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Abstract 

 

Motor vehicle emission factors are generally derived from driving tests mimicking 

steady state conditions or transient drive cycles. However, neither of these test 

conditions completely represents real world driving conditions. In particular, they fail 

to determine emissions generated during the accelerating phase – a condition in which 

urban buses spend much of their time. In this study we analyse and compare the 

results of time-dependant emission measurements conducted on diesel and 

compressed natural gas (CNG) buses during an urban driving cycle on a chassis 

dynamometer and we derive power-law expressions relating carbon dioxide (CO2) 

emission factors to the instantaneous speed while accelerating from rest. Emissions 

during acceleration are compared with that during steady speed operation. These 

results have important implications for emission modelling particularly under 

congested traffic conditions. 

 

 

Keywords: motor vehicle emissions, carbon dioxide, greenhouse gas emissions, traffic 

congestion, bus emissions.  
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1. Introduction 
 
 

The impact of greenhouse gas (GHG) emissions from the transportation sector on the 

atmosphere is of increasing concern. At present, this sector accounts for about 14% of 

the total anthropogenic GHG emissions and constitutes one of the strongest growing 

sources (IPCC, 2007). This clearly has significant implications for global climate 

change and has led to calls for urgent and effective measures and strategies to reduce 

GHGs from road transport (OECD, 2002). Since many of these depend on effective 

modelling studies to assess and project GHG emissions from the use of transportation, 

there is a pivotal need for reliable emission factors pertaining to the various types of 

vehicles and driving conditions. 

 

Motor vehicle CO2 emission factors may be calculated from fuel consumption 

statistics assuming stoichiometric conditions or determined directly through emission 

measurements. Calculated emissions assume complete decomposition of hydrocarbon 

fuels to H2O and CO2, while measured emissions incorporate combustion 

inefficiencies and, as such, deviate somewhat from the stoichiometric reaction form, 

where the complete combustion of 1 L of petrol and diesel fuel yields about 2.5 and 

2.7 kg of CO2, respectively (AGO, 2003). The direct measurements are generally 

carried out on dynamometers at steady engine loads and speeds or over specified 

drive cycles that consist of a range of driving conditions. Several studies have 

reported CO2 emission factors for diesel and CNG buses based on complete 

dynamometer drive cycles (Clark et al, 1999; Lanni et al, 2003). However, the values 

thus derived are averages over a range of driving conditions and do not provide speed-

dependent emission factors.  Although there are some reports of speed-dependent 
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emission factors during acceleration for light-duty vehicles (Ahn et al, 2002; El-

Shawarby et al, 2005), there are no emission factors available in the literature for 

accelerating buses. This is of particular concern as a significant fraction of emissions 

from motor vehicles are thought to occur during acceleration – a condition in which 

an increasingly large number of buses operate due to worsening urban traffic 

congestion. Furthermore, bus emission factors during acceleration are crucial in urban 

traffic simulation and environmental impact models. 

 

In the present study, we analysed CO2 emission data obtained during acceleration 

segments of a transient cycle from diesel and CNG powered transport buses to 

determine emission factors during acceleration. We used these results to estimate the 

total CO2 emission from a bus as it accelerated from rest to a given speed, and 

compared this value with the total emission when the bus cruised through the same 

distance without stopping. These findings enable us to investigate the effects of traffic 

congestion on CO2 and, hence, greenhouse gas emissions. 

 

2. Methods 
 

 
2.1 Transient Test Cycle 

The buses were tested on a chassis dynamometer using the DT-80 transient urban 

driving cycle. This cycle consists of a 1 min idle segment, three hard accelerations 

from rest to 80 km h-1 and a 1 min cruise segment at 80 km h-1 as shown in the speed-

time diagram in Fig 1(a). In each of the first and second acceleration segments, the 

speed of the bus was increased from zero to 80 km h-1, when the foot was taken off 

the accelerator, allowing it to drop to zero again. In the third acceleration segment, 

once the speed reached 80 km h-1, it was maintained at this speed for 1 min before 
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being decreased to zero. The duration of each cycle was 5-6 mins and the distance 

covered was 3.5-4.0 km. Each bus was tested at least three times, providing at least 9 

acceleration segments per bus. 

 
2.2 Vehicles Tested 

The vehicles tested included 9 diesel and 13 CNG buses from the same urban fleet. 

The diesel buses consisted of 5 Euro3 Mercedes OC-500, each less than 2 years old 

with an odometer reading of 165-217 x 103 km, and 4 older Volvo Euro1 B10M and 

Euro2 B10L buses ranging from 8-16 years in service with odometer readings 

between 596-1045 x 103 km. They were all operated on 50 ppm ultralow sulphur 

diesel and contained no after-treatment devices. The CNG buses consisted of 5 Euro3 

MAN, all less than 1 year old with odometer readings of 2-20 x 103 km, and 8 Euro2 

and Euro3 Scania buses, 3-5 years old with the odometer between 134-226 x 103 km. 

All CNG buses were fitted with oxidation catalysts. All buses belonged to the same 

city fleet and were subject to similar operation and service patterns. 

 

2.3 Sampling Methods 

During testing, each bus was mounted on the chassis dynamometer and the emissions 

were monitored using a constant volume sampling system with the entire exhaust 

drawn into a sampling line of diameter 300 mm and diluted with ambient air to give a 

total air flow rate of 500 L s-1. The CO2 concentration in the tunnel was measured 

with a non-dispersive infra-red CO2 monitor from California Analytical Instruments 

Inc. The response time and the accuracy of the instrument were 1 s and ± 10 ppm, 

respectively. CO2 emission rates from the bus were calculated in real time at 1 s 

intervals during the course of each test cycle. Operational characteristics such as 

instantaneous speed, distance covered, engine power and load were also recorded. 
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3. Results 
 

 
3.1 Emission Rates during Acceleration 
 
Fig 1 shows (a) the instantaneous speed and (b) the corresponding CO2 emission rate 

from a CNG bus in a typical DT-80 cycle. The measurements show that, when the bus 

accelerated, the emission rate increased sharply. The shape of the emission rate curve 

was typical for all buses and the undulations reflected the gear changes during 

acceleration. With each gear change, the emission rate dropped and then recovered 

with further increase in speed. After the first two accelerating segments the speed was 

reduced to zero when it reached 80 km h-1. In the third accelerating segment the speed 

was again increased to 80 km h-1  and then maintained at this speed for a further 1 

min. Note that, as soon as the acceleration was complete, the emission rate dropped 

from about 22 g s-1 to about 15 g s-1. 

 

Next, we look at the acceleration segments in more detail. In Fig 2, we have plotted 

the emission rates as a function of instantaneous speed for all three acceleration 

segments in a drive cycle for (a) a diesel bus (Volvo B10L) and (b) a CNG bus 

(Scania). The shapes of the three curves for a given bus were generally consistent and 

reproducible over every acceleration segment.  The shapes of the curves for diesel 

buses and CNG buses were similar except for some general differences. For example, 

the peak emission rates of the diesel buses were generally about 15-20% greater than 

for the CNG buses. The CNG buses showed the effect of gear changes much more 

clearly than the diesel buses.  

 

Over a given gear position, the emission rate was approximately linear with speed. 

For example, the bus started in first gear and the change to second gear occurred 
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below 5 km h-1. The change to third gear took place at 40-45 km h-1 (see Fig 2), so 

that between 5 and 40 km h-1 the bus operated in second gear. Fig 3 shows the mean 

emission rates of all the diesel and CNG buses tested, as a function of instantaneous 

speed from 5 to 30 km h-1. In this speed range, the emission rates for all buses of a 

given fuel type increased consistently as a quadratic function of speed. The quadratic 

functions are near-linear and, for simplicity, may be reasonably approximated to 

linear functions. The best fit linear relationships for the emission rate (ER in g s-1) in 

terms of the instantaneous speed (V in km h-1) are as follows: 

For diesel buses:  ER = 0.47 V + 2.73 

For CNG buses:  ER = 0.33 V + 1.87  ( 5 ≤ V ≤ 30 ) 

These simplified expressions can be applied in modelling studies where the bus 

speeds are between 5 and 30 km h-1. At higher speeds, as indicated in Fig 1, the 

emission rates fluctuated widely with gear changes and it was not possible to derive 

simple relationships between the emission rates and the speed. The emission rates 

from the diesel buses were about 20% greater than from the CNG buses at all speeds 

in this range. 

 

3.2 Emission Factors during Acceleration 
 

Emission factors were calculated from the emission rates and the instantaneous 

speeds. Fig 4 shows the mean emission factors for all buses as a function of speed in 

the range 5 to 80 km h-1. Emission factors for both types of buses decreased with 

speed and exhibited the typical power law form. At a speed of 5 km h-1, the diesel and 

CNG bus emission factors were 5500 and 3500 g km-1, respectively, - a difference of 

57%. This difference decreased with increasing speed. At the maximum speed of 80 
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km h-1, the diesel emission factor was about 15% higher than the corresponding CNG 

value. 

 

The dependence of emission factor on speed best fits the following power law 

expressions: 

Diesel buses: EF = 13217 V-0.554 

CNG buses: EF =   6581 V-0.41 

where V is in km h-1  ( 5 ≤ V ≤ 80 ) and EF is in g km-1. 

 
 
3.3 Comparison with previous work 
 
Next, we compare our results with speed-related emission factors for buses reported 

in some previous studies (Fig 5). Fig 5(a) shows the present mean values obtained for 

diesel buses during the three acceleration segments of the DT-80 cycle together with 

the results of these other studies. Ronkko et al (2006) determined the fuel 

consumption rate of a model year 2002 Euro 3 diesel bus on a test road, under 

different driving conditions at various speeds ranging from 20 to 80 km h-1. 

Assuming, stoichiometric conditions, we converted the fuel consumption rates (L h-1) 

to CO2 emission factors (g km-1) and divided the results into two classes according to 

apparent engine power/torque. In the figure, the emission factors during high 

power/torque driving conditions are shown alongside the values under low 

power/torque conditions. The CO2 emission factors determined for diesel buses at 

three steady engine loads corresponding to 25%, 50% and 100% full-power at 60 km 

h-1 by Jayaratne et al. (2009) are shown together with the corresponding values at 80 

km h-1 by Ristovski et al, (2006). In each of these sets of three, the emission factors 
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increase with power; that is the lowest emission factor corresponds to 25% power and 

the highest corresponds to 100% power.  

 

Also shown in this figure are the emission factors calculated from an empirical 

formula for the fuel consumption rate for transport buses recommended by Austroads 

(2004). The equation has the form 

 

 
 
where V is the average speed in km h-1 and F the fuel consumption rate in L/100 km. 

The coefficients A, B, C and D are assigned two different sets of values at speeds 

below and above 60 km h-1, accounting for the break in the curve at this speed. 

 

It is not surprising that the emission factors determined in the DT-80 cycle for 

accelerating buses are higher than both Ronkko et al and Austroads. The Ronkko et al 

measurements were carried out on an open road under a range of mixed driving 

conditions including steady speed and acceleration. The Austroads values are based 

on a range of urban driving conditions that generally include steady speed, stop and 

start conditions. The steady speed dynamometer measurements at 60 km h-1 all show 

emission factors that are lower than the present accelerating value at this speed. At 80 

km h-1, the emission factors at 25% and 50% engine power are lower than the present 

value during acceleration. However the emission factor at 80 km h-1 at full engine 

power is greater than in the DT-80 acceleration segment. It is possible that the engine 

power/torque of a bus at this high speed and load exceeds that during acceleration. 
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Fig 5(b) shows the CO2 emission factors derived for CNG buses during the three 

acceleration segments of the DT-80 cycle, together with the corresponding values 

determined for CNG buses at the three steady engine loads corresponding to 25%, 

50% and 100% full-power at 60 km h-1 by Jayaratne et al, (2009). The steady state 

emission factors increase with engine power but are all less than the value for the 

accelerating buses found in the present study at 60 km h-1. 

  

3.4 Emissions from a bus accelerating from rest 
 

Thus far, we have shown that, at a given speed, the CO2 emission from an 

accelerating bus is greater than that when travelling at steady speed. This has 

implications for the greenhouse gas budget, especially in urban settings, where buses 

spend much of the time slowing down, stopping and accelerating from rest. Thus, it is 

very important to be able to estimate the emissions during acceleration. 

 

In order to study this in detail, we determined mean CO2 emission factors for the four 

diesel Volvo B10 buses as a function of speed and used the results to derive an 

expression for the instantaneous emission factor as a function of speed for an 

accelerating bus. The best fit equation for the data was 

 
14116 .  

 
where EF is the emission factor in g km-1 and V is the instantaneous speed in km h-1. 

 
Having derived an equation that gives the CO2 emission rate at each instantaneous 

speed during the acceleration from rest to 80 km h-1, we used it to estimate the total 

emissions during this phase and compared it with the emissions that would be emitted 

had the bus travelled the same distance at a steady speed of 80 km h-1 without 
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stopping. As an example, we used the first acceleration segment from a DT-80 cycle 

of diesel bus B10L. Fig 6 shows the CO2 emission rate measured from this bus during 

the accelerating segment together with the corresponding values calculated using the 

above equation. The total time taken to accelerate to 80 km h-1 from rest was 57s and 

the distance covered was 850 m. The acceleration peaked at about 1.0 m s-2 in the first 

10 m after starting from rest and remained steady at about 0.2 m s-2 after the first 

300m. The total CO2 emission during the entire accelerating segment was 1204.8 g. 

 

From the data such as shown in Fig 1(b), we estimated that the CO2 emission rate 

when the bus travelled at steady speed of 80 km h-1 was 19.3 g s-1. This gives a total 

emission of 738.5 g over the distance of 850.3 m had the bus cruised past without 

stopping. Thus, we see that the CO2 emission from the bus is 63% greater when 

accelerating from rest to 80 km h-1 over cruising past at this maximum speed. We 

repeated the calculation for all three accelerating segments, all cycles and all B10 

diesel buses and found that the increased emissions was 58% ± 8%. 

 
 
It is also instructive to investigate the spatial distribution of the emissions during the 

accelerating segment. In the model, we used the speed-time data, similar to that 

shown in Fig 1(a) to calculate the distances travelled by the bus in each second and, 

hence, the mean CO2 emissions per metre as a function of distance from start. The bus 

begins to accelerate at distance = 0 and reaches the top speed of 80 km h-1 at distance 

= 850 m. The graph in Fig 7 shows the emissions at each distance from rest as a 

multiple of the cruise emissions, that is the emissions had the bus travelled at a steady 

speed of 80 km h-1 without stopping. It is clear that the highest emissions occur soon 

after beginning to accelerate from rest. For example, within the first metre after 



 12

starting, emissions from the accelerating bus were 9.8 times greater than from the 

cruising bus. Similarly, within the first 10m from start, the emissions were 5.2 times 

greater and within the first 100m they were 2.8 times greater. This has relevance to 

situations such as at bus stops, traffic intersections and pedestrian and level crossings, 

where buses stop and start and are especially applicable to urban locations where 

traffic congestion is an increasing problem. 

 
 
4. Conclusions 
 
 

We used experimental data to derive power-law expressions relating CO2 emission 

factors for diesel and CNG buses to the instantaneous speed when accelerating from 

rest to 80 km h-1.  During acceleration, the emission rate from a diesel bus was about 

15-20% greater than from a CNG bus at all speeds. We used the expressions to 

calculate CO2 emissions from a diesel bus while accelerating and compared it with the 

emissions had it travelled through the same distance at a steady speed and showed that 

the CO2 emissions increased by 58 ± 8%. Most of the increase occurred in the first 

few metres after starting from rest. These results are important for transport modellers 

because, until now, CO2 emission factors for buses have been available only under 

steady speed conditions or for standard drive cycles, neither of which are suitable to 

calculate emissions during acceleration – a condition in which urban buses spend 

much of their time. 
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Figure Captions 

 
 
Fig 1: (a) Instantaneous speed and (b) CO2 emission rates in a typical DT-80 transient 

drive cycle for a CNG bus. 

 

Fig 2: Emission rates as a function of instantaneous speed for all three acceleration 

segments in a drive cycle for (a) a diesel bus and (b) a CNG bus. 

 

Fig 3: Mean emission rates of accelerating buses as a function of instantaneous speed 

in the range 5 to 30 km h-1. 

 

Fig 4: Mean emission factors of accelerating buses as a function of instantaneous 

speed. 

 

Fig 5: Comparison of emission factors in present study with previous results on (a) 

diesel and (b) CNG buses. 

 

Fig 6: Measured emission rate of a B10L bus during acceleration from rest to 80 km 

h-1 together with the calculated value using the equation derived in Fig 6. 

 

Fig 9: Calculated emissions per metre as a function of distance from rest for an 

accelerating B10L bus, expressed as a multiple of the cruise emissions. 
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Fig 2 
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Fig 4 
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Fig 5 
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Fig 6 
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