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ABSTRACT
Pigeonpea is a tropical grain-legume, which is highly dehydration tolerant. The effect of drought stress on the carbohydrate
metabolism in mature pigeonpea leaves was investigated by withholding water from plants grown in very large pots (50 kg of
soil). The most striking feature of drought-stressed plants was the pronounced accumulation of D-pinitol (lD-3-methyl-c/i/ro
inositol), which increased from 14 to 85 mg g"

1
 dry weight during a 27 d stress period. Concomitantly, the levels of starch,

sucrose and the pinitol precursors myo-inositol and ononitol all decreased rapidly to zero or near-zero in response to drought.
The levels of glucose and fructose increased moderately. Drought stress induced a pronounced increase of the activities of
enzymes hydrolysing soluble starch (amylases) and sucrose (invertase and sucrose synthase). The two anabolic enzymes sucrose
phosphate synthase (sucrose synthetic pathway) and myo-inositol methyl transferase (pinitol synthetic pathway) also showed an
increase of activity during stress. These results indicate that pinitol accumulated in pigeonpea leaves, because the carbon flux was
diverted from starch and sucrose into polyols.
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INTRODUCTION

Pigeonpea is a tropical grain-legume with high tolerance
of dehydration (Ford, 1984; Singal et al., 1985; Flower
and Ludlow, 1986; Lopez et al., 1987; Nandwal et al.,
1991). The lethal leaf water potential (yL) and relative
water content (RWC) are -6-3 MPa and 32%, respect-
ively (Flower and Ludlow, 1986). Although the exact
reason for pigeonpea's dehydration tolerance is not
known, there is strong evidence that it is due to its
capacity to adjust osmotically as a result of solute accumu-
lation (Ford, 1984; Flower and Ludlow, 1986). The main
solutes to accumulate in drought-stressed pigeonpea
leaves are the cyclitol D-pinitol (lD-3-methyl-c/i/ro-
inositol) and the amino acid proline (Ford, 1984). Both
of these compounds are typical 'compatible solutes', i.e.
non-toxic compounds which accumulate in the cytoplasm
in response to low water potential (Brown and Simpson,
1972). By so doing, pinitol and proline might protect
proteins and membranes from the deleterious effects of

dehydration and, ultimately, from denaturation
(Schobert, 1977; Crowe et al., 1988; Smirnow and
Cumbes, 1989; Sommer et al., 1990). Besides being com-
patible solutes, pinitol and proline also act as osmolytes
and, finally, they may serve as storage compounds for
carbon and nitrogen, respectively.

For the present study, pinitol was chosen as the main
focus. The biosynthetic pathway of pinitol proceeds, in
legumes, in the sequence of triose-P -»-»fructose-
6-P —> glucose-6-P -»myo-inositol-1 -P -»myo-inositol -> r>
ononitol -* D-pinitol (Fig. 1; Dittrich and Brandl, 1987).
Pinitol formation, therefore, is closely related to the
primary photosynthetic carbon metabolism, directly
through hexose-P and indirectly through (transitory)
starch and sucrose (Fig. 1). Accumulation of pinitol in
response to low water potential caused by drought stress
and salt stress is a widespread phenomenon. Apart from
pigeonpea, other tropical legumes were found to accumu-

3 To whom correspondence should be addressed.
Abbreviations: INV, invertase; SS, sucrose synthase; SPS, sucrose phosphate synthase; AMY, soluble starch hydrolysing activity; IMT, myo-

inositol O-methyl transferase; PAD, pulsed amperometric detection; SAM, S-adenosyl-L-methionine; YL, leaf water potential; *Pn, osmotic potential;
RWC, relative water content.
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FIG. 1. Simplified scheme depicting the partitioning of carbon between
starch, sucrose and pinitol in pigeonpea leaves. Enzymes: 1, total
amylolytic activity; 2, starch phosphorylase; 3, invertase; 4, sucrose
synthase; 5, sucrose phosphate synthase; 6, sucrose phosphate phosphat-
ase; 7, fructokinase; 8, UDPG-pyrophosphorylase; 9, glucose phosphate
mutase; 10, glucose phosphate isomerase; 11, glucokinase; 12, myo-
inositol 1-phosphate synthase; 13, m^o-inositol phosphate phosphatase;
14, myo-inositol O-methyl transferase; 15, pinitol epimerase.
Metabolites: G1P, glucose I-phosphate; G6P, glucose 6-phosphate;
F6P, fructose 6-phosphate; SAM, S-adenosyl-L-methionine; SAH, 5-
adenosyl-L-homocysteine. Enzymes marked with an asterisk were
measured in this study.

late pinitol as a result of drought stress (Ford, 1984).
Pinitol levels were also observed to be positively correlated
with salt tolerance of plants such as maritime pine {Pinus
pinaster) (Nguyen and Lamant, 1988), mangroves (Popp,
1984), dhaincha (Sesbania bispinosa) (Gorham el al.,
1988), Honkenya peploides (Gorham et al., 1981), and
common ice plant {Mesembryanthemum crystallinuni)
(Paul and Cockburn, 1989; Adams et al., 1992; Vemon
and Bohnert, 1992a, b).

No information is currently available on the biochem-
ical mechanisms regulating pinitol accumulation and
mobilization due to drought stress and rewatering,
respectively. Pinitol accumulation due to salt stress, how-
ever, has recently been shown, in the facultative halophyte
Mesembryanthemum crystallinum, to be accompanied by
the increased expression of a gene encoding a /Myo-inositol
O-methyl transferase, which catalyses the first step in the
biosynthetic pathway of pinitol (Vernon and Bohnert,
1992a, b). This salt-dependent up-regulation of a key
enzyme of pinitol formation by transcriptional induction
is a good indication that pinitol metabolism might indeed
be important in the regulation of stress tolerance in plants.

The aim of this study was to obtain some insight into
the biochemical mechanisms responsible for drought-

induced pinitol accumulation. We speculated that pinitol
accumulation could mainly occur at the expense of starch
and sucrose. Therefore, we investigated the effect of
drought on the activities of some enzymes of starch,
sucrose and pinitol metabolism (of the catabolic enzymes
AMY, INV and SS and of the anabolic enzymes SPS and
IMT) and on the levels of the main non-structural carbo-
hydrates. We present evidence that the build-up of
drought tolerance in pigeonpea is paralleled by a diversion
of fixed carbon away from starch and sucrose into pinitol.

MATERIALS AND METHODS

Plant culture and leaf sampling

Pigeonpea (Cajanus cajan [L.] Millsp. cv. Royes) plants were
grown in large plastic-lined pots (1 x 0-25 m) containing 50 kg
of air-dried soil. The following nutrients were dissolved in water
and added to each pot: l-2g CaH4(PO4)2.H2O, 075 g K 2 S0 4 ,
007 gCuSO4) 007 gZnSO4 , and 0-004g(NH4)6Mo7O24.4H2O.
Seedlings were thinned to one per pot and the soil water
potential was kept at 9-8 kPa. The plants were grown in a
controlled environment chamber that maintained the following
conditions: 14 h photoperiod, 500 ^mol m~2 s~' photon irradi-
ance, 30/25 °C day/night temperature and 60/90% day/night
RH.

Drought stress was imposed by withholding water from the
soil when the plants were 6-weeks-old. There were no nutrient
deficiencies because of the added nutrients, which were mixed
with the soil to ensure that the roots had access to them even
when surface layers of the soil dried. Some plants were rewatered
after 27 d of drought stress and their soil water potential was
then kept again at 9-8 kPa.

At each sampling, the three youngest fully-expanded leaves
of two similar branches of two plants each were harvested just
prior to the commencement of the photoperiod, and leaf water
relations were measured. Samples for enzyme assays and chem-
ical analyses were frozen in liquid N 2 and stored at —40 °C.

Leaf water relations

yL , Wn and RWC were measured as described by Flower
and Ludlow (1986). Briefly, fL was measured with a pressure
chamber, and RWC was determined gravimetrically. x

Pn was
measured on discs cut from leaves in a 16-channel Wescor
(Logan, UT) dewpoint hygrometer, calibrated with sodium
chloride solutions.

Enzyme extraction

The frozen leaf tissue (without petiole) was ground in a
mortar containing an ice-cold medium consisting of 50 mol m ~3

Hepes-NaOH (pH 7-5), lOmoI m~3 MgCl2, 1 mol n T 3 EDTA,
2-5 mol m " 3 DTT, 005% (w/v) Triton X-100 and 0 1 % (w/v)
BSA (6 and 8 cm3 medium g" ' fwt for well-watered and stressed
leaves, respectively). The homogenate was squeezed through
two layers of Miracloth and centrifuged at 13 000# for 1 min.
The supernatant was immediately desalted by centrifugal filtra-
tion (Helmerhorst and Stokes, 1980) on a Sephadex G-25
column equilibrated with the appropriate assay buffer (see
below).

Enzyme assays

All enzyme assays were carried out at 35 CC, except that IMT
was assayed at 23 "C. In preliminary experiments with leaf



extracts of well-watered and drought-stressed plants, it was
ascertained that all the assays were linear with time and amount
of enzyme. Recombination experiments were carried out by
mixing extracts of leaves with high and low enzyme activities,
respectively. Comparison of the activities of the mixed samples
with those of the sum of the measurements made on the separate
components showed that the values for the mixed samples were
always within 95% and 105% of the predicted values.

INV (EC 3.2.1.26): Acid and neutral INV activity was assayed
in a reaction mixture (200 mm

3
) containing assay buffer A

[Mcllvaine, pH 5-0 or 7-6, 0-1% (w/v) BSA], 50 mol m"
3
 sucrose

and 100 mm
3
 desalted sample. After 0 and 15 to 30 min, the

reaction was terminated by addition of 50 mm
3
 500 mol m~

3

K2HPO4 and immediate boiling for 2 min. Glucose formed was
determined using the glucose oxidase-Perid kit from Boehringer
(Mannheim, Germany).

SS (EC 2.41.13): SS activity was assayed in the synthetic
direction in a reaction mixture (90 mm

3
) containing assay

buffer B [50 mol m"
3
 Hepes-NaOH (pH 7-5), 10 mol m"

3

MgCl2, 1 mol m"
3
 EDTA, 2-5 mol m"

3
 DTT and 01% (w/v)

BSA], supplemented with 10 mol m"
3
 UDP-Glc and 10 mol

m"
3
 Fru, and 45 mm

3
 desalted sample. After 0 and 10 to

20 min, the reaction was terminated by addition of 90 mm
3
 1 N

NaOH and immediate boiling for 10 min. Sucrose formed was
determined by the resorcinol-HCl method of Roe (1934).

SPS (EC 2.4.1.14): SPS was assayed like SS, except that
fructose was replaced by 10 mol m~

3
 Fru-6-P and 50 mol m~

3

Glc-6-P.
AMY (mainly EC 3.2.1.1, a-amylase; some EC 3.2.1.2, j3-

amylase and EC 3.2.1.41, debranching enzyme): Soluble starch
hydrolysing activity was assayed in a reaction mixture (145 mm

3
)

containing assay buffer C [50 mol m"
3
 succinic acid-NaOH

(pH 6-0), 1 mol m~
3
 CaCl2 (to activate a-amylase; Li et al.,

1992), 0 1% (w/v) BSA], supplemented with 2% (w/v) Zulkowski
soluble starch (Merck), and 45 mm

3
 desalted sample. After 0

and 15 min, the reaction was terminated by addition of 1 cm
3

dinitrosalicylic acid reagent, boiling for 10 min, and the reducing
sugars released were determined at 570 nm (Chaplin, 1986).

IMT: IMT activity was assayed by measurement of
[
14

C]ononitol (lD-4-O-methyl-myo-inositol) from myo-inositol
and [

14
CH3]SAM. A simple radioactive IMT assay was

developed based, in principle, on a combination of published
methods (Koller and Hoffmann-Ostenhof, 1976; Miura and
Chiang, 1985). The assay mixture (90 mm

3
) contained assay

buffer D (buffer B at pH 7-0), 0 or 20 mol m~
3
 myo-

inositol, 2moln r
3
 [

14
CH3]SAM (3-7 kBq; 2-lGBqmmor

1
;

Amersham) and 45 mm3 desalted sample. After 5 h, the reaction
was stopped by addition of 400 mm

3
 ethanol and 500 mm

3
 of

an aqueous 1:1 slurry (v/v) of the cation exchange resin IRA
120 (16-50 mesh; NH^-form; Biorad). Unreacted SAM was
removed by continuous gyratory shaking for 20 min. After
centrifugation at 13 000 g for 1 min, 500 mm

3
 of the supernatant

was combined with 3 cm3 Ultima-Gold (Canberra Packard,
Zurich, Switzerland) and the radioactivity was counted in a Tri-
Carb Scintillation counter (Canberra Packard). The myo-
inositol-dependent counts were used for calculation of the IMT
activity. The identity of [

14
C]ononitol as the assay product in

the desalted supernatant was confirmed by radio-HPLC as
described (Keller and Matile, 1989) using a Benson-Pb and
Benson-Ca column, respectively (300 x 7-8 mm; Benson
Polymeric, Reno, Nevada).

Extraction and analysis of carbohydrates and proline

Frozen leaf tissue was lyophilized and ground to a fine powder
in a Waring blender. Powdered sample (50 mg) was extracted

Keller and Ludlow—Drought-Stressed Pigeonpea 1353

with 5 cm
3
 80% (v/v) acetonitrile in an ultrasonic bath for

10 min and ccntrifuged at lOOOg for 10 min. The pellet was re-
extracted two additional times with 5 cm

3
 H2O as above. The

three supernatants were combined, brought to a volume of
15 cm

3
 with H2O and passed through a 0-45 pm membrane filter.

Soluble carbohydrates were analysed in 20 mm
3
 aliquots of

filtered extract by HPLC-PAD. The chromatographic system
consisted of a Waters WISP 710B autosampler (Waters-
Millipore, Wallisellen, Switzerland), a Sykam SI000 pump
(Stagroma, Wallisellen, Switzerland), a Benson-Pb column
(300 x 7-8 mm), a Jones 7960 column heater (Ercatech, Berne,
Switzerland) maintained at 77 °C, an ESA Coulochem II electro-
chemical detector (El=200mV, E2 = 700mV, E3= -900mV,
Tl = 500 ms, T2 = 100 ms, T3 = 100 ms, AD = 300 ms; Stagroma)
and a GynkoSoft chromatography data system (Henggeler
Analytic, Riehen, Switzerland). Distilled H2O was used as the
solvent at a flow rate of 0-6 cm

3
 min"

1
. Post-column addition

of NaOH (250 mol m~
3
; 0-2 cm

3
 min"

1
) was performed pneu-

matically with helium at 2-3 atm. Quantitation was accomp-
lished using peak area calculations related to regression curves
of standards. Pinitol was a kind gift from Professor Amado
(Food Science, ETH, Zurich). Ononitol was isolated from
Ononis spinosa leaves. The effectiveness of the simple extraction
procedure chosen was ascertained by comparison with (i) the
same procedure but extractions carried out by boiling instead
of ultrasonication and (ii) the same procedure but four instead
of two H2O extractions.

Starch was determined in the leaf residue remaining after the
soluble carbohydrates had been extracted. The pellet was re-
extracted once more with 5 cm

3
 H2O. Starch was then gelatin-

ized in 2 cm
3
 H2O in the autoclave for 2 h. An aliquot (250 mm

3
)

was digested after addition of 250 mm
3
 100 mol m"

3
 Na-acetate

buffer (pH 4-8), 14 mm
3
 amyloglucosidase (2 U, from Aspergillus

niger) and 3 mm
3
 a-amylase (4 U, from Bacillus subtilis) (both

enzymes from Boehringer) at 37 °C for 3 h. The reaction was
terminated by boiling for 10 min and the released glucose was
determined as described for INV.

Proline was determined in the filtered extracts by the acidic
ninhydrin procedure of Bates et al. (1973).

RESULTS

Leaf water relations

Withholding water from potted 6-week-old pigeonpea

plants caused a gradual decrease of VL, W'n and RWC

of the youngest fully expanded leaves reaching values of

-4-8 MPa, -5 -0MPa and 53%, respectively, after 27 d

without watering (Fig. 2). Upon rewatering, the leaf water

relations recovered rapidly to their initial values. Such a

response is typical for a dehydration tolerant plant

(Ludlow and Muchow, 1990) and is similar to that

observed in earlier studies with pigeonpea (Ford, 1984;

Flower and Ludlow, 1986).

Carbohydrate and proline levels

FTPLC analyses of the neutral fractions of leaf extracts

of well-watered and 27 d drought-stressed pigeonpea

plants are shown in Fig. 3B. The most striking features

are the pronounced increase of pinitol and the complete

disappearance of sucrose during drought stress.

Detailed quantitative estimations of the carbohydrate

levels in leaves of well-watered plants harvested at pre-
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FIG. 2. Effect of drought stress on leaf water relations in pigeonpea leaves. Leaves were harvested immediately prior to the photoperiod. (A) Leaf
water potential; (B) osmotic potential; (c) relative water content. Values are means ±s.e. of four replicates. (O) Stressed plants; ( • ) rewatered plants
(after 27 d of drought stress).
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FIG. 3. HPLC chromatograms of carbohydrates found in pigeonpea leaves and identification of the neutral product of the IMT assay, (A) Standard;
(B) comparison of leaf extracts of 27 d-drought-stressed and unstressed pigeonpea plants; (c) neutral product of the IMT assay. The separation was
performed on a Benson-Pb column (300x7-8 mm) kept at 77 °C and eluted with water at 0-6 cm

3
 min"

1
. Detection was by pulsed amperometric

detector after post-column addition of NaOH (A, B) or by radio-detector after post-column addition of scintillant (c). For details see 'Materials
and Methods'.

dawn revealed that starch was predominant (71 mg
g

-1dwt; Fig. 4A), followed by pinitol (14 mg g
- 1dwt;

Fig. 4E), sucrose (9-2 mg g~1 dwt; Fig. 4B), glucose (6-6 mg
g -1dwt; Fig. 4c), fructose (60mg g~'dwt; Fig. 4D),
myo-inositol (2-6 mg g -1dwt; Fig. 4F), and ononitol
(1-6 mg g"1 dwt; Fig. 4G). These carbohydrate levels are
similar to those found in other dehydration tolerant
legumes such as soybean (Ford, 1984; Huber et at., 1984;
Huber, 1989; Bensari et al., 1990). During drought stress,
starch, sucrose, m^o-inositol and ononitol disappeared
almost completely, whereas glucose, fructose and especi-
ally pinitol increased to various degrees (1-4-, 2-0- and
5-8-fold, respectively) (Fig. 4A-G). After 27 d of drought

stress, pinitol accounted for 76% of the total non-
structural carbohydrates found in the leaves, as compared
with 12% in well-watered leaves (Fig. 4H).

Rewatering caused the levels of starch, sucrose and
myo-inositol to recover quickly to their original values
(Fig. 4A, B, F), whereas the levels of ononitol (Fig. 4G)
recovered only moderately. The hexoses levelled off at
their values after full drought stress (Fig. 4c, D) and
pinitol (Fig. 4E) recovered to a medium value after 8 d of
rewatering.

For comparison, the effect of drought on proline levels
was also investigated (Fig. 4i). Proline, the second putative
compatible solute of stressed pigeonpea leaves (Ford,
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FIG. 4. Effect of drought stress on the carbohydrate and proline contents in pigeonpea leaves. Leaves were harvested immediately prior to the
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(i) proline. Values are means ±s.e. of four replicates. (O) Stressed plants; ( • ) rewatered plants (after 27 d of drought stress).

1984), increased about 100-fold during stress and
decreased rapidly to its low pre-stress level upon
rewatering.

Enzyme activities

Drought stress induced a pronounced increase of activ-
ities of enzymes hydrolysing starch (AMY; Fig. 5A) and
sucrose (INV and SS; Fig. 5B, C). AMY activity was fairly
high throughout the experiment, increased 1-5-fold during
the first 2 weeks of drought stress and levelled off after-
wards. The exact biochemical mechanisms by which starch
is degraded in pigeonpea leaves are unclear. The assay
used in this study picks up the non-phosphorolytic,
soluble starch degrading activity, the main one most
probably being that of a-amylase (besides some /J-amylase
and debranching enzyme; Beck and Ziegler, 1989; Ziegler,
1990; Li et al., 1992). Acid INV activity was also high

throughout the experiment. However, drought stress still
induced a 2-fold increase of activity during the first
2 weeks. Neutral INV was low and did not show any
change throughout the experiment. SS showed the most
pronounced increase of activity of the hydrolytic enzymes
tested. During the entire drought stress of 27 d, a linear
increase of SS activity of up to 10-fold was observed.

The two anabolic enzymes tested were SPS and IMT.
They also showed an increase of activity with drought
stress of 2- and 1-5-fold, respectively. SPS activity, meas-
ured under VmUi conditions (non-selective: saturating
hexose-phosphates, no Pi; Huber and Huber, 1992),
increased steadily during the first 2 weeks of drought
stress. IMT activity increased only during the first 6 d
and decreased steadily afterwards.

The measurement of IMT activity needed special atten-
tion since only a time-consuming assay was found in the
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FIG. 5. Effect of drought stress on the activities of some enzymes of the carbohydrate metabohsm in pigeonpea leaves. Leaves were harvested
immediately prior to the photoperiod. (A) Soluble starch hydrolysing activity; (B) invertase; (c) sucrose synthase; (D) sucrose phosphate synthase;
(E) myo-inositol O-methyl transferase. Values are means ±s.e. of three replicates. (O) Stressed plants; ( • ) rewatered plants (after 27 d of
drought stress).

literature (Koller and Hoffmann-Ostenhof, 1976). IMT
activity was assayed by measurement of [

14C]ononitol
(lD-4-0-methyl-mye>-inositol) formed from mvo-inositol
and [

14CH3]SAM. The simplified assay is based on the
measurement of myo-inositol-dependent counts after
removal of unreacted [

14CH3]SAM by incubation with a
cation exchange resin (Miura and Chiang, 1985). The
identity of [

14C]ononitol as the assay product was con-
firmed by radio-HPLC on a Pb-loaded cation exchange
column which has a high selectivity for polyols (Fig. 3A,
c). The validity of the new IMT assay was further
confirmed by demonstrating that it was linear with time
for up to 6 h and with amount of enzyme used (data not
shown). After completion of the experiments, an alternat-
ive IMT assay was published (Vernon and Bohnert,
1992a), which is similar to the one used in this study with
the exception of the measurement of the product,
[14C]ononitol, which was performed by radio-HPLC, and,
therefore, is also quite time-consuming. Furthermore, the
HPLC column used by Vernon and Bohnert (1992a), a
Ca-loaded cation-exchange resin, does not separate ononi-
tol from pinitol (Adams et al., 1992 and unpublished
observation), whereas the Pb-loaded column used for the

identification of the IMT product in this study does
(Fig. 3A).

Rewatering of the stressed plants caused the activities
of AMY, INV and SS to be quickly restored to their
original levels, whereas those of SPS and IMT decreased
further (SPS) or stayed low (IMT) during 8 d of rewater-
ing (Fig. 5).

DISCUSSION

The slow drought stress imposed on 6-week-old pigeonpea
plants grown in large pots caused a gradual decrease of
WL, Vn and RWC of the youngest fully expanded leaves.
After 27 d without watering, the values for fL, Wn and
RWC were -4-8 MPa, - 5 0 MPa and 53%, respectively
(Fig. 2). In earlier experiments, it was shown that these
leaves lose turgor at a fL of - 2-5 MPa and cease net
photosynthesis at — 3-5 MPa. However, they did not die
until VL and R WC had reached values of — 6-3 MPa and
32%, respectively (Flower, 1985; Flower and Ludlow,
1986). The highest level of drought stress chosen for this
experiment was, therefore, clearly below lethal and a
positive net photosynthetic activity was maintained for at
least 3 weeks of stress.



The main focus of this study was to investigate the
effect of drought on the metabolism of non-structural
carbohydrates. The total content of non-structural carbo-
hydrates found in pigeonpea leaves remained constant
during drought stress (Fig. 4H). The relative composition
of the non-structural carbohydrates, however, changed
dramatically. After 27 d of stress, the levels of pinitol
increased 6-fold (from 14 to 85 mg g

-1dwt; Fig. 4E),
whereas the levels of starch (Fig. 4A), sucrose (Fig. 4B)
and the pinitol precursors m^o-inositol (Fig. 4F) and
ononitol (Fig. 4G) decreased to zero or near-zero. Glucose
and fructose levels increased moderately (Figs 4c, D).
Decrease of starch levels with drought stress has been
observed in leaves of many different plant species such as
soybean (Huber et al., 1984; Bensari et al., 1990), sugar
beet (Fox and Geiger, 1986; Harn and Daie, 1992),
spinach (Zrenner and Stitt, 1991), resurrection plants
(Gaff, 1989), lupin, eucalyptus, sunflower, and grapevine
(Quick et al., 1992). Decreased starch levels are often the
result of both decreased starch formation and increased
starch degradation. Decrease of sucrose levels with
drought stress has also been observed (in four tropical
legumes; Ford, 1984), but it seems to be the exception
rather than the rule. A decrease in the levels of myo-
inositol and ononitol with drought stress is not surprising
as they are the direct precursor molecules of pinitol. Their
pool sizes are relatively small as compared with pinitol
suggesting rapid throughput and efficient anabolic
enzymes.

In well-watered plants, starch and sucrose accounted
for 71% of the total non-structural carbohydrates (63%
and 8%, respectively), whereas pinitol accounted for 12%.
After drought stress, pinitol accounted for 76% of the
non-structural carbohydrates, whereas starch and sucrose
were almost absent. This change of relative composition
of the non-structural carbohydrates indicates, but does
not prove, that pinitol accumulation during drought stress
might mainly occur at the expense of starch and sucrose.
Estimations, on a molar basis, provide further evidence
for a positive correlation between the decrease in starch
and sucrose and the increase in pinitol. During the 27 d
stress period, starch and sucrose decreased by 350 fimo\
hexose units g~' dwt (70 mg g"* dwt) and 58 ̂ mol hexose
units g~'dwt (10 mg g

-1dwt), respectively. This total
decrease of 408 /*mol hexose units g"1 dwt corresponds
quite well to the increase in pinitol which amounted to
366fimol hexose units g"1 dwt (71 mg g"1 dwt).

Production of pinitol and other osmotica from stored
carbohydrates such as starch and sucrose, rather than
from current photosynthate, is consistent with observed
patterns of osmotic adjustment in pigeonpea leaves during
drought stress (Flower, 1985). Leaf photosynthesis ceases
at a leaf water potential of —3-5 MPa. However, osmotic
adjustment is only half its maximum value at this water
potential. Thus osmotic adjustment that occurs between
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leaf water potentials of - 3-5 and — 6-3 MPa must be
based on solutes produced from carbon that was fixed at
higher (less negative) water potentials.

To test the suggestion further that pinitol accumulation
might mainly occur at the expense of starch and sucrose
the activities of enzymes hydrolysing starch (AMY) and
sucrose (INV and SS) and of the enzyme methylating
myo-inositol (IMT) were measured. Drought stress
induced a pronounced increase of the activities of the
hydrolytic enzymes AMY, INV and SS (Fig. 5A-C). The
net result of such an increase of activities would be an
increased supply of hexoses and hexose-phosphates, which
could be further utilized for pinitol formation (Fig. 1). As
the pool of free hexoses increased only moderately
(Fig. 4c, D) and the activity of one enzyme of the pinitol
synthetic pathway (IMT) showed an initial temporary
increase of activity (Fig. 5E) the suggestion is strengthened
that pinitol accumulation might indeed proceed by devi-
ation of the carbon flux away from starch and sucrose
into cyclitols (via hexoses).

Sucrose metabolism seems to be dynamic and respons-
ive to drought stress in pigeonpea leaves. In well-watered
plants, sucrose levels are quite apparent (10 mg g"

1 dwt;
Fig. 4B) despite high sucrolytic activities (mainly acid
INV; Fig. 5B). This is most probably due to differential
compartmentation. Sucrose synthesis (by SPS) and stor-
age occurs in the cytosol whereas any surplus sucrose
would be hydrolysed by acid INV in the vacuole giving
rise to free glucose and fructose. In drought-stressed
plants, sucrose is absent in leaves despite the increase of
SPS activity. The main reason for this might be the
increased hydrolytic SS activity in the cytosol (besides
increased acid INV activity in the vacuole). A futile
cycling of concurrent sucrose synthesis and degradation
cannot be ruled out, particularly in stressed leaves. Futile
cycling of sucrose has been described for a number of
different plant systems such as suspension cultures of
Chenopodium rubrum (Dancer et al., 1990) and sugar cane
(Wendler et al., 1991), leaves of several 'high-invertase-
type' species (Huber, 1989), banana fruits (Hubbard et al.,
1990) and cotyledons of Ricinus communis (Geigenberger
and Stitt, 1991). Its function has been suggested to allow
an increased sensitivity of metabolic regulation (Hue,
1980).

As expected from this coarse, survey-type study several
important questions have to remain unanswered and will
need special attention in a subsequent study. The main
efforts will be directed towards the unambiguous deter-
mination of the key-enzyme(s) responsible for stress-
induced pinitol accumulation. Potential candidates for
such enzymes include IMT, the enzymes of starch meta-
bolism and the enzymes leading to the synthesis of the
ononitol precursor myo-inositol (Fig. 1). For this purpose,
we will need to (i) characterize IMT biochemically and
reinvestigate its change of activity during drought,
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(ii) measure the enzyme activities of myo-inositol syn-
thesis, i.e. myoinositol 1-phosphate synthase and myo-
inositol 1-phosphate phosphatase (Loewus, 1990),
(iii) resolve the relative contributions of all the possible
starch degrading enzymes, i.e. a- and /3-amylase,
debranching enzyme and starch phosphorylase (Beck and
Ziegler, 1989; Ziegler, 1990; Li et al., 1992), and (iv) con-
sider the main enzyme responsible for starch formation
in chloroplasts, ADP glucose phosphorylase (Preiss,
1991), to assess if the starch depletion observed with
drought stress is mainly due to decreased formation or
increased degradation of starch.

Finally, it has to be kept in mind that the observed
pinitol accumulation is only one of the possible mechan-
isms responsible for pigeonpea's drought tolerance. This
study indicates that proline accumulation (from 0 to
16 mg g

-1dwt) might be equally important, creating
additional questions such as how is proline formation
stress-regulated and, on a broader scale, how is it linked
to the carbon metabolism (Champigny and Foyer, 1992).

In conclusion, this study provides clear evidence that
drought stress, in pigeonpea, induces the accumulation of
pinitol (besides proline). It indicates that pinitol accumula-
tion might be caused by deviation of the carbon flux
away from starch and sucrose.
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