-track
Simulation and
Measurements

Equations
of Motion

Licentiate
Thesis

Passenger and Carbody
Interaction

Doctoral Thesis
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Chapter 4 reviews models of the human body, of seats and of the rail vehicle carbody that
are judged to be suitable to use in studying passenger-carbody interaction.

Chapter 5 combines the models of Chapter 4 and proposes models of the passenger-
carbody interaction, including models that consider seating dynamics. Methods to reduce
and to approximate models are proposed.

Chapter 6 compares measurement results and model predictions to be able to validate the
proposed models.

Chapter 7 applies models from Chapter 5 in the case study of [13].

Chapter 8 concludes and outlines further research.

References are given in Appendix A. Important definitions are given, and the notations
are explained in Appendix B, which also comprises a short railway glossary.
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2       Track-induced carbody dynamics

This chapter summarizes parts of the licentiate thesis that are relevant here, namely the
case study and the proposed mode selection criteria. See also [13] and [15].

2.1      Case study

The Swedish passenger vehicle SJ-S4M was chosen as a basis for a case study consisting
of on-track measurements and multibody and finite-element modelling as well as
numerical simulation. Using general methods from the rail-vehicle industry for studying
rail vehicle dynamics, e.g. on-track ride-comfort measurements and simulation with rail-
vehicle dynamics software, an analysis of the role played by structural flexibility was
undertaken [13][16]. The main aim may be summarized as answering a couple of
questions raised in [12], namely “how important are the structural vibrations”? and
“what set of carbody deformation shapes is the most efficient when studying rail vehicle
dynamics” (and ride comfort)?

The main conclusion drawn from the case study is that structural flexibility dynamics
must imperatively be considered when evaluating vertical comfort in such vehicles. The
simulation results were also shown to be particularly sensitive to the modelling of the
carbody-bogie interface and of non-structural masses in the carbody.

2.1.1     On-track measurements

On-track measurements provide information on how the vehicle behaves on the track and
on the excitation induced by the track irregularities. On-track measurements are often
carried out to verify ride-comfort and safety requirements, but sometimes more
elaborated measurements are conducted to identify operating-deflection shapes (ODS).
Results are however seldom published due to confidentiality. No published reference on
rail-vehicle-carbody ODS has been found in the literature, but on other vehicles, e.g.
buses [24].

An ODS [60] of a rail-vehicle carbody describes how the carbody vibrates at a particular
frequency when the rail-vehicle is running on the track. Compared to eigenmodes of a
carbody, which are determined by the dynamical properties alone, an ODS also depends
on the magnitude and frequency content of the excitation forces. The acceleration must
be measured at sufficiently many points of the carbody, so that the deformation shapes
can be identified. It is important to obtain both a correct phase difference and relative
magnitude between the acceleration signals in order to obtain an ODS.

A power spectral density (PSD) on the other hand shows how much a point of the
carbody vibrates at various frequencies when the vehicle is running on the track, but it
does not contain any information on the phase. The area under the PSD-curve
corresponds to a mean square value. The peaks in the spectra are due to structural
eigenmodes of the carbody structure, rigid-body eigenmodes of the complete vehicle or
harmonics of the excitation induced by the track irregularities [31].
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Together, ODS and PSD can provide information on which modes are excited on a
particular track, and, in a sense, answer the question of what carbody mode shapes are
important to include in a model.

The present on-track measurements were carried out on the SJ-S4M rail vehicle, see
Figure 1-1, during its regular service. Twenty accelerometer positions were chosen to
represent rigid-body modes as well as fundamental eigenmodes of the carbody such as
bending and torsion, see Figure 2-1.

Figure  2-1 Accelerometer positions on carbody. Results from positions A, B and C
are presented below.

In total, six test runs were made on a track section of about 65 kilometres between
Västerås and Stockholm. At each run, fourteen acceleration signals were measured and
recorded at a sampling rate of 6 kHz. Vehicle speed and position were recorded vocally
for later reference. Suitable excerpts were chosen considering constant vehicle speed,
constant curve radius and similarity of wheel-rail friction conditions between the runs.
Chosen acceleration excerpts were then band-pass filtered in the interval of 0.3 Hz to 30
Hz, re-sampled at 200 Hz and scaled.

Track irregularity data of the actual track had been measured by Banverket, the Swedish
National Rail Administration, and was analysed and customized for the simulation
needs. Three track sections were used: a tangent track in good condition (10 seconds at
160 km/h), a tangent track in normal condition (20 seconds at 130 km/h) and a circular
curve in normal condition (10 seconds at 130 km/h).

Figure 2-2 shows measurement results from the two tangent tracks presented as power
spectral densities. Spectra of vertical acceleration are shown for three positions in one of
the side-sills: over the bogie (A), in the carbody middle (C) and in between (B); see
Figure 2-1.

The spectra are weighted to take ride comfort into account by applying (multiplying) the
vertical comfort filter of Figure 2-12.

Vertical acceleration

Lateral acceleration

Both vertical and lateral accelerations

ABC

Side-sill
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Figure  2-2 Comfort-weighted spectra of measured vertical carbody accelerations.
Three locations in the side-sill, cf. Figure 2-1.
Left: good track, right: normal track.

The vibration spectral densities on the good and normal tracks differ not only in level,
but also in shape; the peaks are different, though the repeatability of acceleration
measurements performed on the same track is high. The peaks below 7 Hz belong
essentially to rigid-body motion, whereas those above 7 Hz are due to carbody structural
flexibility. In particular, the peak at 8.6 Hz corresponds to the first vertical bending mode
and the peak at 12.8 Hz belongs to torsion while the peak at 17.2 Hz, excited only on the
good track, corresponds to the second vertical bending mode. The ODS at these three
frequencies are shown in Figure 2-3 to Figure 2-5. The shapes are based on
measurements of vertical acceleration in 10 points of the side-sills, and essentially
correspond to the floor of the carbody between the bogies. The four phases 0, 90, 180
and 270 degrees show that the shapes are not completely symmetric. The asymmetry
may be due to asymmetrical mounting of exterior and interior equipment.

From the spectra in Figure 2-2, it may be seen that the first vertical bending mode and the
torsion mode contribute considerably to the vertical acceleration level. They are, in this
case, the two most important carbody modes from a ride comfort point of view.
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Figure  2-3 Measured operating-deflection-shape at 8.6 Hz (first vertical bending).
Four phases.

Figure  2-4 Measured operating deflection shape at 12.8 Hz (torsion). Four phases.
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Figure  2-5 Measured operating-deflection-shape at 17.2 Hz (second vertical
bending). Four phases.

2.1.2     Modelling and simulation

The bogie with its suspension and connections to the carbody influences, to a large
extent, the vibrations transmitted from the track to the carbody, and, therefore, the
models of bogies and track constitute important parts of the vehicle-track simulation
model.

Figure 2-6 shows the design of the present bogies. The carbody rests, via two supports
(yokes) and four coil-spring packages (two on each side), on a bolster beam. Between
each bolster beam and the carbody, there are two traction rods, one on each side, that
transmit longitudinal forces. Two vertical and two lateral dampers are also mounted
between each bolster beam and the carbody.
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Figure  2-6 Bogie design [9].

Each bolster beam is attached to the bogie frame by one centre pin and four pendulums.
This design allows yaw motions between carbody and bogie frame. Owing to flexibility
in the centre pin and bolster beam a certain longitudinal motion between bogie frame and
bolster beam is possible. The pendulums work, owing to the weight of the carbody, as a
moderate yaw stiffness between bolster beam and bogie frame. Two yaw dampers are
also mounted longitudinally to impede yaw motion between bogie frame and carbody. In
the model, the yokes are considered to belong to the carbody.

The primary suspension of the bogies consists of rubber chevron springs, permitting
radial self-steering, and inclined lateral/vertical hydraulic dampers.

A multibody model of the vehicle including carbody, suspension, bogies and track was
set up using the commercial software GENSYS [27][59]. The vehicle is described as a
system of rigid bodies interconnected via various suspension elements. The number of
degrees of freedom is 54 excluding the flexible degrees-of-freedom. Non-linear
characteristics of the suspension elements are taken into account. For instance, a model
proposed by [10] is used for the rubber chevron springs. Another example is the yaw
dampers, which are modelled as dampers with “force blow-off” and a series stiffness as
illustrated in Figure 2-7. The series spring accounts for the reduced damping capability
at higher frequencies.

Centre pin

Bolster beam

Coil spring
Secondary
vertical damper

Yoke Lateral bump stop

Wheel set

Bogie frame

Axle box

Inclined
primary damper

Chevron spring

Yaw damper
Pendulum

Secondary lateral damper

Traction
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Figure  2-7 Model and characteristics of yaw dampers.

The contact mechanics between wheel and rail, see Figure 2-8, includes both creep
forces, i.e. friction forces, and a non-linear wheel-rail contact geometry. The software
GENSYS interpolates creep forces from a table that is previously calculated using
Kalker’s FASTSIM program [29]. The non-linear surface contact is modelled by so-
called contact-geometry functions that describe, for instance, wheel rolling radius as a
function of relative lateral displacement. Lateral track flexibility is modelled by means of
a single-degree-of-freedom spring-damper-mass system, whereas vertical track
flexibility is included in the wheel-rail contact modelling.

Figure  2-8 Wheel and track modelling.

The carbody is modelled by means of the commercial finite-element software ANSYS
[62], giving a model with approximately 23,000 degrees of freedom. Orthotropic shell
elements represent the corrugated plate. Non-structural masses, such as equipment and
furniture, constitute about two thirds of the total mass.

The eight lowest free-body eigenmodes, disregarding the rigid-body modes, have
undamped eigenfrequencies ranging from 9.1 Hz to 16.2 Hz according to the FE-
calculations, see Figure 2-9 and Table 2-1. The mode shapes are typical for an oblong
box (26.4 m x 3.4 m x 3.0 m), i.e. vertical and lateral bending shapes and torsion, as well
as breathing modes.
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Wheel profile

Rail profile
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Damping
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Figure  2-9 Eight carbody mode-shapes of the S4M vehicle calculated by FEM.
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Table  2-1 Calculated mode shapes and undamped eigenfrequencies.

One may note that the first and second vertical bending modes are also excited at other
frequencies on track, cf. Figure 2-2. This is quite normal, and is mainly due to the
coupling to the bogies.

2.1.3     Comparison of results from measurement and simulation

The results from measurement and simulation can be compared in a number of ways. In
the end, the simulation should reproduce the measured comfort values. Figure 2-10
shows measured and simulated comfort-weighted r.m.s.-values for the “tangent track in
normal condition at 130 km/h”. The results are based on values from points in the side-
sills. For the values “in carbody middle”, the average of two points is used: point C (cf.
Figure 2-1) and the corresponding point in the other side-sill. For the values “over
bogies”, the average of four points has been calculated, corresponding to A and the three
other corresponding points.

White corresponds to the frequency interval from 0.3 to 7 Hz (essentially rigid-body
vibration) and black corresponds to the frequency interval from 7 to 20 Hz (essentially
structural flexibility vibration). As seen, structural flexibility is more important than rigid
body motion in the vertical direction. This is to a large extent due to comfort-weighting
in the vertical direction, see Figure 2-12. Structural flexibility is almost negligible in the
lateral direction, also to a large extent depending on comfort-weighting.

In general, the agreement between simulated and measured values is quite good.

The cause for differences between simulated and measured results may be found by
analysing the PSD. Such an analysis reveals that the measured distinct peak
corresponding to torsion at 12.8 Hz is difficult to reproduce in the simulation. This is
partly due to problems in modelling the carbody-bogie interface, e.g. dynamical
properties of the vertical dampers at these frequencies. The carbody mode-shapes are
also quite sensitive to the modelling of non-structural masses.

No. Mode shape
Frequency

[Hz]

F1 First vertical bending 9.1

F2 First lateral bending 12.2

F3 Torsion 1 12.8

F4 Breathing 1 13.4

F5 Torsion 2 13.9

F6 Breathing 2 14.3

F7 Breathing 3 15.0

F8 Second vertical bending 16.2
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Figure  2-10 Measured and simulated comfort-weighted root mean square values.
White corresponds to rigid-body vibrations and black corresponds to
structural-flexibility vibrations. Comfort filters according to Figure 2-12.

2.2      Mode selection criteria

It is preferable to have models with a limited number of degrees-of-freedom in order to
reduce computational time in a numerical simulation. Small models are also preferable,
since they permit a better understanding of the essential system behaviour. It is
important, however, not to miss the essential features when reducing a model. With the
constant increase in computer capacity, finite element models tend to grow in size. Since
the suitable model size for simulation is largely inferior to that of a finite-element model,
there is a need for guidelines to accomplish the necessary model reduction [14][17].

Four consecutive criteria in selecting important carbody eigenmodes with respect to ride
comfort are proposed to be used: modal participation factors (MPF), excitation spectra,
modal contribution factors (MCF) and comfort filters. The concept of MPF is classical
and found in many textbooks, e.g. [3]. MCF, which was introduced by the author in [15],
is a natural parameter to describe the carbody dynamics from a ride comfort point of
view. The present work puts this parameter in focus. The excitation spectra and the
comfort filters may be seen as temporal counterparts of MPF and MCF, which are spatial
quantities.
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The MPF and MCF have been tested in the case study and implemented in GENSYS. In
particular, the MCF seems to be a useful key parameter. It is easy to compute and is also
closely related to the models of the passenger-carbody interaction proposed in this thesis.

2.2.1     Modal participation factors

In the case of a single excitation force, i.e. a force of the form , it is
customary, cf. for instance [3], to define a MPF as

(2-1)

where R is the force column-matrix excluding the time dependence, nc is the mode-
shape column-matrix and Mc is the finite-element-model mass-matrix. The subscript c
refers to the carbody. A high value of MPF means that excitation of the mode shape nc is
sensitive to the force F.

The carbody is excited by a number of independent sources, e.g. vertical and lateral track
misalignment. It may therefore be justified to express the total force on the carbody as a
sum of independent forces, each force having a specific spatial distribution

(2-2)

For each such force, and mode, it is possible to define a modal participation factor

(2-3)

For instance, R1 may represent the simultaneous pushing of the traction rods towards the
centre of the carbody. The quantity MPF1j then tells how sensitive a mode shape ncj is to
this spatial force distribution. In a rail vehicle, the number of excitation sources and
vibration paths are numerous, so the number of terms in (2-2) is high. Therefore, it is
essential for both understanding and analysis to find the most important spatial
distributions R1, R2 etc. An example of this application is found in [17].

Note that the MPF does not depend on the excitation-frequency content, only on the
mode shape and positions and directions of applied forces. It is, therefore, a key
parameter that describes spatial characteristics.

2.2.2     Excitation spectra

The actual track geometry results from a nominal, designed track to which track
irregularities add. Vibrations in the carbody are mainly induced by these irregularities. It

F t( ) α t( )R=

MPF
nc

T R

nc
T Mcnc

--------------------=

F t( ) α1 t( )R1 α2 t( )R2 α3 t( )R3 α4 t( )R4 …+ + + +=

MPFij

ncj
T Ri

ncj
T Mcncj

-----------------------=



Track-induced carbody dynamics

18

is common to define these as shown in Figure 2-11: gauge irregularity, cant irregularity
and lateral and vertical misalignment.

Figure  2-11 Definition of track irregularities.

In general, the amplitude of the track irregularities increases with increasing wavelength
[8]. The high-frequency content of the excitation spectra therefore becomes more
important as vehicle speed increases.

It is the track irregularities and the bogie characteristics that together determine the time-
varying coefficients , etc. in (2-2), and they may be determined by

numerical simulation. However, it is possible to foresee some of the relations between
the track irregularities and the excitation of the carbody mode-shapes. For instance, the
excitation of torsion modes should be correlated with the cant irregularities of the track.
And excitation of the vertical bending is often correlated with the bounce and pitch
motion of the bogies induced by the vertical misalignment of the track.

The eigenfrequencies of the mode shapes certainly play an important role. Excitation at
resonance frequencies should be avoided.

2.2.3     Modal contribution factors

It may be advocated that vibrations are important only if they are perceived by
passengers. Under this assumption, deformations and vibrations are important only
where passengers are seated. Having this in mind, it is possible to calculate a spatial
average of the mode-shape values over the part of the carbody in which passengers are
seated. Since comfort-weighted r.m.s.-values often are used as ride-comfort indices, it is
convenient to use r.m.s.-values here also:

(2-4)

Travel
direction

Vertical misalignment

Lateral misalignment

Cant irregularity

Gauge irregularity

Left rail

Right rail

α1 t( ) α2 t( )

MCF j dij
2 N⁄

i 1=
N∑=
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where MCFj stands for Modal Contribution Factor of carbody mode number j. Here N
“important locations” in the carbody are used. The vertical displacement of mode
number j at a point numbered i is denoted by . MCF for lateral and longitudinal

directions can also be defined. The parameter MCF was introduced by the author in [15].
Values from the case study corresponding to the shapes in Figure 2-9 are given in Table

2-2. The modes are supposed to be scaled to have a modal mass of 1 kgm2.

Table  2-2 Calculated values of vertical MCF. From [13]. Calculated by FEM using
ten points in the side-sills.  (N=10).

Thus, carbody mode F1 (first vertical bending), F5 (torsion) and F8 (second vertical
bending) are the most important from a ride comfort point of view. This is in agreement
with the PSD presented in Figure 2-2.

Note that the MCF does not depend on the frequency content, only on the mode shape
and “important locations”; it is thus a key parameter that describes relevant spatial
characteristics.

2.2.4     Comfort filters

In order to evaluate ride comfort, a number of methods have been worked out. Many are
based on weighting functions describing human sensitivity vibrations. The weighting
functions, see Figure 2-12, are multiplied with the Fourier-transformed acceleration
signals to obtain comfort-weighted PSD.

According to present standards, humans are mainly sensitive to vertical vibrations in the
interval of 5 to 15 Hz. The sensitivity reaches a maximum at 8 Hz, approximately.
Human beings are sensitive to lateral vibrations in the interval of 1 to 2 Hz.

Figure  2-12   ISO-2631 comfort-weighting functions [57].
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3       Measurements of passenger-carbody interaction

Measurements of passenger-carbody interaction were performed at the SJ depot in
Hagalund during two weeks in the spring of 1999. The measurements consisted of
experimental modal analysis of the SJ-B7M vehicle, shown in Figure 3-1. This vehicle is
similar to the SJ-S4M vehicle, which had previously been studied [13], cf. Chapter 2. In
order to investigate the passenger-carbody interaction, the vehicle was loaded with
passengers during one afternoon.

Although the main aim was to study this interaction, other things were investigated as
well during the two weeks, in particular the dependence on excitation amplitude. The
results of the experimental modal analysis (EMA) were also to be compared to the
previous operating-deflection-shape measurements and the finite-element modelling of
the SJ-S4M vehicle. It was also of interest to measure the damping of the different mode-
shapes. The effort was concentrated on the modes that had proved to be important in
[13], namely the first vertical bending mode and the torsion modes. Additionally, seat-
transmissibility measurements were taken in order to provide data for setting up a
passenger-seat model.

The measurement conditions are described in Section 3.1. The results are presented and
discussed in Section 3.2 and conclusions are stated in Section 3.3.

3.1      Measurement conditions

3.1.1     Setup, excitation and response

Valuable advice on how to set up the carbody for measurements was found in [2] and
[28]. Ideally, the structure to be excited should be free. Therefore, all secondary
suspension components except the vertical springs were dismounted: yaw dampers,
vertical and lateral dampers and traction rods, cf. Figure 2-6. Distance blocks were
inserted in the primary suspension to impede motion in the rubber chevron springs.
Brakes were loosened. Next, the exciter was put into place, see Figure 3-1, where its
location is indicated..

Figure  3-1   SJ-B7M vehicle and location of the vertical exciter.

Exciter
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The location of the exciter was selected so as to excite both the first vertical bending
mode and the torsion modes, as well as other vertical modes. The exciter was fastened
with bolts both to the ground and to one of the carbody side-sills, i.e. the two beams
along the junction of floor and side walls, via a swivel connection to avoid moment
excitation. A hydraulic shaker was used, see Table 3-1, where the measurement
equipment is listed, and Figure 3-2, where the measurement setup is shown.

Table  3-1 Measurement equipment.

Figure  3-2   Measurement setup. Principle.

Item Make

Exciter MTS 242.03 Hydraulic Actuator

Controller MTS 458.20 Microconsole

Pump G.W. Hydraulic

Load sensor Load Indicator AB, Type AB-50 - 4pole

15 accelerometers BK 4398

Seat accelerometer BK 4322

Amplifier BK 2635 Charge Amplifier

FFT-analyser HP VXI E1421B, E1432A, E1434A

Software IDEAS-Test

PC Controller

Pump
Exciter

FFT-analyser

Amplifier

Accelerometer Carbody

and
load sensor
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The hydraulic exciter needed a pump, and the system was controlled by the MTS 458.20
Microconsole. The signal from the load sensor mounted between the exciter and the
swivel was used for feed-back control. The IDEAS-Test system together with an HP VXI
FFT-analyser was used for monitoring the experiments.

The best excitation and sample combination was chosen among the possible ones
allowed by the monitoring system. Random excitation was preferred not only because it
gave shorter measuring times, but also because all frequencies are then measured
simultaneously, avoiding the risk that passengers’ moving around might disturb the
measurements. Frequencies between 0.5 Hz and at least 20 Hz were to be measured, and,
considering the anticipated half-width value of the frequency-response-function peaks, a
frequency resolution of 0.05 Hz was judged sufficient. The form of force spectrum would
not have to be “realistic”, rather a dominance of higher frequencies is preferable in order
to minimize the excitation of rigid-body modes, for safety reasons. Almost white-noise
force-spectrum from 0.5 Hz to 39 Hz and a frequency resolution of 0.0488 Hz was used.
The total time for one measurement is then approximately 10 minutes, using 25 to 30
time-frames for averaging purposes.

In order to investigate amplitude-dependency, four different excitation -amplitude levels
were used, as summarized in Table 3-2. The levels were chosen to range from “better
than good track” to “worse than bad track”. The force level labelled “50%” corresponds
to a vehicle running on main-line track, although the high frequency content is higher
than normal.

Table  3-2    Excitation amplitudes. Approximate force r.m.s.-levels.

Fifteen channels were available for measuring the response. The BK 4398
accelerometers from the on-track measurements [13] were used. No amplifiers were used
for these accelerometers, however. A seat accelerometer, BK 4322, was used together
with a BK 2635 charge amplifier.

In order to be able to compare the measurement results with the previous on-track
measurements, the same 10 vertical accelerometer positions in the side-sills were
chosen, cf. Figure 3-3. These 10 positions allow to identify first and second vertical
bending modes, as well as torsional modes.

Level Force [kN]

“100%” 1.6

“50%” 0.8

“25%” 0.4

“12.5%” 0.2
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The interest being focused closer to the passengers this time, 14 accelerometer positions
were also chosen inside, on the inner floor, close to the feet of the seats, cf. Figure 3-3
and also Figure 3-5.

Figure  3-3 Accelerometer positions. Ten in the side-sills and 14 on the inner floor.

The behaviour of a carbody cross-section was investigated by putting 12 accelerometers
in the cross-section of the exciter. Accelerometers were put both inside and outside, as
shown in Figure 3-4. Some of the points correspond to those shown in Figure 3-5.
Special measurements were also performed on one of the seats (number 24, indicated in
Figure 3-3) with a passenger seated. The seat accelerometer BK 4322 was used to
measure the acceleration at the seat pan, indicated in the figures by the letter S. One
accelerometer was glued to the wooden plate, letter W. Accelerometers were also put on
the consoles on which the wooden plate is mounted, i.e. position C.

Figure  3-4 Accelerometer positions in the exciter cross-section. Four points are
indicated by letters: (F) floor, (C) console, (W) wooden plate of seat pan
and (S) seat pan. See also Figure 3-5.

On inner floor at feet of seats

On side-sills

Seat 24

Exciter cross-section

C
W

S

Exciter

F
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Figure  3-5 Four accelerometer positions on seat 24. (F) floor, (C) console, (W)
wooden plate of seat pan and (S) seat pan, which is dismounted in the fig-
ures to the right.

3.1.2     Passengers

For three hours one afternoon, 35 persons, mainly students, came to act as passengers.
The participants were asked about their weight, and the average was 66 kg with values
ranging from 52 kg to 80 kg. The number of persons was chosen to make it possible to
try different “passenger distributions”, with the aim of investigating the role of the
“passenger load parameter”, cf. Section 5.1 and Appendix B, where important definitions
are collected.

In order to calculate the sum in equation (B-8), each occupied seat must be assigned a
passenger mass and a carbody deformation-shape-value, one for each mode. The inner
floor positions in Figure 3-3 are used for this purpose. For each seat, the closest
measurement point is used, and therefore the “passenger mass” is lumped and a mass is
associated with each of the 14 accelerometer positions in Figure 3-3. The sum is then
made of all accelerometer positions.

Two different passenger distributions were chosen: “Middle” with all passengers sitting
as close to the middle as possible and “Ends” with the passengers sitting as close to the

W

S

C

F
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carbody ends as possible. The “Middle” distribution was assumed to affect the first
vertical bending mode the most, while the “Ends” distribution would affect the torsion
modes. In Figure 3-6, the result of the passenger-mass lumping is shown for the two
distributions. Unfortunately, there were only 33 passengers in the “Middle” distribution.

Figure  3-6 Passenger distributions “Middle” and “Ends”. Lumped passenger
masses.

3.1.3     Measurement plan

The measurement plan set up before the measurements was followed roughly. Setting up
the carbody, the exciter and the monitoring system took four days. Actual measurements
were performed during five days, and bringing down the setup took half a day. Table 3-3
summarizes the measurements made during the five measurement days. In the column to
the far left, the accelerometer configuration is described. Measurements were repeated to
ensure repeatability.

Table  3-3   Measurements performed. Number of repeated measurements.

Accelerometer configuration
Excitation amplitude

“100%” “50%” “25%” “12.5%”

Side sills and one seat (seat 24) 3 5 5 2

    with passengers in the middle 2 1

    with passengers at the ends 2 2

Inner floor 1 1 1 1

Exciter cross-section 3 2 1

    with one passenger in seat 24 2 2 2

160 398290 262

209 259 386 245

57281315

392 277

130252127

122 378

[kg]

Middle

Ends
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3.2      Results

3.2.1     Modal parameters and modal shapes, amplitude dependence

Autospectra of the exciting force and response accelerations, accelerance1 functions and
coherence functions were stored by the IDEAS-Test system.

A number of carbody modes can be identified: rigid-body modes and global-deformation
modes as well as more local-deformation modes. A number of modes, in particular
lateral bending modes and breathing modes cannot be identified by the present excitation
and response-point setup. However, the modes on which the study focuses are identified.
These are the global-deformation modes, labelled “G1” to “G5”. The identified modes
shapes are listed in Table 3-4. Two rigid-body modes are identified, labelled “R1” and
“R2”. Five local-deformation modes numbered “L1” to “L5” are identified in the exciter
cross-section.

Eigenfrequency and relative damping vary with excitation amplitude, here, in Table 3-4,
amplitude “50%” is shown as an example. The modal parameters are obtained using
either the circle-fit method or the complex exponential method, see for instance [2]. The
point-accelerance measurements are used. In some cases, the estimation of relative
damping proved to be sensitive to the estimation method.

Table  3-4   Modal parameters of identified modes. Amplitude,“50%”.

1. Definitions are found in Appendix B.

No Shape
Undamped

eigenfrequency [Hz]
Relative damping [%]

R1 Bounce 1.2 2.4

R2 Roll 1.5 2.6

G1 Shear of cross-section 8.1 3.7

G2 First vertical bending 9.2 1.6

G3 Torsion 1 12.5 1.5

G4 Torsion 2 13.5 4.4

G5 Second vertical bending 18.2 3.4

L1 Bending of cross-section 20.8 5.0

L2 Bending of cross-section 24.2 2.4

L3 Bending of cross-section 30.5 3.7

L4 Bending of inner floor 33.7 3.7

L5 Local mode of seat 24 36.9 4.8
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The five global modes shapes are shown in Figure 3-7.

Figure  3-7 Modal shapes of five identified global modes. Amplitude, “50%”.

The global mode shapes were obtained using the circle-fit method.

Examining the mode shapes in Figure 3-7, one finds that the two torsion modes G3 and
G4 are not pure. The side-sills deform as in torsion, but the inner floor presents a more
complex deformation. One explanation might be the inner wall in the exciter cross-
section, cf. Figure 3-3, that would block parts of the inner floor. The mode shapes
presented in Figure 3-7 are real, i.e. all parts of the carbody move in phase. But, if
complex modes (that is when parts of the carbody move out-of-phase) are allowed in the
modal model, then the torsion modes G3 and G4 are “more complex” than the other
modes.

The shapes of Figure 3-7 may be compared with the operating deflection shapes and
calculated finite-element mode-shapes in [13], cf. Chapter 2. Such a comparison in terms
of eigenfrequency and peaks in spectra is presented in Table 3-5.

The results for the first vertical bending mode show good agreement. The coupling
between carbody and bogies explains the fact that there are several peaks in the PSD.
The first lateral bending mode and the breathing modes are not identified in the EMA
owing to the choice of excitation and response points. The results for the torsion modes
still show relatively good agreement, while the agreement for the second vertical bending
is reasonable.

Undeformed G1

G2 G3

G5
G4

Side-sill

Inner floor
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Table  3-5 Comparison between EMA and FEM (undamped) eigenfrequencies and
ODS/PSD peaks [Hz]. FEM and ODS/PSD data from [13], cf. Chapter 2.

It must be kept in mind that, firstly, the ODS and EMA correspond to somewhat different
vehicles, and, secondly, that FEM results correspond to a free carbody while EMA
results correspond to a carbody resting on vertical springs and that ODS/PSD results
correspond to the carbody vibration of a running vehicle. No shear mode was discovered
in [13]. Perhaps it was not excited on-track, but there ought to be one in the FEM results.
Although it is not obvious from Figure 3-7 that G1 really is a shear mode, it nonetheless
seems to be the case: firstly, a shear deformation of the inner-wall at the exciter cross-
section was observed during the EMA measurements, and, secondly, it can be seen in
Figure 3-7 that the deformation is larger in the middle of the carbody showing that the
mode is not a rigid body mode.

Figure 3-8 illustrates the amplitude dependence of the undamped eigenfrequency and
relative damping of the five modes G1 to G5. The accelerance of point F has been used
for estimation.

The relative damping depends clearly on the excitation amplitude. As an example the
increase in excitation amplitude from “25%” (corresponding to a good track) to “50%”
(a normal track) results in an increase of relative damping of 1.0% for the mode G4
(from 2.2% to 3.2%). The vertical bending mode G2 is not significantly sensitive to
excitation amplitude. The changes are comparable with those that are due to passenger
loading, which are discussed in the Section 3.2.2.

Looking at Figure 3-8, one can see that the relative damping tends to increase with
increased excitation-amplitude, in particular for modes G1 and G4. The eigenfrequency,
on the other hand, decreases for increasing excitation amplitudes.

Shape
EMA

Eigenfrequency
FEM

Eigenfrequency
ODS/PSD

Peaks in spectra

Shear of cross-section 8.1

First vertical bending 9.2 9.1 8.6, 9.3, 10.0

First lateral bending 12.2 10.0, 11.5, 12.0

Torsion 1 12.5 12.8 11.5, 12.8, 14.5

Torsion 2 13.5 13.9

Breathing 1 13.4

Breathing 2 14.3

Breathing 3 15.0

Second vertical bending 18.2 16.2 16.4, 17.2
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This may be explained by Coulomb friction, meaning that carbody surfaces stick to each
other at low excitation amplitudes, whereas they release at higher excitation-amplitudes,
thereby allowing frictional work and thus increased damping. This mechanism also gives
lower stiffness at higher excitation-amplitudes, and, consequently, lower eigenfrequency
at higher excitation-amplitudes.

Figure  3-8 Undamped eigenfrequency and relative damping of global deformation
modes as a function of the excitation-amplitude. Based on response of
point F. Circle: “100%” excitation, square: “50%”, triangle: “25%” and
diamond: “12.5%”.

3.2.2     Passenger-carbody interaction

From the measured response functions it is already obvious that passengers interact with
the carbody dynamics, see Figure 3-9, where the point accelerance is shown. The point
accelerance is defined as the frequency-response function “acceleration to force” at the
excitation point. See the definition in Appendix B.1. Curves corresponding to no
passengers as well as passenger distributions “Middle” and “Ends”, here at the excitation
amplitude of “50%”, are shown.
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Figure  3-9 Measured point-accelerance (magnitude). Amplitude “50%”. Solid line:
no passengers, dotted line: passenger distribution “Ends” and dashed
line: passenger distribution “Middle”.

All five global deformation modes interact, more or less, with the passengers. Mode G2,
the first vertical bending, with distribution “Middle”, shows the strongest interaction.

A note on the use and interpretation of the measured point-accelerance in Figure 3-9 may
be appropriate here. The modal parameters and mode shapes are estimated from the
measured frequency-response functions by various curve-fitting methods.

In general, there is a rather large amount of freedom in how to perform the curve-fitting,
e.g. which modes to include. Here, the complex exponential method, applied over the
same frequency interval in all three cases, is used to estimate the undamped
eigenfrequencies and relative damping. It was judged important to use the same
frequency interval, the same method and the same response point for all passenger
distributions, in order to obtain comparable results.
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Figure  3-10 Synthesized point accelerance (magnitude). Amplitude “50%”. To be
compared with Figure 3-9. Solid line: no passengers, dotted line: passen-
ger distribution “Ends” and dashed line: passenger distribution “Mid-
dle”

Figure 3-10 shows the present synthesized point-accelerance. The synthesized point-
accelerance is calculated from the experimentally determined modal parameters and
mode-shapes; it is synthesized.

All the features in the curves are not reproduced by the synthesized modal carbody
model; only five global modes are retained here.

A comparison between the measured and synthesized point-accelerance reveals how
faithful the estimated modal model is. For the sake of comparison, the measured and
synthesized point-accelerance are shown in Figure 3-11, for the case of the empty
carbody.

There are clear differences between the curves. The plateau at 16-17 Hz is not
reproduced in the synthesized point-accelerance, for instance. Moreover, the two peaks
between 10 Hz and 12 Hz correspond to modes that are not taken into account in this
study. They might correspond to lateral modes, or breathing modes, but the present
choice of accelerometer positions does not allow their being identified.
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.

Figure  3-11 Comparison of measured (solid line) and synthesized (dashed line)
point-accelerance for the empty carbody.

Looking closer at the peak G4 of the measured accelerance, one may notice that it seems
to be composed of two peaks, indicating the difficulties in obtaining reliable relative
damping estimates. A comparison to the corresponding synthesized peak suggests that
this has led to the relative damping of mode G4 being overestimated.

The comparison between the measured and synthesized point accelerance thus shows
that the relative damping seems to be overestimated for some modes, but also
underestimated for other modes. It must be stressed that the estimates depend, to a
relatively large extent, on the method of estimation, on how frequency intervals are
chosen and on which response point is used etc.

The results of Figure 3-8 are based on another response point, namely F, which explains
why results differ somewhat. In Figure 3-12, the accelerance of point F is shown.
Damping and eigenfrequency estimates based on this function are somewhat different
from those based on the point accelerance. In particular, there is no problem with the G4
peak.
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Figure  3-12 Measured accelerance of point F (magnitude). Amplitude “50%”. Solid
line: no passengers, dotted line: passenger distribution “Ends” and
dashed line: passenger distribution “Middle”.

The interaction between passengers and carbody can be measured by a “passenger load
parameter” P. For each mode, this number can be calculated using the passengers’ mass
and the vertical mode-shape-values at the location of the passengers. For a more detailed
description, see the definition in Section 5.1.2 and Appendix B.1. Here the 14 points on
the inner floor shown in Figure 3-3 are used together with the passenger distributions in
Figure 3-6. The mode-shapes are shown to depend on the excitation amplitude
somewhat, and therefore the calculated values of P in Table 3-6 are given for two
different excitation amplitudes.

Table  3-6 Values of P [kgm2]. Based on measured mode shapes without passengers.
Amplitude, “50%” and “25%”, respectively.

Amplitude
Passenger
distribution

G1 G2 G3 G4 G5

50% Middle 0.044 0.092 0.038 0.118 0.135

Ends 0.022 0.024 0.075 0.076 0.052

25% Middle 0.043 0.080 0.030 0.106 0.219

Ends 0.021 0.016 0.088 0.066 0.054
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The parameter P is motivated from a modelling standpoint, since it turns up as a
parameter in simple interaction models. Unfortunately, the value of P can be hard to
obtain with accuracy. P is proportional to the passengers’ mass but proportional to the
square of the deformation shapes values, and these depend, to some extent, on the
interpretation and use of the frequency response functions. The difference in values of P
obtained for the two excitation amplitudes is, to some extent, due to such difficulties. The
P-values obtained in Table 3-6 for the torsion modes, G3 and G4, for the passenger
distribution “Middle” are surprisingly high. This is partly due to the fact that the inner
floor does not deform purely. Perhaps fourteen points are not enough to describe the
deformation of the inner floor. Nonetheless, the values obtained here for P correspond
agreeably with the values of MCF calculated in [13] with some exceptions. The relation
between P and MCF will be discussed in Chapter 5.

In Figure 3-13, the measured eigenfrequency and relative damping of modes G1 to G5
are plotted as a function of the passenger load parameter P in the “50%” case. The values
are estimated from the point accelerance curve shown in Figure 3-9.

Figure  3-13 Measured undamped eigenfrequency and relative damping as a func-
tion of the passenger load parameter P for the modes G1 to G5. Based
on measured point accelerance, cf. Figure 3-9. Amplitude, “50%”.

One of the main trends found in the figure is an almost linear increase in relative
damping as P increases. The relative damping increases significantly owing to passenger
loading for most modes. For example, the relative damping of the first vertical bending
mode G2 increases from 1.6% to 2.8% when the carbody is loaded half full with
passengers, passenger distribution “Middle”. It is likely to increase even more for a full
vehicle. One may note that the two modes with the lowest eigenfrequencies, G1 and G2,
interact the most with the passengers.
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The eigenfrequency of the modes increases (G1, G2 and G5) or decreases (G3, G4)
almost linearly with passenger load. The change in eigenfrequency is easier to evaluate
from the frequency response functions than the relative damping is, but the changes are
smaller.

For the amplitude of “25%”, similar results are obtained, although the trends are less
clear.

An alternative view is given in Section 6.1, in connection with the comparison with
model results, where root loci are shown.

3.2.3     Seat transmissibility

The vertical accelerances of the positions S and F, see Figure 3-5, can be used to
calculate the seat transmissibility, i.e. the frequency response function between the
acceleration on top of the seat pan (S) and the floor (F), where the acceleration at the
floor is considered as input. A more detailed definition is given in Section 4.2.1 and
Appendix B.1.

In Figure 3-14, the accelerance for points S and F are shown as well as seat
transmissibility. A passenger weighing 80 kg was sitting on the seat. The excitation
amplitude is “100%”. This high amplitude gave the best coherence.

Figure  3-14 Accelerance at seat pan (S) and floor (F) as well as seat transmissibility
(Tra.) (magnitude). With a passenger seated. Excitation amplitude,
“100%”. Points S and F are defined in Figure 3-5.
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Very few measurements of seat transmissibility were taken, only including two persons
and one seat. This must kept in mind when interpreting the results and drawing
conclusions.

However, studying Figure 3-14, one may note that the acceleration at the seat pan differs
from the acceleration at the floor. Mainly, the accelerance is lower at the seat,
corresponding to a seat transmissibility less than one. However, in the interval of 2 Hz to
6 Hz transmissibility is greater than one. This is what is usually obtained in seat
transmissibility measurements, cf. Figure 4-4. The first peak at 4 Hz is due to a combined
effect of human body dynamics and seating dynamics. The narrow peak at 6 Hz is
unexpected, but might be explained by an anti-resonance; the accelerance is low around
6 Hz.

In order to investigate how much the mode shapes deform owing to one passenger, the
curves in Figure 3-15 have been produced. Measurements with the empty seat have been
compared to measurements with a passenger sitting in the seat, by calculating the ratio
between an accelerance of the occupied seat and the same accelerance of the empty seat.
A ratio of one thus means that the corresponding part of the seat is not influenced by the
seated passenger. No other passengers are present.

Figure 3-15 The ratio accelerance with passenger to accelerance without passenger
(magnitude). Amplitude, “100%”. Points S, W, C and F are defined in
Figure 3-5.

From Figure 3-15 it is clear that the mode shape of the inner floor is hardly influenced by
a single passenger. No corresponding measurements showing the influence of several
passengers were carried out.
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3.3      Conclusions

In conclusion, the two main trends found in the measurements are that passenger-load
increases the relative damping of many carbody modes, and that the modal parameters of
the carbody depend on the excitation-amplitude. The role played by relative damping is
very important in resonant systems, as it determines the system’s behaviour at resonance;
both passenger-load and excitation-amplitude influence the carbody relative-damping.

The excitation-amplitude is here varied by a factor of 8, which is quite much. In normal
running conditions, the excitation-amplitude is likely to vary much less. This makes it
possible to adopt a linear carbody model, using a relative damping that is representative
of normal running conditions, i.e. corresponding to an excitation-amplitude somewhere
between “25%” and “50%”.

The influence of passenger-load on relative damping is significant. Moreover, the
measurements with and without passengers show that it is possible to establish a (linear)
dependence of the relative damping on a “passenger-load parameter”. This parameter
will be properly introduced in Chapter 5.

The passenger-load and the excitation-amplitude also have an influence on the carbody
eigenfrequencies, although this influence is less pronounced. The changes are probably
too small to change the system’s behaviour significantly, at least from a ride comfort
point of view.

However, the observed amplitude-dependency of the eigenfrequency indicates that the
damping of the carbody is partly explained by Coulomb friction.

The modal parameters obtained in this experimental modal analysis agree well with
previous finite-element calculations and operating-deflection-shape measurements.

The few measurements taken of seat transmissibility agree with the results of other
investigators.

Finally, note that the influence of passenger-load and excitation-amplitude on the rigid-
body movement of the carbody has not been studied.

With these conclusions in mind, the models proposed in Chapter 5 concentrate on basic
interaction mechanisms and thus on rather simple models.
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4       Models of passengers, seats and carbody

4.1      Human body

4.1.1     Modelling

For the purposes of the present study, models that provide a simple mathematical
summary of human-body dynamics are needed. The present study is restricted to vertical
vibration, since, on the one hand, vertical structural vibrations proved to be the most
important in the case study [13], see Figure 2-10, and on the other hand, most of the
studies on human whole-body dynamics found in literature treat vertical vibrations. Few-
degree-of-freedom models of this type are proposed in references [44], [47] and [51]
among others.

It must be stressed that these models do not explain the motion of different human-body
parts, but merely describe the seated human body exposed to vertical vibration by
mathematical models. The models are based on impedance measurements: The subject
sits on a stiff support that is excited, the exciting force and the resulting support
acceleration are measured and the impedance, i.e. the frequency-response function
between the force and the support velocity (force/velocity), is calculated. Here, the
“normalized apparent mass”, used by [51], will be used to characterize the human-body
dynamics. Detailed definitions of the notions used in the present work are found in
Appendix B.

Figure  4-1 Example of measured vertical point impedance (magnitude). One sub-
ject at various postures. From [40].
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Up to now, about 100 people have been measured by this method, and the investigations
show similar results [51]. The most important effect is a peak in the impedance function
between 4 and 6 Hz, see Figure 4-1.

The impedance depends to a large extent on the posture; sitting erect or relaxed makes a
difference. Also, the excitation amplitude seems to be less important than the posture.
Statistically, fitted model parameters for a group of men and a group of women differ
only marginally [51].

4.1.2     Chosen models

Figure 4-2 shows two possible single-degree-of-freedom vertical models of the human
body in sitting position. The model shown to the left in the figure was first proposed by
Coermann in [40]. Wei and Griffin [51] propose the model shown to the right in Figure
4-2. “Model B” to the right will be used in the present study. The impedance
measurements show a second peak at 10 to 14 Hz, cf. Figure 4-1, which can be taken into
account by adding another sprung mass in parallel to the first mass. But single-degree-of-
freedom models are used here in order to obtain small-sized models.

Figure  4-2 Single-degree-of freedom human-body models [40][51].

Model A to the left represents the passenger by a simple spring-damper-mass system.
The human-body mass is suspended on a linear spring and a linear viscous damper.

The values of the spring constant kp and the damper constant cp can be obtained by
curve-fitting to impedance measurements, cf. Figure 4-1. Published measurements [51]
indicate that kp and cp are proportional to mp. Here, this is assumed to be the case,
writing
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(4-1)

(4-2)

thereby introducing the undamped circular eigenfrequency and the relative damping

of the human-body model. Most of the values of the relative damping found in the

literature are close to 50% and the undamped eigenfrequency varies between 4 and 6 Hz,
cf. the peak in Figure 4-1.

After attributing a vertical degree-of-freedom zp to the sprung mass (p as in passenger)
and denoting the vertical displacement of the foundation by zs (s as in seat), the equations
of motion for the human-body model can be written as

(4-3)

where Fp represents the dynamic force from the carbody. The frequency response

function between zp and zs ( ), that is the transmissibility, is found from (4-3). With

the assumptions (4-1) and (4-2), the transmissibility for Model A is

(4-4)

The vertical point impedance of Model A, is found to be proportional

to the body mass and to the transmissibility:

(4-5)

Model B represents the passenger by two masses. The total body mass is partitioned

into a sprung and an unsprung mass. The carbody force acts on the unsprung part .

The fraction of unsprung mass is typically between 0.05 and 0.2, estimated from the
measurements in [51].

In this case, the equations of motion are

(4-6)

showing that  in Model B yields Model A.
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The transmissibility and impedance of model B equal, respectively

(4-7)

and

(4-8)

The vertical human-body impedance of Model B thus consists of two terms, one term
from each of the two masses.

Definition of normalized apparent mass

The human-body impedance is proportional to the body mass and, therefore, the

“normalized apparent mass” of a passenger is introduced:

(4-9)

“Apparent mass” is defined as the frequency-response function between the force and the
support acceleration (force/acceleration), and thus has the dimension [kg]. The notion
“normalized apparent mass” of the seated human body exposed to vertical vibration is
defined and used by [51]. Here it is denoted by since it, in Model A, is identical

to the transmissibility ( ). For Model B, the normalized apparent mass is

. Note that the normalized apparent mass has both magnitude and

phase.

The normalized apparent mass for Model B is shown in Figure 4-3, where mean human-
body parameters are used: , rad/s and , based on a fit

mean of 60 people given in [51].

The mean normalized apparent mass in Figure 4-3 is clearly related to the measured
vertical point impedance in Figure 4-1. Most obvious is the peak between 4 and 6 Hz.
The concept of mean normalized apparent mass will be utilized in Chapter 5 when
modelling several passengers.
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Figure 4-3 Mean normalized apparent mass of human body. Model B with mean
human-body parameters ,  rad/s and .

4.2      Seats

4.2.1     Modelling

There are various types of rail-vehicle seats. Three main types of seat cushions and back-
rests can be identified [45]. One type has a core of springs covered by foam rubber and
cloth. Another type has a core of firm foam rubber covered by softer foam rubber and
cloth. A third type has a core of foam rubber covered with foamed plastic and felted
cloth. The seat cushion and back-rest are generally mounted on a steel construction,
which is attached to the wall and/or standing on the inner floor.

Several methods of quantifying dynamic seat comfort have been proposed for different
types of vehicles. There are no specific standards for evaluating rail-vehicle seats, but a
general method for evaluating seat dynamics is proposed in [44], the “seat effective
amplitude transmissibility”, the so-called SEAT-value. The SEAT-value compares the
vibration comfort in the seat with that at the floor. More specifically, it is defined as the
square root of the ratio between the comfort-weighted r.m.s. acceleration at the seat pan
and at the floor, i.e.
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(4-10)

where is the autospectrum of the acceleration at the seat interface, is the

autospectrum of the acceleration at the floor and is a comfort-weighting filter, e.g.
the vertical ISO-2631 filter in Figure 2-12. A SEAT value of 100% means that sitting on
the floor produces the same vibration discomfort as that experienced sitting in the seat.

From a modelling point of view, the seat is a complex dynamical system and transmits
vibrations to the seated passenger via seat pan, arm-, back- and foot-rest. The vibrations
are multiaxial and amplitude-dependent. In [41] an example of typical magnitude of
r.m.s. acceleration for a person seated over a bogie is given. The dominant group of
perceived vibration inputs consists of lateral and vertical inputs at the seat pan and the
fore-and-aft motion at the back-rest. But, if unweighted r.m.s.-values are considered then
vertical and lateral inputs at foot and back-rest are as important as the input at the seat
pan. Available measurements and theory mainly treat the vertical direction.

Definition of seat transmissibility

Seat transmissibility is often used to characterize the vertical dynamics of a seat. The
term is used here as defined in [52] with the generalization that phase information is
included as well. It is defined as the frequency-response function zs to zf, where zs is the
vertical displacement of the seat pan and zf is the vertical displacement of the floor at the
interface between seat and floor. A person is supposed to be sitting in the seat. Note that
the seat transmissibility is not a force-to-force frequency-response function.

The seat transmissibility can be estimated from measurements by

(4-11)

where is the cross-spectrum of the acceleration at the seat pan (S) and the

exciting input force (I) and is the cross-spectrum of the acceleration at the floor

(F) and the exciting input force. See also Appendix B.1.

Seat models may be validated against seat-transmissibility measurements, which are the
most common measurements of seat dynamic properties.
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Seat transmissibility is a suitable characteristics, since it is relatively easy to measure. It
indicates the motion of the seat pan/passenger relative to the steady-state of the motion at
the floor.

Figure 4-4 shows measured vertical transmissibilities of 10 alternative cushions fitted in

a rail-vehicle seat and exposed to random-motion input with a magnitude of 0.6 m/s2

r.m.s. [41]. The spring cushion, which is normally used as standard, has the highest
transmissibility at resonance, but the choice of the most suitable cushion also depends on
the vibration input at the foot of the seat as well as the sensitivity of the passenger to
vibration.

The vertical stiffness of a seat is often preload dependent, and depends also on the shape
and posture of the seat occupant. This means that the seat transmissibility depends on the
seat occupant. Often, static comfort design criteria result in a vertical resonance
frequency close to 4 Hz [44], as in the case of Figure 4-4.

Figure  4-4 Measured seat transmissibility of rail-vehicle seats (magnitude). From
[41][44].

ized
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4.2.2     Chosen models

Since the present study focuses on vertical dynamics, only vertical seat models are
considered here. Figure 4-5 shows four possible models.

Figure  4-5   Seat models. After [44].

Seat model 1 is similar to a model given in [44]. The other three seat models are special
cases of this model. The seat models are to be inserted between the carbody model and
the human-body model. Here, zs denotes the motion of the seat pan, see also Figure 4-2,
and zf denotes the motion of the inner floor. In seat models 1 and 2, there is a part of the
seat with mass ms that moves with the seat pan. This mass is assumed to be small in
comparison with the unsprung mass of the passenger and is often negligible. The seat
stiffness , i.e. the frequency-response function between force and relative
displacement (force/displacement), may be general or, for instance, as assumed in
models 2 and 4

(4-12)

The seat stiffness may not be well defined, since the interface between passenger and
seat is rather complex. The stiffness depends on the weight of the seat occupant and the
posture, etc.

The seat transmissibility, defined in Section 4.2.1, , is not solely a function of the

seat parameters, but depends also on the dynamical properties of the seat occupant. In
Section 5.4.1, where the combination of passenger and seat is examined in detail, it is
shown that

(4-13)

where  is the impedance of the seated passenger.
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4.3      Carbody model

The measurements presented in Chapter 3 show that the dynamic properties of the
carbody are amplitude dependent. Here, however, a linear carbody model is assumed.
The general linearized equations of motion of the carbody may be written

(4-14)

where the subscript c refers to the carbody. The forces F are exerted by the bogies and
the passengers, but here only the passengers are considered. The system is generally
diagonalized so that the mass matrix Mc and the stiffness matrix Kc become diagonal.
The damping matrix Cc is not automatically diagonal, but it is often assumed to be, since
it permits decoupling the modal equations for the eigenmodes of the carbody

(4-15)

where index j runs from 1 to L, the number of carbody modes included in the model. The
modal mass of the carbody is denoted by mcj, the relative damping by and the

undamped circular eigenfrequency by . The generalized degree-of-freedom of the

carbody mode is qcj. The mode shape of the carbody, ncj, may be scaled so that its modal

mass equals 1 kgm2, simplifying the expressions. This is done here. Fcj denotes the
modal forces that are due to passengers.

A modal carbody model can be obtained by experimental modal analysis (EMA), cf.
Figure 3-7 or from a finite-element model (FEM), cf. Figure 2-9. In the latter case,
relative damping is normally not included, since detailed information on the damping
mechanisms in the structure is normally not available. The mode-shapes obtained by
experimental modal analysis may be complex-valued allowing a phase other than zero
and 180 degrees between different parts of the carbody. Such modes appear when
damping is non-proportional [2]. The eigenmodes should be measured/calculated for a
free carbody, since the carbody is mounted via soft springs on the bogies.

The rigid-body motion of the carbody is best taken into account by a (flexible) multibody
model, see, for instance, [14][35]. The interface between a multibody model and the
model of a flexible body is discussed in [36].

In the following, the modal models obtained from the experimental modal analysis of the
SJ-B7M will be used.

Mc q̇̇ Ccq̇ Kcq+ + F=

mcjq̇̇cj 2mcjζcjωcjq̇cj mcjωcj
2 qcj+ + Fcj=

ζcj

ωcj
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5       Proposed interaction models

In this chapter, models are proposed that describe the dynamical interaction between the
passengers and the carbody, answering the question of how the passengers influence
carbody structural dynamics and the ride comfort. To the author’s knowledge, no such
studies have been published before. There are, however, studies carried out where a
single rail-vehicle passenger is modelled in order to investigate the dynamics of the
passenger, e.g. [49].

The models proposed here are intentionally simple, leading to equations of motion of a
quite general character. Owing to the generality of the equations of motion, it is
worthwhile to investigate their properties. In particular, the “passenger load parameter”
can be identified as a key parameter of the passenger-carbody interaction. The role
played by similar parameters are discussed by other authors, e.g. [1].

The “passenger load parameter” is a central notion in the present work. It is motivated
and defined in Section 5.1. In Section 5.2, basic interaction models are discussed,
including possible reductions in model size. Ideas on approximate models are presented
in Section 5.3. In Section 5.4, vertical seating dynamics is included in the models. A
summary and conclusions of the contents of the chapter are given in Section 5.5.
Important definitions are collected in Appendix B.1, and the notations are explained in
Appendix B.2.

5.1      Passenger load parameter

5.1.1     Background

Consider the case in which the carbody motion is represented by a single mode shape,
i.e. L=1. The mode has undamped eigenfrequency , relative damping , modal mass

mc=1 kgm2 and modal degree-of-freedom qc. Suppose there are N passengers, each
acting on the carbody by a vertical force Fpi, where i runs from 1 to N. The only forces
considered are vertical. The modal force Fc acting on the carbody mode is then the sum
of the force from each passenger Fpi times the mode’s vertical displacement at the
location of each passenger, here denoted di. That is

(5-1)

The principle is illustrated in Figure 5-1.

ωc ζc

Fc ω( ) diF pi ω( )
i 1=

N

∑=
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Figure  5-1   Forces from the passengers 1 to N on the carbody.

The impedance formulation permits writing each passenger force as a product of the
impedance and the velocity of the carbody at the location of each passenger :

(5-2)

where  is the impedance of passenger i.

Assumption of a mean normalized apparent mass of the human body

The models proposed in this chapter all rely on the assumption that there exists a mean
normalized apparent mass of the human body, cf. equation (4-9) and Figure 4-3.

The impedance of passenger number i is then given by

(5-3)

where mpi is the mass of passenger i. Thus, is assumed to be the same for all

passengers. This approximation does not seem to be inadequate, in view of the
discussion held in [51].

Inserting (5-2) and (5-3) in (5-1) results in the following expression for the modal force

(5-4)

from which one sees that it consists of a frequency-dependent part and

a spatial part .

The system with “N passengers in a carbody” shows resemblances with other general
systems, for instance the “rod with attached damped spring-mass systems” discussed in

d1 di dN
Fp1 Fpi FpN

diiωqc ω( )

F pi ω( ) Z pi ω( )diiωqc ω( )=

Z pi ω( )

T p ω( )

Z pi ω( ) mpiT p ω( )iω=

T p ω( )

Fc ω( ) mpidi
2

i 1=

N

∑ T p ω( )ω2qc ω( )–=

T p ω( )ω2qc ω( )–

mpidi
2

i 1=

N

∑
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[4]. (The rod corresponds to the carbody and the passengers to the attached spring-
damper systems.) The combination of two systems and the impedance coupling method
are discussed in textbooks, for instance [2].

5.1.2     Definition of passenger load parameter

In equation (5-4) one identifies a “passenger load parameter”

(5-5)

This parameter is frequency independent but depends on the passenger mass distribution
as well as the vertical mode-shape values at the location of the passengers. A passenger
sitting in a node of a mode shape does not interact with the mode, since then . It

is worth noting that the apparition of this parameter relies on two assumptions, namely
that
- the normalized apparent mass is assumed to be the same for all passengers, and that
- the system is not excited via the passengers.

For the general case of several carbody mode-shapes, there is one passenger load
parameter per carbody mode-shape

(5-6)

where j runs from 1 to L. The passenger load parameter has the dimension kgm2.

The passenger distribution may be known for a particular case, for instance as in the
measurement in Chapter 3. In general, however, all passenger distributions are equally
probable, and, consequently, the best estimate is

(5-7)

where mp is the mass of a typical average passenger, cf. Section 4.1.2. Then one obtains
a relationship between the passenger load parameter Pj and the “Modal Contribution
Factor” (MCF) proposed in [15], see also Section 2.2.3, namely

(5-8)

The value of MCF depends on the mode shape, and where passengers are to sit. A mode
shape that mainly involves deformations of the roof has a low MCF-value, for instance.

P mpidi
2

i 1=

N

∑=

di 0=

P j mpidij
2

i 1=

N

∑=

mp1 … mpi … mpN mp= = = = =

P j mp dij
2

i 1=

N

∑ Nmp MCF j( )2= =
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Typical values of MCF are given in Table 2-2. From (5-8), it is clear that Pj is

proportional to the total passenger mass .

In summary, the passenger load parameter Pj is a measure of how much carbody mode j
interacts with the passengers, although it does not consider frequency dependency.

5.2      Basic interaction models

5.2.1     One passenger and one carbody mode

Let the passenger (N=1) be represented by Model B, that is equation (4-6), and let the
carbody be represented by a single mode, i.e. by equation (4-15) with L=1, see
Figure 5-2.

Figure  5-2   Model of one human-body and one carbody mode.

The result of a vertical point-force acting on the mode shape depends on the vertical
deformation shape value d of the mode at this particular point. If the undamped circular
eigenfrequency is denoted and the relative damping as , then the equation of

motion of the carbody mode is

M p Nmp=

αmp

1 α–( )mp

k p
cp

zp

zs

F p

mc 1 kgm2= ζc
ωc

F p
dqc

ωc ζc
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(5-9)

where qc is the generalized degree-of-freedom of the carbody mode, and where it is

assumed that  kgm2.

Assume that the unsprung mass in the human-body model stays in permanent contact
with the motion of the carbody at the point where the passenger sits, giving a direct
relation between the carbody generalized degree-of-freedom qc and the vertical degree-
of-freedom of the unsprung mass zs, namely

(5-10)

The resulting mechanical system then has two degrees-of-freedom. If these are chosen as
the carbody generalized degree-of-freedom qc and the vertical degree-of-freedom of the
sprung mass zp then, using equations (4-6), (5-9) and (5-10), the equations of motion of
the two-degree-of-freedom system can be written as

(5-11)

with

(5-12)

The roots  of the coupled system are found by solving the characteristic equation

(5-13)

where the passenger load parameter

(5-14)

is identified as a key parameter, cf. (5-5).

The coefficients in the polynomial in (5-13) are real, and, therefore, any complex roots
are complex-conjugated pairs. The four roots of the coupled system are all functions of
P, as expressed by equation (5-13). In this sense, the parameter P measures the
interaction between the carbody mode and the passenger. As P approaches zero, two of
the roots, i.e. the “carbody-mode roots”, approach the roots of the empty carbody

q̇̇c 2ζcωcq̇c ωc
2qc+ + F pd=
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Mq̇̇ Cq̇ Kq 0=+ +

q
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= M
1 α–( )mp 0

sym 1 αmpd2+
=

C 2
ζ pωpmp ζ p– ωpmpd

sym ζcωc ζ pωpmpd2+
= K

ωp
2 mp ωp

2 mpd–

sym ωc
2 ωp

2 mpd2+
=

λ

ωp
2 2ζ pωpλ 1 α–( )λ2+ +( ) ωc

2 2ζcωcλ λ 2+ +( )

Pλ2 ωp
2 2ζ pωpλ α 1 α–( )λ2+ +( )+ 0=

P mpd2=
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. The other two roots approach the roots of the isolated human-body

model.

Numerical example

In Figure 5-3, root loci for one of the carbody roots and one of the human-body roots are
plotted as a function of the passenger load parameter P, for three sets of human-body
parameters, see Table 5-1. Only roots with positive imaginary parts are shown in the

figure. The passenger load parameter P, cf. (5-14), varies from 0 to 1 kgm2 in steps of

0.05 kgm2.

Table  5-1   Three sets of human-body parameters.

Figure  5-3 Root loci of carbody mode and human-body mode for different sets of

human-body parameters. kgm2 by steps of 0.05 kgm2, circle
corresponds to P=0. Carbody mode G2, cf. Table 3-4. Human-body
parameter sets 1, 2 and 3 from Table 5-1.

1 5 Hz 50% 0.1

2 5 Hz 25% 0.1

3 Unsprung mass 1.0

ω– c ζc i 1 ζc
2–±( )

f p ωp 2π⁄= ζ p α

1

2

3

1
2

1
1

10

-10

ℑ m λ 2π⁄( )
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Passenger mode
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Parameter set 1 corresponds to typical values from [51]. In parameter set 2, passenger
relative-damping has been halved. The third parameter set corresponds to the limiting
case with all passenger mass lumped to the carbody, i.e. .

This example shows that if the passenger is modelled as a single unsprung mass (set 3),
then the carbody-mode eigenfrequency decreases and the relative damping does not
change significantly when P increases. If the passenger is modelled by Model B (set 1
and 2), then carbody-mode relative-damping always increases as P increases as shown
by the figure. Carbody-mode eigenfrequency decreases (set 1), or increases (set 2),
depending on the values taken by the human-body parameters.

The relative damping of the passenger mode decreases with increasing P.

The comparison to measurement results made in Chapter 6 shows that modelling the
human body as an unsprung mass only (set 3) is inappropriate.

The special case of a vertical rigid carbody-model ( and mc being the

carbody mass) merits consideration. In this case (5-13) changes to

(5-15)

showing that the rigid-body motion of the carbody is not affected by the passengers for
an isolated passenger-carbody system ( is still a solution). This is only true for the
ideal case of an isolated passenger-carbody system, however. With the carbody mounted
on the bogies, the system has an eigenfrequency and a relative damping that are
determined by the carbody mass-properties and the characteristics of the suspension.
This eigenfrequency and this relative damping are affected by the passenger load.

5.2.2     Inclusion of several passengers

The model in Section 5.2.1 is now generalized to the case with several passengers
( ), cf. Section 5.1.1 and Figure 5-1. The passengers are assumed to be alike from a

mechanical modelling point of view, i.e. the “human-body parameters” , and

are the same for all passengers, corresponding to the assumption of equation (5-3).

Suppose there are N passengers sitting at different locations and having different masses
mpi. The assumption of equation (5-7) is thus not made. The index i refers to the
passengers and runs from 1 to N. Denote the vertical displacement value of the mode
where each passenger sits by di. Attribute two degrees-of-freedom zpi and zsi to each
passenger. Each passenger is then described by a system corresponding to equation (4-6).

The force on the carbody from passenger i is now to be multiplied with di, and the total
force is obtained by summing over all passengers, so that (5-9) turns into

α 1=

ζc ωc 0= =

mc mp+( ) ωp
2 2ζ pωpλ+( ) mc αmp+( ) 1 α–( )λ2+( )λ2 0=

λ 0=

N 1>
α ωp ζ p
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(5-16)

In this case (5-10) is replaced by

(5-17)

with i running from 1 to N.

The equations of motion for this case may then be written as  with

(5-18)

The characteristic equation of this system has 2N+2 roots. As in the previous case, the

“carbody-mode roots” approach  as P approaches zero, where now

(5-19)

Also as above, two of the roots approach the roots of the isolated human-body mode. The
remaining 2N-2 roots correspond to modes that do not involve any motion of the
carbody, they are redundant.

The redundancy can be used to reduce the system. In fact, by multiplying (5-17) by the
Model B transmissibility TpB and introducing a generalized passenger degree-of-

freedom , the following is achieved
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(5-20)

with i running from 1 to N.

The redundancy and the possibility of reducing the number of degrees-of-freedom rely
on two assumptions, namely that
- the normalized apparent mass Tp is assumed to be the same for all passengers, and that
- the system is not excited via the passengers.

(For Model B, the normalized apparent mass is .)

The equations of motion of the resulting two-degree-of-freedom system can be written as
 with

(5-21)

clearly showing the important role played by P.

The displacement zpi of each passenger may be retrieved from (5-20).

5.2.3     Several passengers and carbody modes

The model in Section 5.2.2 is now further generalized to also include several carbody
modes.

Assume there are N passengers, each described by “Model B”, and L carbody modes
described by equation (4-15). This system will be referred to as the (N,L)-system and is
shown in Figure 5-4.
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sym ωc
2 ωp
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Figure  5-4 N passengers and L carbody modes, referred to as the (N,L)-system.

The system has N passenger degrees-of-freedom and L carbody degrees-of-freedom,
namely the vertical displacement of each passenger, and the modal carbody-degrees-of-
freedom:

(5-22)

Let the carbody modes be indexed by j running from 1 to L, and denote the vertical
displacement value of the carbody mode j where passenger i sits by dij. These

displacements are collected in the  matrix

αmp1
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F p1

d11
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(5-23)

which describes the “geometry” of the interaction. Each column of D may be regarded as
a carbody mode shape restricted to the locations of the passengers. Each row of D
contains the vertical displacements of the carbody mode-shapes at one of the passenger
locations.

The carbody eigenmodes for an empty carbody are by definition uncoupled. The
passengers introduce a coupling between the modes, which is a consequence of the fact
that (5-17) must be replaced by

(5-24)

which also may be written as  with .

The following “passenger load matrix” can be identified in the equations of
motion of the mechanical system of several passengers and carbody mode-shapes:

(5-25)

which also may be written  with

(5-26)

The matrix P is a slight generalization of the passenger load parameter. In fact, the
diagonal terms can be easily recognized as the passenger load parameters defined in
equation (5-6). The off-diagonal terms quantify the coupling that the passengers
introduce between the carbody mode-shapes. If these are zero, then the passengers do not
introduce such a coupling. A numerical example based on the case study is given in
Section 5.3.

The equations of motion are now  where
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(5-27)

with diagonal matrices

(5-28)

and I being the identity matrix representing the orthonormalized masses of the
carbody modes.

The “carbody roots” are now a function of the matrix P. The characteristic equation of
system (5-27) depends only on the human-body parameters, the modal parameters of the
carbody and the passenger load matrix P.

Provided , which is likely in most applications, the (N,L)-system of (5-27) can be
reduced without approximation to a system with 2L degrees-of-freedom, cf. the case for

in Section 5.2.2. The reduction is accomplished by introducing L generalized
passenger degrees-of-freedom qpj instead of the N physical degrees-of-freedom zpi. The
reduced system will be referred to as the (L,L)-system.

The relation between the generalized and the physical passenger-degrees-of-freedom is
analogous to (5-20), namely

(5-29)

with  defined by

The equations of motion for the reduced system are obtained by inserting (5-29) into
(5-27). It reads  with
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(5-30)

This system is analogous to (5-21). From (5-30), it is seen how the carbody mode
degrees-of-freedom are coupled to each other by the off-diagonal terms of the passenger
matrix P, and also how the passenger degrees-of-freedom are coupled to each other. This
means, for instance, that the vertical bending mode and a torsion mode may be coupled
by the passengers yielding mixed torsion-vertical bending modes. Note that ,

and are not necessarily simultaneously diagonalizable. The

reduced system contains less degrees-of-freedom at the price of a loss of diagonality.

The possibility to reduce the system from to 2L, i.e. by N-L degrees-of-freedom,
may also be shown by studying then eigenvalue problem of the (N,L)-system. As stated
in Section 5.2.2, the possibility relies on two assumptions, namely that
- the normalized apparent mass is assumed to be the same for all passengers, and that
- the system is not excited via the passengers.

In short, the first fact yields N-L eigenvectors of the system whose motion is restricted to
the passengers, they do not involve any motion of the carbody. Therefore, by the second
fact, these N-L eigenmodes are not excited and can be removed, thereby reducing the
total number degrees-of-freedom to 2L. The principle is illustrated for N=2 and L=1 in
Figure 5-5.

Figure  5-5 The three eigenmodes of the (N=2,L=1)-system. The one at right can be
removed, since it cannot be excited by any force acting on the carbody.

To end this Section, a somewhat more formal proof this claim.

Proof: Let and . Denote the solutions of the eigenvalue-

problem by There are N such solutions,

since the matrices have dimension N. The eigenvectors np are arbitrary, owing to the

proportionality of the matrices. We want to show, for , that there are exactly
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linearly independent solutions (eigenvectors) of the form to the

eigenvalue-problem with M, C and K defined in (5-27), since
these eigenvectors are the only ones that cannot not be excited by forces on the carbody.
We calculate

Therefore is a solution to if and only if

. The matrix has the same rank as D, namely L. Therefore, the

linear equation has indeterminates, see e.g. [5], which means that

has linearly independent solutions, and, consequently, that there

are solutions (eigenvectors) of the form to the eigenvalue-problem

.

5.3      Approximate models

In this Section, an idea is introduced on how to approximate models. The idea is to
compare two models in terms of their characteristic equations using the passenger load
parameter as a quantifier of the approximation. The idea can be described as a Taylor
expansion, see [5], in the passenger load parameter, of the characteristic equation.

The use of such approximate models is clear from the previous discussion. For instance,
one would like to approximate the off-diagonal terms in P by zero. A question of
whether this would be an adequate approximation then arises. Another, more far-
reaching approximation involves reducing the number of degrees-of-freedom further by
representing the passenger load by a single degree-of-freedom.

The theory is first presented, followed by an analytical and a numerical example, with
values taken from the case study.

It can be shown1 that the characteristic equation of the “exact model” (5-27) is of the
following form

1. The key to the proof is that and that

the number of non-zero roots to the characteristic equation is equal to .
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(5-31)

where and the g:s are polynomials in of order 2N+2L independent of

dij. is the characteristic equation of the uncoupled system, i.e.

 with somewhat simplified notation2.

The coefficients , where k runs from 1 to K, are introduced as a generalization of the

passenger load parameters. The superscript (k) denotes the order of generalization;

is a product of k elements of P. The index l counts the number of terms in the sums.

Definition of an approximate model

An approximate model of the “exact model” (5-27) is a system in which the term

 of its characteristic equation is identical to that of (5-31).

The approximation is adequate provided that the term

is negligible. This is the case if for

.

Two different approximate models (to the exact “(N,L)-model”) are considered in the
following: an “ -model”, that is a system consisting of L uncoupled systems of
the type in equation (5-21), and a “(1,L)-model” that is a model with only one passenger
degree-of-freedom and L carbody degrees-of-freedom.

Using this latter model also means a reduction of the degrees-of-freedom to L+1. Such a
reduction is plausible only if the passenger degrees-of-freedom are not to be calculated
in the subsequent analysis.

Analytical example

Let . Then the equations of motion of the -model can be written as

 with

2. The short-hand notation etc. is used in this Section for where is the

complex conjugate of . In analogy with the above short-hand notation,  should be read .
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(5-32)

Note that this system is obtained from (5-30) by letting the off-diagonal terms in P be
zero. The simplification means that the coupling between carbody modes by the
passengers is neglected. The approximate system (5-32) is much more advantageous
from a computational point of view, owing to the diagonality of P.

The equations of motion for (1,L)-model are  with

(5-33)

These equations are obtained by lumping the total passenger mass to the single

generalized passenger-degree-of-freedom. The modal contribution factors (MCF1 and
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MCF2) are used as mean displacement-values for carbody modes 1 and 2, respectively.
The relation between MCFj and Pj is discussed in Section 5.1.2, where the relation

is shown to hold, if it is assumed that the passengers all have the

same weight.

In the simple case of N=L=2, the polynomial g0 is

using the short-hand notation defined in the

footnote earlier; the polynomial is thus of degree eight.

The characteristic equation of the exact (L,L)-model is, in this case, defined by

(5-34)

As for the -model, it turns out that the only difference is that

The (1,L)-system also has a different :

Thus, according to the definition, both the -model and the (1,L)-model are
approximate models to the exact (L,L)-model.

Numerical example

Let L=5 and consider the carbody-modes G1 to G5 in Chapter 3. Consider the passenger
distribution “Middle” in Figure 3-6. The number of passenger groups is N=8. The modal
parameters, the passenger mass-distribution, the vertical mode-shape-values and the P-
matrix are summarized in Table 5-2, Table 5-3 and Table 5-4.

Table  5-2 Modal parameters of carbody-modes G1 to G5.

j 1 2 3 4 5

fcj (Hz) 8.1 9.2 12.5 13.5 18.2

 (%) 3.7 1.6 1.5 4.4 3.4

P j Nmp MCF j( )2=

g0 λ( ) λ λ p–( )2 λ λ c1–( ) λ λ c2–( )=

P1
1( ) P1 mp1d11

2 mp2d21
2+= = g11 λ( ) λ λ λ p–( ) λ λ c2–( )=

P2
1( ) P2 mp1d12

2 mp2d22
2+= = g12 λ( ) λ λ λ p–( ) λ λ c1–( )=

P1
2( ) mp1mp2 d11d22 d12d21–( )2= g21 λ( ) λ2=

L 1 1( , )×

P1
2( ) P1P2=

g21

P1
2( ) P1P2= g21 λ( ) λ2 1–=

L 1 1( , )×

ζcj
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Table  5-3 Passenger-group masses and vertical mode-shape values. Carbody-
modes G1 to G5 and case “Middle”.

Table  5-4 The P-matrix for carbody-modes G1 to G5. [kgm2]

The human-body parameters are ,  Hz and .

In Figure 5-6, a comparison, in terms of root locus, between the “exact” (L,L)-model
(dots), the -model (circles) and the (1,L)-model (crosses) is shown.

As is evident from the figure, all three models lie closely together in their prediction.
Measured values for the empty carbody, cf. Table 3-4, are indicated (by stars) for the
sake of comparison. Both approximate models are thus appropriate. The largest
difference appears for modes G1 and G4 using the (1,L)-model. Here, also, the
magnitude of the passenger load parameters Pj are well below 1. The highest value is

0.135 kgm2, see Table 5-4. The second-order-generalized passenger-load parameters are

therefore small, in the order of 0.01 kg2m4.

i 1 2 3 4 5 6 7 8

mpi [kg] 209 245 398 386 262 160 259 290

di1 [mm] -5.3 -4.5 3.6 -5.8 3.7 2.4 -5.5 2.9

di2 [mm] 4.5 4.9 7.6 7.8 5.2 4.0 6.9 6.8

di3 [mm] -4.2 7.9 3.7 4.6 -1.7 3.3 -2.4 2.0

di4 [mm] -6.4 -4.0 11.6 10.2 -1.7 5.2 2.3 4.1

di5 [mm] 6.3 -4.9 7.8 3.9 -3.1 7.0 9.2 14.2

G1 G2 G3 G4 G5

G1 0.044 -0.015 0.004 0.006 -0.001

G2 0.092 0.030 0.068 0.080

G3 0.038 0.038 0.011

G4 0.118 0.007

G5 sym 0.135

α 0.1= f p 6= ζ p 0.5=

L 1 1( , )×
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Figure  5-6 Root-locus comparison between the (L,L)-model (dots), the -
model (circles) and the (1,L)-model (crosses). N.B. the scale. Measured
values for the empty carbody are indicated (stars) for comparison.

5.4      Inclusion of seating dynamics

5.4.1     Passenger and seat model

The following model is adopted from [44]. Consider a passenger with impedance

sitting on a seat modelled by the seat model 1 in Figure 4-5. The resulting system is
illustrated in Figure 5-7.

Figure  5-7 Passenger and seat model.
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Force equilibrium at the top of the spring yields

(5-35)

from which the seat transmissibility, i.e. the frequency-response function between the
displacements zs and zf, i.e. , is

(5-36)

From Figure 5-7, it is clear that the mass ms follows the passenger. It represents the upper
part of the seat-pan. It may be weighing some tenths of a kilogram and might therefore
be neglected as compared to the weight of the seat occupant.

As the magnitude of S increases, corresponding to a stiffer seat, the seat transmissibility
approaches unity. In other words, sitting on an infinitely stiff seat is like sitting

directly on the floor.

The force  is

(5-37)

From equation (5-37), one finds that this passenger-seat impedance

is

(5-38)

The normalized apparent mass of the passenger-seat system is, in analogy with (4-9):

(5-39)

If is assumed to be a constant, then the normalized apparent mass of the

passenger-seat system becomes independent of the individual body mass. This
simplifying assumption is made here by making the (stronger) assumption

(5-40)

This approximation should be adequate, since ms is small compared to mp. The
assumption will make the passenger load parameter useful, also in this case, where seat
transmissibility is taken into account.

S ω( ) z f zs–( ) Z p ω( )iω msω2–( )zs=

zs z f⁄

T s ω( ) S ω( )
S ω( ) Z p ω( )iω msω2–+
------------------------------------------------------------=

T s ω( )

F p s+

F p s+ S= ω( ) z f zs–( ) Z p ω( )iω msω2–( )zs Z p ω( )iω msω2–( )T s ω( )z f= =

Z p s+ ω( )
F p s+

zsiω
-------------=

Z p s+ ω( ) Z p ω( ) msiω+( )T s ω( )=

T p s+ ω( ) T p ω( ) ms mp⁄+( )T s ω( )=

ms mp⁄

ms mp⁄ 0=
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Finally, one may note that the passenger-seat normalized apparent mass is

proportional to the seat transmissibility , and that for a totally stiff seat

 holds.

5.4.2     Passenger-seat-carbody model

To begin with, one passenger on a seat and one carbody mode are considered. Let the
passenger be represented by Model B and the seat by Model 2, see Figure 5-8.

Figure  5-8 Proposed passenger-seat-carbody model.

The unsprung mass in the human-body model stays in permanent contact with the seat-
pan motion, that is the zs of the human-body model is identical to the zs of the seat
model. Moreover, zf is directly related to qc by

(5-41)

cf. (5-10). The equations of motion of the system are then  with

T p s+ ω( )

T s ω( )

T p s+ ω( ) T p ω( )=

αmp

1 α–( )mp

k p
cp

ks
cs

ζc ωc

dqc

F p s+
F p s+

mc 1 kgm2=

zp

zs

z f

z f dqc=

Mq̇̇ Cq̇ Kq 0=+ +
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(5-42)

The characteristic equation for the passenger-seat-carbody model is

(5-43)

Note that this equation is identical to (5-13) for .

Hence, in a sense the quotient quantifies the relative importance of the seat

dynamics. It would be convenient if the seat parameters cs and ks were proportional to
mp, since this would simplify the equations of motion and the characteristic equation. In
fact, since many current conventional seats tend to have a vertical resonance frequency
close to 4 Hz [44], ks is, in a sense, proportional to mp. The proportionality does not

necessarily hold for cs, however. But, if (5-7) is assumed, then the quotient is the

same for all passengers.

Numerical example

In the following example ks is varied in the interval of for

a person weighing 80 kg. The choice of seat parameters is based on fitted parameter
values, see Figure 3-14 and Figure 6-6. In Figure 5-9 the sensitivity of the relative
damping towards seat stiffness is illustrated.
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Figure  5-9 Relative damping of the carbody mode G2 as a function of the
passenger load parameter P. Illustration of the sensitivity towards seat
stiffness. The dotted line corresponds to very high seat stiffness. The solid
line corresponds to a typical value of ks (80 kN/m for a person weighing
80 kg). The dashed lines show the result of a 20% variation in seat
stiffness.

From Figure 5-9, it is obvious that the introduction of the seat in the model has a
significant influence on the interaction between carbody and passengers. For a seat with a
very high stiffness, the curve, i.e. the dotted curve, approaches that of the passenger-
carbody model. For a softer seat, the predicted interaction between passenger and
carbody becomes less important owing to the fact that the passengers are then more
loosely coupled to the carbody.

5.4.3     Several passengers, seats and carbody modes

The passenger-seat-carbody model can be generalized to include N passengers, N seats
and L carbody modes, referred to as the (N+N,L)-model. In this case (5-41) changes to

(5-44)

The equations of motion are analogous to (5-42) and read  with
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(5-45)

where

with and being, respectively, the stiffness and damping

constants of the seats. It is clear from (5-45) that if it is assumed that Ks and Cs are
proportional to Mp, then the P-matrix will again appear in the equations of motion. As in
the simpler case of Section 5.4.2, the assumption that Ks is proportional to Mp seems
reasonable, in view of the measurements presented in [52]. The assumption on Cs might
be less adequate, although it would simplify the equations. It would, for instance, be then
possible to reduce the system to an exact (L+L,L) system, in analogy with the reduction

made in Section 5.2.3. Here also, quotients of the type may be studied in

order to quantify the relative importance of the seat properties.

5.4.4     Seat transmissibility

The parameters cs and ks in Figure 5-8 may be estimated from measured seat

transmissibility using equation (5-36) with . However, this expression also

contains the human-body impedance of the seat occupant, which in modelling depends
on the undamped circular eigenfrequency , the relative damping , the fraction of

unsprung mass and the mass mp. Therefore, assuming the mass mp is known, the
remaining five parameters must be obtained simultaneously by curve-fitting. This is
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possible because a variation of the different parameters yields different changes in the
shape of the transmissibility curves. Moreover, the human-body parameters should differ
only little from standard values. The influence of the variation of ks and cs is illustrated in
Figure 5-10, cf. Figure 4-4. See also Section 6.2.

Figure  5-10 Seat transmissibility. Dashed lines: % variation of the parameter ks.

Dotted lines: % variation of the parameter cs. Nominal passenger
and seat parameters as in Figure 5-9.

5.5      Summary and conclusions

In summary, the proposed models of the passenger-carbody interaction that are derived
in this chapter are simple and general. They are intended to explain and estimate the
main influence of the passengers on the carbody dynamics and to predict vibration levels
for ride-comfort evaluation. The passengers are modelled by human-body models found
in literature. A modal model of the carbody is used.

The main assumption on which these simple models are based is that the passengers are
supposed to be alike, viewed as mechanical systems. Their normalized apparent mass, a
term used by [51], is assumed to be the same for each passenger. Important key
parameter are the passenger load parameters, or in a more generalized form, the
“passenger load matrix”. It describes how the passengers affect each individual carbody
mode, and also how they couple the carbody modes to each other.
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The passenger-carbody model is equivalent to the case with infinitely stiff seats.

Simple seat models are difficult to achieve, owing to the complexity and diversity in
design. Here, a simple vertical seat model is proposed, but it is based on quite far-
reaching assumptions. Firstly, it is a priori only applicable to seats of the same type as in
the case study. Secondly, it is assumed that the only interaction that takes place between
seat and passenger is a vertical force at the seat pan. However, the model allows one to
describe how seat stiffness and damping affects the passenger-carbody interaction, at
least in principle.

A contribution is made to the field of what might be called reduction and approximation
theory. It is shown that the dynamics of L carbody modes and N>L passengers can be
reduced without approximation to a system with 2L degrees-of-freedom, provided that
each passenger is modelled by a single degree-of-freedom. The idea of approximate
models is introduced, meaning that dynamical systems are compared in terms of their
characteristic equation and the passenger load parameter. The same principles can be
used when seating dynamics is considered.

The proposed interaction models are validated against measurements in Chapter 6, and
they are implemented and utilized in time-domain simulations in Chapter 7.
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6       Comparison of model and measurement results

The predictions of the proposed models of Chapter 5 are compared here with results of
the measurements in Chapter 3. Essentially two types of measurements have been made:
passenger-load measurements, see Section 6.1, and seat-transmissibility measurements,
see Section 6.2

6.1      Passenger load

Measurements and model predictions are compared here in terms of root loci of the
carbody modes and in terms of frequency-response curves. The two passenger
distributions “Middle” and “Ends” are considered, with N=8 and 10, respectively, cf.
Figure 3-6. In the model predictions, the P-values obtained from the measurements are
used, see Table 5-4. Also, the measured carbody eigenfrequencies and the relative-
damping values of the empty carbody are used in the model prediction.

Figure 6-1 shows measurement results for the excitation amplitude of “50%”.

Figure  6-1 Measured, i.e. synthesized, root loci of five carbody modes for empty
carbody and two different passenger distributions. Amplitude, “50%”.
N.B. the scale. Stars: empty carbody, circles: passenger distribution
“Ends” and crosses: passenger distribution “Middle”.

The figure summarizes the results of the passenger-load measurements by showing root
loci for the five identified global carbody modes for the passenger distributions “Middle”
and “Ends” as well as for the empty carbody. An alternative view is given in Figure 3-13,
which also contains information on the P-values. As observed in connection to that
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figure, the main trends are an almost linear increase in relative damping with P, and a
linear change (an increase in most cases) in undamped eigenfrequency with P.

Two types of models are considered here, the passenger-carbody model proposed in
Section 5.2.3 and the passenger-seat-carbody model proposed in Section 5.4.3. It is
shown in Section 5.3 that the reduced (L,L)-model, the approximate -model and
the approximate (1,L)-model give almost identical results for the SJ-B7M vehicle. Only
results of the reduced (L,L)-passenger-carbody model and the (L+L,L) passenger-seat-
carbody model are therefore shown here.

All model results are based on the “50%-amplitude” P-values, and can thus be compared
to the root loci of Figure 6-1.

Figure 6-2 shows the root loci of the proposed (L,L)-passenger-carbody model.

Figure  6-2 Predicted root loci of five carbody modes for empty carbody and two
different passenger distributions. Proposed (L,L)-passenger-carbody
model with L=5, fp = 6 Hz, and = 0.1. N.B. the scale. Stars:

empty carbody (identical to measurements), circles: passenger
distribution “Ends” and crosses: passenger distribution “Middle”. To be
compared with Figure 6-1.

The trends observed in the measurement data are captured in the predictions, the order of
crosses and stars are the same, and the relative spacing between the stars, crosses and
circles is satisfactory. The predicted interaction is nevertheless exaggerated, i.e. the
absolute spacing is too large (G1 being an exception), but this is not surprising, since an
infinitely stiff seat is assumed in the prediction model. But the “slope”, as defined in
Figure 6-2, is, in some cases, inclined in the wrong direction.
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Figure 6-3 shows the prediction of the proposed (L+L,L)-passenger-seat-carbody model
with the seat and human-body parameters obtained from the seat-transmissibility
measurements presented in Section 6.2: fp = 6 Hz, = 0.5, = 0.1, cs = 250 Ns/m and

ks = 84 kN/m for a human-body mass of mp = 80 kg.

Figure  6-3 Predicted root loci of five carbody modes for empty carbody and two
different passenger distributions. Proposed (L+L,L)-passenger-seat-
carbody model with L=5, fp = 6 Hz, , = 0.1, cs = 250 Ns/m,

ks = 84 kN/m and ms = 0 for mp = 80 kg. N.B. the scale. Stars: empty
carbody (identical to measurements), circles: passenger distribution
“Ends” and crosses: passenger distribution “Middle”.

As seen from the figure, the passenger-seat-carbody model predicts significantly smaller
interaction than the passenger-carbody model does. This is expected as discussed in
Section 5.4; for a softer seat the predicted interaction between passenger and carbody
becomes less important owing to the fact that the passenger are more loosely coupled to
the carbody. The passenger-seat-carbody model also predicts a smaller interaction than
what is observed in the measurements, cf. Figure 6-1. However, the predicted “slopes”
generally agree better with the measurements for the passenger-seat-carbody model than
for the passenger-carbody model.

Based on the measurements, one may conclude that the passenger-carbody model gives a
suitable upper-boundary, while the passenger-seat-carbody model gives a lower
boundary for the interaction.

ζ p α

1
-1

10

ℑ m λ 2π⁄( )

ℜ e λ 2π⁄( )

G5

G4

G3

G2
G1

“slope”

ζ p 0.5= α



Comparison of model and measurement results

78

Figure  6-4 Predicted point accelerance (magnitude). Proposed (L,L)-passenger-
carbody model with L=5, fp=6 Hz, and =0.1. Solid line:

empty carbody (identical to Figure 3-10), dotted line: passenger
distribution “Ends” and dashed line: passenger distribution “Middle”.
To be compared with Figure 3-9 and Figure 3-10.

Figure 6-4 and Figure 6-5 show the predicted point accelerance based on the (L,L)-
passenger-carbody and the (L+L,L)-passenger-seat-carbody model, respectively. The
point accelerance is obtained by including an external force acting on the five carbody
modes in the equations of motion in Chapter 5. The vertical displacement values at the
excitation point are used to calculate the modal forces on the five carbody modes.

A comparison of these to the synthesized point accelerance in Figure 3-10 and the
measured point accelerance in Figure 3-9 gives an idea of how faithful the models are.
The passenger-carbody model shows the best agreement for modes G1 and G5, while the
passenger-seat-carbody model is better for the modes G2, G3 and G4. The synthesized
point accelerance lies in between the two predicted accelerance curves, which supports
the statement above that the passenger-carbody model seems to give a suitable upper-
boundary, while the passenger-seat-carbody model gives a lower boundary for the
interaction.
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Figure  6-5 Predicted point accelerance (magnitude). Proposed (L+L,L)-passenger-
seat-carbody model with L=5, fp=6 Hz, = 0.5, = 0.1, cs = 250 Ns/m,

ks= 84 kN/m and ms = 0 for mp = 80 kg. Solid line: empty carbody
(identical to Figure 3-10), dotted line: passenger distribution “Ends” and
dashed line: passenger distribution “Middle”. To be compared with
Figure 3-9 and Figure 3-10.

6.2      Seat transmissibility

The seat-transmissibility measurements make it possible to estimate the dynamical
parameters of the seat, i.e. the seat stiffness and the seat damping.

Figure 6-6 shows the measured seat transmissibility of seat 24 in the SJ-B7M vehicle and
a corresponding fitted-model seat transmissibility. The solid line corresponds to the seat
transmissibility measured at a “100%” excitation amplitude, cf. Figure 3-14. The dashed
line corresponds to the model prediction with fitted seat parameters. The fitting was
made manually focusing on the measured magnitude peak at 4 Hz, and the magnitude for
frequencies above 10 Hz. The passenger-seat model of Section 5.4.2 is used, that is the
seat-pan mass is neglected. Nearly average human-body parameter values are obtained:
fp = 6 Hz, = 0.5 and = 0.1. The fitted seat parameters are cs = 250 Ns/m and ks = 84

kN/m. The weight of the seat occupant is mp=80 kg.
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Figure  6-6 Measured and fitted model seat transmissibility. Solid line: measured.
Dashed line: fitted model.

It is clear that the model does not reproduce all features of the measured seat
transmissibility. The peak at 6 Hz is neglected, for instance. And the fit of the phase is
poor above 5 Hz. However, the fit at the peak of 4 Hz is rather good, and the parameter
values obtained are reasonable. It should also be kept in mind that, ideally, the model
response should have been compared with seat-transmissibility measurements for all 35
passengers.

6.3      Conclusions

In conclusion, the comparison is rather favourable for the proposed models, and the
passenger distribution can be taken into account using the passenger load parameter.

The passenger-carbody model overestimates the interaction, whereas the passenger-seat-
carbody model gives a lower boundary for the interaction. As concluded in Section 5.5,
the assumptions made for the passenger-seat models are far-reaching, and, therefore, the
predictions may not be expected to be fully reliable. However, in view of the comparison
presented in the present chapter, it seems as though the passenger-seat-carbody model is
adequate and useful, at least to give a lower boundary for the interaction. Finally, it is
worthwhile to repeat, in this context, the comment made in relation to Figure 5-3, that the
alternative to model the passengers as unsprung masses is not recommended, since such
a model fails to predict the increase in relative damping and it also underestimates the
eigenfrequencies.
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7       Track-induced passenger-carbody interaction

7.1      Implementation of passenger models for simulation

The measurements and the models presented in Chapters 3 and 5, as well as the results of
Chapter 6, point to some basic mechanisms in the interaction between passengers and
carbody global mode-shapes, but when it comes to implementation in a simulation
software for rail-vehicle dynamics, a number of additional questions arise, such as: how
accurate is available data? How accurate is the rest of the model? What should be
predicted? What level of accuracy in prediction is needed? Is computational time
crucial? Are model complexity and user-friendliness crucial?

The model choice stands between:
- the passenger-carbody model or the passenger-seat-carbody model
- using the original, the reduced or an approximate model.

From the validation carried out in the previous chapter it is concluded that the passenger-
carbody model gives a reasonable upper boundary for the interaction. The passenger-
seat-carbody model, on the other hand, gives a reasonable lower boundary. Here, both
the passenger-carbody model and the passenger-seat-carbody model are therefore
implemented in the GENSYS model described in Chapter 2.

It is shown in Chapter 5 that the (1,L)-model is an adequate approximation of the original
(N,L)-model, at least in terms of root locus for the measured cases. Here, both a (1,L)-
model and an (N,L)-model are implemented. From a computational viewpoint, the (1,L)-
model is preferable, since it introduces only one extra degree-of-freedom, whereas the
original model needs N extra degrees-of-freedom. 2N extra degrees-of freedom are
needed for the original passenger-seat-carbody model.

In practice, the reduced models cannot be straightforwardly used without implementing
the reduction process into the core of the simulation code. Note also that there must be
three passenger degrees-of-freedom corresponding to carbody bounce (vertical
displacement), roll (rotation about the longitudinal axis) and pitch (rotation about the
lateral axis), respectively, for the reduced passenger-carbody model, giving L+3
passenger degrees-of-freedom. The kind of implementation mentioned above is not
made here.

Four models are thus demonstrated in this chapter:
- the (N,L)-passenger-carbody model
- the (1,L)-passenger-carbody model
- the (N+N,L)-passenger-seat-carbody model and
- the (1+1,L)-passenger-seat-carbody model.

A short note on the actual implementation: the carbody structural modes are added to the
rigid carbody modes. The unsprung mass of the passengers, , where Mp denotes the

total mass of the passengers, is modelled by adding mass and the corresponding
moments of inertia to the original carbody mass-properties. The coupling to the carbody

αM p
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rigid-body modes is thus taken into account. However, in the longitudinal direction, in
the lateral direction and in yaw (rotation about vertical axis), the total mass must be
added, since only vertical forces between passengers and carbody are considered in the
present models. The unsprung part of the passengers are modelled as masses with only a
vertical degree-of-freedom. The masses are mounted on linear springs and linear viscous
dampers attached to the carbody. For the (1,L)-model and the (1+1,L)-model, the MCF
are used as generalized vertical displacements, cf. (5-33).

7.2      Example: Complete simulation

The present example builds on the measurements and simulations presented in Section
2.1. In Figure 2-10, results from measurement and simulation are compared in terms of
comfort-weighted vertical r.m.s.-values of acceleration. Here, the same simulation model
is used, modified only to include passengers and seats. The main aim of this example is
to investigate the influence of passenger load on ride comfort.

The human body parameters are fp = 6 Hz, = 0.5 and = 0.1. The seat parameters

are ms = 0 kg, ks =75 kN/m and cs = 300 Ns/m for the assumed average human-body
mass of mp = 75 kg. The carbody modal-contribution-factors (MCF) of the eight
calculated modes, cf. Figure 2-9, are given in Table 2-2. The relation between MCF and
P is discussed in Section 5.1.2. The same carbody relative damping as in [13], that is 1%,
is used for the sake of comparison. Here N=10, corresponding to the 10 acceleration
positions in the side-sills used during the on-track measurements, cf. Figure 2-1. The
mass of several passengers is thus lumped to each one of the accelerometer positions.

Two parameter studies are carried out. In Section 7.2.1, the total passenger mass Mp is
varied between 0 and 6,000 kg, corresponding to a full vehicle with 80 passengers. In
Section 7.2.2, the passengers are not included, but the carbody relative damping is
varied. The aim of the latter sensitivity study is twofold. Firstly, to show how the
influence of the passenger load on the carbody mode-shape can be approximately
modelled by increasing the relative damping of the carbody mode-shapes. In this case,
however, it is difficult to decide how much relative damping should be increased, but
once again, the passenger-load parameters can be used, cf. Figure 5-9. The second aim is
to investigate how sensitive ride comfort is to carbody relative damping. It is worthwhile
to repeat in this context that the carbody relative damping is seldom known exactly in
practice.

7.2.1     Parameter study: Passenger mass

Figure 7-1 shows the prediction made by an (N,L)-model with N=10 passenger groups
and L=8 carbody mode shapes. The simulation results can thus be compared with those
of Figure 2-10.

In this case, the total number of carbody modes that interact with the passengers is
8+3=11, including the three carbody rigid-body modes bounce, roll and pitch. Since, in
this case L=8, only the (1,L) and (1+1,L) models imply a reduction.

ζ p α
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Figure  7-1 Comfort-weighted vertical acceleration (r.m.s.) in side-sills in carbody
middle and over bogies as a function of total passenger mass predicted
by the (N,L)-passenger-carbody model. White corresponds to rigid-body
motion and black corresponds to structural-flexibility vibration.

Comfort-weighted r.m.s.-values of vertical acceleration in the side-sills of the carbody
middle and over the bogies are shown. Average values of two and four points,
respectively, are used. White corresponds to the frequency interval of 0.3 to 7 Hz
(essentially rigid-body motion) and black corresponds to the frequency interval of 7 to
20 Hz (essentially structural-flexibility vibration). Note that these cannot be added
directly to obtain the total r.m.s.-value. See also Figure 2-10. As observed in Section 2.1,
the agreement between simulated and measured rigid-body motion (0.3 to 7 Hz) is good,
while structural-flexibility vibration (7 to 20 Hz) is not fully excited in the simulation as
compared to the measurements.

The passengers influence both rigid-body vibration and structural flexibility vibration
according to the simulations. The structural flexibility comfort-weighted vibration (r.m.s)
decreases by some 30% for a fully loaded vehicle. The change in rigid-body vibration is
smaller.

Figure 7-2 shows the simulation results obtained with the (1,L)-passenger-carbody
model. The values in the carbody middle differ little from those of the (N,L)-model, but
the decrease in acceleration over the bogies is smaller using this (1,L)-model.
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Figure  7-2 Comfort-weighted vertical acceleration (r.m.s.) in side-sills in carbody
middle and over bogies as a function of total passenger mass predicted
by the (1,L)-passenger-carbody model.

In top of Figure 7-3, the prediction made by the (N+N,L)-passenger-seat-model is shown.
It is to be compared with the predictions of the (N,L)-passenger-carbody model in Figure
7-1. The (N+N,L)-model also predicts a decrease in structural vibration level when
passengers are introduced, although the decrease is less than for the corresponding
passenger-carbody model in Figure 7-1. Structural vibration in the middle of the carbody
is predicted to decrease by some 15%, while the corresponding value over the bogies is
some 3% for a fully loaded vehicle.

Note that the predictions in Figure 7-3 concern the vibration level at the floor, or here
rather in the side-sills. In order to obtain the corresponding vibration levels at the seat-
pan, measured, or modelled, seat-transmissibility curves, cf. Figure 6-6, can be utilized.

The prediction made by (1+1,L)-passenger-seat-carbody model, cf. bottom of Figure 7-3,
is quite similar to that of the exact (N+N,L)-passenger-seat-carbody-model. This
supports the conclusions made in Section 5.3, namely that the approximate models
should give fairly accurate results, cf. Figure 5-6.

From the model validation in Chapter 6 one would judge that the “true” values lie
somewhere in between the predictions made by the passenger-carbody models and the
passenger-seat-carbody models, somewhat closer to the prediction by the passenger-seat-
carbody model.
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Figure  7-3 Comfort-weighted vertical acceleration (r.m.s.) in side-sills in carbody
middle and over bogies as a function of total passenger mass predicted
by the (N+N,L)- and (1+1,L)-passenger-seat-carbody models.
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7.2.2     Parameter study: Carbody relative damping

The measurements presented in Chapter 3 showed that the main influence of passenger
loading is an increase of relative damping of the carbody structural modes. Therefore, a
brief parameter study of the carbody relative damping is conducted. The passenger
models are not used here.

Figure 7-4 shows comfort-weighted vertical acceleration (r.m.s.) in the side-sills in
carbody middle and over bogies as a function of carbody relative damping. The same
relative damping is given to all modes.

As can be seen, an increase of carbody relative damping from 1% to 4% gives results
similar to an increase in passenger mass from 0 to 6,000 kg. This agrees with previous
prediction on how much the relative damping of the carbody-dominated modes increases
as a function of the passenger load, cf. Figure 7-1 and Figure 3-13.

Figure  7-4 Comfort weighted vertical acceleration (r.m.s.) in side-sills in carbody
middle and over bogies as a function of carbody relative damping. A
relative damping of 1% is also used in Section 7.2.1 and in the case study
in Chapter 2. The passenger models are not used.

7.3      Conclusions

The parameter studies that are conducted in this chapter show that passengers would
have an appreciable influence on the dynamics of the carbody and on ride comfort. The
main influence can be seen as an increased damping of the carbody structural modes.

1 2 3 4
0

0.05

0.1

0.15

A
cc

el
er

at
io

n 
[m

/s
2]

1 2 3 4
0

0.05

0.1

0.15

A
cc

el
er

at
io

n 
[m

/s
2]

Vertically, in carbody middle

Vertically, over bogies

Measured

. .

Simulated,
ζc = 1%

Simulated,
ζc = 2%

Simulated,
ζc = 4%

Measured

. .

Simulated,
ζc = 1%

Simulated,
ζc = 2%

Simulated,
ζc = 4%

 White: Rigid body (0.3-7 Hz) Black: Structural flexibility (7-20 Hz)



Carbody and Passengers in Rail Vehicle Dynamics

87

However, for a more complete picture of the dynamics involved, the passenger(-seat)-
carbody models are recommended. They are easy to implement and the increase in
computational cost is minimal. Primarily, the passenger-carbody model is recommended,
since it gives an upper boundary on the interaction, although it probably underestimates
the vibration levels, cf. Section 6.3. Also, it relies on easily accessible data. If seat
parameters are available, however, then the model can easily be extended to include the
seats.

Note that, in order to predict acceleration levels and ride comfort at the seat-pan, a model
of the seat is needed. Seat-transmissibility curves contain valuable information to this
end.

There is another important aspect, namely the reliability of the rail-vehicle model as
such. If the predictions made by the rail-vehicle model are not reliable, then it is not
worthwhile to include the passengers. Previous work [13] showed that the excitation of
the carbody modes in the simulation is quite sensitive to a number of factors, in
particular the modelling of the carbody-bogie interface.

Also, the relative-damping values of the empty carbody are an important aspect. Often
these values are not known reliably. They cannot be calculated from finite-element
models, since it would require a detailed knowledge of the damping mechanisms of the
entire structure. The values may be obtained by experimental modal analysis, but this
supposes that the vehicle in question exists. Often rules-of-thumb are used, with values
ranging from 2% to 5% [6], which is in the same range as the possible additional
damping due to passengers. There is also, as observed earlier, a dependence on excitation
amplitude.

In conclusion, the simple and easy-to-use models presented here are recommended to be
used to model the passengers whenever the rest of the vehicle model is fully reliable.
One must be aware of the simplifications, in particular that only vertical forces are taken
into account between passengers, seats and carbody.

Finally, to conclude this chapter, some recommendations are given.

Practical recommendations on how to model passengers in rail vehicle dynamics

Based on the present case study, the following recommendations are given on how to
model and estimate the influence of passenger load on ride comfort.

The best alternative is to implement the reduced models into the simulation software.
The number of degrees-of-freedom would then be kept to a minimum, and a high level of
user-friendliness could be achieved. The only required input data would be the total
passenger mass Mp and a specification of the area in which passengers are to sit. Seat
stiffness and damping constants could also be input. The software would then calculate
(and output) the informative P-matrix, and perform the necessary reduction before
starting the simulation.

But, in case the reduced models are not implemented, the following is recommended:
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No carbody relative damping data is available
Set carbody relative damping to 2% for the empty vehicle.
Set carbody relative damping to 4% for the fully loaded vehicle.
Add passenger mass and resulting moments of inertia to rigid carbody
modes.

Carbody relative damping data available, but the modelling of the inner floor is poor.
Use available carbody relative damping for empty vehicle.
Increase carbody relative damping by 2% for fully loaded vehicle.
Add passenger mass and resulting moments of inertia to rigid carbody
modes.

Carbody relative damping is data available and the modelling of the inner floor is good.
It is highly recommended that the P-matrix be calculated, since it gives
information on which carbody modes are important, and also what modes
that risk being coupled by the passengers.
Let L be the number of carbody modes (typically 10), and Mp (typically
6,000 kg) be the total passenger mass. Choose N representative locations
where passengers are seated. N should be equal to L+3 or slightly superior.
Attach a point mass with a vertical degree-of-freedom (only) to each one of
the N chosen points. The mass should be mounted on a linear spring and a
linear viscous damper in parallel, with the following data:
Mass:  kg

Spring:  N/m

Damper:  Ns/m

Add mass and moments of inertia to the rigid carbody corresponding to
in vertical, roll and pitch directions, and corresponding to Mp in

longitudinal, lateral and yaw directions.

As in the previous case, but seat data is also available.
As above, it is highly recommended that the P-matrix be calculated.
The seat is modelled by a linear spring and a linear viscous damper.
(Typically, for a person weighing 75 kg: ks=75 kN/m and cs=250 Ns/m.)
A mass with a vertical degree-of-freedom should be mounted at each one of
the N chosen locations. Data:
Mass:  kg

Spring:  N/m

Damper:  Ns/m

Mount another mass on the top of each mass, with
Mass:  kg

Spring:  N/m

Damper:  Ns/m

Add mass and moments of inertia corresponding to Mp to the rigid carbody
in longitudinal, lateral and yaw directions.

0.9 M p N⁄⋅

M p N 4 π2 25⋅ ⋅ ⋅⁄

M p N 4 π 0.5⋅ ⋅ ⋅⁄ 5⋅

0.1 M p⋅

0.1 M p N⁄⋅

M p N⁄ 75⁄ ks⋅

M p N⁄ 75⁄ cs⋅

0.9 M p N⁄⋅

M p N 4 π2 25⋅ ⋅ ⋅⁄

M p N 4 π 0.5⋅ ⋅ ⋅⁄ 5⋅
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8       Concluding remarks

8.1      Conclusions

On the one hand, a set of on-track measurements of carbody operating-deflection shapes
and spectral analysis of acceleration in the carbody show that the structural flexibility of
the carbody accounts for a substantial part of the vertical vibration level. On the other
hand, previous simulation with a flexible multibody model of the corresponding rail
vehicle shows that there are several factors to which simulation results are sensitive.
These two facts, the importance and the sensitivity, emphasize the need for validated
models of the carbody in rail-vehicle dynamics. Also, customer demand on good ride
comfort and present standards put the passengers in focus, calling for validated models
of the passenger-vehicle interaction.

From the present work, which investigates these matters, several types of conclusions
may be drawn, e.g. regarding the studied vehicle, on the use of various measurement
techniques and the reliability of various models and simulation results.

To begin with, the study of carbody, passenger and ride comfort in rail-vehicle dynamics
has many aspects and involves a number of disciplines from physiology, via mathematics
and mechanics, to vibration measurements. Some kind of limitation is necessary, and the
present study concentrates on the system dynamics aspects; how do the mechanical
systems interact?

It must be concluded that available software for modelling and performing simulation of
a flexible carbody in rail-vehicle dynamics meets simulation needs well. There is,
however, a need of guidelines for how to model carbody structural flexibility. Correct
model data is essential, although not sufficient. Equally important is an awareness of the
sensitivity of the vehicle model.

One conclusion drawn from the on-track measurements is that operating-deflection-
shape analysis together with power-spectral analysis constitutes a powerful tool
investigating vibrations, and, in particular, vibrations that are due to structural flexibility,
in the carbody.

The proposed four criteria for selecting important carbody mode shapes should be seen
as guidelines in finding the essentials of the carbody dynamics from a ride comfort point
of view. One of the criteria, i.e. the modal-contribution-factor criterion, is shown to play
an important role as a key parameter in the dynamical system consisting of passengers
and carbody. As a generalization a “passenger load parameter”, also taking into account
the mass distribution of the passengers, is proposed.

The experimental-modal-analysis measurements of the passenger-carbody system show
that the interaction between passengers and carbody is significant. The measurements
also show that the excitation amplitude has a significant influence on the modal
parameters of the carbody eigenmodes. A trend can be established that relative damping
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of the carbody-dominated eigenmodes increases with passenger load. The
eigenfrequency increases with passenger load in most cases.

The increase in damping is predicted by a rather simple model, namely the combination
of the modal carbody model and vertical human-body models from literature. The
passenger-carbody model slightly overestimates the interaction, however, but this is
expected, since the flexibility of the seat is not taken into account.

The main assumption on which the proposed models are based is that the passengers are
supposed to be alike, viewed as mechanical systems. The “normalized apparent mass” is
assumed to be the same for each passenger. Due to the generality of the problem, i.e. the
common modal model and the validated human-body model, the proposed passenger-
carbody model should work for other rail vehicles as well.

Simple seat models are difficult to achieve, due to the complexity and diversity in design.
Here, a simple vertical seat model is proposed, but it is based on quite bold assumptions.
Firstly, it is a priori only applicable to seats of the same type as in the case study.
Secondly, it is assumed that the only interaction that takes place between seat and
passenger is a vertical force at the seat pan. However, the model allows describing how
seat stiffness and damping affects the passenger-carbody interaction, at least in principle.

The passenger-carbody model and the passenger-seat-carbody can be used to estimate an
upper and a lower boundary for the interaction. From the present study, it is clear that the
passengers cannot be modelled by merely adding mass to the carbody structure, since
this would not introduce any damping. Such a simplification would also lower the
carbody eigenfrequencies, whereas a slight increase is observed in the measurements.

The “passenger-load parameters”, which are easily calculated provided that carbody-
mode-shape data are available, are shown to be suitable parameters to quantify the
passenger-carbody interaction. As a generalization, the “passenger-load matrix” may be
utilized. It describes how the passengers affect each individual mode, and also how they
couple the carbody modes to each other.

A method to obtain reduced models of the passenger(-seat)-carbody system is proposed.
Also, an idea is presented as to how to define and use approximate models of the
passenger(-seat)-carbody system. It is shown that a simpler model, e.g. a model
neglecting the cross-coupling between carbody modes that are due to passenger load, can
be used if the passenger load is low.

Based on the present case study, recommendations can be given as to how to model
passengers in rail-vehicle dynamics. Depending on available vehicle data, models of
various complexity are recommended, ranging from simple rules-of-thumb to models
including seat dynamics.
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8.2      Further development

Further development can be outlined in different directions.

The role played by the seat needs to be investigated further, including measurements as
well as modelling. One possibility is to create a more detailed model of the present
vehicle, in particular a more detailed description of the seats. The result risks becoming
specific and not applicable to vehicles and other seats than those in the case study. It
would, therefore, be of interest to identify mechanisms in a wide range of seats, to see if
there are some mechanisms that are common and worthwhile to model.

It is highly recommended that the “reduced models” presented here be implemented in
simulation software for rail-vehicle dynamics, since this would improve user-friendliness
and reduce computational costs.

Modelling and understanding of carbody interior dynamics, e.g. of inner floor and walls,
are important to improve the modelling of passenger-carbody interaction. Such models
are necessary whenever measurements are not possible.

The proposed models should be used to evaluate different design solutions. For instance,
what kind of dynamics characteristics should a rail-vehicle seat have?

The ideas on model reduction and approximate systems could be investigated further. For
instance, there should be an interesting mathematical framework of “approximation
theory in dynamical systems”.
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B        Definitions and notations

B.1      Definitions

B.1.1     General

Some general definitions are collected and explained here. A good textbook is [2].

Accelerance
Accelerance is the frequency-response-function “acceleration to force”. The
dimension is [1/kg].

Apparent mass
Apparent mass is the frequency-response-function “force to acceleration”.
The dimension is [kg].

Autospectrum
The autospectrum gives information on the frequency content of a signal. It
may be defined as the Fourier transform of the correlation function.

Correlation function
See cross-correlation function.

Cross-correlation function
The cross-correlation function between two signals x and y is defined by

(B-1)

The correlation-function for the signal x is obtained by replacing y by x in
(B-1).

Cross-spectrum
The cross-spectrum may be defined as the Fourier transform of the cross-
correlation function.

Frequency-response-function
Frequency response functions can be used to describe the dynamics of a
system. Suppose that a system is excited by a harmonic input (force or

motion), , where is the circular frequency of the input. The system

gives an output (force or motion). The frequency-response-function is

then defined as and is complex-valued. Accelerance, apparent
mass, impedance, dynamics stiffness and transmissibility are all frequency-
response-functions.

rxy τ( ) 1
2T
------- x t( )y t τ+( ) td

T–

T

∫t ∞→
lim=

I ω( ) ω
O ω( )
O ω( ) I ω( )⁄
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Frequency-response-function estimate
A frequency-response-function can be estimated from two measured signals, where
one is considered as input and the other as output. A number of estimates are possible.
For instance, the “source correlation technique” is used here to estimate seat
transmissibility

(B-2)

where is the cross-spectrum of the acceleration at the seat pan (S)

(considered as output) and the exciting input force (I) (a correlated source) and
is the cross-spectrum of the acceleration at the floor (F) (considered as input)

and (I) (the correlated source).

Impedance
Impedance is the frequency-response-function “force to velocity”. The dimension is
[Ns/m].

Operating Deflection Shape (ODS)
An operating deflection shape of a rail-vehicle carbody describes how the carbody
vibrates at a particular frequency when the rail-vehicle is running on the track.
Compared to eigenmodes of a carbody, which are determined by the dynamical
properties alone, an ODS also depends on the magnitude and frequency content of the
excitation forces.

Point accelerance, point impedance
“Point” means that both signals are measured at the same point and in the same
direction.

Power Spectral Density (PSD)
See Autospectrum.

Relative damping
In this work relative damping is used to quantify damping. It is defined by

(B-3)

Root mean square value
Two types of root mean square (r.m.s.) values are used in this work, a temporal r.m.s.-
value and a spatial r.m.s.-value. The temporal r.m.s-value of a signal a for a time
period T is defined by

T s ω( )
GSI ω( )
GFI ω( )
------------------=

GSI ω( )

GFI ω( )

ζ c

2 mk
---------------=
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(B-4)

A spatial average of an entity a is taken over a number N of points in space

(B-5)

Stiffness
Stiffness (dynamic stiffness) is the frequency-response-function “force to
displacement”. The dimension is [N/m].

Transmissibility
In this work the term “transmissibility” is used for acceleration
transmissibility, and not for force transmissibility. Acceleration
transmissibility is defined as a frequency-response function between two
acceleration signals, or equivalently, between two velocity signals, or two
displacement signals. Force transmissibility, on the other hand, is defined as
a frequency-response function between two force signals. It has the
dimension [-].

B.1.2     More specific

Central definitions of the present work are collected and explained here.

Human-body impedance
Human-body impedance refers to the frequency-response-function “force to
velocity”, where the force is the vertical force that the human body exerts on
the seat pan and the velocity is the exciting vertical velocity of the seat pan. It
is assumed that there are no other excitation sources than the motion of the
seat. Other motions and forces than vertical are not taken into account. The
human-body impedance of an average passenger is denoted by and

has the dimension [Ns/m].

Modal contribution factor
The modal contribution factor (MCF) is proposed in [15] as a value to rank
carbody mode shapes with respect to their contribution to ride discomfort in
general. A high MCF indicates that the mode contributes much to ride
discomfort. It is defined as the spatial root mean square of the vertical (or
lateral) carbody mode-shape-values at a number N of points where
passengers are seated:

(B-6)

where MCFj is the Modal Contribution Factor of carbody-mode number j.
The vertical displacement of mode number j at a point numbered i is denoted

arms
1
T
--- a t( ) 2 td

0
T∫=

arms
1
N
---- ai

2
i 1=
N∑=

Z p ω( )

MCF j dij
2 N⁄

i 1=
N∑=
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by . MCF for lateral and longitudinal directions can also be defined. The modes are

supposed to be scaled to have a modal mass of 1 kgm2. MCF has the dimension [m].

Normalized apparent mass
Normalized apparent mass is a suitable characteristics of the human-body vertical
dynamics. The term normalized apparent mass is used here as defined in [51], with the
generalization that also phase information is included, i.e. it is a complex-valued
quantity. The apparent mass is normalized with respect to the body mass of the
subject, yielding a static value ( ) of 1, see Figure 4-3. Normalized apparent
mass has the same dimension as transmissibility, namely [-]. In Model A, see Figure
4-2, it is identical to the transmissibility, cf. (4-4). Therefore, the normalized apparent
mass of a passenger is denoted by  and defined by

(B-7)

where is the vertical point impedance of the human body and mp is the human-

body mass. The normalized apparent mass is a key entity in the present work. It
expresses the frequency dependency of the human-body dynamics, and this frequency
dependency is assumed to be the same for all passengers.

Passenger load parameter
The passenger load parameter is introduced in this work to quantify the interaction
between a carbody mode shape and the passengers. It is defined as

(B-8)

where N is the number of passengers, mpi is the mass of passenger number i, dij is the
vertical displacement of carbody-mode number j at the location of passenger number i
and Pj is the passenger load parameter of carbody-mode number j. The passenger load
parameter is thus a mass-weighted sum of squares of carbody vertical displacement-

values, and, thereby, closely related to a spatial r.m.s.-value. It has dimension [kgm2].

Passenger load matrix
The passenger load matrix P consists of the elements

(B-9)

dij

ω 0=

T p ω( )

T p ω( )
Z p ω( )
mpiω
---------------=

Z p ω( )

P j mpidij
2

i 1=

N

∑=

P jk mpidijdik
i 1=

N
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where N is the number of passengers, mpi is the mass of passenger number i
and, finally, dij and dik are the vertical displacement of carbody-mode number
j and k, respectively, at the location of passenger number i. Note that the
elements on the matrix-diagonal are identical to the passenger load
parameters. The off-diagonal terms quantify the coupling introduced
between the carbody modes by the action of the passenger load. The

dimension is [kgm2].

Seat stiffness
Only vertical forces and motions are considered in the passenger-carbody
interface. The (dynamic) seat stiffness is consequently defined as the
frequency response function “force to displacement”, where the force is the
vertical force transmitted through the seat and the displacement is the relative
vertical displacement between the seat pan and the floor. Seat stiffness has
the dimension [N/m].

Seat transmissibility
The term seat transmissibility is used as defined in [52], with the
generalization that also phase information is included. It is here defined as
the frequency response function between zs and zf, where zs is the vertical
displacement of the seat pan and zf is the vertical displacement of the floor at
the interface between seat and floor. It may be estimated by

(B-10)

where is the cross-spectrum of the vertical acceleration at the seat

pan (S) and an exciting input force (I) and is the cross-spectrum of

the vertical acceleration at the floor (F) and the exciting input force. It has the
dimension [-].

Vertical mode-shape value, vertical displacement of carbody mode etc.
The deformation (displacement) of a carbody mode-shape in the vertical
direction at a particular point in the carbody. Denoted by d. The dimension is
[m].

B.2      Notations

B.2.1     Latin

C Damping matrix [Ns/m]
Cc Carbody damping matrix [Ns/m]
Cs Diagonal matrix containing csi [Ns/m]
cp Damper constant in human-body model [Ns/m]

T s ω( )
GSI ω( )
GFI ω( )
------------------=

GSI ω( )

GFI ω( )
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cpi Damper constant in human-body model, passenger i [Ns/m]
cs Damper constant in seat model [Ns/m]
csi Damper constant of seat i [Ns/m]
D Matrix consisting of all dij [m]
d Vertical displacement of carbody mode at location of passenger [m]
di Vertical displacement of carbody mode at the location of passenger i [m]
dij Vertical displacement of carbody mode j at the location of passenger i [m]
F, F(t) Force column matrix [N]
F Force [N]
Fcj Modal force on carbody mode j owing to passengers [Nm]
Fp Interaction force between passenger and carbody [N]
Fpi Interaction force between passenger i and carbody [N]
Fp+s Interaction force between passenger-seat system and carbody [N]
fp Eigenfrequency in human body model

Autospectrum of a signal measured at the point S

Cross-spectrum of a signal measured at the point S and input signal I

g Polynomial in
I Identity matrix

i
K Stiffness matrix [N/m]
Kc Carbody stiffness matrix [N/m]
Ks Diagonal matrix containing ksi [N/m]
K Min (L,N)
kp Spring constant in human-body model [N/m]
kpi Spring constant in human-body model, passenger i [N/m]
ks Spring constant in seat model [N/m]
ksi Spring constant of seat i [N/m]
L Number of carbody modes
M Mass matrix [kg]
Mc Carbody mass matrix [kg]

Mp Diagonal matrix containing mpi [kgm2]
Mp Total mass of all passengers [kg]

mcj Modal mass of carbody-mode number j. Assumed to be equal to 1 kgm2.
mp Mass of a typical passenger [kg]
mpi Mass of passenger number i
ms Mass of seat-pan moving with the passenger [kg]
MCFj Modal Contribution Factor of carbody-mode number j [m]
MPFij Modal Participation Factor of mode j with respect to force distribution i [-]
N Number of passengers, passenger groups, “important locations”

GS ω( )

GSI ω( )

λ

1–
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ncj Mode-shape column-matrix of carbody eigenmode number j
np Generalized mode-shape column-matrix of passengers
np+c Mode-shape column-matrix of the passenger-carbody system

P Passenger load matrix containing the Pij [kgm2]

Pj Passenger load parameter of carbody-mode number j [kgm2]
Pij Coupling between carbody mode i and carbody mode j owing to passenger

load [kgm2]

Generalized passenger load parameter [kgkm2k]

q Degrees-of-freedom column matrix [may be mixed]
qc Column matrix containing qcj [-]
qcj Carbody modal-degree-of-freedom number j [-]
qpj Generalized passenger degree-of-freedom number j [-]

R Force distribution column matrix [Ns2]
S(ω) Seat stiffness [N/m]
Tp(ω) Normalized apparent mass of a typical passenger [-]

TpA(ω) Transmissibility  in passenger Model A [-]

TpB(ω) Transmissibility  in passenger Model B [-]

Tp+s(ω) Normalized apparent mass of passenger-seat system [-]
Ts(ω) Vertical seat transmissibility [-]

Comfort-weighting filter [-]
Zp(ω) Impedance of passenger [Ns/m]
ZpA(ω) Impedance of passenger in Model A [Ns/m]
ZpB(ω) Impedance of passenger in Model B [Ns/m]
Zpi(ω) Impedance of passenger number i [Ns/m]
Zp+s(ω) Impedance of passenger-seat system [Ns/m]
zf Column matrix containing zfi [m]
zf Vertical motion of floor at the foot of the seat [m]
zfi Vertical motion of floor at the foot of seat number i [m]
zp Column matrix containing zpi [m]
zp Vertical displacement of passenger [m]
zpi Vertical displacement of passenger number i [m]
zs Column matrix containing zsi [m]
zs Vertical displacement of seat [m]
zsi Vertical displacement of seat number i [m]

B.2.2     Greek

Fraction of unsprung human-body mass in human-body models [-]

Time-varying coefficient [s-2]

Relative damping of carbody-mode number j [-]

Relative damping in human-body models [-]

Pl
k( )

zp zs⁄

zp zs⁄

W ω( )

α
α t( )
ζcj

ζ p
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Root of characteristic equation

Carbody mode root of characteristic equation

Circular frequency [rad/s]

Circular eigenfrequency of carbody-mode number j [rad/s]

Circular eigenfrequency in human-body model [rad/s]

B.2.3     Indexes

c Carbody
cj Carbody eigenmode number j
f Foot of seat, floor
i Counts passengers, runs from 1 to N
j Counts mode shapes, runs from 1 to L
l Counts generalized passenger load parameters
p Passenger
pi Passenger number i
p+s Passenger and seat combined
s Seat

B.2.4     Locations in carbody

A In side-sill, over bogie
B In side-sill, between A and C
C In side-sill, in the middle of the carbody

Also: on the console of seat 24
F At the floor, at the foot of seat 24
S On the top of the seat-pan of seat 24
W Under the wooden plate of seat 24

B.2.5     Abbreviations

CEN Comité Européen de Normalisation
EMA Experimental Modal Analysis
FEM Finite Element Method
ISO International Standard Organization
ODS Operation Deflection Shape
PSD Power Spectral Density

λ
λc

ω
ωcj

ωp
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B.3      Railway glossary

Adtranz
A supplier of railway equipment

B7M
A Swedish passenger rail vehicle

Banverket
The Swedish National Rail Administration

Bogie
A running gear that can move relative to the carbody and in which the
wheelsets are mounted

Bolster beam
Part of some bogies

Cant
The difference in height between left and right rails

Carbody
Part of the vehicle that carries load. The carbody rests on the bogies

Gauge
The nominal lateral distance between the inner edges of the two rails.
Standard gauge is 1.435 m.

GENSYS
A simulation software for rail-vehicle dynamics

ISO-2631
A standard for evaluation of vibration-related comfort

Lateral
Direction in the plane of the floor and perpendicular to the direction of travel

Longitudinal
Direction of travel

Ride comfort
“Comfort” is “a state of being relaxed and feeling no pain” and “ride
comfort” is the state of being relaxed and feeling no pain when riding a
vehicle. There are standard procedures for how to evaluate ride comfort. See
also [54].

Side-sill
A longitudinal beam at the junction of carbody floor and side-wall

SJ
Swedish State Railways

S4M
A variant of the Swedish passenger rail-vehicle B7M furnished for office
working

Track irregularities
Irregularities of the track that give rise to vibrations

Vertical
Direction perpendicular to the carbody floor.

Wheelset
A set of two wheels on an axle. The wheels cannot move relatively to each
other, and this fact makes it possible to keep the rail vehicle on track.

Wz
A ride-comfort index
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