
$\stackrel{\rightharpoonup}{\infty}$
variations of CO_{2} concentration that seem to be associated with
passəıppe seч чว.

 process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-
level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO_{2} and climate variability, land use changes, or a combination of these effects. The next steps for improving the
process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand
 әчł џо әрп!!

 Although all of the models agree that the long-term effect of climate on carbon storage has been small

 uncertainty) with a long-term analysis based on ice core and atmospheric CO_{2} data. Up to 1958 , three of four (1920-1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the

L. J. Williams, ${ }^{11}$ and U. Wittenberg ${ }^{5}$
A. D. McGuire, ${ }^{1,2}$ S. Sitch, ${ }^{3}$ J. S. Clein, ${ }^{4}$ R. Dargaville, ${ }^{4}$ G. Esser, ${ }^{5}$ J. Foley, ${ }^{6}$ M. Heimann,
F. Joos, ${ }^{8}$ J. Kaplan, ${ }^{1}$ D. W. Kicklighter, ${ }^{9}$ R. A. Meier, ${ }^{4}$ J. M. Melillo, ${ }^{9}$ B. Moore III, ${ }^{10}$
I. C. Prentice, ${ }^{7}$ N. Ramankutty, ${ }^{6}$ T. Reichenau, ${ }^{5}$ A. Schloss, ${ }^{16}$ H.Tian, ${ }^{9}$ four process-based ecosystem models

century: Analyses of CO_{2}, climate and land use effects with

Carbon balance of the terrestrial biosphere in the twentieth

 CO_{2} uptake [Houghton, 1999]. On average during the 1980s, of and subsequent forest management can contribute significantly to

 atmosphere exchanges are also influenced by emissions environments [Schlesinger, 1991]. Terrestrial biosphere-
 river inputs to the oceans, much of which is decomposed and the atmosphere, the terrestrial biosphere also exports carbon in

 terrestrial biosphere through runoff, leaching, and other erosion

 history, and the deposition of anthropogenic nitrogen [Schimel et of the terrestrial biosphere and are influenced by changes in
atmospheric CO_{2}, variability and changes in climate, disturbance organic matter in land-based and fresh-water aquatic ecosystems
of the terrestrial biosphere and are influenced by changes in
 CO_{2}, whereas a negative NCE indicates a terrestrial sink. The use. A positive NCE indicates a terrestrial source of atmospheric decomposition of products harvested from ecosystems for human from anthropogenic disturbance, and E_{P} represents the

 -104

> be described by the equation atmosphere [Schimel et al., 1996]. The net carbon exchange
(NCE) between the terrestrial biosphere and the atmosphere can atmosphere [Schimel et al, 1996]. The net carbon exchange

 The major components of the atmospheric carbon budget on emerged as major international policy issues, with potentially
immense economic implications [Wigley et al., 1996]. to deliberate management or to inadvertent climate change have understanding them well enough to predict how they will respond cop3.html). Locating the sources and sinks for CO_{2} and
 management of the terrestrial biosphere as a complementar for limiting emissions of greenhouse gases and allowed for active cop $3 . \mathrm{html}$). Articles 3.3 and 3.4 of the Kyoto Protocol set target Nations climate conference in Kyoto (Framework Convention on
Climate Change available at http://www.unfccc.de/resource/
\qquad

 component and the other mechanisms. For example, the effects of
 [266!

 that their combined effects could counterbalance the net releas suggest that each of these mechanisms could be playing a
significant role in the global CO , budget. It is quite conceivable

 Seч surstueyoau [eotoro[oIs carbon uptake was ascribed, more controversially, to forest
regrowth in northern extratropical ecosystems. Recently, the net climate variability. An additional contribution to terrestrial

 t! patnduos su!ssua ast pue[joueloq of palubar

 pue[doıの ‘[666I] uoly 8 no H кq s!s^ipue ue u! parppisuon sasueq. over time, assuming generic time-dependent functions for carbon
 has traditionally (as given by Schimel et al. [1996]) been The contribution of land use changes to the global CO_{2} budget [1991]

 s) syus אq

 abandonment on terrestrial carbon storage between 1920 and

2. Methods
that are required to reduce uncertainties among the models

 terrestrial ecosystems has not previously been assessed with
models that simultaneously consider the effects of land use

 ecosystem phystology are summarized in Table 2. Additional
details of how the models represent terrestrial ecosystems have

 consider the effects of anthropogenic nitrogen deposition on
 terrestrial ecosystems influence productivity and decomposition
 formulations to describe the effects of environmental factors on
GPP and R_{A}. Of the four models, TEM is the only model in which are calculated. In addition, IBIS, LPJ, and TEM use different
formulations to describe the effects of environmental factors on
 between gross primary production (GPP) and plant respiration

 of plant functional types (e.g., trees and grasses) based on
environmental conditions and susceptibility to fire disturbances. of plant functional types (e.g., trees and grasses) based on For example, vegetation distribution is prescribed by input data

 cultivation within the context of changing climate and
atmospheric CO_{2} concentrations. simulation of net carbon exchange from areas disturbed by
cultivation within the context of changing climate and describe the modifications to the models that allowed the
simulation of net carbon exchange from areas disturbed by simulate carbon dynamics in natural ecosystems. Then we
 is estimated using the original algorithms of the models. First we

 (ε) pue 'səi!s porea! resulting from (1) the conversion from natural vegetation to
 terrestrial carbon storage in this study, similar algorithms were estimated net carbon exchange only for potential or natural
vegetation. To account for the effect of human disturbance on
 characteristics, atmospheric CO_{2} concentration, and climate
across the globe. In previous studies, most of these models have physiology are related to variations in vegetation type, soil
characteristics, atmospheric CO_{2} concentration, and climate dynamics. The simulated changes in ecosystem structure and physiology but emphasize different aspects of ecosystem spatial and temporal variations in ecosystem structure and between the atmosphere and the terrestrial biosphere based on resolution. All four models simulate the exchange of carbon appied at 0.5° resolution, while the remaining model (IBIS) was this study, three of the models (HRBM, LPJ, and TEM) were
applied at 0.5° resolution, while the remaining model (IBIS) was the Terrestrial Ecosystem Model (TEM) [Tian et al., 1999b]. In Kucharik et al., 2000), the Lund-Potsdam-Jena Dynamic Global
Vegetation Model (LPJ) [Sitch, 2000; Prentice et al., 2000], and

Table 1. Comparison of the Representation of Ecosystem Structural Dynamics Among Models

	HRBM	IBIS	LPJ	TEM
Plant Functional Types (PFT)	175 vegetation units			
evergreen		tropical evergreen, temperate evergreen, cool conifer, boreal conifer	tropical evergreen, temperate broadleaf evergreen, temperate needleleaf evergreen, boreal needleleaf evergreen	tropical evergreen, temperate broadleaved evergreen, temperate conifer, boreal
deciduous		tropical raingreen, temperate summergreen, boreal summergreen	tropical raingreen, temperate summergreen, boreal summergreen	tropical deciduous, temperate deciduous, xeromorphic,
shrubs		n/a	n/a	xeric and mediterranean
grasses, forbs		C_{3} photosynthesis, C_{4} photosynthesis	C_{3} photosynthesis, C_{4} photosynthesis	tall, short
Representation of vegetation	four carbon pools (aboveground herbaceous phytomass, belowground herbaceous phyotmass, aboveground woody phytomass, belowground woody phytomass)	three carbon pools (leaves, wood, fine roots)	three carbon pools (leaves, wood, fine roots) per PFT individual; density of individuals	one carbon pool; two nitrogen pools (structural, labile)
Canopy scaling	variable mean stand age	optimum $\mathrm{N}_{\text {lcat }}$ distribution	optimum $\mathrm{N}_{\text {leaf }}$ distribution	not explicitly simulated
Phenology				
cold deciduous	dynamic model considering temperature and moisture [Esser et al., 1994]	temperature threshold modified by chilling,	GDD requirement, temperature threshold	evapotranspiration [Tian et al., 1999b]
dry deciduous	```dynamic model considering temperature and moisture [Esser et al., 1994]```	productivity threshold	soil moisture threshold	evapotranspiration [Tian et al., 1999b]
grass	```dynamic model considering temperature and moisture [Esser et al., 1994]```	productivity threshold	soil moisture and temperature thresholds	evapotranspiration [Tian et al., 1999b]
Representation of soils	five carbon pools (aboveground herbaceous litter, belowground herbaceous litter, aboveground woody litter, belowground woody litter, soil organic matter)	four litter carbon pools; three soil organic carbon pools; six layers of soil moisture and soil temperature	two litter carbon pools (aboveground and belowground) for each PFT; two soil organic carbon pools (fast, slow) for each PFT	one soil organic carbon pool; one soil organic nitrogen pool; one soil available nitrogen pool; one layer of soil moisture [Vörösmarty et al., 1989; Tian et al., 1999b]
Community dynamics				
competition	not explicitly simulated	homogenous area-based competition for light (two layers), water (six layers)	non-homogenous area-based competition for light (one layer), water (two layers)	not explicitly simulated
establishment	not explicitly simulated	climatically favoured PFTs establish uniformly, as small LAI increment	climatically favoured PFTs establish in proportion to area available, as small individuals	not explicitly simulated
mortality	derived from variable mean stand age [Esser et al., 1994]	deterministic baseline wind throw fire extreme temperatures	deterministic baseline self-thinning carbon balance fire extreme temperatures	not explicitly simulated

Table 2. Comparison of Ecosystem Physiology Among Models

	HRBM	IBIS	LPJ	TEM
Shortest time step	data: 1 month integration: 1 day	1 hour	1 day	1 month determined with an adaptive Runge Kutta Fehlberg integrator [Cheney and Kincaid, 1985]
Photosynthesis	NPP based on multiple limiting factors [Esser et al., 1994]	enzyme based [Farquhar et al., 1980; Collatz et al., 1992]	enzyme-based [Farquhar et al., 1980; Collatz et al., 1992]	GPP based on multiple limiting factors [McGuire et al., 1997; Pan et al., 1998]
N uptake by vegetation	not explicitly simulated	not explicitly simulated	not explicitly simulated	dependent on soil available N , air temperature, soil moisture and CO_{2} [McGuire et al., 1997; Pan et al., 1998]
Stomatal conductance	not explicitly simulated	Ball and Berry [Ball et al., 1986]	Haxeltine and Prentice [1996]	dependent on air temperature, precipitation, solar radiation and soil texture [Vörösmarty et al., 1989; Pan et al., 1996]
Radiation	not explicitly simulated	two stream approximation [Sellers, 1985; Pollard and Thompson, 1995]	Beer's Law [Monsi and Saeki, 1953] applied to vegetation fractions	top of canopy radiation multiplied by relative leaf area [Tian et al., 1999b]
Canopy temperature	not explicitly simulated	canopy energy balance [Pollard and Thompson, 1995]	not explicitly simulated	not explicitly simulated
Aerodynamics	not explicitly simulated	\log-wind profile+momentum diffusion	not explicitly simulated	not explicitly simulated
Sapwood respiration	not explicitly simulated	diagnose sapwood volume from evaporative demand + LAI	dependent on sapwood mass and $\mathrm{C}: \mathrm{N}$ ratio and air temperature [Lloyd and Taylor, 1994; Sitch, 2000]	plant respiration is a function of air temperature and vegetation carbon [Tian et al., 1999b]
Fine root respiration	not explicitly simulated	dependent on root carbon and soil temperature	dependent on root mass and $\mathrm{C}: \mathrm{N}$ ratio and soil temperature [Lloyd and Taylor, 1994; Sitch, 2000]	plant respiration is a function of air temperature and vegetation carbon [Tian et al., 1999b]
C allocation	```monthly with coefficients for each vegetation type [Esser et al., 1994]```	annual with fixed allocation coefficients for leaves, stems, roots	```annual allometric relationships for individuals' carbon pools [Sitch, 2000]```	not explicitly simulated
N allocation	not explicitly simulated	not explicitly simulated	Implicit, dependent upon demand	not explicitly simulated

Table 2. (continued)

 subsequent agricultural yield. Paper and paper products decayed

 simulations of this study.
2.2.6. Fate of land user

 this century, large areas in temperate North America and Europe 2.2.5. Abandonment of cultivated sites. In the second half of carbon allocated to the agricultural products pool. annual NPP in this study may represent a high estimate for Malmström et al. [1997, Table 2]). Thus the harvest of 40%
 belowground biomass entered the soil. Malmström et al. [1997]
reported estimated yields that ranged from $\sim 20 \%$ of annual NPP

 estimate of annual agricuitural NPP was divided into
aboveground and belowground biomass, i.e., harvest versus simulated for the grid cell in simulation experiment S2. The
estimate of annual agricultural NPP was divided into

 ${ }^{\text {IeU }} \mathrm{ddN} \otimes \mathrm{dVC}={ }^{9.18 \mathrm{E}} \mathrm{ddN}$

位!
 1970 s, we merged the records in a smooth fashion during a 5

 historical atmospheric CO_{2} mixing ratio using a spline fit to the

2inunoulie estimates of net carbon exchange also consider the loss of
terrestrial carbon due to fires not associated with conversion to estimates of net carbon exchange also consider the loss of ecosystems to cultivation and E_{P} is the sum of carbon emissions

$$
{ }^{d} \exists+{ }^{J} \exists+\mathrm{ddN}{ }^{-H} X=\mathrm{GON}
$$

and TEM, we calculated the net carbon exchange as

 cell of origin. Similar to the conversion flux, the seasonal timing
 after conversion to agriculure all of the in

Based on Houghton et al. [1983]
Ecosystem

[^0]MCGUIRE ET AL.: CO_{2}, CLIMATE, LAND USE, AND CARBON STORAGE

08L OSL OZL 06 O9 OE O OE-09-06- OZL- OSL-08L-

 time period from 1950 to 1980 and bilinearly interpolated to 0.5° used interpolated values. Subsequently, we determined
precipitation factors relative to a monthly climatology over the [1992, 1994]. For grid-squares with missing observations, we
used interpolated values. Subsequently, we determined
 derived the precipitation fields from the monthly precipitation Cramer, unpublished data, 1994] employed by the models. W anomalies using bilinear interpolation on version 2.1 of the $0.5^{\circ} \mathrm{X}$
0.5° CLIMATE database [Leemans and Cramer, 1991; W.
 adjacent grid-squares. For driving the models in the simulations global grid by Jones [1994] from global weather station data. For
grid-squares with missing observations, we interpolated from

 atmospheric CO_{2} concentration of 286.6 ppmv ．The HRBM，
IBIS，and TEM models，which were initialized with a baseline
 2．4．Simulation Protocol specific requirements of the individual model．

 Ioj＇sə！ uо！̣eu！̣uroo e ло＇（SIGI）sasseן［！os［986I］1219oZ әч）＇（WG甘H pue WヨJ）pliom aцl jo dew l！os［ャL6I］（ODS3Nก／OVJ）

 the models simulated for each grid cell．Although the description
of soil type and texture are different among models，the soils data 1992］，and IBIS and LPJ used the natural vegetation cover that described by application of the BIOME model［Prentice et al．， Melillo et al．［1993］，HRBM used the vegetation distribution TEM used the potential natural vegetation map described by differences in vegetation and soil classifications．In this study， vegetation－and soil－specific parameters in the models，we
decided to not standardize these data sets，which represent vegetation－and soil－specific parameters in the models，we vegetation．
2．3．4．Other data sets．Because the vegetation and soil data
sets used by different models are often linked explicitly to
agricultural productivity relative to the productivity of the natural specific data as described by Esser［1995］to define the boolean croplands data set to specify the temporal and spatial

Croplands（million km^{2} ）

 alqnop，e fo sifnsad of suoniejnuis fopour pareduroo

 in simulation experiment S 3 ．

 uo paseq pue 668I of 098I Worf pourd ow！̣ aut IOf spio！y

 and E_{F} of each 15° latitude band to remove the effects of LPJ S1 simulation，we fit cubic splines to the annual NPP，R_{H} the initialization baseline mean climate while LPJ used the $40-$
year initialization climate with interannual variability．For the transient phase of simulation S1，HRBM，IBIS，and TEM used
the initialization baseline mean climate while LPJ used the 40

 product fluxes for the final initialization year．We used the
January climate of 1860 and the Dccember values of the state

 total terrestrial carbon storage at the completion of initialization Therefore，compared to simulation experiments S 1 and S 2 ，the

 interannual variability，LPJ was initialized by repeating the 1860

 interannual variation of the amplitude of the seasonal cycle [C. D. pue əseวıu! ұuәu!uoid e sliq!

 There exists, however, a conflicting analysis based on
atmospheric ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ observations [Keeling et al., 1995]. terrestrial contributions [Lee et al., 1998; Feely et al., 1999]

 S![nSOI כपІ पІโM
 attributed to a net terrestrial carbon flux, $Q_{\text {ierr }}$
 from statistics of energy production [Marland et al., 1999], $Q_{\text {foss }}$ emissions from fossil fuel burning and cement production derived flux to the atmosphere, $d N_{a} / d t$. This flux is composed of (1) the from the Mauna Loa and the South Pole records [Keeling et al.,
1995] is assumed to reflect the global, time-varying net carbon seasonally corrected atmospheric growth rate of CO_{2} estimated

 and oxidation of organic matter [Keeling et al., 1993]. associated with fossil fuel burning, biospheric photosynthesis the average stoichiometric relations between CO_{2} and O_{2} concentration, in the magnitude of fossil fuel emissions, and in the estimation of the decadal trends in the global atmospheric O_{2}
 employed here are based on updated O_{2} measurements from the Keeling et al., 1996; Bender et al., 1996]. The updated budgets purely observational estimate of the carbon uptake by the
terrestrial biosphere and oceans [Keeling and Shertz, 1992; R.F purely observational estimate of the carbon uptake by the estimates for the 1980 s and 1990 s based on observed global exchange at the end of the transient phase with independent
 $+/-0.8 \mathrm{Pg}$ C yr ${ }^{1}$ in 1990 [Joos and Bruno, 1998]. standard deviation) prior to 1950 and then to increase linearly to carbon exchange fluxes are estimated to be $+/-0.3 \mathrm{PgC} \mathrm{yr}^{-1}$ (1 sois чı!M paleiposse saxnly un!iq!!inbas!p oidolos! $\mathcal{D}_{\varepsilon 1}$ pue
 measurements [Francey et al., 1999]. Uncertainties in the from ice core (1000-1980 A.D.) and direct atmospheric
 between the oceanic and terrestrial sink fluxes that carry different
 into the ocean plus biosphere to equal the change in the atmosphere and the oceans. The CO_{2} budget yields the total flux

 switched to net carbon uptake during the 1960 s . The storage in 1970 (Figure 5), which suggests that the terrestrial biosphere simulated by the TBMs ranges from approximately neutral to
releases until around 1970 and indicates substantial storage after
 effects of cropland establishment and abandonment among the

 storage. For the marginal effects of cropland establishment and carbon release until the 1960 s when it began to promote carbon立u!
 carbon storage are small in comparison with CO_{2} and land use,
the effects of climate differ among the simulations by the TBMs
 cropland establishment, and cropland abandonment. CO_{2} fertilization. The models agree that the effects of climate are
small in comparison with the effects of CO_{2} fertilization associated with land use are greater than storage associated with by LPJ and TEM indicate that terrestrial ecosystems have lost
small amounts of carbon across the period because net releases associated with land use (Figure 4). In contrast, the simulations small amounts of carbon, largely because storage associated with
the effects of CO_{2} fertilization is greater than net releases HRBM and IBIS indicate that terrestrial ecosystems have stored

 s7fnsay $\cdot \mathcal{E}$ [C. D. Keeling et al., 1996].

 since the baseline period of 1960-1964. The relative change in
the seasonal cycle for each TBM was determined by

 uәpuədəpu! '[euo!!!ppe ənb!un e səp!^oId [euo!!s s!̣L • [966I ' 1 p

 terrestrial ecosystems has been characterized by carbon storage
releases to the atmosphere and negative values indicate net storage in terrestrial ecosystem
 cropland establishment and abandonment was estimated by subtracting the cumulative change of a simulation that simulation that considered only increasing atmospheric CO_{2} from that of a simulation that considered carbon storage associated with climate variability was estimated by subtracting the cumulative change of a
simulation that considered only increasing atmospheric CO_{2} from that of a simulation that considered both

市 官 홍 N 옹 응

 $+$

 and abandonment. The annual release in net carbon storage associated with cropland establishment and of Houghton [1999], which considered the conversion of forests to pasture in addition to cropland establishment

Net Carbon Flux (Pg C yr-1)

 net carbon storage in the terrestrial biosphere because the effects associated with cropland establishment/abandonment (27.0-43.8
 1920 and 1957 because the effects of both CO_{2} fertilization and deviation) estimated by analyses of CO_{2} and O_{2} budgets in the 1980 s and 1990 s (see section 2). Positive values double deconvolution analysis (see section 2). The dark shaded regions represent the uncertainty ($+/$ - one standard Running means were calculated starting in 1860 , which was the year that the models were initialized. The light considered the effects of rising atmospheric CO_{2}, climate variability, and cropland establishment and abandonment Figure 5. The 10-year running means of the global net carbon exchange with the atmosphere estimated by each of
four terrestrial biosphere models (HRBM, IBIS, LPJ, and TEM) between 1920 and 1992 in simulations that

Plate 1. The spatial distribution of the mean annual net carbon exchange with the atmosphere from 1980 through 1989 estimated by each of four terrestrial biosphere models in a simulation that considered the effects of increasing atmospheric CO_{2}, climate variability, and cropland establishment and abandonment. Positive values indicate net releases to the atmosphere and negative values indicate net storage in terrestrial ecosystems.

Plate 2. The spatial distribution of the mean annual net carbon exchange with the atmosphere from 1980 through 1989 associated with cropland establishment and abandonment as estimated by each of four terrestrial biosphere models. The change in net carbon storage associated with cropland establishment and abandonment was estimated by subtracting the cumulative change of a simulation that considered increasing atmospheric CO_{2} and climate from that of a simulation that considered both increasing atmospheric CO_{2}, climate variability, and cropland establishment and abandonment. Positive values indicate net releases to the atmosphere and negative values indicate net storage in terrestrial ecosystems.
 Hemisphere and Asia (Plate 1) because the effects of CO
 (Table 5), and there is substantial spatial variation simulated by approximately neutral ($-0.2-0.2 \mathrm{Pg} \mathrm{C} \mathrm{yr}^{-1}$) during the 1980 Three of the four models indicated that the tropics wer carbon release and that the effects are similar in magnitude to the simulations of both IBIS and LPJ indicate that climate promotes comparison with the effects of CO_{2} and land use. In contrast, the
 both HRBM and TEM indicate that the effects of climate tend to The models disagree about the sign and the magnitude of the $\mathrm{Pg} \mathrm{C})$ in comparison with the other three models (1.1-1.8 Pg C).
The models disagree about the sign and the magnitude of the

 north of the tropics. Simulations by all models indicate that
cropland establishment/abandonment has caused the release of tropics than in the tropics, while simulations by the other moders
ind CO_{2} effect is slightly stronger in the tropics than tropics than in the tropics, while simulations by the other models associated with land use. The simulation by IBIS indicates that
the effect of CO_{2} fertilization is slightly stronger north of the the effects of CO_{2} fertilization are stronger than releases
associated with land use. The simulation by IBIS indicates that $\mathrm{Pg} \mathrm{C} \mathrm{yr}-1$ (Table 5). At the global scale, all models indicate that carbon storage in terrestrial ecosystems of between 0.3 and 1.5 During the 1980 s , the simulations by the TBMs indicate that
the net exchange of CO_{2} with the atmosphere resulted in a net

3.2. Changes in Carbon Storage Between 1980-1989

with land use, whereas the magnitudes of these effects are similar
for the other models.
establishment, which are most pronounced in tropical South
America (Plate 2). The models also indicate substantial source

 timing of net release and net storage of CO_{2} by terrestria Although the simulations by the TBMs generally agree on the

 regrowth

 caused net carbon storage in the region (Plate 1) because the
 releases associated with the decomposition of agricultural, paper,

 region (Plate 2). The simulations by all the models indicate that
ecosystems north of the tropics acted as a sink for atmospheric does not appear to be responsible for substantial releases from the

 simulations with an atmospheric transport model and calculated redistributing the monthly net fluxes of the $S 1, S 2$ ，and $S 3$

3．4．Simulated Trends in the Seasonal Cycle at Mauna Loa （1961－1992）

NPP in 1974，1984，and 1989，but the range in variability of NPP
is much less than in the LPJ and IBIS simulations．

 large amounts of storage in certain years（e．g．，1974，1984，and
1989）largely because of higher NPP in those years．Interannual əן巴

4．Discussion

climate on the trend in the amplitude of the seasonal cycle a
Mauna Loa． seasonal cycle at Mauna Loa but disagree about the effect of
 strengthens the trend for all models．Thus the models agree that for the other two models．Compared to the results for the LPJ，weakens the trend for TEM，and has little effect on the tren
for the other two models．Compared to the results for the S2
 Compared to the results for the S 1 simulations，the addition of
 the magnitude of the CO_{2} fertilization effect in the models the amplitude of the seasonal cycle to increase between 1961 and
1992．The strength of this pattern among the models is similar to

00	00	00	で0	［10101	
00	00	10	$\varepsilon \times 0$	asn puei	
00	00	00	00	ข¢¢u！p	
00	00	10^{-}	I^{-}	${ }^{2} \mathrm{O}$,	yrnos
$\mathrm{I}^{\circ}{ }^{-}$	20	$\overbrace{}^{\circ} 0^{-}$	50	［ ${ }_{1}$	
90	80	So	で1	asn pue］	
10^{-}	50	LO	で0	วұеш！̣	
90^{-}	$\mathrm{I}^{\text {I }}$	$\forall^{\prime} \mathrm{I}^{-}$	60^{-}	${ }^{2} \mathrm{O}$	sordoil
80^{-}	HO^{-}	$\mathcal{E}^{\prime} \mathrm{I}^{-}$	ε^{1-}	［P10］	
00	10	$\varepsilon^{\circ} 0$	$\mathrm{t}^{-}{ }^{-}$	asn puei	
$\mathrm{I}^{\circ}{ }^{-}$	＋0	00	20^{-}	әуеш！	
で0	60^{-}	9^{17}	LO^{-}	${ }^{\text {a }} \mathrm{O}$	4 LO
SO^{-}	$\varepsilon^{\circ} 0^{-}$	$S^{\prime-}$	90°	［1¢ㅣㅇㅣ	
90	60	80	01	asn pue］	
で0－	60	80	00	गฺ¢и！	
60^{-}	$!{ }^{-}$	$\mathrm{I}^{\circ} \mathrm{E}-$	$9 \mathrm{I}^{-}$	${ }^{2} \mathrm{O} 0$	［eqo！
WGL	fdT	SIGI	Wgyt		

 and 1989 Among Effects Attributable to Changes in Increasing Atmospheric CO_{2} ，Climate
Variability，and Cropland Establishment and Abandonment for Global Ecosystems，for Table 5．Partitioning of Mean Annual Changes in Terrestrial Carbon Storage Between 1980

MCGUIRE ET AL．： CO_{2} ，CLIMATE，LAND USE，AND CARBON STORAGE
atmospheric CO_{2} only, increasing atmospheric CO_{2} and climate variability, and increasing atmospheric CO_{2}
climate variability, and cropland establishment and abandonment. the trends estimated from the observations. The trends for each of three simulations are shown: increasing station between 1960 and 1992, relative to the amplitude between 1960 and 1964, as estimated using the fluxes of
NPP and R_{μ} simulated by each of four terrestrial bis (HRBM, IBIS, LPJ, and TEM) compared with Figure 8. The trends in the amplitude of the seasonal cycle of atmospheric CO_{2} at the Mauna Loa monitoring
station between 1960 and 1992 , relative to the amplitude between 1960 and 1964 as estimated using the fluxes of

Relative Change in Amplitude

 atmospheric carbon storage and estimates of releases to the atmosphere associated with fossil fuel emissions and atmospheric CO_{2}, climate variability, and cropland establishment and abandonment. The thick shaded line is the

MCGUIRE ET AL.: CO_{2}, CLIMATE, LAND USE, AND CARBON STORAGE
 atmospheric data are not likely to yield substantial insight as to network of CO_{2} monitoring stations, analyses based on 2000]. Because of limitations in the data measured by the global been approximately neutral and that ecosystems north of the

 1990; Ciais et al., 1995; R. F. Keeling et al., 1996; Heimann and
Kaminski, 1999; Rayner et al., 1999; Prentice et al., 2000]. These patterns of carbon exchange with the atmosphere [Tans et al.,

 have informed us of the relative role of the terrestrial and oceanic Bruno, 1998]. More recent analyses based on CO_{2} and O_{2} data

 1999a]. Thus additional effort will still be required to transfer the

 concentration of CO_{2} [Kicklighter et al., 1999a]. The
 range of sensitivities among the models has substantial

 carbon exchange simulated by the models is primarily associated

 3

플
艺
$\begin{array}{r}\frac{2}{2} \\ 0 \frac{0}{c} \\ 0.8 \\ 0 \\ \hline\end{array}$

 major factors thought to be controlling terrestrial carbon models for certain regions. In this study we took the logical step
of comparing simulations among TBMs driven by some of the

 represented in the models. The simulations by TBMs also have

 responsible for terrestrial sources and sinks. Simulations by

 based on CO_{2} and O_{2} budgets (Figure 5). Three of the four
models indicate (in accordance with O_{2} evidence) that the tropics 0.3 and $1.5 \mathrm{Pg} \mathrm{C} \mathrm{yr}^{-1}$, which is within the uncertainty of analysis
based on CO_{2} and O_{2} budgets (Figure 5). Three of the four simulations indicate that terrestrial ecosystems stored between

 cropland establishment is shown to be the dominant cause of this

 the uncertainty) with the long-term double deconvolution yield a time history of terrestrial uptake that is consistent (within Over the long-term (1920-1992), all of the models'S3 runs

 uncertainties by helping to focus attention on what additional

schemes through time.

 models necid to be enhanced so that they consider major crop

 incorporate the timing, extent, and types of major disturbances

 this study are associated with differences between the land use

 approximately compensated by enhanced carbon release
associated with land use. Climate-related changes in the natural

 simulations. This analysis suggests that enhanced carbon storage land use calculated as the difference between the S3 and S2
 We found very little difference between the global and regional

 model, which does not represent these effects. To evaluate this

 in mature forests, the net releases associated with cropland
 estimates of Houghton [1999] and the models in this study. Also, differences likely contributed to differences between the

 Houghton [1999], which consider pasture conversion. Although

 the conversion of forests to pastures and did not consider possible analysis presented here is incomplete because it did not conside
the conversion of forests to pastures and did not consider possible

 (FACE) experiments [e.g., DeLucia et al., 1999].

 identifying how the representation of processes should be IOң 〕uə!

 observed trend may be a consequence of the effects of rising CO_{2},
 simulations suggest that climate and land use may also play a

 rend in the amplitude growth to the magnitude of NCE in the S.

 change in the amplitude of the seasonal cycle based on the S1 has increased between 1958 and 1992 (Figure 8). The relative of atmospheric CO_{2} at the Mauna Loa monitoring station, which

 fluxes and nitrogen interactions in the sensitivity of the component

 continuous, must be conducted over several years to pick up the
interannual and long-term responses of carbon storage to climate continuous, must be conducted over several years to pick up the useful in this context, eddy covariance measurements must be simulated processes to climatic variability and change. To be inform modifications of the models to improve the sensitivity of stand-level eddy covariance measurements has the potential to et al., 2001]. Evaluation of model performance in the context of

 hydrology as LPJ uses a two-layer bucket model and IBIS uses a
six-layer finite-element model, yet the models have similar

 of carbon to the atmosphere and La Niña years tend to promote
the storage of carbon, there are substantial differences in the

Cheney W., and D. Kincaid, Numerical Math
ed., Brooks/Cole, Monterey, Calif., 1985.

 Cao, M., and F. I. Woodward, Dynamic responses of terrestrial ecosystemcarbon cycling to global climate change, Nature, 393, 249-252, 1998.

Brono, M., and F . Joos, Terrestrial carbon storage during the past 200
years: A monte carlo analysis of CO_{2} data from ice core and
atmospheric measurements, Global Biogeochem. Cycles, $11,111-124$,
1997 .
 Braswell, B. H., D. S. Schimel, E. Linder, and B. Moore III, The response

 Battle, M., M. Bender, P. P. Tans, J. W. C. White, J. T. Ellis, T. Conway,
and R. J. Francey, Global carbon sinks and their variability, inferred

Ball, J. T., I. E. Woodrow, and J. A. Berry, A model predicting stomatal References

and Space Administration

 future projections of the Earth system.

 crop types and management schemes through time, and (5) the
consideration of the effects of anthropogenic nitrogen deposition

 pepnjou! jou sem inq [666I 'pKol7'666I'pp ta raffomapp N 'L66I
G. R. Shaver, and G. M. Woodwell, Changes in the carbon content of
terrestrial biota and soils between 1860 and 1980: A net release of
CO_{2} to the atmosphere, Ecol.Monogr., 53, 235-262, 1983. Houghton, R. A., J. E. Hobbie, J. M. Melillo, B. Moore, B. J. Peterson Houghton, R. A., The annual net flux of carbon to the atmosphere from

 Heimann, M., et al, Evaluation of terrestrial carbon cycle models through
 Heimann, M., C. D. Keeling, and I. Y. Fung, Simulating the atmospheric
carbon dioxide distribution with a three-dimensional tracer model, in
 Heimann, M., and T. Kaminski, Inverse modelling approaches to infer
surface trace gas fluxes from observed atmospheric mixing ratios, in

 Huntington, and S. M. Dabney, Dynamics replacement and loss of soil
carbon on eroding cropland, Global Biogeochem. Cycles, 13, 885-901
1999
 Tellus, Ser. B, 51, 170-193, 1999 .
Freeze, R. A., and J. A. Cherry, Groundwater, 604 pp., Prentice-Hall,
 Francey, R. J., C. E. Allison, D. M. Etheridge, C. M. Tudinger, I. G
Enting, M. Leueberger, R. L. Langenfelds, E. Michel, and L. P. Steele,

 Foley, J. A., An equilibrium model of the terrestrial carbon budget,
Tellus, Ser. $B, 47,310-319,1995$.
 Feely, R. A., R. Wanninkhof, T. Takahashi, and P. Tans, Influence of EI Farquhar, G. D., S. von Caemmerer, and J. A. Berry, A biochemical
model of photosynthetic CO_{2} assimilation in leaves of C_{3} species,
Planta, 149,78-90, 1980. Scientific and Cultural Organization (FAO/UNESCO), Soil Map of
the World, vol. I-X, Paris, 1974 .
Farquhar, G. D., S. von Caemmerer, and J. A. Berry, A biochemical
 atmospheric CO_{2} over the last 1000 years from air in Antarctic ice and
firn, J. Geophys. Res., 101, 4115-4128, 1996 . Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J. M
Barnola, and V. I. Morgan, Natural and anthropogenic changes in 70 pp., Mitteilungen aus dem Inst. fur Pflanzenokolgie der Justus-
Liebig-Univ. Giessen, vol. 2, Giessen, Germany, 1994.

 atmospheric CO_{2} rectifier effect be reconciled with a "reasonable"
carbon budget?, Tellus, Ser. B,51, 249-253, 1999.
Esser, G., Contribution of monsoon Asia to the carbon budget of the Denning, A. S., T. Takahashi, and P. Friedlingstein. Can a strong
 DeLucia, E. H., et al., Net primary production of a forest ecosystem with
experimental CO_{2} enrichment, Science, 284, 1177-1179, 1999 . Phys., 19, $519-538,1992$.
Cramer, W., et al., Comparing global models of terrestrial net primary
productivity (NPP): Overview and key results, Global Change Biol., 5
(suppl. 1), 1-15, 1999. Collatz, G. J., M. Ribas-Carbo, and J. A. Berry, A coupled photosynthesis

- stomatal conductance model for leaves of C 4 plants, Aust. J. Plant
Phys., 19, 519-538, 1992 .
terrestrial grid, RR-91
Laxenburg, Austria, 1991

 Lee, K., R. Wanninkhof, T. Takahashi, S. C. Doney, and R. A. Feely Langenfelds, R. L., R. J. Francey, and L. P. Steele, Partitioning of the
global fossil CO_{2} sink using a 19-year trend in atmospheric O_{2} Kucharik, C. J., et al., Testing the performance of a dynamic global
ecosystem model: Water balance, carbon balance, and vegetation atmospheric CO_{2} at Mauna Loa observatory, Tellus, Ser. $B, 41,487$
510, 1989. R. Revelle, Modeling the seasonal contribution of a CO_{2} fertilization
effect of the terrestrial vegetation to the amplitude increase in budgets, Science, 251, 298-301, 1991.
Kohlmaier, G. H., E. O. Sire, A. Janecek, C. D. Keeling, S. C. Piper, and Kling, G. W., G. W. Kipphut, and M. C. Miller, Arctic lakes and streams
as gas conduits to the atmosphere: Implications for tundra carbon
 terrestrial net primary production (NPP): Global pattern and
differentiation by major biomes, Global Change Biol., 5, S16-S24,
1999 b . Kicklighter, D. W., A. Bondeau, A. L. Schloss, J. Kaduk, A. D. McGuire
 Kicklighter, D. W., et al., A first-order analysis of the potential role of
CO_{2} fertilization to affect the global carbon budget: A comparison of Keeling, R. F., S. C. Piper, and M . Heimann, Global and hemispheric
CO_{2} sinks deduced from changes in atmospheric O_{2} concentration, Keeling, R. F., R. P. Najjar, and M. L. Bender, What atmospheric oxygen
measurements can tell us about the global carbon cycle, Global Keeling, C. D., J. F. S. Chin, and T. P. Whorf, Increased activity of
northern vegetation inferred from atmospheric CO_{2} measurements, Keeling, C. D., T. P. Whorf, M. Wahlen, and J. Vanderplicht, Interannual
extremes in the rate of rise of atmospheric carbon dioxide since 1980 ,
Nature, 375, 666-670, 1995 . atmospheric oxygen and implications for the global carbon cycle
Nature, 358, 723-727, 1992 . Keeling, C. D., and S. R. Shertz, Seasonal and interannual variations in
 Kauppi, P. E., K. Mielikainen, and K. Kuusela, Response to Rastetter and Kauppi, P. E., K. Mielkainen, and K. Kuusela, Biomass and carbon
budget of European forests, Science, 256, 70-74, 1992a.
 Kaminski, T., R. Giering, and M. Heimann, Sensitivity of the seasonal Joos, F., R. Meyer, M. Bruno, and M. Leuenberger, The variability in the
carbon sinks as reconstructed for the last 1000 years, Geophys. Res. Joos, F., and M. Bruno, Long-term variability of the terrestrial and
oceanic carbon sinks and the budgets of the carbon isotope $\mathrm{C}-13$ and Jones, P. D., Hemispheric surface air temperature variations: A reanalysi
and an update to 1993, J. Clim., 7, 1794-1802, 1994 .

 Hulme, M., A 1951-80 global land precipitation climatology for the
evaluation of General Circulation Models, Clim. Dyn., 7, 57-72, 1992.

 Pflanzengesellschaften und seine Bedeutung fur sie Stoffproduktion, biosphere models and carbon sequestration in response to changing
CO_{2} and climate, Global Biogeochem. Cycles, 13, 785-802, 1999 . Meyer, R., F. Joos, G. Esser, M. Heimann, G. Kohlmaier, W. Sauf, and
U. Wittenberg, The substitution of high-resolution terrestrial Houghton et al., pp. 445-481, Cambridge Univ. Press, New York,

1996.

 Melillo, J. M., A. D. McGuire, D. W. Kicklighter, B. Moore III, C. J.
Vörösmarty, and A. L. Schloss, Global climate change and terrestrial

 McGuire, A. D., J. M. Melillo, J. T. Randerson, W. J. Parton,
M. Heimann, R. A. Meier, J. S. Clein, D. W. Kicklighter, and W.
Sauf, Modeling the effects of snowpack on heterotrophic respiration variation in climate, Global Change Biol., 6 (Suppl. 1), 141-159,
2000a.
 McGuire, A. D., J. S. Clein, J. M. Melillo, D. W. Kicklighter, R. A.
Meier, C. J. Vörösmarty, and M. C. Serreze, Modeling carbon

 McGuire, A. D., J. M. Melillo, D. W. Kicklighter, Y. Pan, X. Xiao,
J. Helfrich, B. Moore III, C. J. Vörösmarty, and A. L. Schloss, respons dioxide, Ann. Rev. Ecol. Syst., 26, 473-503, 1995.
carbon
McGuire, A. D., J. M. Melillo, D. W. Kicklighter, Y Pan, X. McGuire, A.D., J. M. Melillo, and L.A. Joyce, The role of nitrogen in the From Fossil Fuel Burning, Cement Production, and Gas Flaring:
1751-1996, NDP-030, Carbon Dioxide Info. and Anal. Cent., Oak
Ridge, Tenn., 1999. Marland, G., R. J. Andres, T. A. Boden, C. A. Johnson, and A. L.
Brenkert, Global, Regional, and National CO2 Emissions Estimates Randerson,
primary production: Testing model estimates, Global Biogeochem.
Cycles, 11, 367-392, 1997 . Malmström, C. M., M. V. Thompson, G. P. Juday, S. O. Los, J. T.
Randerson, and C. B. Field, Interannual variation in global-scale net model: Preindustrial tracer distributions, Global Biogeochem. Cycles
7, 645-677, 1993 . cover data set, DISCover: First results, Int. J. Remote Sens., 18, 3289
3295, 1997 .
Maier-Reimer, E., Geochemical cycles in an ocean general circulation Loveland, T. R., and A. S. Belward, The IGBP-DIS global 1 km land
cover data set, DISCover: First results, Int. J. Remote Sens., 18,3289 -
 Long, S. P., Modification of the response of photosynthetic productivity

 Lloyd, J., The CO_{2} dependence of photosynthesis, plant growth responses

 Tian, H., J. M. Meinlo, D. W. Kıcklighter, A. D. McGuire, B. Moore
and C. J. Vörôsmarty, Effect of interannual climate variability on

 Shaver Gadelhoffer, W. C. Oechel, and E. B. Rastetter, Global change and the Sellers, P. J., Canopy reflectance, photosynthesis and transpiration. Int. J
Remote Sens., 6, 1335-1372, 1985.

 Schimel, D. S., VEMAP Participants, and B. H. Braswell, Spatia

 Rayner, P. J., I. G. Enting, R. J. Francey, and R. Langenfelds,
Reconstructing the recent carbon cycle from atmospheric CO_{2}, del ${ }^{13} \mathrm{C}$ Rastetter, E. B., and R. A. Houghton, Comment on Kauppi et al. [1992a],
Science, 258, 382, 1992 .
 Randerson, J. T., C. B. Field, I. Y. Fung, and P. P. Tans, Increases in
 Randerson, J. T., M. V. Thompson, T. J. Conway, I. Y. Fung, and C. B.
Field, The contribution of terrestrial sources and sinks to trends in the Ramankutty, N., and J. A. Foley, Estimating historical changes in global
land cover: Croplands from 1700 to 1992, Global Biogeochem. use: An analysis of global croplands data, Global Biogeochem. Cycles
12, 667-685, 1998.
Ramankutty, N., and J. A. Foley, Estimating historical changes in globa Ramankutty, N., and J. A. Foley, Characterizing patterns of global land Steudler, B. J. Peterson, A. L. Grace, B. Moore III, and C. J
Vörösmarty, Potential net primary productivity in South America
Application of a global model, Ecol. Appl., $1,399-429,1991$. observations, Ecol. Appl., $10,1553-1573,2000$.
Raich, J. W., E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A
 Prentice, I. C., M. Heimann, and S. Sitch, The carbon balance of the

Helfrich, The sensitivity of terrestrial carbon storage to historical	G. Esser, T. Reichenau, and U. Wittenberg, Institute for Plant Ecol- climate variability and atmospheric CO ${ }_{2}$ in the United States, Tellus, ogy, Justus-Liebig-University, Heinrich-Buff-Ring 38, D-25395, Giessen, Germany. (esser @bio.uni-giessen.de; tim.reichenau @bio.uni-giessen. de;
Ser. B., 5l, 414-452, 1999b.	

(Received May 11, 2000; revised September 8, 2000;
accepted September 22, 2000)
 S. Sitch, Potsdam Institute for Climate Impact Research, Potsdam nstitute for the Study of Earth, Oceans, and Space, University of New
Hampshire, Durham, NH 03824. (b.moore@unh.edu; annette. schloss@
 Wildlife Rescarch Unit, University of Alaska Fairbanks, Fairbanks, AK
 (joos @climate.unibe.ch)
D. W. Kicklighter, J. M. Melillo, and H. Tian, The Ecosystems Center

 G. Esser, T. Reichenau, and U. Wittenberg, Institute for Plant Ecol-

[^0]:

