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Abstract

After decades of decline, croplands are once again expanding across theUnited States. A recent

spatially explicit analysismapped nearly threemillion hectares ofUS cropland expansion that

occurred between 2008 and 2012. Land use change (LUC) of this sort can be amajor source of

anthropogenic carbon (C) emissions, though the effects of this change have yet to be analyzed.We

developed a data-drivenmodel that combines these high-resolutionmaps of cropland expansionwith

publishedmaps of biomass and soil organic carbon stocks (SOC) tomap and quantify the resultingC

emissions. Ourmodel increases emphasis on non-forest—i.e. grassland, shrubland andwetland—

above and belowground biomass C stocks and the response of SOC to LUC—emission sources that

are frequently neglected in traditional C accounting. These sources representmajor emission conduits

in theUS, where new croplands primarily replace grasslands.We find that expansion between

2008–12 caused, on average, a release of 55.0MgCha−1 (SDspatial=39.9MgCha−1), which resulted

in total emissions of 38.8 TgC yr−1 (95%CI=21.6–55.8 TgC yr−1).We alsofindwide geographic

variation in both the size and sensitivity of affectedC stocks. Grassland conversionwas the primary

source of emissions, withmore than 90%of these emissions originating fromSOC stocks. Due to the

long accumulation time of SOC, its dominance as a source suggests that emissionsmay be difficult to

mitigate over human-relevant time scales.Whilemethodological limitations regarding the effects of

land use legacies and futuremanagement remain, ourfindings emphasize the importance of avoiding

LUC emissions and suggest potentialmeans bywhich natural C stocks can be conserved.

1. Introduction

After decades of declining area, croplands have shown

renewed rates of expansion throughout the United

States [1–3]. Lark et al (2015), for one, mapped nearly

three million hectares of cropland expansion occurring

between 2008–12, an increase that was only partially

offset by concurrent cropland abandonment [1]. These

high rates of expansion followed the establishment of

new agricultural markets [4] and changing federal

policies, including reductions to the size of the Con-

servation Reserve Program (CRP) [5, 6]—an initiative

used to retire environmentally sensitive croplands from

production. Natural lands, including those retired by

the CRP, store significant quantities of carbon (C) that

they have removed from the atmosphere over time via

photosynthesis [7, 8]. When lands are cleared or

disturbed to accommodate new crops, this C can

re-enter the atmosphere via combustion or decay [9].

Natural C stocks are thus highly sensitive to the

changing policy and economic conditions that drive

landuse and landmanagement decisions [10].

Worldwide, land use change (LUC) is a leading

cause of anthropogenic C emissions and their asso-

ciated impacts on climate change [9, 11, 12]. Since

1850, LUC has been the agent of nearly one-third of

cumulative net emissions globally [7] and currently

accounts for roughly 10% of all annual emissions [12].

Many of these emissions result from tropical defor-

estation, which displaces large quantities of C stored

primarily in plant biomass [7, 12, 13]. In the United

States, where biomass densities are comparatively

small, LUC is thought to be a relatively minor comp-

onent of emissions nationwide [14]. The annual US
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National Greenhouse Gas Inventory (NGGI), for one,

estimates that LUC emissions contribute less than 2%

of total gross emissions, and that the land sector in

whole may offset as much as 10% of gross emissions,

primarily due to forest regrowth [14, 15].

Emissions from LUC, though, are notoriously dif-

ficult to estimate and represent one of the most uncer-

tain components of the global C budget [16, 17].

National emissions have most often been inferred

from aggregated, nonspatial LUC statistics andC stock

inventories, an approach that has been endorsed by

the IPCC for national Tier-1 and Tier-2 greenhouse

gas emission reporting [18]. More recently, spatially

explicit satellite observations of LUC and C stocks

have been used to generate more accurate estimates

[19, 20]—primarily in tropical forests where LUC is

readily observed from space. Thesemethodsmore clo-

sely reflect the ground truth spatial variation in C

stocks that otherwise precluded aggregated analyses.

As the spatial resolution of satellite-based analyses has

increased over time, corresponding estimates of gross

C fluxes have also increased in magnitude (e.g. [19]

versus [21]), which implies that coarse-resolution esti-

mates may downplay the true magnitude LUC

emissions.

As satellite-based biomass mapping continues to

improve, emissions from soil organic carbon stocks

(SOC) are emerging as the leading source of emission

uncertainty [22]. This uncertainty may be particularly

problematic in areas like the US where LUC dis-

proportionately affects ecosystems like grasslands and

shrublands [1] that have relatively small biomass C

stocks but extensive amounts of SOC. Worldwide,

SOC represents the largest biospheric C pool [22, 23]

and can be highly sensitive to LUC [24, 25]. SOC emis-

sions are often inferred by assuming that a prescribed

fraction of the initial SOC stock is emitted following

LUC [18], though recent analyses have questioned the

integrity of these simplified assumptions and argued

that SOC sensitivity to LUC varies geographically

[24, 26]. Process-based, biophysical models have also

been used to more explicitly account for legacies of

past land use and the effects of subsequent manage-

ment. These models rely on complex simulations to

predict the size of SOC stocks and their sensitivity to

LUC. These predictions, though, can differ markedly

from empirical observations, which can thereby influ-

ence subsequent emission estimation [16, 27–29].

Empirical models have been proposed as transparent

alternatives that are observationally constrained and

require less intensive computation than process-based

models [18, 30]. However, their use in inventories has

been limited to date by the lack of essential spatial data.

Given the recent availability of relatively high resolu-

tion, satellite-based C stock and LUC maps, a new

methodological framework that combines pool-specific

empirical methods may better capture the full effects

of LUC on C emissions and can serve as a check on

methods currently used tomodel emissions.

We developed a semi-empirical modeling frame-

work to spatially estimate emissions from LUC in the

conterminous US. Our data-driven approach com-

bines published maps of US LUC, biomass C stocks,

SOC stocks and relevant covariate layers with trans-

parent assumptions and carbon response functions

(CRFs)—simple statistical models that transparently

predict SOC emissions by accounting for the empirical

effects of environmental covariates—to generate

pixel-level emission estimates from US cropland

expansion. We implemented our framework in Goo-

gle Earth Engine [31] and used Monte Carlo simula-

tions to generate a constrained uncertainty estimate at

the pixel level.

2.Methods

2.1. Recent cropland expansion (2008–12)

While ourmodel can be applied to various maps of US

LUC, we apply it here to data from Lark et al (2015), a

56 m resolution, spatially explicate map of gross crop-

land expansion observed throughout the contermi-

nous US between 2008–12 [1]. This map was derived

from the annually produced USDA Cropland Data

Layer (CDL) and has a user’s accuracy of 70% [32].

When estimating C stocks and emissions, we assumed

that the pre-conversion landcover of a converted pixel

was that reported by the CDL in the year prior to

conversion and we omitted pixels where the pre-

conversion landcover was identified as surface water,

ice/snow, development or barren due to the ambiguity

of their pre-conversion C stock (table S1 is available

online at stacks.iop.org/ERL/14/045009/mmedia).

To attribute emissions to crop-specific expansion, we

defined the ‘breakout’ crop as the first crop present in

newly converted pixels [1], but we omitted pixels in

which woody perennials were identified as the break-

out crop (table S2) due to ambiguous effects of their

expansion on C emissions [33]. In total, omitted pixels

represented 1608 km2 or 5% of all conversion

observed during our 4 year study period. Remaining

pixels were then aggregated into four broad land-cover

classes: forests, grasslands, shrublands and wetlands

formodeling and analysis (table S3).

2.2. Carbon stockmapping

Published, spatially explicit maps of US biomass and

SOC stocks were used to determine the initial C stocks

of converted pixels. Satellite-based maps were avail-

able for aboveground biomass (AGB) in US forests at a

30 m spatial resolution [34] (figure S1) and for global

grasslands AGB C stocks at an 8 km spatial resolution

[35] (figure S2). We created a novel map of US

shrubland AGB using an allometric model and 30 m

resolution maps of shrub height and percent cover

(supplementary material; figure S3). For wetlands, we

used the forest AGB map to estimate woody wetland

AGB, and the grassland AGB map for herbaceous and
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unspecified wetlands. Biomass stocks were converted

to C stocks by assuming a biomass C fraction of 0.47

[18]. Forest, grassland and shrubland maps provided

stock estimates for the years 2000, 2006 and 2001,

respectively, all of which corresponded to pre-conver-

sion conditions.

To determine the pre-conversion biomass C

stocks of converted land, we assigned each converted

pixel the corresponding AGB C stock value from the

biomass map that matched the pre-conversion land-

cover. In cases where AGB data were not available for

that type of landcover due to masking, we used ‘Ran-

dom Forest’ regression [36]—a machine learning

algorithm widely used in remote sensing [21, 37]—to

extrapolate biomass estimates from the appropriate

biomass map using pre-conversion Landsat imagery

(2002–07) and covariate climate and terrain layers (see

supplementary material). Belowground biomass

stocks (BGB) were then modeled and mapped for all

converted pixels using AGB estimates and published,

landcover-specific, empirical relationships [18, 38, 39]

(supplementarymaterial).

Pre-conversion SOC stocks were derived from

SoilGridsUSA maps of organic C concentration, bulk

density of fine soil [40] and Soil Grids250v2 maps of

coarse fragment volume [41] following recommended

methods to avoid overestimation [42] (supplementary

material). We derived SOC stocks for individual ped-

ons to a depth of 1 m (0–5 cm, 5–15 cm, 15–30 cm,

30–60 cm and 60–100 cm) to facilitate depth depen-

dent SOC emission calculations [24].

2.3. Emission calculations

We estimated committed C emissions for each con-

verted pixel using the ‘stock difference’ method. This

method calculates emissions as the difference between

the pre- and post-conversion C stock by assuming all

displaced C is emitted to the atmosphere over an

unspecified duration from eventual combustion or

decay [18, 20, 43]. For biomass we assumed that the

post-conversion biomass C stock was zero since our

analysis exclusively considered expansion of annually

harvested herbaceous crops that do not represent a

permanent C stock. Pixel-level emissions from bio-

mass cleared by cropland expansion were thus calcu-

lated as the sum of a pixel’s AGB and BGB C stock

estimate.

Committed emissions from SOC stocks to a depth

of 1 m were modeled by spatially applying published

CRFs describing the expected proportional change in

size of the initial SOC stock [24] to depth-specific

maps of pre-conversion SOC stocks (Supplementary

Material). Since CRFs were only available for forest

and grassland conversion, shrublands were treated as

grasslands for SOC emission calculations. CRFs were

spatially applied using maps of 30 year mean annual

temperature (MAT) [44] and depth-specific clay con-

tent [40]. CRFs also included a term t that describes the

temporal response of SOC stocks to LUC. We set t to

100 years to capture total committed emissions,

though on average, converted grassland and forest

SOC stocks reached a new ‘equilibrium’ 17 and 23

years after conversion, respectively [24]. Estimated

SOC emissions were spatially validated against a data-

base of independent field measurements taken

throughout the conterminous US [45] (supplemen-

tarymaterial).

SOC emissions from converted wetlands were cal-

culated separately using the IPCC guidelines for

drained organic soils [46] if they occupied soils in

which the most probable soil order was identified as

Histosol by the SoilGridsUSA database [40] (figure S4;

supplementary material). We thus assumed that

organic wetlands were drained during conversion and

accounted for subsequent CO2, CH4, and N2O emis-

sions [46]. All gasses were converted to CO2–Ceq

assuming a 100 year global warming potential of 28

and 265 for CH4 andN2O, respectively [47]. The IPCC

methodology assumes a linear rate of sustained emis-

sions independent of the initial SOC stock; we

assumed emissions were sustained over a 100 year per-

iod following conversion [48] but we constrained esti-

mates to a loss no greater than 72% of the initial

SoilGridsUSA-derived SOC stock to avoid over-

estimation. This cap represents the maximum differ-

ence between the 95% confidence interval of mean

observed SOC stocks in the least and most disturbed

US wetlands by the 2011 National Wetland Condition

Assessment [49]. If converted wetlands did not occupy

Histosols, emissions were determined using CRFs as

previously described, with woody wetlands treated as

forests and all otherwetlands treated as grasslands.

2.4. Emissions uncertainty

Monte Carlo simulations (n=1000) were used to

propagate the uncertainty associated with the layers

and model coefficients considered in this analysis and

generate a constrained estimate of emissions uncer-

tainty. Lacking producer-provided uncertainty layers

for all input layers, we assumed that each layer’s

reported root mean square error (RMSE) uniformly

represented the standard deviation of each pixel’s

error distribution [50]. The RMSE was thus used to

generate a probability distribution for each layer by

assuming that error was normally distributed unless

otherwise noted. In addition, uncertainty associated

with LUC extent was derived from the user’s accuracy

and included in this analysis [51]. Emissions from each

C pool were calculated by resampling without replace-

ment each of the input distributions. This resulted in a

probability distribution of emissions for each pixel

from which we calculated the mean, standard devia-

tion (SDpixel), coefficient of variation (CVpixel), and

95% confidence interval (95% CI). When reporting C

fluxes per unit area (e.g. MgC ha−1), SDspatial repre-

sents the spatial variation of mean pixel-level
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estimates. When reporting total C emissions (e.g. TgC

yr−1), the 95% CI represents the sum of the respective

percentile estimates for all pixels.

3. Results

3.1. Total emissions

We estimate that US cropland expansion between

2008–12 resulted in mean C fluxes of 55.0 MgC ha−1

(SDspatial=39.9 MgC ha−1). While the magnitude of

this flux varied significantly according to the type of

land converted, broad geographic patterns were also

evident (figure 1). The greatest fluxes were observed

along the southeastern seaboard and throughout the

Great Lakes states where LUC affected larger pre-

conversion C stocks in both biomass (figure S5) and

SOC (figure S6). An east to west gradient was also

evident in the magnitude of C fluxes, with the highest

fluxes generally in the east and smaller fluxes observed

in the west. Again, this gradient matches a similar

gradient in the size of pre-conversion SOC stocks

(figure S6) as well as a general gradient of declining

biomass productivity (figures S1–S3).

Factoring in rates of expansion, we estimate

total annual emissions of 38.8 TgC yr−1 (95% CI=

21.6–55.8 TgC yr−1). Emission hotspots were evident

throughout the US and generally correspond with

high rates of expansion (figure 2). The highest total

emissions were observed throughout the upper Great

Plains and along the margins of the corn belt, where

high rates of conversion resulted in moderate to large

C fluxes. Smaller isolated hotspots were also observed

in other regions, including western New York, Ken-

tucky, northern Florida, central Michigan, central

Texas, and the Ogallala region of the southern Great

Plains.

Figure 1.Mean carbon flux resulting from cropland expansion (2008–12). Pixels have been aggregated from the native 56 m
resolution to a spatial resolution of 5 km for visualization.

Figure 2.Total gross emissions from cropland expansion (2008–12)within 5 kmby 5 km resolution pixels. Total gross emissions are a
function of the per area carbon flux from all carbon pools and the rate of land clearing of all landcover types within each pixel.
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3.2. Emissions by land source

Grasslands conversion was the primary source (87%) of

LUC emissions (figure 3). The mean C flux from

grassland conversion was 51.9MgC ha−1 with over 90%

of this flux originating from SOC. BGB accounted for

more than 80% of the remaining biomass component

flux. Grassland fluxes varied moderately in space

(SDspatial=22.7 MgC ha−1) due largely to variation in

the size of affected SOCstocks (table S4).Weestimate that

conversion reduced SOC stocks by 30.4% on average

(SDspatial=5.2%) with greater losses predicted in the

warmer climates of the southeastern US and smaller

losses predicted from the clay-rich soils of the north

central US (figures S7, S8). In total, grassland conversion

resulted in annual emissions of 32.4 TgC yr−1 (95%

CI=18.5–46.1TgCyr−1).

Shrubland conversion accounted for an additional

7.5% of annual emissions (figure 3). Fluxes from

shrubland conversion were comparable in magnitude

(49.3 MgC ha−1) to grasslands though a greater pro-

portion of emissions (22%) originated frombiomass C

stocks. Shrublands stored nearly twice as much C in

biomass (mean=11.0; SDspatial=5.0 MgC ha−1)

compared to grasslands—primarily BGB, which

accounted for nearly 75% of total shrub biomass.

Converted shrublands had relatively low SOC stocks

(mean=122.4; SDspatial=69.6 MgC ha−1), though

they were slightly more sensitive to LUC, which

reduced SOC stocks by 31.9% (SDspatial=5.9%;

figure S8). In total, annual emissions of 2.5 TgC yr−1

were estimated for shrubland conversion (95%

CI=1.3–3.7 TgC yr−1).

Only 2% of new croplands were sourced from for-

ests, though they accounted for more than 4% of total

emissions (figure 3). Fluxes from forest conversion

(mean=133.1 MgC ha−1) were more than twice

those from grasslands or shrublands and far more

variable (SDspatial=97.6 MgC ha−1). Biomass con-

tributed tomore than 30% of the total flux from forest

conversion, with the majority (76%) allocated to AGB

stocks. Emissions from SOC were the primary driver

of flux variability due to extreme heterogeneity in both

the size and sensitivity of initial SOC stocks. Affected

initial stocks ranged from 11.9–3494.9 MgC ha−1 and

LUC effects ranged from nearly 100% loss to 20%

gains (sequestration) with the greatest SOC losses

predicted in the southeast and modest sequestration

predicted in isolated patches of forest conversion on

relatively cold, clay-rich soils in the north central US

(figure S9). In total, forest conversion accounted

for annual emissions of 2.2 TgC yr−1 (95% CI=

0.9–3.5 TgC yr−1).

Figure 3.Annual rates ofUS cropland expansion,mean carbon fluxes, and total emissions by land source (top panel) and breakout
crop (bottompanel). Carbon flux and emission estimates report the relative contribution of aboveground and belowground biomass
and soil organic carbon stocks. Error bars in flux plots represent the standard deviation ofmean pixel estimates (SDspatial)while error
bars in emission plots represent the 95%CI of total emissions.
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Wetland conversion resulted in fluxes similar in

magnitude to those estimated for forest conversion

but was even less prevalent in extent (figure 3). Only

5% of converted wetlands occupied Histosols, though

SOC remained the dominant source of emitted C from

all wetlands. Estimated fluxes from wetland conver-

sion on mineral soils averaged 96.5 MgC ha−1

(SDspatial=82.7MgC ha−1)while fluxes from organic

wetland conversion averaged 834.1 MgCO2–Ceq ha
−1

(SDspatial=225.6 MgCO2–Ceq ha−1). Emission esti-

mates from Histosols were also highly sensitive to the

duration over which emissions were assumed to per-

sist. While our default assumption was 100 years, 49%

of organic wetlands had reached our imposed emis-

sions cap of 72% loss before 100 years. Biomass con-

tributions varied significantly by wetland type, with

proportionately more emissions originating from bio-

mass in woody wetlands (table S4). In total, we esti-

mate that wetland conversion resulted in 1.7 TgC yr−1

(95%CI=0.9–2.5 TgC yr−1).

3.3. Emissions from the expansion of specific crops

Corn, soybeans and wheat were the most common

breakout crops observed on new croplands and

together they accounted for more than 73% of

emissions between 2008–12 (figure 3). Corn and soy

expansion resulted in nearly identical C fluxes (60.1 and

61.3 MgC ha−1, respectively), despite divergent geo-

graphic expansion patterns: soy expansion was largely

limited to the eastern half of the US, while corn

expansion was more ubiquitous [1]. Wheat expansion

—the most common crop throughout the Great Plains

—resulted in notably smaller C fluxes (42.1MgC ha−1)

due primarily to smaller initial SOC stocks. Together

these three crops accounted for annual emissions of

28.3 TgCyr−1 (95%CI=21.1–35.4TgCyr−1).

Of the remaining significant breakout crops,

expansion of sorghum, sunflower, and barley were

notably less C-intensive (45.0, 46.4, and 45.6 MgC

ha−1 respectively; figure 3) than either corn or soy

expansion. This is because expansion of these two

crops primarily occurred on lands in the upper Great

Plains with smaller initial SOC stocks. Peanuts—

which disproportionately displaced forests in the

southeastern US—stand out as a particularly

C-intensive crop (98.5MgC ha−1) due to greater emis-

sions both from biomass and from especially C-rich

soils. Despite representing less than 1% of cropland

expansion, expansion of peanut farming accounts for

nearly 2%of total LUC emissions.

3.4. Prediction uncertainty and validation

Pixel-level uncertainty (CVpixel) averaged 23% and

varied widely by C stock and land source. Among the

C stocks considered, relative uncertainty was highest

for biomass stocks (47%), with the greatest uncertainty

(59%) associated with forest biomass, and the least

with grassland biomass (36%). Due to the relatively

small contribution of these stocks to total emissions,

this uncertainty minimally effected overall uncer-

tainty. Instead, emissions from SOC contributed the

most to total uncertainty (25%), with the greatest

uncertainty associated with forest soils (36%) and the

least associatedwith grassland soils (24%). The relative

uncertainty of SOC emissions from both forest and

grassland soils increased with depth (figure S10). Due

to the relatively small contribution of deep soils to total

emissions, though, this uncertaintyminimally effected

overall emissions uncertainty.

Estimated SOC emissions from wetland conver-

sion were also highly sensitive to our definition of wet-

lands. Our definition that considered only those CDL-

identified wetlands that occupied Histosols likely pro-

duced a conservative emission estimate. An additional

46.5 km2 of forest, grassland, and shrubland conver-

sion also occurred on Histosols—an area that accoun-

ted for less than 0.2% of all conversion. If organic

wetlands were instead defined as any conversion on

Histosols, our estimate of wetland emissions would

increase by 147% to 4.2 TgC yr−1, which would

increase total emissions by 6.5% to 41.2 TgC yr−1

(95%CI=24.1–61.4 TgC yr−1).

Modeled SOC emissions from forest and grassland

conversion were positively correlated with independent

field observations reported in the literature [45] (figure 4).

The level of agreement varied significantly according to

both the type of LUC and the subsequent tillage practices

used tomanage new croplands. Modeled SOC emissions

from grassland conversion most closely matched inde-

pendent observations from former grasslands managed

with conventional tillage (RMSE=15.9MgCha−1,

slope=0.47). Model fit was significantly inferior for for-

mer grasslands managed with no-tillage (pancova<0.01,

RMSE=35.2MgCha−1, slope=–0.09). Validation

error for SOC emissions from forest conversionwas rela-

tively high (RMSE=37.2, slope=0.30) and there was

no significant difference between observations from con-

ventional and no-till management systems (pancova=

0.94). Despite notable disagreement, the range of

modeled forest SOC emissions was comparable to the

range of field observations (–45.9 [sequestration] to

+156.8MgCha−1;median=+51.9MgCha−1).

4.Discussion

Our data-driven modeling framework improves spa-

tial assessment of C emissions from US cropland

expansion. Unlike analyses based on aggregated LUC

and C stock statistics, our approach reveals the spatial

heterogeneity of natural C stocks and their sensitivity

to LUC. It thereby enables better inference of the

geographic trends associated with US LUC emissions.

Our spatially explicit consideration of biomass C

stocks in often overlooked, non-forest landcovers and
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of both the size and sensitivity of SOC stocks makes

our approach particularly well suited for analysis of US

LUC and transferable to other regions where LUC

primarily affects non-forest landcovers. Our results

reveal that US LUC emissions are of global importance

and point to policy means and conservation practices

bywhich they could be reduced.

4.1. Sources and significance ofUS LUC emissions

Our results clarify the significant contribution of

grassland conversion to US LUC emissions and

generally agree with other published estimates. Grass-

lands have relatively low biomass stocks, but contain

significant quantities of SOC due to their high rates of

belowground productivity [8]. While often receiving

less attention than deforestation, grassland conversion

can result in sizable C emissions. Previous first-order

and field-based analyses have estimated emissions of

36.5 MgC ha−1 [52] and 44.2 MgC ha−1 [53] from

conversion of US grasslands when managed with

conventional tillage. Our estimate (51.9 MgC ha−1),

which accounts for spatial variation in both the size

and sensitivity of pool-specific C stocks, as well as the

geography of conversion, is greater, though similar to

those estimates and may reflect a tendency toward

conversion of relatively C-rich or sensitive grasslands.

While less C-intensive than forest or wetland conver-

sion, the widespread extent of grassland conversion in

the US—the rate of which rivals that of some tropical

deforestation [13]—makes it a larger emission source

than conversion of the Brazillian Cerrado [20] and a

source of global importance. Moreover, the dispro-

portionate contribution of SOC to these emissions

may challenge future mitigation efforts. Unlike bio-

mass, which accumulates over years to decades, SOC

accumulates slowly over decades to centuries [54, 55]

and rates may attenuate due to climate change [56].

Consequently, SOC sourced emissions may represent

a climate forcing that is effectively irreversible over

human relevant timescales.

Estimated emissions also varied according to the

type of crops undergoing expansion, which reflects

both the geography of crop-specific expansion and the

characteristics of converted land. For example, lower

emissions from expansion of some small grains and

sorghum reflect their prevalence on relatively C-poor

soils of thewestern Great Plains (figure S7). Since these

fungible crops can often be used interchangeably with

more C-intensive crops like corn and soybeans as feed

or fuel feedstocks, future work could examine the

C-to-yield tradeoffs of future crop-specific expansion

[57, 58]. Conversely, highC fluxes associatedwith pea-

nut expansion reflect the tendency to replace biomass-

and SOC-rich forests in Georgia and Florida. Due to

growing demand for peanuts [59], peanut expansion

may represent an emerging emission source. Toge-

ther, these results emphasize that the divergent bio-

physical geographies of crops require careful C

accounting when assessing the C footprint of agri-

cultural products.

Despite general agreement with other studies,

though, our estimates are notably higher than com-

parable estimates made by the US NGGI [14]. While it

can be difficult to directly compare committed fluxes

like ours to annual balance calculations like those of

the NGGI [17], a comparison of fluxes derived from

NGGI reported annual emissions and LUC extent

(supplementary materials) reveals that our estimates

are 4–14 times higher than corresponding NGGI

figures (table 1). While some of this divergence can be

explained by NGGI omission of biomass C stocks

from all but forest conversion estimates, the greatest

disagreement stems from SOC emission estimates.

The NGGI uses the process-based DayCent model

Figure 4.Validation of SOC emission estimates from forest (green) and grassland (blue) conversion estimates. Color shade denotes
the type of tillage regime offield observations (T=conventional tillage, N=no-till, U=unspecified tillage). Point shape denotes
themaximum soil depth at which observations andmodel predictions weremade.
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[60] to simulate the size of SOC stocks and their

response to LUC. Like the CRFs used in our model,

DayCent considers clay and climate as the primary fac-

tors effecting SOC stability. However, DayCent simu-

lates an initial SOC stock using a spin-up procedure

meant to account for the legacy effects of past land use.

Recent studies suggest that this procedure may be

underestimating actual SOC stocks and may thereby

contribute to underestimated emissions [27, 28]. Our

estimates and their relative agreement with field mea-

surements suggest that these discrepancies warrant

further review. If we substitute our LUC flux estimates

for those of the NGGI (supplementary materials), the

expected size of the US terrestrial C sink shrinks

by 5.6%.

4.2.Model limitations

While our model seeks to improve spatial considera-

tion of US LUC emissions, it is notably limited in

scope. We exclusively consider C emissions for gross

cropland expansion and thereby overlook potential

sequestration that may result from concurrent crop-

land abandonment [24, 61]. During our study period

an additional 1.8 million hectares of active croplands

were abandoned or retired [1]. Much of this land likely

re-entered the CRP where it would be managed as

grassland [1]. A recent analysis of US grassland

restoration via the CRP estimates a sequestration

potential of 1.19 MgC ha−1 yr−1 over a 20 year period

[61]. Deliberate restoration of all abandoned crop-

lands as permanent, naturally functioning grasslands

could therefore offset emissions from expansion by

4.3 TgC yr−1 or roughly 10 percent. This offset could

potentially be larger if a portion of abandoned crop-

landswas instead reforested or afforested [62].

Pixel-level uncertainty of our emissions estimates

also remains high. We therefore caution against draw-

ing conclusions from fine-scale variation. Instead, the

model should be used to assess broad spatial patterns

of C stocks and their response to LUC. Future

improvements could reduce local uncertainty and

facilitate more fine-scaled interpretation. For exam-

ple, higher resolution maps of C stocks could reduce

positional uncertainty [37], while more frequent maps

could improve accounting of inter-annual variation

[21]. In addition, improved CRFs could significantly

reduce uncertainty related to SOC emissions. Current

CRFs, consider clay and MAT to estimate SOC stabi-

lity. Recent work suggests, though, that other, more

nuanced soil properties—many of which have been

mapped—may better predict SOC stability at the

landscape level [63]. Improved CRFs could therefore

be derived that explicitly consider these properties. In

addition, the scope of CRFs could be expanded to

account for differing management regimes and for

conversion of wetland soils to further constrain uncer-

tainty using covariate information. Finally, uncer-

tainty was highest for estimated emissions from deep

soils (figure S10). While SOC is most frequently mea-

sured in surface soils [24], studies suggest the effects of

LUC extend to depths of 1 m or greater [24, 25]. The

relative lack of observations from deeper soils likely

contributes to elevated uncertainty and should be

addressed to improve LUC emissions estimation.

Legacies of past land use also affect the size of eco-

system C stocks—particularly SOC—and their

response to LUC [16, 64]. While these legacy effects

may be indirectly reflected, to some degree, in the

observation-based C stock maps considered in our

model, they are not considered when determining the

sensitivity of SOC stocks. When training the CRFs

used in this analysis, Poeplau et al (2011) were careful

to only consider data from sites where the natural

landcover had not been previously disturbed by

human activity [24]. By applying these CRFs to soils

that may have been previously cultivated, our

approach may over-estimate the sensitivity of some

soils to conversion. While future CRFs could be

derived that account for various LUC trajectories, the

observational nature of our approach may still limit

their application in the near term. Given that many

spatially explicit LUC maps exclusively depend on the

satellite record which extends only back to the 1970s,

adequate data may not yet be available to determine

LUC trajectories over meaningful time-scales [16].

These shortcomings highlight a benefit of process-

based models which at least attempt to reconstruct

probable LUChistories when estimating emissions.

Likewise, our modeled estimates may be con-

founded by the effects of subsequent agricultural

management following conversion. Cover cropping

on new croplands, for example, may reduce emis-

sions by increasing net primary productivity and

reducing C losses from soil erosion. A global meta-

analysis found that cover crop adoption could

sequester C at an average rate of 0.23 MgC ha−1 yr−1

over 54 years [65], an effect that could offset about

one-third of estimated LUC emissions. Some have

also argued that no-till management can reduce C

emissions from croplands [66]. These reductions

though, may be realized only under permanent no-till

management since even intermittent tillage can offset

the C gained during intervening periods of no tillage

Table 1.Comparison of flux estimates from theUSNational
GreenhouseGas Inventory [14] and our study.

Land source NGGIa (MgCha−1) This study (MgCha−1)

Grasslands 7.9 51.9

Forests 9.1 133.1

Settlements 12.9 —

Shrublands — 49.3

Wetlands 29.4 130.6

Other 5.2 —

a See supplementarymaterials for derivation.
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[67, 68]. Since factors like crop rotations, soil com-

paction, and weed management often preclude long-

term adherence [69], permanent no-till management

is relatively rare [68, 70]. Finally, emissions from sub-

sequent nitrogen (N) fertilizer applications on new

croplands could add to estimated emissions. A recent

analysis found that N2O emissions from N applica-

tions in the US averaged 0.10 MgCO2–Ceq ha
−1 yr−1

[71], which suggests that new cropland could source

an additional 70 GgCO2–Ceq yr
−1 in gross emissions,

or, after accounting for ceased N2O emissions

from annual cropland abandonment, an additional

30GgCO2–Ceq yr
−1 in net emissions, indefinitely.

4.3. Policy implications

Anthropogenic C emissions, including those fromLUC,

have far-reaching consequences. It has been estimated

that the committed social and economic damages of

anthropogenic C emissions (i.e. the ‘social cost of

carbon’), total $114 MgC–1
[72]. This implies that, at

current rates, emissions from US cropland expansion

could cost society more than $4.4 billion yr–1. Para-

doxically, the agricultural sector may directly feel over

$1.2 billion yr–1 of these damages in the form of

declining productivity and increased crop failures [73].

Alternatively, minimizing rates of LUC may be a cost-

effective way to reduce national emissions. Analyses

suggest that avoiding LUC often costs less and achieves

far greater emissionoffsets than restorationofpreviously

converted land [61, 74]. The high societal costs of LUC

and the non-commensurate nature of ecosystem

restoration thus emphasize the need for policies that

promoteprotectionof naturalC stocks.

Federal conservation programs could be reor-

iented and expanded to prioritize C protection and

sequestration. The CRP, for example, could be used to

explicitly preserve natural C stocks. Since the CRP’s

enrollment peak in 2007 at 14.9Mha, enrolled acreage

had declined 2.9 Mha by 2012 and by almost 5.4 Mha

by 2017 [75]. It is estimated that 30%–41% of crop-

land expansion considered in our analysis may repre-

sent land leaving the CRP [1, 6]. Simply raising the

CRP enrollment cap could therefore help reduce con-

version and associated emissions. Furthermore, the

Environmental Benefits Index used to evaluate candi-

date lands for CRP enrollment could be expanded to

consider both the size and sensitivity of the land’s C

stock [76]. Similar modifications could also be made

to other conservation programs like the Agricultural

Conservation Easement Program to further protect

natural C stocks.

Given the large emissions associatedwithUS crop-

land expansion, our study also demonstrates a need to

prioritize enhanced management of existing crop-

lands and more appropriately weigh the costs of crop-

land expansion in meeting agricultural demand. The

USDA, for example, could remove structural barriers

to cover crop adoption to increase productivity while

reducing emissions from croplands [77]. More

broadly, studies suggest that both current and pro-

jected world demand could be met through produc-

tion on existing cropland by closing global ‘yield gaps,’

reducing waste, modifying diets, and revising biofuel

policy [78–80]. These strategies would reduce the need

for expansion and could thereby significantly reduce

LUC emissions.

Sound environmental policy and regulation is pre-

dicated on proper C accounting. Our results suggest

that previous accounting may have downplayed the

environmental effects of cropland expansion by, for

one, the underestimating resulting C emissions. These

findings are particularly pertinent to biofuel policies

whose efficacy is highly sensitive to the magnitude of

resulting LUC emissions [52, 53]. Our empirical esti-

mates therefore represent an important check on ear-

lier analyses and demonstrate a relatively accessible

method of spatial C accounting that relies on readily

available, observational data and that can be used and

improved to inform future policy and regulatory

decisions.

5. Conclusion

We employed a data-driven modeling framework to

assess the magnitude of C emissions from recently

observed US cropland expansion. The framework

relies exclusively on published spatial data and places

special emphasis on non-forest biomass C stocks and

SOC stocks that are often overlooked in traditional C

accounting but account for the majority of C effected

by US LUC. Our general framework can also be

applied in similar regions where LUC primarily affects

non-forest landcover and compatible spatial data

are available. We find—perhaps surprisingly—that

despite the dominance of grassland conversion in the

US, emissions from domestic LUC are greater than

previously thought. Furthermore, since these emis-

sions are primarily sourced from SOC stocks, they

may be largely irreversible in the near term. While

methodological limitations concerning the effects land

use legacies and future management remain, our

findings underscore the importance of conserving

natural C stocks and add to the growing consensus that

avoiding LUC is essential if national C emissions are to

be reduced.
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