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ABSTRACT: A process-based carbon gas flux model was developed to calcuIate total macrophyte and 

microalgal production, and community and belowground respiration, for a Peltandra virginica domi- 

nated tidaI freshwater marsh in Virginia. The model was based on measured field fluxes of CO2 and 

CH,, scaled to monthly and annual rates using empirically derived photosynthesis versus irradiance, 
and respiration versus temperature relationships. Because the gas exchange technique measures 

whole system gas fluxes and therefore includes turnover and seasonal translocation, estimates of total 

macrophyte production will be more accurate than those calculated from biomass harvests. One limi- 
tation of the gas flux method is that gaseous carbon fluxes out of the sediment may underestimate true 

belowground respiration if sediment-produced gases are transported through plant tissues to the 

atmosphere. Therefore we measured gross nitrogen mineralization (converted to carbon units using 

sediment C/N ratios and estimates of bacterial growth efficiency) as a proxy for belowground carbon 

respiration. We estimated a total net macrophyte production of 536 to 715 g C m-' yr-', with an addi- 

tional 59 g C m-' yr-' fixed by sediment microalgae. Belowground respiration calculated from nitrogen 
mineralization was estimated to range from 516 to 723 g C m-2 yr-' versus 75 g C m-' yr-l measured 

directly with sediment chambers. Methane flux (72 g C m-' yr-') accounted for 11 to 13 % of total below- 

ground respiration. Gas flux results were combined with biomass harvest and literature data to create 

a conceptual mass balance model of macrophyte-influenced carbon cycling. Spring and autumn 

translocation and re-translocation are critical in controlling observed seasonal patterns of above and 

belowground biomass accumulation. Annually, a total of 270 to 477 g C m-2 of macrophyte tissue is 

available for deposition on the marsh surface as detritus or export from the marsh as particulate or dis- 

solved carbon. 

KEY WORDS: Peltandra virginica . Macrophyte and microalgal productivity . Carbon dioxide . 
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INTRODUCTION 

Tidal freshwater marshes are located at the head of 

the estuarine gradient where a suitable combination 

of freshwater supply and tidal range permits their 

development. On the eastern coastal plain of North 

America, the most expansive tidal freshwater marshes 

are located between New Jersey and Virginia and in 
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South Carolina and Georgia (Odum et al. 1984). In con- 

trast with east coast salt marshes, which are dominated 

by one (generally Spartina alternrflora) or several (i.e. 

S. patens and Distichlis spicata) macrophyte species, 

it is not unusual to find 50 to 60 plant species in a fresh- 

water marsh (Pickett 1984, Perry 1991). Dominant veg- 

etation changes seasonally and can include fleshy 

broadleaf plants such as Peltandra virginica, Pontede- 

ria cordata, and Sagittaria latifolia and grass-like spe- 

cies such as Leersia oryzoides, Phragmites australis, 

Typha latifolia, and Zizania aquatica. 

Intertidal salt and freshwater marshes have long 

been considered highly productive ecosystems. Salt 
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marshes dominated by monospecific stands of Spartina 

alterniflora have been well studied, with aboveground 

plus belowground net macrophyte production ranging 

from 1000 to 8000 g dw m-2 yr-' (Schubauer & Hopkin- 

son 1984). Most measurements have been made using 

a variety of biomass harvest techniques which have 

been shown to produce estimates of plant productivity 

that can exceed the physiological capacity of S. alterni- 

flora (Morris et al. 1984, Dai & Wiegert 1996). Fewer 

data are available for tidal freshwater marshes, due in 

part to their high diversity, seasonally variable species 

composition, and patchy distribution of belowground 

biomass. Reported annual net aboveground produc- 

tion varies by species, averaging 900 g dw m-2 yr-' for 

Peltandra virginica to 1900 g dw m-2 yr-' for Phrag- 

mites australis (Whigham et al. 1978). Although few 

studies have included belowground production, Booth 

(1989) reported approximately equal rates of above- 

ground and belowground production (1634 and 1568 g 

dw me2 yr-', respectively) for a monospecific stand of 

P. virginica in Virginia. When belowground components 

are included, it appears that freshwater marshes are as 

productive as salt marshes. 

Determining community production in tidal fresh- 

water marshes is, at best, a difficult proposition due to 

the diverse and seasonally changing species composi- 

tion and the extensive yet patchy distribution of below- 

ground biomass (de la Cruz 1978, Whigharn et al. 1978). 

Most commonly, aboveground production has been 

measured using either single or multiple harvests 

where production is either equal to peak biomass (i.e. 

Dournlele 1981) or biomass adjusted by a mortality or 

turnover factor (i.e. Pickett 1984, Wohlgemuth 1988, 

Booth 1989). Few studies have attempted to measure 

belowground production in tidal freshwater marshes, 

especially those dominated by Peltandra virginica 

which have rhzomes that extend to a depth of 1 to 2 m 

(Booth 1989, Chanton et al. 1992). Complete excavation 

of belowground material and subsequent separation of 

live and dead roots is a laborious, inexact, and time- 

consuming effort and does not provide necessary in- 

formation on turnover rates. An additional level of 

complexity is added because turnover rates for both 

above and belowground tissues vary depending on the 

species (Pickett 1984) and tissue type (Schubauer & 

Hopkinson 1984). In systems dominated by perennial 

plants, there can be significant translocation of nutri- 

ents and energy from belowground to aboveground 

components in the spring, and in the reverse direction 

late in the growing season as aboveground tissues 

senesce (Lytle & Hull 1980a,b, Hopkinson & Schubauer 

1984, Booth 1989). Because translocation is not ac- 

counted for in harvest methods, summing aboveground 

and belowground production will not provide an accu- 

rate estimate of true macrophyte productivity. 

As an alternative to harvest methods, fluxes of CO2 

and CH, have been used to estimate gross and net 

macrophyte productivity under ambient field condi- 

tions (Blum et al. 1978, Giurgevich & Dunn 1978, 

Howes et al. 1984, Whiting & Chanton 1996) or under 

experimental conditions such as elevated atmospheric 

CO2 concentrations (Drake 1984, Curtis et al. 1989, 

Azc6n-Bieto et al. 1994) or manipulated soil salinities 

(Pezeshki 1991, Hwang & Morris 1994). The carbon 

gas flux technique integrates processes that occur 

within and between aboveground and belowground 

compartments (e.g. turnover and translocation) and 

therefore provides a more reliable estimate of total 

production than harvest methods. If carbon fluxes from 

the sediments are measured in situ, sediment rnicro- 

algal production can also be calculated (Anderson et 

al. 1997). 

Marsh macrophyte and microalgal organic matter 

(carbon) can undergo several potential fates: biotic 

remineralization to CO2 and CH,, retention in the 

marsh system (as accumulated biomass or sediments), 

consumption by herbivores, or export to adjacent river- 

ine and estuarine environments as particulate (POM) 

or dissolved organic matter (DOM). The outwelling 

hypothesis, which proposes that marsh-derived ma- 

terials can support secondary production in nearby 

aquatic communities, requires a net export of organic 

materials from the marsh (e.g. Teal 1962, Odum 1968, 

Gosselink et al. 1973). Although historically developed 

for estuarine and salt marsh systems, the outwelling 

hypothesis is also applicable to tidal freshwater envi- 

ronments. Ecological simulation (i.e. Buzzelli 1996) or 

mass balance models (Chalmers et al. 1985, Hopkinson 

1988, Anderson et al. 1997) can be used to predict 

overall carbon or nitrogen balances in a marsh system, 

but accurate production estimates must first be ob- 

tained. Sediment microalgae are highly productive 

(Sullivan & Moncreiff 1988, Pinckney & Zingmark 

1993), can be suspended and exported from the marsh 

by tidal waters (Gallagher 1975), and are often an 

important food source in aquatic systems (Sullivan & 

Moncreiff 1990, Hamilton et al. 1992, Currin et al. 

1995, Deegan & Garritt 1997). Therefore, any study 

that attempts to couple marsh productivity and food 

web dynamics must include sediment microalgae. 

In this study, we describe a carbon gas flux tech- 

nique for determining macrophyte and sediment micro- 

algal productivity in tidal freshwater marshes. We 

present estimates of total macrophyte productivity and 

rates of carbon cycling measured using the gas ex- 

change technique and compare these with several tra- 

ditional harvest methods. Additionally, we report the 

first known measurements of sediment microalgal pro- 

ductivity in a tidal freshwater marsh system. These 

data represent a first step in developing coupled car- 
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bon and nitrogen process-based mass balance models 

for a mid-Atlantic (Virginia) tidal freshwater marsh. 

MATERIALS AND METHODS 

Study site. Sweet Hall marsh is an extensive emer- 

gent tidal freshwater marsh located on the Pamunkey 

River, approximately 69 km from the mouth of the York 

River, Virginia, USA. The marsh is within the Chesa- 

peake Bay National Estuarine Research Reserve system 

in Virginia (CB-NERRVA), and is bordered by non-tidal 

hardwood bottomland forests on the mainland side and 

submerged riverine mud flats along the Parnunkey 

River. Nearby upland areas on the Pamunkey River 

include agricultural fields, mixed hardwood and pine 

forests, and a pine plantation. A tidal channel and the 

Pamunkey River isolate the majority of the marsh from 

direct upland and groundwater influences. 

Our study site was located along the western branch 

of Hill's Ditch, a tidal creek that drains into the Pa- 

munkey River on the south end of Sweet Hall marsh. 

The tidal range is approximately 80 cm and much of 

the marsh is flooded on high tides. The study site (and 

on average, the entire marsh) is dominated by the 

broadleaf macrophytes Peltandra virginica and Pont- 

ederia cordata through most of the summer while the 

grass Zizania aquatica becomes abundant late in the 

growing season. To minimize disturbances due to 

repeated sampling, 3 boardwalks (30 m) were built 

into the interior of marsh in May 1996, roughly perpen- 

dicular to the tidal creek. All sampling was conducted 

from these boardwalks. 

Carbon flux measurements. Marsh community CO2 

and CH4 flux studies were performed by enclosing an 

area of marsh (0.69 m2), including both plants and sedi- 

ments, within a large temperature-controlled chamber 

('community chamber', 696 1, Fig. l ) ,  as described by 

Whiting et al. (1992). Belowground metabolism (no 

aboveground plants) was measured using a smaller 

chamber ('sediment chamber', 79 cm2, 0.8 1). During 

spring 1996, 6 alurninum collars for the community 

chamber were installed along 1 transect and left in 

place for the duration of the study. Collars, embedded 

10 cm into the sediment, provided an  air-tight seal be- 

tween the marsh and community chamber. Holes in 

each collar at the sediment surface allowed tidal inun- 

dation and drainage. Prior to making flux measure- 

ments, drainage holes were plugged; the community 

chamber was clamped to a collar; and the system al- 

lowed to equilibrate for 10 to 15 min. Sediment cham- 

bers were placed adjacent to each community collar. 

Fluxes were measured during June, September, and 

November 1996 and March, April, May, July, and Sep- 

tember 1997. With the exception of the September 1997 

study (see below), all measurements were made only 

during daytime low tides. To maximize light intensities 

for flux measurements, sampling dates were chosen 

so that slack low water occurred between 11:OO and 

13:00 h, and sampling did not take place on excessively 

cloudy or rainy days. Flux measurements in the com- 

munity chamber were made in full light and dark and at 

intermediate light levels (using shade cloths; 6 to 7 

meshes cm-' window screening) in order to construct 

photosynthesis versus irradiance curves. Benthic me- 

tabolism was measured only in the light and dark. Flux 

measurements at all light levels (including dark) for a 

given chamber were made on the same day; it gener- 

ally took 2 to 3 d to sample all chambers. To maintain 

community chamber temperature at k2"C of ambient, 

ice water was pumped through a heat exchanger 

within the chamber and the headspace air stirred by 

3 fans. The sediment chambers, which were generally 

shaded by macrophytes, did not have a cooling system. 

Community Chamber 
(696 1) 
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COz concentrations in each chamber were measured 

in the field using a LI-COR model 6252 infrared gas 

analyzer (IRGA; LI-COR Inc., Lincoln, NE). Prior to 

field measurements, the IRGA was zeroed for 15 to 

30 min with NZ passed sequentially through soda lime 

(to remove COz), Nafion tubing (Type 815 DuPont per- 

flourinated polymer, Perma Pure Inc., Toms River, NJ) 

packed in silica gel (to remove water) and magnesium 

perchlorate [Mg(C104),, to remove water]. The instru- 

ment was then calibrated with gas standards contain- 

ing 350, 408, or 1000 ppmv CO2 in NZ (Scott Specialty 

Gases, Inc., Plumsteadville, PA). In the field, air was 

circulated (500 ml min-l; LI-COR model 6262-04 refer- 

ence pump) from the chamber through the IRGA and 

back to the chamber; CO2 concentrations were mea- 

sured and recorded at l min intervals using a LI-COR 

model 1000 datalogger. Five to fifteen measurements 

were made at each light level. Chamber CO2 concen- 

trations were always between 280 and 350 ppmv- 

preliminary studies in June 1996 indicated that there 

was no effect of COz concentration on net photosyn- 

thetic rate within this range. 

To determine CH4 fluxes, 60 ml of gas were with- 

drawn from the community chamber at 10 min inter- 

vals. During November 1996 and September 1997, 

samples were also taken from the sediment chamber at 

5 to 7 min intervals. Thirty-five m1 of the sample were 

used to flush, and the remainder to pressurize a gas- 

tight Hungate tube (12.8 ml). Tubes were stored in- 

verted in brine to reduce gas leakage. Upon return to 

the lab, 200 p1 samples were injected into a Hewlett 

Packard model 5890 gas chromatograph equipped 

with a molecular sieve 13x column and flame ioniza- 

tion detector (oven at 80°C, detector at 220°C). A single 

point calibration of the instrument was performed rou- 

tinely before and during analyses using a 9.02 ppmv 

CH, in NZ standard (Scott Specialty Gases, Inc.). Rates 

of CH4 flux were linear and showed no response to 

short-term changes in light. 

Concurrent with gas flux measurements, incident 

irradiance was measured using a LI-COR 2x light sen- 

sor placed on top of each chamber, and a 4x sensor 

within the plant canopy, 15 cm above the sediment sur- 

face. Temperatures were measured using thermistors 

positioned inside and outside the chamber and in the 

sediment (10 to 15 cm). Light and temperature data 

were logged at 1 min intervals on a LI-COR model 

1000 datalogger. 

Tidal effects on CO2 and CH4 fluxes were deter- 

mined during September 1997. Sampling was con- 

ducted over 1 full tidal cycle, with measurements made 

during day and night, on both low and high tides, as 

described above. When the marsh was flooded, CO2 

and CH, fluxes in the chamber headspace and concen- 

trations of dissolved CH, in overlying water were mea- 

sured. Gaseous CO, and CH, fluxes were measured as 

above. For dissolved CH,, 30 m1 water samples were 

shaken for 30 s with an equal volume of CH4-free 

argon in a 60 ml syringe. The gas was transferred to a 

30 m1 syringe with stopcock and analyzed as above 

within 2 d of collection. CH, concentrations in water 

were calculated using the Ostwald solubility coeffi- 

cient (0.037 at 20°C, Weiss 1974). Dissolved CO2 con- 

centrations were not directly measured. Instead, we 

assumed that air and water CO2 concentrations were in 

equilibrium, with the concentration of dissolved CO2 

calculated using chamber headspace CO, concentra- 

tions and the Ostwald solubility coefficient for CO2 

(0.938 at 20°C, Weiss 1974). Differences in CO2 and 

CH4 respiration rates due to seasonal, diurnal and tidal 

effects were statistically tested using ANOVA and 

Tukey's HSD multiple comparison tests (Zar 1996). 

Belowground respiration (nitrogen mineralization). 

In freshwater marsh systems, molecular diffusion or 

convective throughflow of sediment gases through 

plant tissues is greater than direct sediment-atmos- 

phere diffusion (Chanton et al. 1992, Chanton & Whit- 

ing 1996, Whiting & Chanton 1996). Thus, gas fluxes 

measured with sediment chambers may underestimate 

true belowground. respiration rates (Morris & Whiting 

1986). To account for this we used the sediment gross 

nitrogen mineralization rate as a proxy for below- 

ground respiration, with N mineralized converted to 

carbon units using measured sediment C/N ratios and 

bacterial growth efficiencies (after Linley & Newel1 

1984, Hart et al. 1994). Although there are potential 

errors with this approach (see 'Discussion'), we believe 

this estimate will be more accurate than one based 

solely on CO, and CH, efflux into sediment chambers. 

Gross nitrogen mineralization was determined by 

15NH4+ isotope pool dilution as described in Anderson 

et al. (1997). Sediment cores (10 cm deep) were col- 

lected seasonally in triplicate at 5 randomly selected 

points along each transect using polycarbonate core 

tubes (20 cm tall X 25.5 cm2). Each core was uniformly 

injected with 4.0 m1 of argon-sparged 15N-labeled 

ammonium sulfate [(15NH4),S04, 10 mM, 99.7 at. %, 

Isotec Inc., Miamisburg, OH] to an approximate final 

concentration of 1 mM and 30 at. % 15N in porewater. 

Cores were incubated at ambient temperature in the 

dark for either 0, 24, and 48 h (November 1996) or 0, 6, 

and 24 h (September 1996 and April 1997). After each 

incubation period, 1 of each set of 3 cores was sacri- 

ficed by addition of an equal volume of KC1 (255 ml, 

2 M) to extract the total exchangeable NH4+ pool. Sed- 

iment slurries were shaken in Whirl-Pak bags for 1 h 

on a rotary shaker at room temperature and cen- 

trifuged. Supernatants were filter sterilized (0.45 m 
Gelman Supor Acrodiscs) and stored frozen in Whirl- 

Pak bags until analyzed for NH4+ using the technique 
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of Solorzano (1969). Remaining supernatants were late productivity. Because different species have their 

transferred to sterile, disposable specimen cups. Mag- peak biomass at different times of the year, multiple 

nesium oxide (MgO, 0.2 g) was added to reduce harvests allow a better estimation of aboveground pro- 

NH4+(,,, to NH3(,, which was trapped on acidified ductivity than does a single harvest. Smalley produc- 

(KHS04, 10 pl, 2.5 M) paper filters (Whatman #3, tion was calculated by taking into account changes in 

7 mm) for 6 d, as described by Brooks et al. (1989). both the live and combined dying plus dead fractions 

Disks were dried overnight in a desiccator over con- of biomass for all species over the course of the year 

centrated sulfuric acid (H2SO4), wrapped in tin cap- (Smalley 1958). To account for leaf mortality and de- 

sules, and analyzed for %N and I5N enrichment using composition between sampling dates,. we applied a 

an elemental analyzer coupled to an isotope ratio mass turnover factor of 2.24 yr-l (Wohlgemuth 1988) to our 

spectrometer at the University of California at Davis. estimates obtained from each method. Seasonal trends 

Rates of N mineralization were determined using a in live, dead, and total biomass were analyzed using 

model described by Wessel & Tietema (1992) which l-way ANOVA followed by Tukey's HSD multiple 

takes into account both the change in at. % enrichment comparison tests. 

of the 15N-labeled NH4+ pool as well as the change in Sediment chlorophyll a. For analysis of sediment mi- 

total concentration of the NH4+ pool. croalgal biomass, sediment was collected using 2 cm di- 

Sediment characterization. Sediment cores (55 cm2 ameter core tubes to a depth of at least 1 cm. Triplicate 

X 30 cm deep) were collected seasonally and sectioned cores were taken from the same areas sampled for 

into 0-2, 2-5, 10-13, 18-21, and 27-30 cm intervals. macrophyte biomass, plugged with rubber stoppers, and 

Samples were dried at 50°C for 3 to 4 wk. A portion of stored in the dark until processed. The 0 to 5 mm section 

each sample was ground in a Wiley mill (#40 screen), of each core was removed and stored frozen. Analysis 

weighed into ashed silver cups and acidified with 1 to was performed according to the protocol of Lorenzen 

2 drops of 10% HCI to remove carbonates. Samples (1967), as modified by Pinckney et al. (1994) to include 

were placed on a hot plate to evaporate excess acid, extraction of the sediment (unground) with 10 m1 of 

The acidification step was repeated and samples extractant (45 % methanol, 45 % acetone, 10 % D1 water) 

allowed to dry overnight in a 50°C drying oven. Total at -15OC for'j2 h. Differences in monthly chlorophyll 

carbon and nitrogen were measured using a Fison concentrations were analyzed using ANOVA and Tu- 

model EA 1108 elemental analyzer. key's HSD multiple comparison tests. 

Aboveground macrophyte biomass. Seasonally, 

aboveground macrophyte biomass was clipped at 5 

points along each of 2 transects in the marsh. Each RESULTS AND CALCULATIONS 

transect was divided into 5 zones (0-2, 2-8, 8-15, 

15-23, and 23-30 m from the tidal creek) and a sam- Carbon flux measurements 

pling point within each zone was randomly selected. 

The 2 zones nearest the creek covered the front and Mean short-term community CO2 respiration mea- 

back sides, respectively, of a natural levee, while the 3 sured as dark CO2 flux (CR; see Table l for abbrevia- 

interior zones were slightly lower in elevation. A 0.11 m2 tions) ranged from a low of 0.28 mg C m-' min-l in 

ring was blindly dropped at each sampling point; all March 1997 to a high of 6.51 mg C m-' min-' in Sep- 

vegetation rooted within the ring 

was clipped and returned to the lab 

for sorting. Samples were sorted by Table 1. List of abbreviations used throughout this paper 

species into living (50 to 100% 

green), dying (0 to 50 % green), and 

dead fractions, dried at 50°C for 3 to 

4 wk, and weighed. Percents carbon 

and nitrogen were measured as 

above without the acidification 

steps. From these data, aboveground 

macrophyte productivity was esti- 

mated using the peak biomass (i.e. 

Whigham et al. 1978, Doumlele 

1981) and Smalley (1958) harvest 

methods. The peak aboveground 

biomass (converted to g C m-') of 

each species was summed to calcu- 

Units 

GCp Gross community photosynthesis Mass C m-' per unit time 
Gross macrophyte photosynthesis Mass C m-' per unit time 

GMiP Gross microalgal photosynthesis Mass C m-' per unit time 
TCR Total community respiration (CO2 + CH4) Mass C m-' per unit time 

Community respiration (CO2 only) Mass C m-' per unit time 

ME Community respiration (CH4 only) Mass C m-' per unit time 
BGR Belowground respiration Mass C m-' per unit time 

M,R Macrophyte respiration Mass C m-' per unit time 
MiR Microalgal respiration Mass C m-' per unit time 

Gross sediment nitrogen mineralization Mass N m-' per unit time 

AGB Aboveground macrophyte biomass Mass C m-' or g dw m-' 

BGE Bacterial growth efficiency % 
MOM Sedunent macro-organic matter - 
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tember 1997 (Fig. 2). CR was highest during the sum- Table 2) and lowest in November (0.4 mg N m-' h-'). 

mer when temperatures and aboveground macrophyte Average sediment C/N ratios in the upper 30 cm 

biomass (AGB) were greatest. While there was consid- ranged from 11.6 to 12.1. Mineralization, the reduction 

erable variability between sampling sites on any given of organic matter to NH4+, is largely confined to the live 

day, average community CH4 flwes (ME) were highest root zone. Our data indicate that sediment organic 

in September 1996 (0.54 mg C m-' min-l) and lowest matter concentrations were fairly uniform (average 

during April 1997 (0.16 mg C m-' min-l; Fig. 2). Sedi- 19.6 % * 7.0 SD; n = 294) through the top 30 cm of sed- 

ment CH4 flwes were a small percentage (generally iment. The hlgh standard deviation reflects occasional 

<5  %) of the total ME f lw  (data not shown). Commu- high organic matter concentrations (50 to 80 %) in the 

nity ME rates accounted for 5 (May, June 1996; Sep- upper 2 cm. In Peltandra virginica marshes, the highest 

tember 1997) to 46% (March 1997) of short-term total organic matter content and root concentrations are 

community respiration (TCR; CR + ME; Fig. 2). TCR observed in the upper 30 cm (Booth 1989, Chambers & 

followed the same general trend as CR: rates were Fourqurean 1991, Hussey & Odum 1992, Harvey et al. 

highest between May and September, and signifi- 1995), although live roots and high concentrations of 

cantly lower from November to April (Fig. 2; ANOVA, sediment organic matter (15 to 20 %) can be present to 

F =  18.09, p < 0.0001; Tukey's HSD, p < 0.05). depths greater than 1 m (Booth 1989, S.C.N. unpubl.). 

During September 1997, studies were conducted over In our calculations, we extrapolated our measured 

1 full tidal cycle. Mean CR ranged from 4.02 (nighttime rates of N mineralizatidn (to; 10 cm) to 30 cm depth. 

high tide) to 9.00 mg C m-' rnin-' (nighttime low), but 

there were no statistical differences in CR over the tidal 

cycle (Fig. 3A; ANOVA, F =  2.68, p = 0.14). In contrast, Aboveground macrophyte biomass and sediment 

there were large changes in ME over the tidal cycle chlorophyll a 

(Fig. 3A). All treatments (nighttime low, nighttime high, 

daytime high) were significantly different than ME There was considerable variability in aboveground 

measured during daytune low tides (ANOVA, F =  18.18, biomass (AGB) along each transect with highest live bio- 

p < 0.01; Tukey's HSD, p < 0.05). ME was higher during mass observed near the tidal creek. All sampling loca- 

the day than at night, and low tide release rates were tions were generally dominated by Peltandra virginica 

higher than when the marsh was flooded. Gross photo- and Pontedena cordata, with Zizania aquatica increas- 

synthesis also varied with the tidal cycle (Fig. 3B). ing in abundance at the end of the growing season. Live 

biomass was highest during May and June and lowest 

in November (Fig. 4; ANOVA, F = 25.63, p < 0.0001; 

Belowground respiration (N mineralization) Tukey's HSD, p < 0.05). AGB was not measured during 

winter when few standing stems were observed. Dead 

Gross N mineralization in the upper 10 cm of the and dying biomass peaked in July (ANOVA, F  = 6.84, 

sediment was highest in September (20 mg N m-' h-'; p < 0.001; Tukey's HSD, p < 0.01); nearly 70 % of this ma- 

terial was P. virginica or l? cordata, while 20 % 

was unidentifiable detritus or wrack. Macro- 

phyte C/N ratios ranged from 11.5 (P. cordata, 

June) to 26.0 (Z .  aquatica, November) and 

increased during the growing season. Sedi- 

ment chlorophyll a concentrations in the top 

5 mm were highest in May (Fig. 4; ANOVA, 

F =  19.35, p < 0.0001; Tukey's HSD, p < 0.01). 

GASEOUS CARBON FLUX MODEL 

As a first step in constructing coupled car- 

bon and nitrogen process-based mass bal- 

ance models for Sweet Hall marsh, we devel- 

oped a carbon gas flux model to determine 
Jun 96 Sep 96 Nov 96 Mar 97 Apr 97 May 97 Ju197 Sep 97 annual rates of macrophyte and microalgal 

Fig. 2. Seasonal community CO2 and CH, fluxes (mg C m-' min-l), and air 
fixation' and community and 

temperature within the chamber. Bars are additive; thus combined CO2 + ground respiration. To do this, it was neces- 

CH, flux = TCR. Error bars are * 1 standard deviation; n = 3 to 7 sary to scale our short-term field measure- 

Community CO2 Respiration 

Community CH4 Respiration p Chamber Temperature 
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Day Night Night Day 
Low High Low High 

Tide Stage 

I o High Tide 1 
. . , . . . . , . . , . I . ~ ~ . I . . . ~ j  

0 500 1000 1500 2000 2500 

Incident Irradiance (pE m-' sec-') 

Fig. 3. (A) Community CO, and CH4 respiration (mg C m-' min-') measured in darkened community chamber over 1 tidal cycle 
in September 1997. Error bars are * 1 standard deviation; n = 2 or 3. (B) Gross community photosynthesis versus incident irradiance 
at high and low tides. Each data point is the slope of CO, concentration versus time for a 5 to 10 min sampling interval, minus 

measured dark respiration 

Table 2. Sediment carbon mineralization rates as calculated from measured gross nitrogen mineralization rates, C m  ratios, and 
estimates of bacterial growth efficiency (BGE). Rates were measured in April, September, and November and extrapolated to 
seasons as defined below. All rates integrated through the upper 30 cm of the sediment column. n = 16 to 30 for mineralization 

rates; n = 9 to 29 for sediment C/N 

Season No. of days N mineralization Sedvnent C mineralization (g C m-, season-') 
(mg N m-' h-') C m  BGE = 0.5 BGE = 0.4 BGE = 0.3 

P P 

'Growth' (Mar to Jul) 153 11.32 11.66a 243b 291 340 
'Senescence' (Aug to Oct) 92 20.01 12.06 266 320 373 
'Winter' (Nov to Feb) 120 0.43 11.60 7 9 10 

Annual totals (g C m-' yr-l) 516 620 723 

aSediment C/N values are averages of seasonal C/N values for 0-2, 2-5, 10-13, 18-21, and 27-30 cm sediment sections 
bCalculated by multiplying N mineralization X number of hours per season X sediment C m  X (1 - BGE) 

ments of community and sediment CO2 and 900, 

CH., fluxes to daily, monthly, and annual 800 

rates. Our model is driven by these seasonal 
700; rates, which, in turn, are controlled by hourly g 

changes in irradiance and temperature (mea- 600: 
B 

sured at the Virginia Institute of Marine Sci- 2 , : 
ence, VIMS, -50 km from Sweet Hall; VIMS !'E 
1997) and predicted tidal inundation of the 5 $,400i 
marsh (modeled with a sine curve; 12 to 13 h 

. 

B 300; flooding d-l). 5 
Carbon flwes were estimated for the 2 yr 200: 

period from January 1996 through the end of g 
loo{ 

December 1997. For the model, we made the 

assumption that photosynthesis versus irradi- 

ance (P vs I) and respiration versus tempera- Jun96 Sep 96 Nov 96 Apr 97 May 97 Jul97 

( R  vs T ,  (see did not 
Fig. 4. Seasonal patterns of aboveground macrophyte biomass (g dw m-') 

change from Year to year. Thus, interannual and sedunent microalgal chlorophyll (pg cm-'). Error bars are * 1 standard 
variations in modeled carbon fluxes are pri- deviation; n = 10 for macrophyte biomass; n = 30 for sediment chlorophyll 
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manly due to changes in incident irradiance and tem- the entire month of September 1997 (hypothetically 

perature. For months where field data were not col- assuming the marsh was always flooded or always 

lected, flux rates were estimated by linear interpolation. dry), there was only a small difference between calcu- 

lated monthly high and low tide GCP (106 vs 108 g C 

m-' mo-l, respectively). Therefore, we assumed that 

Model construction and assumptions there was no change in GCP due to tidal flooding. 

Gross community photosynthesis 

Gross microalgal photosynthesis 

Measurements of gross community photosynthesis 

(GCP) were made during 8 mo of the 2 yr modeling per- Because of a lack of low light intensity measure- 

iod, with data collected at a range of light levels (dark ments during field studies (less than 200 pE m-' s-'), 

to full light) in each season. GCP was calculated from gross microalgal photosynthesis (GMiP) versus I curves 

field measurements of net community photosynthesis could not be developed. To scale short-term rates to 

(light and shaded CO2 fluxes) plus community respira- daily and monthly fluxes, we assumed maximum GMiP 

tion (CR; dark CO2 fluxes) taken immediately follow- at irradiances greater than 500 pE m-2 S-'. Between 

ing the light measurements. To determine changes in 0 and 500 pE m-' S-', there was a linear increase from 

GCP over the course of a day or month in response to 0 to full GMiP. Holmes & Mahall (1982) showed that 

changing light levels, GCP versus irradiance (I) curves net CO2 exchanges for water-saturated intertidal se- 

were developed. Data from 6 chambers, placed along a diment~ from California plateaued between 500 and 

transect extending from creekbank to marsh interior 750 pE m-' S-'. Similarly, Darley et al. (1981) observed 

were used to generate a GCP versus I curve for each saturating irradiances in a Spartina alterniflora marsh 

season. Hyperbolic curves (after Whiting et al. 1992) of 500 pE m-2 S-' during summer and 100 pE m-' S-' in 

were fit to the data using the Levenberg- 

Marquardt iterative method (Deltapoint 1996). 

Hourly GCP was modeled as: .- 2.0 
m 

C 
..Pt = [E] 2 1.5 

9 7 .z 
where GCP, is calculated gross community 

.FE 1.0 
photosynthesis (mg C m-' h-'); I is average C 

hourly incident irradiance measured at VIMS 5 t 
5 .E 

(pE m-' S-'); and a and b are empirically U 0.5 

derived constants with units of mg C m-' h-' % 

and pE m-' rl, respectively Hourly GCP, g 
0.0 

rates were summed to determine daily and 

monthly fluxes. Incident Irradiance (pE m-' sec-') 

When data for individual chambers were 

analyzed, ambient irradiance and GCP were 18 

highly correlated (i.e. r2 = 0.84 to 1.00 for l6  

April 1997; Fig. 5A). However, when a 14 

month's data for all chambers were pooled g 7, 12 

(Fig. 5A), the correlation coefficient dropped 5: 10 
considerably (r2 = 0.30 for April 1997 to 0.88 .z E 8 

for ~ u l y  1997), reflecting variability in AGB t 6 
g .E and species composition along the transect. U 

In spite of this, aggregated GCP versus I 3 

curves for each month were used to model g 
0 

the integrated response of the entire, spa- 0 500 1000 1500 2000 2500 

tially variable, marsh community to chang- Incident Irradiance (pE m-' sec-') 

ing light conditions (Fig. 5B). 

curves of GCP versus I measured under Fig. 5. (A) Relationship between incident irradiance (I) and gross com- 
munity photosynthesis (GCP) for April 1997, showing strong correlation 

and non-f1ooded conditions were for individual chambers, but much lower correlation when all chambers 
markedly different (Fig. 3B). when are considered. (B) Representative GCP versus I curves used in carbon 
these curves were used to calculate GCP for gas flux model 
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winter. Whitney & Darley (1983) and Pinckney (1994) 

reported saturating irradiances ranging from 500 to 

greater than 1000 pE m-' S-', depending on the habitat 

(i.e. creekbank vs marsh interior). Short-term GMiP 

rates were multiplied by 60 to obtain hourly rates 

which were then summed to determine daily and 

monthly rates. 

In our tidal inundation study, we were unable to 

calculate GMiP during high tide. Using the data of 

Holmes & Mahall (1982), wecalculated that gross CO2 

uptake rates decreased by an average of 49% when 

the sediments were flooded with only a few mm of 

water. Pinckney & Zingmark (1993) calculated that 

microalgal production decreased by less than 25% 

during periods of flooding. To be conservative, we 

applied the 49% relative decrease from Holmes & 

Mahall (1982) to simulate a depression in Sweet Hall 

GMiP rates due to increased light attenuation and ver- 

tical migration (downward) of microalgae during tidal 

flooding (Pinckney & Zingmark 1993, Pinckney 1994). 

When modeling tidal effects on carbon flux rates, we 

assumed that the depth of water overlying the marsh 

did not affect process rates; the important factor was 

whether the marsh was 'wet' or 'dry'. 

Community respiration 

In April, July and September, Qlo values were calcu- 

lated from plots of respiration versus air temperature 

(CR vs T). Values ranged from 1.94 (July) to 3.2 (April). 

In other months there was not a significant CR versus T 

relationship; so values from April, July or September 

were substituted based on similarities in overall vege- 

tation characteristics (AGB and species composition). 

Monthly Qlo values were combined with hourly 

weather data measured at VIMS and average monthly 

respiration rates to calculate hourly CR rates: 

where CR, is calculated hourly respiration (mg C m-2 

h-'); CRi is the average CR rate during season I (mg C 
h-I ); Qlo varies seasonally; and t, and ti are air tem- 

peratures ("C) at time t and the time the field measure- 

ments were made, respectively. There were no tidal 

effects on CR (Fig. 3; ANOVA, F= 2.68, p = 0.14). Res- 

piration was calculated 24 h d-l; hourly rates were 

summed to obtain daily and monthly CR rates. 

Methane release 

Community CH, release (ME) was not significantly 

related to either air or sediment temperature; thus we 

assumed that the rates we measured were applicable 

throughout a month. The tidal effects study indicated 

that there were significant differences in ME over a 

tidal cycle (Fig. 3; ANOVA, F= 18.18, p < 0.01; Tukey's 

HSD, p < 0.05). Nighttime rates were 50% of daytime 

rates, suggesting that a light-dependent process was 

responsible for some of the CH, transport. For modeling 

purposes, night was defined as any time when average 

hourly irradiance was less than 50 pE m-' S-'. Rates at 

high tide were only 12% of corresponding low tide 

rates. Hourly rates of CH, release were calculated as: 

MEt = MEi X (0.50)' X (0.12)' 

where ME, is calculated CH, release rate (mg C m-' 

h-'); MEi is average ME rate during season i (mg C m-' 

h-'); and the factors 0.5 and 0.12 are added ('as 

needed) to convert daytime low tide rates in response 

to diurnal or tidal changes, respectively. Hourly rates 

were summed to obtain daily and monthly fluxes. 

Belowground respiration 

Gross N mineralization (GNM) rates measured in 

April, September, and November were integrated over 

a sediment depth of 30 cm. Rates of GNM were con- 

verted to carbon units using sediment C/N ratios and 

estimated bacterial growth efficiencies (BGE, or micro- 

bial growth yield) of 30 to 50 % (Linley & Newel1 1984, 

Hart et al. 1994): 

Belowground C respiration = (C&)subsbate X GNM X (1 - BGE) 

To convert rates from discrete seasons to an annual 

rate, seasons were defined based on vegetation pro- 

cesses. Early spring to summer (March to June) was 

defined as the 'growth' period since AGB rises from 

near 0 in March to maximum values in mid-June. 

Large amounts of Peltandra virginica and Pontederia 

cordata biomass begin to die in July (Fig. 4), and total 

community AGB continues to decline through the end 

of the growing season. Thus, July to September was 

classified as the period of 'senescence'. From Novem- 

ber to February ('winter'), AGB was near 0. Within a 

season, no corrections were made for changes in sedi- 

ment temperature. 

Model results 

Photosynthesis 

Total gross community photosynthesis (GCP) aver- 

aged 1062 (? 102 SD) g C m-' yr-' over the 1996 to 1997 

model period. Results from the sediment chambers show 

that 66 (+ 12 SD) g C m-' yr-' were fixed by sediment 

microalgae (GMiP). By difference, the remaining 996 
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(+ 114 SD) g C m-' yr-' was gross macrophyte photosyn- 

thesis (GMaP). GCP was low during winter and early 

spring, but increased from 26 to 174 g C m-' mo-' 

between April and May (Fig. 6). This large increase in 

GCP was reflected in the large accumulation of AGB 

during the same period (Fig. 4), although measured pho- 

tosynthetic rates were not sufficient to explain the entire 

biomass accumulation (see 'Discussion'). Following a ma- 

ximum in June, and coincident with decreases in AGB, 

there was a steady decline in GCP through the end of the 

growing season. GCP rates during winter were relatively 

constant (12 to 14 g C m-2mo-'), reflecting low AGB dur- 

ing this time. Statistically, GCP rates were significantly 

higher (p < 0.05) during the summer (May to September) 

than during the rest of the year (November to April). 

Highest GMiP rates occurred in May (14.3 g C m-' mo-l), 

before the growth of dense macrophyte biomass re- 

stricted light penetration to the sediment surface. In 

June, GMiP rates were the lowest of the yr (2.1 g C m-' 

mo-'; Fig. 6). GMiP rates again increased toward the end 

of the growing season, possibly due to senescence of the 

dense Peltandra virginica and Pontedena cordata cover 

and subsequent replacement by the tall, thin grass Ziza- 

nia aquatica, which allowed more light to reach the 

sediment surface. 

Respiration 

Total community carbon respiration (TCR; CR + ME) 

exceeded GCP, 1269 (* 130 SD) versus 1062 g C m-z yr-l. 

300 l Photosynthesis 

Although not the focus of this paper, we hypothe- 

size that sedimentation during tidal flooding provided 

sufficient carbon to the marsh to account for the high 

respiration rates and maintain rates of marsh surface 

accretion. Alternately, if GCP and TCR vary annually 

and are out of phase, high autotrophic production in 

1 yr might not be decomposed until the following year 

leading to an imbalance between GCP and TCR. Total 

community respiration rates were significantly greater 

during the summer (p < 0.05; May to September) than 

during the remainder of the year. Of the community 

respiratory flux, 6% (72 + 4 g C m-2 yr-') was due to 

CH4 release (ME); the remaining 94 % (1197 + 134 g C 

m-' yr-') was CO2 efflux (CR). CR rates were highest 

during July (285 g C m-' mo-l; Fig. 6), perhaps due to 

the large amount of dead and dying Peltandra vir- 

ginica and Pontederia cordata biomass (Fig. 4). ME 

rates were highest during the late growing season 

(August to September; 8.4 to 8.6 g C m-z mo-l). 

When hourly N mineralization rates were extrapo- 

lated to seasonal rates and converted to carbon units 

using measured sediment C/N ratios and bacterial 

growth efficiencies (BGE) ranging from 0.3 to 0.5, 

'growth' and 'senescence' periods accounted for nearly 

equal amounts of belowground respiration (BGR; 243 

to 340 and 266 to 373 g C m-' season-', respectively; 

Table 2). Although 'winter' accounted for 120 d of the yr, 

BGR during this season (7 to 10 g C m-z season-') was 

less than 2 % of the annual total. 

Total BGR estimated from sediment nitrogen miner- 

alization was 516 to 723 g C m-' yr-'. In contrast, 

carbon respiration (COz + CH4) mea- 

sured using sediment chambers was 75 

7300 (* 2 SD) g C m-2 yr-l, suggesting that 
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Gross Microalgal Photosynthesis (GMiP) Community COz Respiration (CR) 

Gross Macrophyte Photosynthesis (GMaP) Community CH4 Respiration (ME) 

+ Gross Community Photosynthesis (GCP) + Total Community Respiration (TCR) 

Fig. 6. Monthly rates of gross macrophyte and microalgal photosynthesis and 
community CO2 and CH4 respiration (g C m-' mo-') from carbon gas flux model. 
Values are averages of 1996 and 1997 model output (i 1 standard deviation; 
error bars do not include prediction error of the P vs I or R vs T regressions) 

over 85 % of COz and CH4 produced in 

the sediments was transported through 

macrophytes before being released to 

the atmosphere. Methane release (72 g 

C m-' yr-l) accounted for 11 to 13 % of 

total BGR. However, nearly all CH4 

passed through plant tissues-sedi- 

ment CH4 fluxes were generally < l  % 

of total sediment chamber respiration 

(data not shown). While gross CH4 pro- 

duction may be much larger than net 

release due to methane oxidation in 

the sediment (Yavitt 1997), gas trans- 

port through plant stems appears to 

provide a more efficient mechanism of 

releasing CH4 to the atmosphere than 

direct sediment-atmosphere diffusion. 

The difference between TCR and 

BGR (546 to 753 g C m-z yr-l) can be 

divided among marsh macrophyte and 

microalgal respiration (MaR and MiR, 
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respectively). Pomeroy (1959) stated that MiR was less 

than 10% of GMiP. Using this value, we calculated a 

MiR rate of 7 g C m-2 yr-' and a net microalgal photo- 

synthesis rate of 60 (* 10) g C m-2 yr-'. This wiU under- 

estimate total microalgal production to the extent that 

the algae utilize porewater DIC in addition to atmos- 

pheric CO2. The remaining 539 to 747 g C m-2 p - '  of 

respiration was due to macrophyte growth and respira- 

tion costs and decomposition. 

Macrophyte carbon budget 

On an annual basis, 996 g C m-2 yr-' (Table 3) were 

fixed by marsh macrophytes (GMaP). During the early 

growing season (March to June), there was little de- 

caying AGB (Fig. 4); therefore, measured TCR inclu- 

ded MaR necessary for growth and maintenance and 

BGR. MaR, calculated as TCR - BGR - MiR, was sub- 

tracted from GMaP to give a net macrophyte photo- 

synthesis rate of 232 to 309 g C m-2 (F = 271 g C m-2; 

March to June only). As the growing season progres- 

ses, decomposition of AGB makes up an increasing 

proportion of TCR. To calculate MaR while accounting 

for decomposition, we assumed that growth and main- 

tenance respiration costs were a constant percentage 

of GMaP, regardless of the time of year. During March 

to June, we calculated that macrophyte respiration was 

28 to 46% of GMaP. Based on thls estimate, MaR for 

the remainder of the yr would range from 159 to 261 g 

C m-' yr-' (F = 210); the remaining 259 to 287 g C m-2 

(F = 273 g C m-2) would result from plant decomposi- 

tion. Annual net macrophyte photosynthesis was thus 

calculated to range from 536 to 715 g C m-2 p-' (Z = 

625 g C m-2 p-'). Based on studies by Hwang & Morris 

(1992) in a Spartina alterniflora marsh, 5 to 37 g C m-2 

yr-' (F = 21 g C m-2 yr-') were fixed via DIC uptake by 

the roots (0.5 to 3.7 % of GMaP). Therefore, net macro- 

phyte production (net photosynthesis + DIC uptake) 

was 557 to 736 g C m-2 (5f = 646 g C m-2; Fig. 7). 

Early summer translocation of carbon from below- 

ground rhizomes to aboveground tissue is critical to 

support accumulation of aboveground biomass (AGB). 

Production of peak AGB required a total of 676 g C m-2 

between the start of the growing season (March) and 

the time of peak biomass (June; calculated from peak 

AGB, species-specific % carbon values, and a turnover 

of 2.24 yr-l). During this 4 mo period, net photosyn- 

thesis accounted for only 35 to 45% of the carbon 

required. The remaining 367 to 444 g C m-2 (F = 405 g 

C m-2) was likely supplied by translocation from below 

to aboveground tissues. Following peak biomass, AGB 

disappeared from the surface of the marsh. Possible 

fates include respiration to CO2 or CH,, leaching as 

DOC during tidal flooding, translocation to below- 

ground tissues, and other losses which include her- 

bivory, deposition on the sediment surface or export 

from the marsh. Using our carbon gas flux model, some 

literature values, and a few simplifying assumptions, 

we have completed a conceptual carbon flux model, 

described below, for macrophytes in Peltandra virgi- 

nica dominated tidal freshwater marshes (Fig. 7). 

Leaching of DOC from plant tissues can occur both 

during tidal submergence and aerial exposure (Gal- 

lagher et al. 1976, Turner 1978, Pakulski 1986, Moran & 

Hodson 1990, Turner 1993, Mann & Wetzel 1996). 

Table 3. Model output and sensitivity analysis for conceptual carbon flux model (Fig. 7). Case 1 to 3: variations in the bacterial 
growth efficiency from 30 to 50%. Cases 4 and 5: variations in the ratio of (MaR) macrophyte respiration to (GMaP) gross 

macrophyte photosynthesis. Units are g C m-2 yr-' 

Case 1 Case 2 Case 3 Case 4 Case 5 
Bacterial growth efficiency (%) MaRIGMaP (%) 
50 4 0 30 40 5 0 

System gas flues 
Gross macrophyte photosynthesis 996 996 996 996 996 
Macrophyte respiration 459 370 28 1 3 98 497 
Macrophyte decomposition 287 273 '259 277 293 
Macrophyte respiration/gross photosynthesis (%) 46 37 28 4 0 50 
Belowground respiration 516 620 723 587 472 

Carbon inputs 
Net macrophyte photosynthesis 536 625 715 597 498 
DIC uptake 21 21 2 1 21 21 

Internal cycling 
Spring translocation 444 405 367 4 17 46 1 
Autumn translocation 460 460 460 460 460 

Carbon outputs 
Dissolved losses (leaching terms) 66 66 66 66 66 
Particulate losses ('other losses') 204 307 410 275 160 
Maximum C for export (dissolved plus particulate) 270 374 477 34 1 226 
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Other losses 

DIC Uptake 

Fig. 7. Conceptual model of carbon fluxes in a Peltandra 

virginica dominated tidal freshwater marsh. Bacterial growth 

efficiencies from 30 to 50% were used in the calculations 

presented in the text. For visual simplicity, only results using a 

median efficiency of 40% are shown here. Units are g C m-'yr-' 

Working in Spartina alterniflora salt marshes, Turner 

(1993) calculated that 5 to 10% of total aboveground 

production was leached from plant tissues. From our 

biomass harvests, seasonal and species-specific percent 

carbon data, and an annual live biomass turnover 

of 2.24 yr-' (Wohlgemuth 1988), we calculated above- 

ground productivities using the peak biomass (845 g C 

m-2 yr-l) and Smalley methods (776 g C m-' yr-L). Com- 

bined with Turner's (1993) data, we estimated a leach- 

ing rate of 41 to 85 g C m-2 yr-' (F = 62 g C m-' yr-'). 

Using Booth's (1989) nitrogen leaching rates for Peltan- 

dra virginica and a C/N ratio of 16.3 for aboveground 

tissues (this study), 34 g C m-' yr-I were leached from 

aboveground tissues. Both of these values are likely 

underestimates of true leaching rates as S,  alterniflora 

is more resistant to degradation than fleshy plants like 

P. virginica (Odum & Heywood 1978, Webster & Ben- 

field 1986), and Booth's (1989) study examined only live 

standing leaves; leaching rates are higher from dead 

and dying tissues (Mann & Wetzel 1996). 

We assumed that DIC uptake occurred at a constant 

rate of 1.75 g C m-2 mo-', for an annual total of 21 g C 

m-2. Belowground leaching rates (4 g C m-' yr-t) were 

estimated from Rovira (1969) who reported that root 

leaching rates from a range of species are rarely more 

than 0.4 % of GMaP. Combined root and rhizome mor- 

tality (defined here as loss to sediment macro-organic 

matter, MOM) was estimated based on Booth (1989). 

Total loss of root matter during the early growing sea- 

son (March to June) was 474 g C m-'. Of this, 33 to 

110 g C m-' (X = 72 g C m-') were transferred from 

belowground biomass to the sediment MOM pool 

(474 g C m-' total loss - 367 to 444 g C m-' transloca- 

tion loss - 3 g C m-' leaching loss + 7 g C m-' DIC 

uptake), although the ultimate fate (e.g. respiration to 

CO2 and CH4, export from the marsh) of this MOM 

is unclear. Because belowground biomass standing 

stocks are similar at the beginning and end of the year 

(Booth 1989), we balanced all inputs to the below- 

ground compartment (DIC uptake and fall transloca- 

tion) with outputs (leaching, spring translocation, and 

other losses) to calculate an autumn translocation rate 

of 460 g C m-' yr-t. Similarly, we balanced all inputs 

and outputs from the aboveground compartment (as- 

suming that AGB is 0 at the beginning and end of the 

year) and determined that 171 to 300 g C m-' yr-' (X = 

235 g C m-') of AGB was lost by herbivory, detritus 

deposition on the sediment surface, or export from the 

marsh by tidal waters. The partitioning between these 

loss terms is currently unknown. 

DISCUSSION 

The gas exchange technique described herein pro- 

vides a non-destructive means of determining total 

macrophyte and microalgal production. Because pro- 

duction numbers are based on actual process model- 

ing, a relatively large amount of data (e.g. GCP vs I, CR 

vs T curves) are needed to construct a robust model. 

Additionally, there are a series of assumptions (see 

'Gaseous carbon flux model') that must be made to 

successfully extrapolate short-term (5 to 30 min) field 

measurements to monthly and annual budgets. How- 

ever, if these process relationships can be described 

and all assumptions confidently justified, a gas flux 

modeling approach can provide a degree of process- 

related insight into differences in primary productivity 

over the course of several years or between different 

marshes in the same year. 

Gas exchange technique versus harvest methods 

Annual net macrophyte production (557 to 736 g C m-' 

~ r - ' )  determined using our gas flux model was lower 

than that based on AGB harvest methods (776 to 845 g C 

m-2 yr-l) adjusted by a turnover rate of 2.24 yr-' (Wohl- 

gemuth 1988). As previously discussed, harvest tech- 

niques tend to bias production estimates by failing to 

account for seasonal translocation while the gas ex- 

change technique implicitly includes translocation and 

biomass turnover in production calculations. 
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Several studies have measured both aboveground 

macrophyte biomass and production in tidal freshwa- 

ter marshes (Fig. 8). Because there is a wide range in 

aboveground productivity depending on marsh spe- 

cies composition (Whigham et al. 1978), we limited our 

comparison to Peltandra virginica and Pontederia cor- 

data, the 2 dominant species at our study site. In order 

to compare annual production values, we converted 

literature production values from g dw m-' yr-' to g C 

m-' yr-' assuming a percent carbon of 48.5 % (our data, 

P. virginica, June). Our values of peak aboveground 

biomass fall within the wide range of values reported 

for other east coast P. virginica and P. cordata domi- 

nated tidal freshwater marshes (Fig. 8), while our 

annual production is among the highest reported. This 

reflects the high biomass at our site, but also indicates 

the sensitivity of the production estimate to the as- 

sumed rate of biomass turnover. The studies reported 

in Whigham et al. (1978), Doumlele (1981), and the 

peak biomass and Smalley methods of Wohlgemuth 

(1988) do not account for complete turnover of leaf 

material during the growing season. These studies will 

underestimate true macrophyte production as P. vir- 

ginica leaves can lose up to 50% of their dry weight 

after only 9 d of immersion (Odurn & Heywood 1978). 

The remaining data points on Fig. 8, with the excep- 

tion of Booth (1989), fall between the lines indicating a 

turnover (production/peak biomass) of 2 and 2.5 yr-' 

and represent a more accurate estimate of above- 

ground marsh production. 

Microalgal production 

Sediment microalgal production rates measured in 

this study fall in the wide range of 30 to 200 g C m-' 

yr-' reported for salt marshes and intertidal habitats 

(Table 4). Estimates from a Spartina alterniilora salt 

marsh show that, given the assumptions and limita- 

tions inherent in each approach, the gas exchange and 

ecophysiological techniques provide similar produc- 

tion rates (Anderson et al. 1997). 

Nitrogen mineralization 

In spite of the uncertainties associated with using N 

mineralization rates to calculate belowground C respi- 

ration, we believe that this method is more accurate 

than directly measuring CO2 and CH4 gas efflwes into 

sediment chambers. Few studies have simultaneously 

measured both carbon respiration and gross nitrogen 

mineralization; none have done so in tidal marshes. 

Worlung in grassland and cropland soils in North 

Dakota, Schimel (1986) reported no correlation be- 

tween CO2 evolution and gross N mineralization over 

the course of a 4 d laboratory incubation and attributed 

this to changes in substrate quality (i.e. C/N ratio) 

during the incubation. In contrast, studies in an old- 

growth forest in Oregon (Hart et al. 1994) and a pine 

plantation in New Zealand (Scott et al. 1998) found 

strong correlations between CO2 evolution and gross 

N mineralization rates. Hart et al. (1994) calculated the 

C/N ratio of the respired substrate as 10 to 12, com- 

pared with a C/N ratio of 26.8 for forest soils. This 

difference suggests the presence of 2 sediment organic 

pools, one that is labile and rapidly mineralized (i.e. 

proteins and sugars) and another more recalcitrant 

pool (i.e. cellulose and lignin). Because emergent marsh 

macrophytes contain less cellulose and lignin than 

woody terrestrial plants (Odum & Heywood 1978), the 

C/N ratio of respired marsh organic matter will be sim- 

ilar to that of marsh sedirnents. Thus, we converted N 

mineralization rates to C respiration using the C/N 
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ratio of the sediments (11.6 to 12.1). Our measure of 

belowground respiration (516 to 723 g C m-' yr-l) may 

include some root respiration since no attempts were 

made to separate fine roots from the sediment matrix 

prior to the N mineralization studies. 

Based on belowground biomass and sediment organic 

matter profiles for Sweet Hall and other Peltandra vir- 

ginica dominated freshwater marshes, we assumed that 

mineralization was constant through the top 30 cm of the 

sediment column. Bowden et al. (1991) measured depth 

profiles of sediment mineralization in peat sediments 

along the North River, Massachusetts, and observed 

minimal N production or consumption between 10 and 

30 cm. However, their study location was dominated by 

Zizania aquatica, Carexspp., and Typha latifolia-spe- 

cies with relatively shallow root distributions. Bowden et 

al. (1991) observed a distinct organic matter minimum at 

30 cm; we observed constant concentrations (15 to 20 %) 

to greater than 1 m. These factors suggest that mineral- 

ization will occur to a greater depth at Sweet Hall than 

observed by Bowden et al. (1991), but this assumption 

needs to be experimentally verified. However, it is a 

daunting task to determine mineralization rates over a 

1 m sediment profile in an extremely patchy environ- 

ment where rates can be expected to vary both spatially 

(horizontally and vertically) and temporally. 

There are few estimates of BGE on marsh plants or 

sediment organic matter. In the absence of exogenous 

nutrient sources, the theoretical maximum microbial 

growth yield is equal to the C/N ratio of bacteria 

divided by the C/N ratio of the substrate (Linley & 

Newel1 1984). Assuming a bacterial C/N of 5 and mea- 

sured sediment C/N ratios for Sweet Hall (1 1.6 to 12. l), 

bacterial growth efficiency is theoretically no greater 

then -40%. However, in the presence of available ni- 

trogen (e.g. DIN) in excess of that present in the sub- 

strate, actual growth efficiencies can be greater than 

the theoretical maximum (Newell et al. 1983, Benner & 

Hodson 1985, Benner et al. 1988, Bano et al. 1997, del 

Giorgio & Cole 1998). Because fleshy emergent fresh- 

water marsh plants are lower in lignin and humic com- 

pounds than salt marsh or woody plants and generally 

have lower C/N ratios, they are degraded more easily 

(Odum & Heywood 1978, Odum et al. 1984, Webster & 

Benfield 1986) and may be expected to support mi- 

crobial communities with higher growth efficiencies. 

Therefore, we used a range of bacterial growth effi- 

ciencies ranging from 30 to 50% ('theoretical' maxi- 

mum * 10 %) to convert sediment N mineralization to C 

respiration. 

Model sensitivity analysis 

We performed sensitivity analyses to determine how 

our conceptual model responds to variations in BGE 

and MaR rates (Table 3). When BGEs used in our analy- 

ses were varied from 30 to 50% (cases 1 to 3), calcu- 

lated BGR varied by over 200 g C m-' yr-l. Although a 

BGE of 30 % (case 3) is most similar to microbial yields 

on plant detritus (del Giorgio & Cole 1998), it may over- 

estimate the true BGR rate since macrophyte respira- 

tion (281 g C m-2 yr-l) is only 28 % of GMaP. In contrast, 

the ecophysiological model of Dai & Wiegert (1996) cal- 

culated total macrophyte respiration rates of 43 to 50% 

of GMaP for Spartina alterniflora. Because BGR and 
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MaR are directly Linked in our calculations, overesti- 

mating BGR will underestimate MaR and reduce the 

apparent respiration/photosynthesis ratio. Alternatively, 

it is possible that the BGR rates in case 3 are accurate 

since respiration costs are proportionally higher in salt 

marsh than freshwater plants due to salt (Cavalieri & 

Huang 1981, Mendelssohn & Burdick 1987) and sulfide 

stresses (King et al. 1982). Cases 4 and 5 forced annual 

MaR to 40 to 50 % of GMaP (the range reported by Dai 

& Wiegert 1996) by increasing MaR (rather than by 

decreasing GMaP). The results from these cases were 

similar to those obtained from BGE estimates of 40 and 

50%, suggesting that these growth yields are close to 

the true values for this system. 

To further constrain our results, we estimated rates of 

GMaP and MaR using leaf-only gas flux measurements. 

In Peltandra virqinica, there is restricted gas transport 

along the length of the petiole (Frye 1989, Chanton et al. 

1992). Instead of passing through leaves, CH4 and sedi- 

ment-produced COz diffuse directly from the petioles to 

the atmosphere. Therefore, measuring gas fluxes from 

leaves provides an independent means of measuring 

growth and maintenance respiration and partitioning 

BGR and MaR. Using mid-summer (July) leaf-only flux 

rates measured in a mixed Zizania aquatica and P. vir- 

m i c a  tidal freshwater marsh on the Edisto River, South 

Carolina (C. Nietch pers. cornrn.) and Sweet Hall bio- 

mass numbers (this study), we calculated an average 

GMaP rate of 310 g C m-2 (July only) and a leaf respira- 

tion rate of 154 g C m-'. These rates were higher than 

measured at Sweet Hall using the community chamber 

(Fig. 6). Because photosynthesis and respiration rates are 

higher in leaves than in petioles and stems, using leaf- 

only flux measurements and total AGB (leaves + stems 

+ petioles) will tend to overestimate rates. With this 

approach, MaR was 50 % of gross photosynthesis. For 

comparison, using a BGE of 50 % to convert gross sedi- 

ment N mineralization to C respiration (Table 3, case 1) 

we produced a MaR to GMaP ratio of 46 %. The similar- 

ity of these numbers is additional evidence that our con- 

version of gross N mineralization to C respiration using 

sediment C/N ratios and BGEs was valid. 

Macrophyte carbon budget 

Our conceptual model of macrophyte-mediated 

carbon flows in Peltandra virqinica dominated tidal 

freshwater marshes is the first effort of this type. Few 

studies have attempted to couple aboveground pro- 

ductivity with belowground biomass (translocation 

and re-translocation), thereby limiting their utility in a 

larger ecological context. The production of above- 

ground biomass is supported by net macrophyte pho- 

tosynthesis (F = 625 g C m-' yr-l; range 536 to 715 g C 

m-' yr-l) and the spring translocation of 'recycled' car- 

bon stored in belowground rhizomes (F = 405 g C m-' 

yr-l; range 367 to 444 g C m-2 F-'). In autumn, a 

slightly larger quantity of carbon (462 g C m-2 F-') is 

moved back to belowground tissues as plants senes- 

cence, contrasting with N cycling where significantly 

greater quantities of nitrogen are translocated above- 

ground in the spring than belowground in the autumn 

(Walker 1981, Hopkinson & Schubauer 1984, Booth 

1989). Presumably this difference reflects the domi- 

nant sources of carbon (atmospheric fixation) and 

nitrogen (belowground uptake) to the plants. 

We have attempted to examine the fates of net 

macrophyte production as a first step in determining 

the role that these highly productive plants play in sup- 

porting detrital or microbially based food webs in adja- 

cent tidal waters. We estimate that 66 g C m-2 yr-' 

(combined above + belowground) are leached from 

standing stems, roots, and rhizomes. This leachate may 

be potentially important as a source of DOC to micro- 

bial food webs in adjacent tidal waters or it may be 

respired in situ and form a portion of measured below- 

ground respiration. Labile DOC leached from Spartina 

alterniflora has been correlated with enhanced rates of 

water column community respiration in waters adjacent 

to Georgia salt marshes (Turner 1978, Pakulski 1986), 

while Mann & Wetzel (1996) demonstrated high rates 

of bacterial production on leachates from aquatic ma- 

crophytes. Thus, marsh macrophytes can contribute to 

microbially-based food webs in adjacent ecosystems. 

The ultimate fate of 204 to 410 g C m-2 yr-' (F = 307 g 

C m-' yr-l; combined above and belowground 'other 

loss' terms) is unknown. These plant tissues are either 

consumed by herbivores, deposited as detritus on the 

sediment surface or macro-organic matter in the sedi- 

ment matrix, or exported from the marsh as dissolved 

or particulate carbon. With the exception of a couple 

of species (notably Hibiscus moscheutos), direct con- 

sumption of plant tissues by insects and birds is report- 

edly minimal, accounting for less than 10% of plant 

production (Odum et al. 1984, Cahoon & Stevenson 

1986). The particulate carbon that is not directly con- 

sumed by herbivores falls to the sediment surface and 

enters the detrital pool where it contributes to below- 

ground respiration, vertical marsh accretion, or is ex- 

ported from the system. Interestingly, the relative labil- 

ity (high nitrogen and low cellulose/lignin content) of 

freshwater marsh macrophyte tissues may limit their 

importance in aquatic food webs. Utilization of a food 

source by a consumer depends not only on the quality 

of the food item, but also on the availability of that 

food. If decomposition and leaching are rapid enough 

to remove detritus (as COz, CH, or DOC) before partic- 

ulate matter can be exported from the marsh, labile 

detritus may play only a small role in supporting sec- 
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ondary production (Findlay et al. 1990). Because the 

partitioning between these fates has important impli- 

cations in the role of marsh macrophytes as sources of 

energy and nutrients to riverine food webs, further 

research should address the cycling of carbon both 

within tidal freshwater marshes and between these 

marshes and adjacent ecosystems. 
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