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Abstract: Swift developments in electronic devices and future transportation/energy production
directions have forced researchers to develop new and contemporary devices with higher power
capacities, extended cycle lives, and superior energy densities. Supercapacitors are promising devices
with excellent power densities and exceptionally long cycle lives. However, commercially available
supercapacitors, which commonly use high-surface-area carbon-based electrodes and organic solu-
tions as electrolytes, suffer from inferior energy densities due to the limited accessibility of surface
area and constrained operating potential window of electrolytes. To address the issue of inferior
energy densities, new high-capacity electrode materials and new/state-of-the-art electrolytes, such
as ionic liquids, gel polymers, or even solid-state electrolytes, have been developed and evaluated
vigorously in recent years. In this brief review, different types of supercapacitors, according to their
charge storage mechanisms, have been discussed in detail. Since carbon-based active materials are the
key focus of this review, synthesis parameters, such as carbonisation, activation, and functionalisation,
which can impact a material’s physiochemical characteristics, ultimately affecting the performance of
supercapacitors, are also discussed. Finally, the synthesis and applications of different carbon-based
materials, i.e., carbon nanotubes, graphene, and activated carbon, have been reviewed, followed by
conclusions and outlook.

Keywords: electrochemical energy storage; energy and power densities; carbon-based nanomaterials;
nanocomposites; supercapacitors

1. Introduction

The swift progress in science and technology, coupled with an ever-improving stan-
dard of life, has resulted in an increased energy demand. Presently, most of these energy
requirements are being satisfied through the deployment of conventional sources of en-
ergy [1,2]. These traditional energy resources, such as coal, oil, and gas are depleting
drastically, which can result in energy shortages and increased costs in the near future. In
addition, these conventional sources are highly polluting and are resulting in higher levels
of greenhouse gasses and rising temperatures. To address these environmental concerns
arising from these highly contaminating energy sources and to achieve energy security
for future generations due to the ever-changing geopolitical scenarios around the globe,
a step change is required to reduce the dependence on these traditional energy sources
by switching to more renewable and sustainable energy resources like tidal, wind, and
solar [3]. These renewable sources can provide an unrestricted supply of energy for genera-
tions to come; however, these are intermittent in nature, requiring suitable energy storage
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approaches. Many energy storage techniques are used to store excess energy and release
this surplus energy when required. Among the different energy storage technologies,
electrochemical systems for storing energy, particularly rechargeable batteries and superca-
pacitors (SCs), have enticed immense concern recently to be utilised as the energy storage
system of choice. Lithium-ion batteries are currently the market leaders in the segment of
rechargeable batteries, where various battery management systems have been employed to
improve their performance and enhance the battery life in real-world applications [4–6].
Moreover, doping has been used as a successful strategy to improve their performance [7].
Rechargeable batteries are considered high energy density devices, whereas SCs are on
the opposite end of the spectrum with exceptionally high-power densities. SCs are a pre-
ferred choice in many applications due to their exceptional performance characteristics,
such as extraordinary high-power densities, extremely rapid charge-discharge rates, good
cycle-abilities, and excellent efficiencies [8–10].

SCs have superior power densities; however, these devices retain a moderate level of
specific energies. To enhance their energy densities, different strategies have been used,
i.e., the use of different electrolytes and electrode materials to enhance their capacitive
performance, resulting in improved energy densities. Carbon materials have been modified
to enhance their SSA “specific surface area“ and optimise the surface chemistry and porous
structure. Higher SSA has been achieved through carbonisation and activation under
suitable synthesis conditions using different activation agents, whereas surface chemistry is
tuned through a heteroatom’s doping such as nitrogen, oxygen, sulphur, and phosphorus.
Electrolytes, such as ionic liquids and aqueous solutions, on the other hand, are exploited
to achieve higher operating potential windows and superior conductivities, respectively.
Moreover, new state-of-the-art electrolytes for commercial devices have been explored to
improve operational safety, environmental friendliness, and chemical inertness.

Carbon, transition metal oxides and conducting polymer-based nanomaterials have
been widely utilised as electrode active substances for SC’s applications. However, carbon
is still the most deployed active material in commercially used supercapacitor devices
since using conducting polymers and transition metal oxide-based nanomaterials can
result in inferior power densities of SC devices, which is the fundamental advantage
for the preferred use of SCs in many high-power delivery applications [11,12]. Carbon-
based materials are commonly used in SCs because of their excellent physical, chemical,
and electrochemical characteristics including very high surface area, control over porous
structures, good electrical conductivities, chemical inertness, structural stability, control of
functionalisation, and flexibility of producing a wide range of composites [13,14].

Among different carbon-based materials, AC “activated carbon”, graphene, and CNT
“carbon nanotubes” are the most excessively adopted as electrode materials for SCs. Other
nanomaterials such as carbon nanofibers, carbon nano-onions, diamond-like carbons, car-
bide derived carbons, and carbon nano-horns are also being utilised as electrodes in SCs;
however, their use is limited to the laboratory testing since these have much higher produc-
tion costs, restricted scalabilities, and concerns around their environmental affects during
production. Even though carbon-based materials have been very successful in a SC’s
applications, achieved energy densities are still low (<10 Wh kg−1). Unlike carbon-based
materials, pseudo-capacitive/battery-type materials, such as conducting polymers and
transition metal oxides could result in higher energy densities, but power densities and
long-term stabilities can be compromised when these materials are used as electrodes in SC
cells. To address these concerns, asymmetric or hybrid SCs have recently come under the
spotlight for the manufacture of high-performance SCs [15]. The introduction of pseudo-
capacitive materials on the surface or within the carbon matrix can result in an improved
performance of SCs due to additional Faradic charge storage coupled with fast and fully
reversible electronic transfer [16,17]; whereas hybrid devices where anode and cathode are
based on pseudo-capacitive/battery-type and carbon-based materials, which can bridge
the potential gap to increase the operating window, can also improve a SC device’s effi-
ciency [18,19]. However, these asymmetric or hybrid cell configurations have undesirable
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impacts on the power densities and enduring stabilities due to the phase change of active
materials and poor reaction kinetics, respectively. Therefore, the fundamental challenge for
the scientist is to enhance the energy densities of SCs while preserving their superior power
capabilities and cyclabilities. This seems achievable through the enhanced use of carbon
with optimised porosity and new, novel electrolyte solutions. Carbon-based substances
have been successfully used in SCs over the years and are still very popular in these devices
due to a number of advantageous reasons, i.e., improved capacitive performance with con-
trol over porous structures, which is based on theoretical and experimental studies [20,21].
Together with conventional characteristics, highly porous carbons with dimensionality
ranging from 0D to 3D [22] can be synthesised from a wide range of precursors based on
biomasses, polymers, metal organic frameworks, and MXenes [23–26]. These produced
carbons can have the following superior structural characteristics: (a) an optimised average
pore size (micro-meso pores) for superior charge storage and the efficient movement of
electrolyte ions to improve energy densities and retain good power densities, respectively,
(b) a large SSA for a large number of adsorption and active sites for electric double layer
and pseudo-capacitive charge storage, respectively, (c) an improved surface chemistry
through functionalisation to enhance the wettability of the electrode-electrolyte for superior
energy storage and good power capabilities, (d) providing a stable and highly conductive
platform for long-term stabilities and reduced equivalent series resistance (ESR). Literature
on carbon-based materials for a supercapacitor’s applications is widely available; however,
the fast development in the field of electrochemistry in general, and supercapacitors in
particular, requires regular literature updates which can provide summaries of the develop-
ment of the recent and past, and give an indication of future research direction. Moreover,
this review covers some fundamental processes that take place during carbon synthesis,
such as carbonisation, activation, functionalisation, and composites preparations, and these
processes have not been discussed frequently in literature. Various carbon-based mate-
rials used in supercapacitors and their superior characteristics are displayed graphically
in Figure 1.
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This brief review will discuss the SC’s fundamentals and different configurations.
Emphasis will also be directed towards the advancements in synthesising the most com-
monly used carbon nanomaterials and using various synthesis steps such as carbonisation,
activation, functionalisation, and composite production to improve the SC’s energy storage
capability. Furthermore, the applications of various carbonaceous materials such as AC,
graphene, and CNT will be discussed in detail.

2. Different Types of Supercapacitors and Their Energy Storage Mechanism

A supercapacitor is a system that stores energy electrochemically and releases energy
by ion adsorption and desorption cycles at the electrolyte-electrode interface. SCs are
made up of two electrodes separated by a separator. Supercapacitors are considered to
be much superior devices than conventional capacitors because of their higher capacities,
enhanced energy densities coupled with a higher power, and faster charge-discharge
rates. SCs are classified into two types: symmetric and asymmetric SCs. Asymmetric
SC is one in which the two electrodes of the SC are identical, while ASCs “asymmetric
supercapacitors” are formed when the two electrodes are made of dissimilar materials,
various redox-active electrolytes, or the same substance with various surface functional
groups. The symmetric SCs are divided into two groups based on the charge/discharge
mechanism of the electrode materials: pseudo-capacitors and EDLCs “electric double-layer
capacitors”. ASCs are classified in the literature as capacitive ASCs or hybrid ASCs [27].
The former comprises two different capacitive electrodes (similar to those found in EDLCs,
while the latter comprises a capacitive electrode and a faradic pseudo-capacitive) electrode.
By the beginning of this decade, researchers had introduced all pseudo-capacitive ASCs,
which consisted of two different pseudo-capacitive electrodes. Figure 2 depicts these
supercapacitor categories.
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2.1. EDLCs “Electric Double Layer Capacitors”

An EDLC is a type of supercapacitor that physically stores electrical energy at the
electrolyte-electrode interface. During the charging-discharging of EDLCs, there is no
chemical reaction as the charges are stored physically by the electrostatic attraction; thereby,
EDLC has a quick charge-discharge rate, a longer life cycle, and a high-power density [28–30].
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The nomenclature of electric double-layer capacitors is associated with the presence of a
double layer at the electrolyte-electrode interface when spontaneous charges reorganize
when electrically conductive electrodes are immersed in an ionically conductive elec-
trolyte [31,32]. Capacitance is one of the characteristics used to assess a supercapacitor’s
performance, and it evaluates its ability to store charge. The EDLC’s capacitance is related
to the available surface area and porous characteristics of the electrode materials [33].
Carbon-based materials with high SSA and good chemical stability, such as graphene,
AC, and CNTs, are widely used as electrode materials in EDLCs [34,35]. A commercial
carbon-based EDLC has a specific capacitance of approximately 100 to 250 F g−1 and a
specific energy density of 3 to 10 Wh kg−1 [31]. Figure 3 depicts a schematic representation
of an EDLC.
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2.2. Pseudo-Capacitors (PCs)

PCs, unlike EDLCs, rely mainly on Faradic charge-discharge processes linked with
redox reactions. These reduction/oxidation reactions occur at or near the surface of the
pseudo-capacitive electrode materials, where electron transfer changes the valence state of
the active material [36,37] as seen in Figure 4.

Although both batteries and pseudo-capacitors involve redox reactions, the batteries’
cyclic voltammetry (CV) curve has two dominant peaks. The CV curve of pseudo-capacitors
has a semi-rectangular shape with two inconspicuous peaks, as shown in Figure 5. As
a result, it can be explained on the basis that supercapacitors with pseudo-capacitive
electrodes exhibit electrochemical transitional properties between EDLCs and batteries [38].
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The charge arrangement at the electrode/electrolyte interface evaluates the
charge/discharge process in EDLCs. It excludes redox reactions (no Faradic process),
which explains why the charge-storage process in EDLCs is faster than that in pseudo-
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capacitors (the electrochemical double layer is formed in approximately 10−8 s in EDLCs,
whereas the time constant for redox reactions in pseudo-capacitors is in the range of 10−2

to 10−4 s) [40]. Different Faradic mechanisms produce three types of pseudo-capacitive
electrodes, depicted in Figure 6 with their respective Faradic reactions. In the UPD “un-
derpotential deposition” process, metal ions are electrodeposited at a significantly lower
potential than their reversible redox potential onto a substrate, a foreign metal. This process
is referred to as electrodeposition. For instance, consider the deposition of H+ on Pt or Pb2+

on Au [41]. Redox pseudo-capacitance occurs at or near the metal-electrolyte interface,
where the adsorption of the reduced species H+ onto the subsurface of oxidized species
such as Ru is accompanied by Faradaic charge transfer [42]. The interpolation of ions into
the tunnels or layers of the redox-active materials in a Faradic redox system that does
not include crystallographic phase change is referred to as pseudo-capacitance. Li+, for
example, intercalates Nb2O5 [43].
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2.3. Asymmetric supercapacitors

It is possible to compute the specific capacitance of a supercapacitor by using the
following equation:

C =
Sε

D
(1)

where ‘S’ is the SSA of the active materials, ‘ε’ is the relative permittivity, and ‘D’ is the
EDL thickness. The SSA of the active material in a device is directly proportional to its
capacitance, which is why high-surface-area electrodes are used for EDLCs; whereas ‘D’
is inversely proportional to the specific capacitance of SCs that give rise to very high
capacities of supercapacitors when compared with traditional electrostatic capacitors since
the distance ‘D’ in SCs is very small compared to that in case of electrostatic capacitors.

It is possible to determine the supercapacitor’s energy density by using Equation (2),
which is as follows:

E =
1
2

CV2 (2)

C represents the capacitance window, and V accordingly represents the operating
voltage window. Equation (3) gives the power density, or the amount of energy released in
a given amount of time:

P =
1
4
(∆V)2

R
(3)
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where “V” stands for the potential operating window, and “R” is the equivalent series
resistance (ESR), which comprises the resistance of the dielectric material, the current
collector, the electrolyte, and the electrode. This is one of the fundamental reasons that
EDLCs deliver higher power densities compared with pseudo-capacitors, since carbon has
lower resistances when compared with pseudo-capacitive materials.

According to Equation (2), if a two-fold increase in the voltage window can be pro-
duced, a four-fold excess in energy density can be obtained. A well-designed asymmetric
supercapacitor can provide a wider voltage window. The two distinct potential windows
of the two electrodes could be combined to produce the full device’s wide voltage win-
dow. The CV curves of capacitive and hybrid asymmetric supercapacitors are shown
in Figure 7 [45]. The structure and materials used to make the electrodes are critical in
attaining high energy and power densities in capacitive and hybrid asymmetric SCs.
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2.4. MICs “Metal-Ion Capacitors”

In recent years, improved hybrid electrochemical energy storage (EES) devices known
as metal ion capacitors (MICs), have been developed to address the power density and
cycle life issues of LIBs as well as the low energy density of SCs. These MICs share many
characteristics with LIBs and SCs (Figure 8), and are made up of a battery-type anode
(electrochemical intercalation or conversion) and a capacitor-type cathode (physical ad-
sorption) in an electrolyte containing metal ion. The electrode materials used in MICs
significantly impact their electrochemical performance, and a wide variety of materials
have been tried [46–48]. Ion capacitors are classified into several types based on the metal
ion electrolytes used, including LICs “lithium-ion capacitors”, SICs “sodium ion capaci-
tors”, PICs “potassium ion capacitors”, ZICs “zinc ion capacitors”, MnICs “magnesium
ion capacitors”, CICs “calcium ion capacitors”, and ALCs “aluminium ion capacitors” [46].
The cathode and anode, respectively, use physical (adsorption/desorption) and chemical
(intercalation/deintercalation or conversion) processes to store and release energy when
charging and discharging the MICs [47,48]. MICs have several advantages over conven-
tional SCs due to the combination of two energy storage systems in one device, including
(1) an increased energy density and battery capacity, (2) a higher power density compared
to LIBs, (3) a large working temperature range of −25 to 80 ◦C, and (4) less self-discharge
characteristics compared to SCs [49,50]. Different MICs have so far successfully shown a
trade-off between SCs and batteries [51,52]. The present MICs are far from adequate be-
cause of the imbalance in the electrode kinetics and capacities of the two electrodes [53,54].
In most circumstances, lower charge and discharge rates result in a higher energy density,
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whereas high charge and discharge rates, or a lengthy cycle life, result in a much lower
energy density.
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A wide variety of electrode and electrolyte materials are used for SC applications.
Particularly, there is a very wide range of active materials ranging from carbons to con-
ducting polymers and transition metal oxides that have been utilised in SCs. However,
commercially available SCs still predominantly use carbon-based materials—activated
carbon, to be precise. The following section will discuss the synthesis, characterisation, and
application of different and some of the most commonly used carbon-based materials.

3. Carbon-Based Electrode Active Materials Synthesis Process

A wide range of carbon-based nanomaterials have been synthesised and adopted
as active materials in energy conversion and storage devices, particularly as electrode
materials in SCs. Among these materials, AC [55], Gr “Graphene” [56], CNT [57] and CNF
“carbon nanofibers” [58] are some of the leading nanomaterials used for supercapacitor
applications. Carbon-based nanomaterials are extensively used because of their extraordi-
nary attributes, such as their large SSA, high electrical conductivity, control over porous
structure, cost-effectiveness, large-scale production, and ease of their modification both in
terms of chemical and physical characteristics. There are several procedures, such as car-
bonisation, activation, functionalisation, and doping, that are being used to fine tune their
physical and chemical characteristics, which can significantly influence the electrochemical
performance of SCs when these carbon-based nanomaterials are employed as electrodes.
These processes will be covered in detail in the following sub-sections.
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3.1. Carbonisation

Carbon-based materials are produced through the high-temperature pyrolysis of ei-
ther biomass-based or synthetic precursors under inert conditions using a constant flow
of inert gasses such as argon or nitrogen. The optimum carbonisation temperature range
of 700–1000 ◦C is commonly utilised to produce carbon materials, whereas temperatures
beyond 1000 ◦C are rarely used due to high material burnout and collapse of a porous
structure, resulting in low yield and low level of porosity, respectively, at elevated tem-
peratures [59]. Fundamentally, carbonisation is a thermal decomposition process that
transforms precursors into carbon or carbon-containing residues when treated at very high
temperatures in an inert environment. The final carbon product and its quality can be
impacted by various carbonisation parameters such as pyrolysis temperature, carbonisation
time, ramping rate, and condition/type of precursors. Based on synthesis temperature,
carbon can be categories as non-graphitic or graphitic, where non-graphitic carbons are
usually the preferred choice as electrodes in supercapacitor applications due to their high
level of porosity and three-dimensional crosslinked structure. whereas graphitic carbon is
preferred for its utilisation in batteries, especially lithium-ion batteries, due to its superior
intercalation properties. Studies have shown that increasing the pyrolysis temperature
can result in an increased level of porosity and wider pore sizes; however, carbonisation
temperatures beyond 800 ◦C can decrease porosity and average pore sizes due to the col-
lapse of the porous structure of the precursor. Nevertheless, when these carbon precursors
are treated at exceptionally high temperatures, i.e., above 2500 ◦C, they can go through
the fluid phase, which can produce graphitic carbon with a well-aligned and crystalline
graphitic structure, reducing porosity dramatically. Carbons treated at lower temperatures
have three-dimensionally crosslinked structures unlike graphitic carbon, which gives rise
to high levels of porosity and can be highly useful for a wide range of applications, i.e.,
electrochemical energy storage applications, especially as active electrode materials in SCs.

3.2. Activation

Carbons produced through the pyrolysis of various precursors result in generating
nanomaterials with a wide range of porous structures, i.e., pore sizes, pore volumes, and
specific surface areas. Applicability of all these porous materials with diverse characteristics
depends on the accessibility of the pores of the produced carbon [59]. Open pores can
be useful for enhancing the accessibility of the surface area to external fluids, such as
electrolyte solutions in the case of the supercapacitor. On the other hand, closed pores
can only influence the physical features, such as mechanical strength, bulk density, and
thermal conductivity, of carbons. An open pore that can be accessible to external fluids
can have numerous shapes and sizes. In terms of the sizes of pores, these can be classified
into micro, meso, or macropores. Whereas these pores can exist in a wide range of shapes,
such as bottle neck pores, blind pores, micro pores with one end closed, slit type pores, and
interconnected pores with both ends open.

The level of porosity of these carbon materials can be enhanced even further by using
a process known as activation. By using this technique, closed pores can be opened,
existing open pores can be widened, and further new porosity can be created through
partial oxidation using oxidation agents. Activation can be categorised into two types of
chemical and physical activation depending on activation agents, temperature range, and
the involved chemical processes. Physical activation is slightly more desirable as it is safer
and provides activated carbon with better control over porosity. Physical activation is a
process with two-steps: the first step is carbonisation under inert conditions, followed
by activation through the introduction of an activation agent [60]. In the case of physical
activation, air, steam, carbon dioxide, or a mixture of these is utilised as the activation agent.
However, carbon dioxide is the most popular activation agent since the activation process
can be controlled better by controlling the flow rate, activation time, and temperature.
Physical activation is normally performed in the temperature range of 700–1200 ◦C. Even
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though higher activation temperatures and extended periods of activation times can result
in a very high level of porosity, these can also result in a very high degree of burn-off [61].

During the activation process, the active oxygen removes more reactive portions from
the carbon skeleton in the form of CO and CO2, resulting in the formation of new pores
and the widening of the pores created through carbonisation. The level of porosity, porous
structure (pore size, SSA, and pore volume), and the degree of burn-off in the resulting
activated carbon depend upon the activation temperature, heating rate, and activation time.
Additionally, the rate of burning out of the carbon skeleton varies depending on where on
the exposed surface it occurs [62]. The activation reactions when carbon is activated using
carbon dioxide or steam as activation agents can be represented by Equations (4) and (5).

C + CO2 
 2CO (4)

C + H2O → CO + H2. (5)

Additional rationales for the preferred choice of physical activation include narrow
pore size distribution of the resultant carbon and control over-involved reactions. Further-
more, it provides better control over the level of functional groups on the carbon surface.

Chemical activation is different in that it involves only one step for carbonisation and
activation, unlike physical activation. Activation agents, such as phosphoric acid, potas-
sium hydroxide, and zinc chloride are used to saturate precursors followed by chemical
activation; however, the temperature range is much lower, being in the range of 400–600 ◦C.
Washing is added as an extra step that is applied to remove any excess chemical agent left
during the activation [63].

Even though there are several drawbacks to chemical activation, it still carries nu-
merous benefits. It is less energy intensive since it is a one-step process and does not
involve carbonisation; moreover, it requires much lower activation temperatures. It has
also been observed in numerous studies that chemical activation can result in a higher
level of porosity. In a study by Zhang, Lixing, et al., they activated agar through a one-
step chemical activation process, employing an activation agent, KOH. The activation
created a large number of three dimensional interconnected voids resulting in high levels
of porosity as seen in Figure 9a,b. As a result, higher levels of pore volume and an SSA
of 0.81 cm3 g−1 and 1672 m2 g−1, respectively, were achieved which were much higher
than the 0.47 cm3 g−1 and 1048 m2 g−1 achieved using the traditional two-step physical
activation, respectively, as seen in Figure 9c,d [64].

3.3. Functionalisation

By inserting functional groups on the surface or within the structure of carbon-based
active materials, the capacitive characteristics of EDLCs can be improved. This improve-
ment in capacitive performance is due to additional pseudo-capacitive contributions made
by functional groups such as sulphur (S), nitrogen (N), phosphorus (P), boron (B), and
oxygen (O). Functional groups can be introduced on the carbon surface through post-
treatment with heteroatom-containing materials or through self-doping by carbonising the
heteroatom-rich precursors [65]. For instance, treatment of prepared carbon with ammonia
can result in surface nitrogen-rich carbons, whereas carbonisation of materials such as
urea or melamine can result in introducing nitrogen on the surface and within the carbon
metrics [66]. Nitrogen functionalised carbons are the most investigated since these not only
enhance the capacitive performance of SCs but also enhance the surface wettability, espe-
cially towards aqueous solutions. Furthermore, nitrogen functionalised carbon can be used
either as aqueous or organic electrolytes, unlike oxygen heteroatoms doped carbon, which
cannot be used with aqueous electrolytes [67]. Figure 10 is the graphical representation of
carbon materials doped with different functional materials, i.e., B, N, S, and P.
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Firstly, improved wettability of carbon surfaces can be achieved through surface func-
tionalisation, as the heteroatoms on the surface create a partial positive charge, reducing
the electronegativity towards the neighbouring atoms and reducing the surface polarisa-
tion. This reduced polarisation between neighbouring carbon atoms result in enhanced
interactions with electrolyte ions, which ultimately improves the surface adsorption of
electrolyte ions. This also reduces active materials’ equivalent series resistance (ESR) when
used in capacitive devices [69].

Secondly, the capacitive performance of these functionalised carbon materials can be
enhanced by the pseudo-capacitive contribution made by these functional groups through
fast and fully reversible Faradic redox reactions. Finally, co-doping of more than one
heteroatom has been explored and found to be useful towards achieving higher capacities
of supercapacitor devices, where it is anticipated that this performance improvement
can be due to the synergistic contributions from these functional groups to enhance a
supercapacitor cell’s overall efficiency [70–72].

3.4. Composites

A very common technique to enhance the capacitive performance of SCs is to mod-
ify carbon by adding pseudo-capacitive substances, such as transition metal oxides or
conducting polymers. Composites benefit from additional Faradic capacitive contribu-
tion associated with the electronic transfer originating from pseudo-capacitive materials,
whereas high porosity carbons enable the improved mobility of electrolyte ions coupled
with an increased number of electrochemically active sites when these pseudo-capacitive
materials are deposited on the surface of the high porosity carbons and used in symmetric
SCs [73,74]. Another added benefit is the higher operating voltages achieved by making hy-
brid supercapacitor (asymmetric SCs) devices using carbon-based anodes and battery-type
cathodes, which can assist in bridging the energy gap between batteries and supercapac-
itors through increased operational voltages and improved capacitive performance [75].
Trinary composites, where two or more metal oxides are deposited on carbon material
in order to benefit from the synergic effect between these metal oxides and carbon, have
seen an increased interest recently. In a recent research study by Allado, Kokougan, et al.,
they synthesised a ternary composite by wrapping MnO2/Co3O4 metal oxides around
carbon fibre. Physical characterisation revealed a porous morphology of these composites,
which provided channels for the movement of electrolyte ions. The assembled capacitive
device displayed an excellent specific capacity of 728 Fg−1 using 6M KOH electrolyte,
coupled with a capacity retention of 71.8% over 11,000 cycles. A high energy density of
64.5 Wh kg−1 at a power density of 1276 W kg–1 was attained [76]. Figure 11 displays
various electrochemical and physical characteristics of the MnO2/Co3O4@SA-ECNFs com-
posite electrode. Figure 11a shows the cyclic voltammograms (CV), which are symmetric
at scan rate, indicating a good rate capability of the material; Figure 11b shows the elec-
trochemical impedance spectroscopy (EIS) profile showing low resistance for the ternary
composite; Figure 11c,d show the SEM images before and after cycling, showing the ro-
bustness of the material since there is no structural degradation; Figure 11e shows the
galvanostatic charge-discharge (GCD) profile with the longer discharge time for composite;
Figure 11f shows the cyclic performance.
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(c) and (d) the SEM micrographs before and after cycling; (e) the GCD profile of different samples;
and (f) the cyclic stability of MnO2/Co3O4@SA-ECNFs [76], open access.

4. Carbon Based Electrode Materials

Pseudo-capacitive and battery-type materials have recently seen an increased inter-
est for their adoption as electrodes in supercapacitors due to their high energy storage
capabilities. However, most of the commercially used supercapacitor devices still use
carbon-based materials, particularly activated carbon, as electrodes since pseudo-capacitive
and battery-type materials suffer from inferior power densities and rate-capabilities. Vari-
ous carbon-based materials, whether pristine, functionalised, or as composites when used
as electrodes in SCs, will be discussed in detail in the following subsections.

4.1. Graphene

Graphene, two-dimensional (2D), is a carbon nanomaterial with extraordinary phys-
iochemical characteristics, such as high SSA, excellent electrical conductivity, mechanical
strength, and very rich surface chemistry. Due to these exceptional properties, graphene
has seen increased use as an active material in SC applications. Graphene was isolated
from graphite using the micromechanical exfoliation technique (Scotch tape method) for
the first time in 2004 by Geim and Novoselov [77]. Following the successful separation
of the graphene layers from graphite, a number of other synthesis techniques have been
developed and utilised by scientists in the past two decades to produce graphene. These
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synthesis techniques are classified as top-down or bottom-up, depending on the synthesis
route adopted. In the top-down method, such as exfoliation (chemical mechanical or liquid),
graphene layers are separated from bulk material such as graphite by mechanical means,
whereas in bottom-up techniques, such as chemical vapor deposition and epitaxial growth,
graphene is produced through the decomposition of carbon containing precursors [78–80].

Graphene, graphene oxide, reduced graphene oxide, and its composites have been
widely used as electrodes in SCs, both in academic research as well as in commercial
applications. High specific surface area, excellent mechanical/chemical stabilities, chemi-
cal inertness, and rich surface chemistry are some of the highly desirable characteristics
that make graphene and its derivates and hybrids suitable active materials for electro-
chemical energy storage and conversion applications in general and for supercapacitors
in particular [81,82]. Seo, Dong Han, et al., used vertically aligned graphene nanosheets
(VGNS) as a binder-free electrode in symmetric supercapacitor cells. VGNS sheets were
fabricated by the single-step, facile, and cost-effective plasma-enabled method. This uni-
form three-dimensional structure resulted in a high specific capacitance of 230 Fg−1 at
10 mVs−1 with a capacity retention of over 99% after 1500 cycles when used in conjunction
with 0.1 M Na2SO4 aqueous electrolyte under ambient conditions [83]. Similarly, function-
alised graphene has also been explored as an electrode active material in supercapacitors
since heteroatom doping can enhance the overall performance of a SC cell due to the
pseudo-capacitive contribution made by various functional groups alongside electric dou-
ble capacitance originating from the physical interactions of electrode/electrolyte ions on
the high surface area interface. In a research study, nitrogen-doped graphene was produced
using a green and economical synthesis technique, where a mix of waste polyethylene-
terephthalate (PET) and urea were treated hydrothermally using a novel one-step synthesis
approach. An exceptionally high gravimetric capacitance of 405 Fg−1 at the current density
of 1 Ag−1 was achieved when this nitrogen-doped, high-porosity graphene was used as
an electrode in a supercapacitor cell. A very high energy density of 68.1 W hkg−1 and a
high maximum power density of 558.5 Wkg−1 was also attained when used with a 6 M
KOH electrolyte [84].

Graphene composites are widely produced using transition metal-based materials
since this can provide both superior power density and energy density due to the comple-
mentary nature of these two materials. Graphene is commonly used as a host material to be
doped with transition metal-based pseudo/battery-type materials; however, graphene has
also been used as a dopant to improve conductivity and porous structure. Transition metal
carbides and/or nitrides, also known as MXenes, have seen huge interest recently, however,
sheet stocking of this two-dimensional material can result in a reduced specific surface area.
Different strategies have been deployed to counter this issue, and graphene as a dopant has
also been used successfully. In a study, graphene/ MXenes (rGO/Ti3C2Tx) composites were
fabricated by alternating filtration combined with low temperature (250 ◦C) reduction. This
composite showed excellent capacitive performance, coupled with good mechanical flexi-
bility and outstanding cycle life. A specific capacitance of 322 Fg−1 was attained at 1 Ag−1

in 3 m H2SO4 electrolyte. These composite-based active materials have retained nearly
100% of the initial capacitance after 32,000 charge-discharge cycles, proving to be highly
stable materials. Sometimes, more than two components are used to prepare composites,
i.e., ternary composites, which can further enhance electrochemical performance due to
the synergetic effect of each component. In another study, polyaniline/graphene/Fe2O3
(PGF) nanostructured composites were synthesised; and used as an electrode material
in an SC cell. This composite displayed exceptionally high capacitive performance with
the specific capacitance of 1124 Fg−1 at a current density of 0.25 Ag−1 in 1 M H2SO4 elec-
trolyte solution and displayed a good rate capability with capacitance retention of 82.2%
at a much higher current density of 7.5 Ag−1 [85]. Various physical and electrochemical
characteristics of PGF are shown in Figure 12. Figure 12a displays the complete synthesis
procedure; Figure 12b displays the flakes of graphene oxide whereas; whereas Figure 12c
shows Fe2O3 nanoparticles implanted in between graphene layers shows the composites
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where polyaniline is grown alongside Fe2O3 nanoparticles to complete the production
process of PGF. Figure 12e–g shows the outstanding electrochemical characteristics of this
composite electrode active material. Figure 12e shows the charge-discharge profile and
Figure 12f displays the CV curves and finally Figure 12g shows the long-term cyclability
with excellent capacity retention
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cycles [85], open access.



Batteries 2023, 9, 19 17 of 28

Graphene has seen an accelerated use as an active material in SCs, as a result, graphene
is currently going through a transitional phase by entering commercialization. However,
it still lags behind the widely used activated carbon-based electrode materials due to the
cost-effectiveness and scalability of activated carbon. Therefore, wider use of graphene in
electrochemical energy storage and conversion devices in general and supercapacitor cells
in particular is expected to be achieved soon. Nonetheless, new synthesis strategies and
modifications in currently used production processes is required to make these procedures
more economical, environmentally friendly, and scalable. Table 1 below exhibits the
electrochemical performance of graphene-based electrodes.

Table 1. The electrochemical performance characteristics of graphene-based carbon electrodes.

Sample Capacitance
(Fg−1)

Energy
Density

(Wh kg−1)

Power
Density

(kW kg−1)

Retention/Cycles
(%) Ref:

VGNS 230 —— —– 99/1500 [83]
rGO 585.44 81.31 62.64 97.14/5000 [86]
4NG 405 68.1 558.5 87.7/5000 [84]
NB-GO 885 23.23 872 80/10,000 [87]
NiSe 1280 50.1 816 98/2500 [88]
NiCo2S4/GA 704.34 20.9 800.2 80.3/1500 [89]
SGP 928.56 25.6 4098 77.68/11,000 [90]
MP-rGO 1942 39.1 700 78.6/3000 [91]
ZnS/RGO 772 349.7 18,000 76.1 [92]
Cu-BPA/Go 611.6 54.37 200 86/2000 [93]

4.2. Activated Carbon

AC is the most commonly used electrode active material employed in supercapacitors
since it has excellent conductivity, inertness, a very high surface area, a tuneable pore size,
and can be produced in large quantities cost-effectively. Carbon is produced through a
high-temperature thermal treatment of synthetic materials such as polymers or naturally
occurring materials, i.e., coconut shells or rice husk-based precursors under an inert envi-
ronment. Another useful and efficient method of producing carbon materials is to utilise
waste materials such as biomass waste and fruit residues as precursors, using a number
of activation agents. These materials are not only available in abundance but also help in
reducing waste and help to improve the overall environment. Carbon produced using these
materials can be used in a variety of applications, including electrochemical energy storage,
particularly in supercapacitors [94,95]. The porous structure of synthesised carbon can be
improved even further through activation using the different activation agents discussed
above in detail. The desirable characteristics required to enhance the electrochemical perfor-
mance of supercapacitors include an optimised pore size according to the used electrolyte
solution and a high specific surface area. The capacitive performance can be further im-
proved with the incorporation of functional groups or by preparing the composites using
pseudo-capacitive materials such as transition metal oxides or conducting polymers as
dopants. This results in higher specific capacities since the total capacitance is the sum of
the electric double layer capacitance originating from the surface charge storage of highly
porous activated carbon and pseudo-capacitive contribution made by dopants or functional
groups through fast and highly reversible Faradic charge storage. The pseudo-capacitive
contribution is linked with the electronic transfer, whereas the electric double capacitance
is entirely surface based and does not require a charge transfer, instead it is based on the
surface adsorption-desorption of charges during cycling. MnOx/AC composites were syn-
thesised using biomass radish as the low-cost precursor resulting in the three-dimensional
crosslinked structure. These composite electrodes displayed exceptionally high capacitive
performance with the gravimetric capacitance reaching 557 Fg−1 at the current density of
1 Ag−1 when used in conjunction with 2M KOH as an electrolyte. These composites also
showed superior energy density of 248 Wh kg−1 at a power density of 4786 W kg−1 in
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the potential range of −1 to 1 V at a current density of 1 Ag−1. These hybrid electrodes
also showed moderate cycle-ability with a capacity retention of approximately 47% after
10,000 charge-discharge cycles [96]. Another way of improving the performance of SCs is
through the introduction of redox-active species into electrolyte solutions when they are
used alongside activated carbon electrodes. An improved specific capacitance was achieved
with the introduction of redox active ingredients to the electrolyte, which contributed a
pseudo-capacitive element alongside the EDL capacitance contributed by the activated
carbon. The specific capacitance of 885 Fg−1 was achieved after the addition of 0.05 M
FeBr3 to the electrolyte solution which was nearly four folds higher than 204 Fg−1 for the
activated carbon. There was no capacity loss after 10,000 charge-discharge cycles, and it
delivered a high energy density of 40 Whkg−1 in 0.5 M Na2SO4 [97]. Other commonly
used synthesis techniques to produce highly porous activated carbon include the template-
derived carbon methods. This method is commonly used by scientists in electrochemical
applications in general and in supercapacitors in particular since carbons with a tuned
porous structure, i.e., average pore size, specific surface area and pore volume can be
produced. The template-derived carbons are of immense interest among scientists since
the above-mentioned porous characteristics can have profound effect on the performance
of supercapacitors [98–100]. Table 2 below displays the electrochemical characteristics of
different AC based electrodes.

Table 2. The electrochemical performance characteristics of carbon electrodes.

Sample SSA
(m2g−1)

APS
(nm)

Capacitance
(Fg−1)

Energy
Density

(Wh kg−1)

Power
Density

(kW kg−1)
Ref:

KOH-CX-
4:1 2334 —— 222 10 400 [101]

hCNC-5.0 2737 266 153 1000 [102]
RFCA100-
800-800 1775 2.19 197 —— ——- [103]

RPC 2797 1.9 56 44 564 [104]
CSAC7 1343 —— 338 ——- —— [105]
HAC-WS 652 2.65 225 72.2 1547.6 [106]
TiC-CDC —— —— 163 ——– ——– [107]

4.3. Carbon Nanotubes (CNTs)

Fundamentally, carbon can be found in different shapes and forms, such as activated
carbon, graphite, and lonsdaleite. However, some novel and exotic carbon nanostructures
such as graphene, carbon onions, nano-diamond, carbon nano-horns, fullerene (C60, C240,
C540 and C20), and carbon nanotubes (CNTs) have also been discovered and investigated
in the past few decades [108]. Among all the allotropes of carbon, CNT is the most inves-
tigated due to its simplest chemical composition, atomic bonding, and diverse structural
properties [109]. CNTs were first synthesised by Sumio Iijima in 1991 at the NEC Corpo-
ration using the arc discharge method, which has revolutionised many scientific fields
such as physics, chemistry, and material science [110]. CNT’s structure resembles that of
graphene, the where basic structure is in the form of a honeycomb, similar to many other
carbon allotropes. Essentially, CNTs’ structure can be considered as graphene sheets rolled
up into a tubular shape. CNTs can exist in two basic shapes: single “SWCNTs” (harmony
with helical, armchair, and zigzag) and multi “MWCNTs” walled CNTs, depending on
their nanostructure and number of concentric cylindrical layers [111]. Figure 13 illustrates
the schematic of all the three types of CNTs.
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A wide range of production strategies are also being used to synthesise high-quality
CNTs with diverse morphologies and structural properties. However, laser ablation,
chemical vapour deposition, and arc discharge are the most commonly used techniques.

4.3.1. Arc Discharge Method

The arc discharge method is the pioneering and most widely used approach to
synthesise high-quality, defect-free CNTs [112]. In this technique, the electrical break-
down of gasses is used to create plasma; this process is carried out at and elevated
temperature > 1700 ◦C resulting in high-quality, defect-free CNTs when compared with
other techniques. Inert gas pressure, flow rate, and metal concentrations are the key factors
that can affect the yield of CNTs. By using this method, SWCNTs of the diameter range of
0.6–1.4 nm and MWCNTs with the diameter approximately 10 nm can be produced [113,114].
Figure 14 below displays the standard setup for the arc discharge technique.
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Figure 14. A araphical presentation of the arc discharge method “Reproduced with permission
from [113], Elsevier, 2014”.

Even though this synthesis process is highly efficient producing excellent-quality
CNTs, it has its own shortcomings, which include the utilisation of expensive noble gasses,
very high operating temperatures, and extremely low pressure.
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4.3.2. Laser Ablation

Laser ablation is a highly useful technique for producing extremely pure, high-yield
SWCNTs; however, this method is hardy used for the production of MWCNTs due to
the high production cost when compared with other synthesis procedures [115]. In a
typical experiment, 500 mg of a high purity SWCNTs (90% purity) can be produced in
just five minutes [116]. This process uses a constant flow of a gas or mixture of inert
gases such as Ar and N2 at a temperature range of 800–1400 ◦C; however, 1200 ◦C is the
most commonly used temperature, whereas the operating pressure is maintained between
200 and 400 Torr [117,118]. Figure 15 shows a laser ablation setup using ND: YAG system.
When the target rod was made of pure graphite and a graphite catalyst mixture, respectively,
MWCNTs and SWCNTs were formed.
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The properties of CNT samples produced can be affected by a variety of parameters,
such as laser characteristics, target material composition, gas composition, chamber’s
pressure, and temperature. The main drawback of this technique is its usefulness for the
production of only MWCNTs. It cannot be utilised for the production of MWCNTs due to
the issues associated with production costs.

4.3.3. Chemical Vapor Deposition (CVD)

CVD is an approach that is often employed to produce allotropic carbon in general
and CNTs in particular thanks to its simplicity, cost-effectiveness, ambient pressure, and
lower temperatures < 1200 ◦C. CVD was first used in 1993, using carbon monoxide–
hydrogen mixtures over Fe at 700 ◦C [120,121]. There are different CVD techniques such as
plasma enhanced chemical vapor deposition(PACVD), microwave plasma (MPCVD), radio
frequency (RF-CVD), and floating catalyst (FCCVD). Metal catalysts are a major factor that
can affect the characteristics of produced CNTs samples where Pt, Fe, and Mn are used as
catalysts in the form of nanoparticles with sizes less than 3 nm. Other factors, including,
deposition time, temperature, and flow rate, can influence the properties of produced
samples [108]. CVD is a bottom-up technique, unlike laser ablation and arc discharge, which
are top-down techniques, therefore, it provides better control over the shapes and sizes of
produced CNT samples.



Batteries 2023, 9, 19 21 of 28

CNTs have been studied as electrode active materials for a variety of electrochemical
applications, most notably supercapacitors. As discussed earlier, CNTs can be excellent
active materials for SC applications, and their performance can be enhanced even further
by doping these materials with functional groups. Surface functional groups can have dual
benefits, i.e., boosting the surface affinity of active materials towards electrolyte solutions
(particularly aqueous electrolytes), which improves electronic conductivity, and contribut-
ing towards the overall capacitive performance of SCs by adding pseudo-capacitive com-
ponents originating from nitrogen, oxygen, and sulphur functional groups. A recent study
used a simple low-temperature pyrolysis technique employing HA-CoFe-ZIF to synthesize
nitrogen-doped CNTs and graphene composites. This showed a high capacity of 324 Fg−1

at a current density of 1 Ag−1 with a high-capacity retention of 91% after 5000 cycles. Fur-
thermore, it displayed a high energy density of 10.3 Wh kg−1 at 331 W kg−1 [122]. Various
physical and electrochemical characteristics are displayed in Figure 16 below.
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at different current densities, (e) specific capacitance at different current densities, and (f) cyclic
stability of NCS-650 sample in three electrode setup [122], open access.
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One of the fundamental issues with the wider use of SCs as an alternative power source
is their high level of self-discharge compared with other electrochemical energy storage and
conversion devices. Two types of self-discharges, i.e., potential driving self-discharge and
diffusion control self-discharge, are the main types observed in more commercialised EDL
capacitors. Nanocarbons are considered the most suited materials to study self-discharge
since the charge storage in EDLCs is predominantly a surface-based physical phenomenon,
unlike pseudo-capacitive materials such as transition metal oxides or conducting polymers.
In a recent study by Zhang et al., they managed to control the self-discharge by tuning
the surface chemistry of SWCNTs when used as active electrode material in SCs. It was
found that a 13% reduction in the presence of surface function groups resulted in nearly a
five-fold drop in discharge-time [123].

Similar to other carbon nanomaterials, CNTs have also been used in composite form to
produce high energy/high power density electrode active materials. While CNTs assist low
resistance and, therefore high-power delivery, pseudo-capacitive-battery-type electrodes
provide high capacitive performance and energy density. In a recent study, Bathula and
co-workers manufactured highly efficient solid-state supercapacitors based on electrode
materials prepared by Co3O4 anchored on nitrogen-doped multiwall carbon nanotubes
(NMWCNT) using a green and environmentally friendly synthesis technique. This fab-
ricated Co3O4-NMWCNT composite was investigated as an electrode in a symmetric
supercapacitor cell in a 2 M KOH aqueous electrolyte. This device showed outstanding
electrochemical performance, with the specific capacitance reaching 202 Fg−1 at the cur-
rent density of 1 Ag−1. This was also coupled with a high energy density of 25 Whkg−1

at a power density of 900 Wkg−1. These results confirmed that Co3O4-NMWCNT com-
posites could be an excellent choice for high-power-high energy density supercapacitor
devices [124]. Table 3 below shows the performance properties, including capacitive perfor-
mance, energy and power densities, and efficiencies of CNTS and their composites when
used as electrode active materials in SCs.

Table 3. The electrochemical performance characteristics of carbon nanotube electrodes.

Sample SSA
(m2g−1)

Capacitance
(Fg−1)

Energy
Density

(Whkg−1)

Power
Density
(Wkg−1)

Efficiency
(%) Ref:

NA-CNT 988 98 59 1750 91 [125]
CNT —– 489.6 56.9 9992.19 98.5 [126]
FWCNTs 142 167.7 —— —— 98 [127]
P3HT/SWCNTs —– 245.8 50.8 308.7 80.5 [128]
TBN-CMP/SWCNT 1150 430 —— —— 99.18 [129]
SWCNTs/TiO2 —– 144 20 10,000 95 [130]
PC-CNTs 659.5 248 8.42 250 97.3 [131]
CNTs 205.2 50.1 459.9 80.1 [132]
TiO2-CNT —– 345.7 82.5 859 93.3 [133]
NCS 427 324 10.3 331 88 [122]

5. Conclusions and Future Prospective

Supercapacitors have emerged as suitable complementary devices in many appli-
cations, whereas in some applications, these can be used independently due to their
outstanding electrochemical characteristics, including long cycle life, high power density,
and good stability. An immense research drive is necessary to enhance their energy den-
sities even further for their wider commercial applications by bringing them in line with
or closer to their performance-comparable counterparts, rechargeable batteries. Various
strategies have been used to improve their energy storage capabilities, including the use of
a combination of different materials such as conducting polymers, transition metal oxides,
and carbons as electrodes. Additionally, improvements have been achieved through the
structural optimisation of carbonaceous-electrode active materials. In the current state of
technology of supercapacitors, these devices can be used in applications requiring short
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charging/discharging times, high cyclic stability, high power delivery, and long cycle life.
It is anticipated that supercapacitor technology has a long way to go before it can achieve
battery-level energy densities to replace it since energy densities of supercapacitors are
much lower when compared with currently used rechargeable batteries. The future direc-
tion of research requires focusing on these key points to improve their performance even
further: (a) The development of a high-porosity and highly conductive materials such as
graphene, activated carbon, and carbon nanotubes in an environmentally friendly and cost-
effective way since high production costs occur during the synthesis of these materials, as
synthesis of these nanomaterials require very complicated and energy-intensive processes,
restricting their wider industrialisation (b) The production of binary and ternary composites
with the optimised composition where carbon can assist in high power delivery and can
also provide large numbers of active surface area sites for the deposition of high capacity
materials. These high capacity materials can be based on pseudo-capacitive or battery-type
materials, which can improve the energy storage capabilities of supercapacitors to bring
these devices in line with or closer to rechargeable batteries. (c) Focus should also be di-
rected towards the electrode-electrolyte interface rather than the supercapacitor cell itself to
understand the interfacial electrochemistry which can assist in enhancing their performance.
(d) The development of new methodologies is also necessary to reduce self-discharge of
supercapacitors, which is one of the fundamental shortcomings of these devices. (e) Hybrid
devices along with metal ion supercapacitors are considered as technologies of the future
requiring research attention to make these devices a commercial success by improving their
power densities while maintaining their superior energy densities. (f) Currently, blade
coating is a frequently used technique to deposit slurry of active materials, however, this
process is very ineffective to produce light weight and thin electrode which are necessary
for superior capacitive performance since most supercapacitors undergo a surface-charge
storage reaction unlike rechargeable batteries where charge is stored in bulk of the material
where extra un-used active material can result in inferior performance. (g) Introduction of
universal testing standards in both industries and laboratories for the evaluation of superca-
pacitors is required so that the performance of supercapacitor cells is consistent when these
devices are evaluated under different conditions. In summary, in this brief review article,
we have attempted to discuss different types of supercapacitors according to their working
principles and advantages and disadvantages of these devices. This was followed by the
synthesis techniques of the different high-porosity carbon-based nanomaterials. Finally,
the applications of carbon nanomaterials in supercapacitor devices have been discussed
and recommendations for the future research direction have also been presented.
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