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 25 
Abstract. Here we present a global and regionally-resolved terrestrial net biosphere exchange 26 
(NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. It is 27 
estimated using the NASA Carbon Monitoring System Flux (CMS-Flux) top-down flux 28 
inversion system that assimilates column CO2 observations from Greenhouse gases Observing 29 
SATellite (GOSAT) and the NASA’s Observing Carbon Observatory -2 (OCO-2). The regional 30 
monthly fluxes are readily accessible as tabular files, and the gridded fluxes are available in 31 
NetCDF format. The fluxes and their uncertainty estimates are evaluated by extensively 32 
comparing the posterior CO2 mole fractions with aircraft CO2 observations. We describe the 33 
characteristics of the dataset as global total, regional climatological mean, and regional annual 34 
fluxes and seasonal cycles. We find that the global total fluxes of the dataset agree with 35 
atmospheric CO2 growth observed by the surface-observation network within uncertainty. 36 
Averaged between 2010 and 2018, the tropical regions range from close-to neutral in tropical 37 
South America to a net source in Africa; these contrast with the extra-tropics, which are a net 38 
sink of 2.5 ± 0.3 gigaton carbon per year. The regional satellite-constrained NBE estimates 39 
provide a unique perspective for understanding the terrestrial biosphere carbon dynamics and 40 
monitoring changes in regional contributions to the changes of atmospheric CO2 growth rate. 41 
The gridded and regional aggregated dataset can be accessed at: 42 
https://doi.org/10.25966/4v02-c391 (Liu et al., 2020).  43 
 44 
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 2 

1 Introduction  46 

New “top-down” inversion frameworks that harness satellite observations provide an important 47 

complement to global aggregated fluxes (e.g., Global Carbon Project, Friedlingstein et al., 2019) 48 

and inversions based on surface CO2 observations (e.g., Crowell et al., 2019). These satellite-49 

constrained estimates resolve regional fluxes, and also disentangle net biosphere exchange (NBE) 50 

into constituent carbon fluxes including plant gross primary productivity (GPP) and biomass 51 

burning through solar-induced fluorescence and carbon monoxide proxies, respectively (Bowman 52 

et al, 2017, Liu et al., 2017). Both the spatial and process resolution are critical for evaluating 53 

models and reducing uncertainties about future carbon-climate feedbacks (e.g., Friedlingstein et 54 

al., 2014). The NBE are far more variable than ocean fluxes (Lovenduski and Bonan, 2017) or 55 

fossil fuel emissions (Yin et al, 2019), and are thus the focus of this dataset estimated from a top-56 

down atmospheric CO2 inversion of satellite column CO2 dry-air mole fraction (XCO2). We present 57 

the global and regional NBE dataset as a series of maps, time series and tables, and disseminate it 58 

as a public dataset for further analysis and comparison to other sources of flux information. Finally, 59 

we provide a comprehensive evaluation of both mean and uncertainty estimates against an 60 

independent airborne dataset. Subsequent papers will present the partitioning of the NBE into 61 

constituent gross fluxes. 62 

 63 

Global top-down atmospheric CO2 flux inversions have been historically used to estimate regional 64 

terrestrial NBE, which is a sum of net ecosystem exchange and biomass burning carbon fluxes. 65 

They make uses of the spatiotemporal variability of atmospheric CO2, which is dominated by NBE, 66 

to infer net carbon exchange at the surface (Chevallier et al., 2005; Baker et al., 2006; Liu et al., 67 

2014). The accuracy of the NBE from top-down flux inversion is determined by the density and 68 
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 3 

accuracy of the CO2 observations, the accuracy of modeled atmospheric transport, and knowledge 69 

of the prior uncertainties of the flux inventories.  70 

 71 

For CO2 flux inversions based on high precision in situ and flask observations, the measurement 72 

error is low (<0.2 parts per million (ppm)) and not a significant source of error; however, these 73 

observations are limited spatially, and are concentrating primarily over North America (NA) and 74 

Europe (Crowell et al., 2019). Satellite XCO2 from CO2-dedicated satellites, such as the Greenhouse 75 

Gases Observing Satellite (GOSAT) (launched in July 2009) and the Observing Carbon 76 

Observatory 2 (OCO-2) (Crisp et al., 2017) have much broader spatial coverage (O’Dell et al., 77 

2018), and fill the observational gaps of conventional surface CO2 observations, but they have up 78 

to an order of magnitude higher single-sounding uncertainty and potential systematic errors 79 

compared to the in situ and flask CO2 observations. Recent progress in instrument error 80 

characterization, spectroscopy, and retrieval methods have significantly improved the accuracy 81 

and precision of the XCO2 retrievals (O’Dell et al., 2018; Kiel et al., 2019). The single sounding 82 

random error of XCO2 from OCO-2 is ~1.0 ppm (Kulawik et al., 2019). A recent study by Byrne et 83 

al. (2020) shows less than a 0.5 ppm difference between posterior XCO2 constrained by a recent 84 

data set, ACOS-GOSAT b7 XCO2 retrievals, and those constrained by conventional surface CO2 85 

observations. Chevallier et al. (2019) also showed that OCO-2 based flux inversion had similar 86 

performance to surface CO2 based flux inversions when comparing posterior CO2 mole fractions 87 

to aircraft CO2 in the free troposphere. Results from these studies show that systematic 88 

uncertainties in CO2 retrievals from satellites are comparable to, or smaller than, other uncertainty 89 

sources in atmospheric inversions (e.g. transport).  90 

 91 
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 4 

A newly-developed biogeochemical model-data fusion system, CARDAMOM, made progress in 92 

producing NBE uncertainties, along with mean values that are consistent with a variety of 93 

observations assimilated through a Markov Chain Monte Carlo (MCMC) method (Bloom et al., 94 

2016; 2020). Transport model errors in general have also been reduced relative to earlier transport 95 

model intercomparison efforts, such as TRANSCOM 3 (Gurney et al., 2004; Gaubert et al., 2019). 96 

Advancements in satellite retrieval, transport, and prior terrestrial biosphere modeling have led to 97 

more mature inversions constrained by satellite XCO2 observations.  98 

 99 

Two satellites, GOSAT and OCO-2, have now produced more than 10 years of observations. Here 100 

we harness the CMS-Flux inversion framework (Liu et al., 2014; 2017; 2018; Bowman et al., 2017) 101 

to generate an NBE product: CMS-Flux NBE 2020, by assimilating both GOSAT and OCO-2 from 102 

2010–2018. The dataset is the longest satellite-constrained NBE product so far. The CMS-Flux 103 

framework exploits globally available XCO2 to infer spatially-resolved total surface-atmosphere 104 

exchange, which can be subsequently decomposed into individual fluxes using ancillary 105 

measurements (i.e., GPP, respiration, fires, fossil fuel, etc.). The flux estimates from the CMS-106 

Flux framework have been used to assess the impacts of El Niño on terrestrial biosphere fluxes 107 

(Bowman et al, 2017; Liu et al, 2017) and the role of droughts in the North America (NA) carbon 108 

balance (Liu et al, 2018). These fluxes have furthermore been ingested into land-surface data 109 

assimilation systems to quantify heterotrophic respiration (Konings et al., 2019), evaluate 110 

structural and parametric uncertainty in carbon-climate models (Quetin et al., 2020), and inform 111 

climate dynamics (Bloom et al., 2020). We present the regional NBE and its uncertainty based on 112 

two types of regional masks: (1) latitude and continent; and )2) distribution of biome types (defined 113 
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 5 

by plant functional types), and continent. The gridded NBE dataset and its uncertainty are also 114 

available, so that users can aggregate the fluxes and uncertainties based on self-defined regions.  115 

 116 

The outline of the paper is as follows: Section 2 describes methods, and Sections 3 and 4 describe 117 

the dataset and the major NBE characteristics, respectively. We extensively evaluate the posterior 118 

fluxes and uncertainties by comparing the posterior CO2 mole fractions against aircraft 119 

observations and a gross primary production (GPP) product (section 5). In Section 6, we discuss 120 

the strength and weakness, and potential usage of the data. A summary is provided in Section 7, 121 

and Section 8 is dataset availability and future plan. 122 

 123 

2 Methods  124 

2.1 CMS-Flux inversion system 125 

The CMS-Flux framework is summarized in Figure 1. The center of the system is the CMS-Flux 126 

inversion system, which optimizes NBE and air-sea net carbon exchanges with a 4D-Var inversion 127 

system (Liu et al., 2014). In the current system, we assume that no uncertainty in fossil fuel 128 

emissions, since the uncertainty in fossil fuel emissions at regional scales is substantially less than 129 

NBE uncertainties, which is a widely adopted assumption in global flux inversion systems (e.g., 130 

Crowell et al., 2019). The 4D-Var minimizes a cost function that include the sum of two terms:  131 

           (1) 132 

The first term measures the differences between the optimized fluxes and the prior fluxes  133 

normalized by the prior flux error covariance B, and the second term measures the differences 134 

between observations ( ) and the corresponding model simulated value ( ) normalized by the 135 

observation error covariance R. The term ℎ(∙)  is the observation operator that calculates 136 

J (x) = (x − x
b
)TB−1(x − xb)+ (y − h(x))TR−1(y − h(x))

y h(x)
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 6 

observation-equivalent model-simulated XCO2. The 4D-Var uses the adjoint (i.e., the backward 137 

integration of the transport model) (Henze et al., 2004) of the GEOS-Chem transport model to 138 

calculate the sensitivity of the observations to surface fluxes. The configurations of the inversion 139 

system are summarized in Table 1. We run both the forward and adjoint at 4° x 5° spatial resolution, 140 

and optimize monthly NBE and air-sea carbon fluxes at each grid point from January 2010 to 141 

December 2018. Inputs for the system include prior carbon fluxes, meteorological drivers, and the 142 

satellite XCO2 (Figure 1). Section 2.2 (Table 2) describes the prior flux and its uncertainties, and 143 

section 2.3 (Table 3) describes the observations and the corresponding uncertainties. 144 

 145 

2.2 The prior CO2 fluxes and uncertainties 146 

Prior CO2 fluxes include NBE, air-sea net carbon fluxes, and fossil fuel emissions (see Table 2). 147 

The data sources for the prior fluxes are listed in Table 7. Methods to generate prior ocean carbon 148 

fluxes and fossil fuel emissions are documented in Brix et al., (2015), Caroll et al. (2020), and Oda 149 

et al. (2018). The focus of this dataset is optimized terrestrial biosphere fluxes, so we briefly 150 

describe the prior terrestrial biosphere fluxes and its uncertainties. 151 

 152 

We construct the NBE prior using the CARDAMOM framework (Bloom et al., 2016). 153 

CARDAMOM data assimilation system explicitly represents the time-resolved uncertainties in 154 

NBE. The prior estimates are already constrained with multiple data streams accounting for 155 

measurement uncertainties following a similar Bayesian approach used in the 4D-variational 156 

approach. We use the CARDAMOM setup as described by Bloom et al. (2016, 2020) resolved at 157 

monthly timescales; data constraints include GOME-2 solar-induced fluorescence (Joiner et al., 158 

2013), MODIS Leaf Area Index (LAI), and biomass and soil carbon (details on the data 159 
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 7 

assimilation are provided in Bloom et al. (2020)). In addition, mean GPP and fire carbon emissions 160 

from2010 - 2017 are constrained by FLUXCOM GPP (Tramontana et al., 2016) and GFEDv4.1s 161 

(Randerson et al., 2018) respectively, both assimilated with an uncertainty of 20%. We use the 162 

Olsen and Randerson (2001) approach to downscale monthly GPP and respiration fluxes to 3-163 

hourly timescales, based on ERA-interim re-analysis of global radiation and surface temperature. 164 

Fire fluxes are downscaled using the GFEDv4.1 daily and diurnal scale factors on monthly 165 

emissions (Giglio et al., 2013). Posterior CARDAMOM NBE estimates are then summarized as 166 

NBE mean and standard deviation values.  167 

  168 

The NBE from CARDAMON shows net carbon uptake of 2.3 GtC/year over the tropics and close 169 

to neutral in the extratropics (Figure S1). The year-to-year variability (i.e., interannual variability, 170 

IAV) estimated from CARDAMOM from 2010 –2017 is generally less than 0.1 gC/m2/day outside 171 

of the tropics (Figure S1). Because of the weak interannual variability estimated by CARDAMOM, 172 

we use the same 2017 NBE prior for 2018.  173 

 174 

CARDAMOM generates uncertainty along with the mean state. The relative uncertainty over the 175 

tropics is generally larger than 100%, and the magnitude is between 50% and 100% over the extra-176 

tropics (Figure S2). We assume no correlation in prior flux errors in either space or time. Temporal 177 

and spatial error correlation estimates can in principle be computed by CARDAMOM. We 178 

anticipate incorporating these error correlations in subsequent versions of this dataset. 179 

 180 

2.3 Column CO2 observations from GOSAT and OCO-2 181 

We use satellite-column CO2 retrievals from Atmospheric Carbon Observations from Space 182 

(ACOS) team for both GOSAT (version 7.3) and OCO-2 (version 9) (Table 3). The use of the 183 
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 8 

same retrieval algorithm and validation strategy adopted by ACOS team to process both GOSAT 184 

and OCO-2 spectra maximize the consistency between these two datasets. Both GOSAT and OCO-185 

2 satellites carry high-resolution spectrometers optimized to return high precision measurements 186 

of reflected sunlight within CO2 and O2 absorption bands in the shortwave infrared (Crisp et al., 187 

2012). Both satellites fly in a sun-synchronous orbit. GOSAT has a 13:00 ± 0.15 hours local 188 

crossing time and a three-day ground track repeat cycle. The footprint of GOSAT is ~10.5 km in 189 

diameter in sun-nadir view (Crisp et al., 2012). The daily number of soundings processed by the 190 

ACOS-GOSAT retrieval algorithm is between a few hundreds to ~2000. Further quality control 191 

and filtering reduce the ACOS-GOSAT XCO2 retrievals to 100 – 300 daily (Figure S5 in Liu et al., 192 

2017). We only assimilate ACOS-GOSAT land nadir good quality observations.  193 

 194 

OCO-2 has a 13:30 local crossing time and 16-day ground track repeat cycle. The nominal 195 

footprints of OCO-2 are 1.25 km wide and ~2.4 km along the orbit. Because of its small footprint 196 

and sampling strategy, OCO-2 has many more XCO2 retrievals than ACOS-GOSAT. OCO-2 has 197 

four observing modes: land nadir, land glint, ocean glint, and target. Following Liu et al. (2017), 198 

we only use land nadir observations from OCO-2 to generate a set of super observations by 199 

aggregating the observations within ~100 km (along the same orbit). The super observations have 200 

more uniform spatial coverage and are more comparable to the spatial representation of ACOS-201 

GOSAT observations (see Figure S5 in Liu et al., 2017).  202 

 203 

We directly use observational uncertainty provided with ACOS-GOSAT b7.3 to represent the 204 

observation error, R, in Eq 1. The uncertainty of the OCO-2 super observations is the sum of the 205 

variability of XCO2 used to generate each individual super observation and the mean uncertainty 206 
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 9 

provided in the original OCO-2 retrievals. More detailed information about OCO-2 super 207 

observations can be found in Liu et al. (2017). Kulawik et al. (2019) showed that both OCO-2 and 208 

ACOS-GOSAT bias-corrected retrievals have mean biases of -0.1 ppm when compared against 209 

XCO2 from Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011), indicating 210 

consistency between ACOS-GOSAT and OCO-2 retrievals. The magnitude of observation errors 211 

used in R is generally above 1.0 ppm, larger than the sum of random error and biases in the 212 

observations. The ACOS-GOSAT b7.3 observations from July 2009–June 2015 are used to 213 

optimize fluxes between 2010 and 2014, and the OCO-2 XCO2 observations from Sep 2014–June 214 

2019 are used to optimize fluxes between 2015 and 2018. 215 

 216 

The observational coverage of ACOS-GOSAT and OCO-2 is spatiotemporally dependent, with 217 

more coverage during summer than winter over the NH, and more observations over mid-latitudes 218 

than over the tropics (Figure S3). The variability (i.e., standard deviation) of annual total number 219 

of observations from 2010–2014 is within 4% of the annual mean number for ACOS-GOSAT. 220 

Except for a data gap in 2017 caused by a malfunction of OCO-2 instrument, the variability of 221 

annual total number of observations between 2015 and 2018 is within 8% of the annual mean 222 

number for OCO-2.  223 

 224 

2.4 Uncertainty quantification 225 

The posterior flux error covariance is analytically the inverse Hessian, which incorporates the 226 

transport, measurement, and background errors at the 4D-Var solution (Eq. 13 in Bowman et al, 227 

2017). For large-order systems, the posterior errors cannot be explicitly calculated. Consequently, 228 

we rely on a Monte Carlo approach to quantify posterior flux uncertainties following Chevallier et 229 

al. (2010) and Liu et al. (2014). In this approach, an ensemble of flux inversions is carried out with 230 
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 10 

an ensemble of priors and simulated observations to sample the uncertainties of prior fluxes (i.e., 231 

B in eq. 1) and observations (R in Eq. 1), respectively. The magnitude of posterior flux 232 

uncertainties is a function of assumed uncertainties in prior fluxes and observations, as well as the 233 

density of observations. Since the density of GOSAT and OCO-2 observations are stable (section 234 

2.3) within their respective data record, we characterize the posterior flux uncertainties for 2010 235 

and 2015 only, and assume the flux uncertainties for 2011–2014 are the same as 2010 and flux 236 

uncertainties for 2016–2018 are the same as 2015.  237 

2.5 Evaluation of posterior fluxes 238 

Direct NBE estimates from flux towers only provide a spatial representation of a few kilometers 239 

(Running et al., 1999), not appropriate to evaluate regional NBE from top-down flux inversions. 240 

Thus, we use two methods to indirectly evaluate the posterior NBE and its uncertainties. One is to 241 

compare annual NBE anomalies and seasonal cycle to a gross primary production (GPP) product. 242 

The other is to compare posterior CO2 mole fractions to independent aircraft observations (i.e., not 243 

assimilated in the inversion). The second method has been broadly used to indirectly evaluate 244 

posterior fluxes from top-down flux inversions (e.g., Stephens et al., 2007; Liu and Bowman, 2016; 245 

Chevallier et al., 2019; Crowell et al., 2019).  246 

2.5.1 Evaluation against independent gross primary production (GPP) product 247 

 NBE is a small residual difference between two large terms: total ecosystem respiration (TER) 248 

and GPP, plus fire. A positive NBE anomaly (i.e., less uptake from the atmosphere) has been 249 

shown to correspond to reduced GPP caused by climate anomalies (e.g., Bastos et al., 2018), and 250 

the magnitude of net uptake is proportional to GPP in most biomes observed by flux tower 251 

observations (e.g, Falk et al., 2008). Since NBE is related not only to GPP, the comparison to GPP 252 

only serves as a qualitative measure of the NBE quality. For example, we would expect that the 253 
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 11 

posterior NBE seasonality to be anti-correlated with GPP in the temperate and high latitudes. In 254 

this study, we use FLUXSAT GPP (Joiner et al., 2018), which is an upscaled GPP product based 255 

on flux tower GPP observations and satellite-based geometry adjusted reflectance from the 256 

MODerate-resolution Imaging Spectroradiometer (MODIS) and solar-induced chlorophyll 257 

fluorescence observations from Global Ozone Monitoring Experiment – 2 (GOME-2) (Joiner et 258 

al., 2013). Joiner et al. (2018) show that the agreement between FLUXSAT-GPP and GPP from 259 

flux towers is better than other available upscaled GPP products. 260 

2.5.2 Evaluation against aircraft CO2 observations 261 

 The aircraft observations used in this study include those published in ObsPack August 2019 262 

(CarbonTracker team, 2019), which include regular vertical profiles from flask samples collected 263 

on light aircraft by NOAA (Sweeney et al., 2015) and other laboratories, aircraft campaigns from 264 

Atmospheric Tomography (ATom, Wofsy et al., 2018) and HIAPER Pole-to-Pole (HIPPO, Wofsy 265 

et al., 2011), regular (two to four weekly) vertical profiles from the Instituto de Pesquisas Espaciais 266 

(INPE) over tropical South America (SA) (Gatti et al., 2014), and the O2/N2 Ratio and CO2 267 

airborne Southern Ocean (ORCAS)  Study aircraft campaign (Stephens et al., 2017) (Table 3). 268 

Figure 2 shows the aircraft observation coverage and density between 2010 and 2018. Most of the 269 

aircraft observations are concentrated over NA. ATom had four (1–4) campaigns between August 270 

2016 to May 2018, spanning four seasons over the Pacific and Atlantic Ocean. HIPPO had five 271 

(1–5) campaigns over Pacific, and only HIPPO 3–5 occurred between 2010 and 2011. HIPPO 1–272 

2 occurred in 2009. Based on the spatial distribution of aircraft observations, we divide the 273 

comparison into nine regions: Alaska, mid-latitude NA, Europe, East Asia, South Asia, Africa, 274 

Australia, Southern Ocean, and South America (Table 4 and Figure 2).  275 

 276 
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 12 

We calculate several quantities to evaluate the posterior fluxes and its uncertainty with aircraft 277 

observations. One is the monthly mean differences between posterior and aircraft CO2 mole 278 

fractions. The second is the monthly root mean square errors (RMSE) over each nine sub-regions, 279 

which is defined as: 280 

  (2) 281 

where		𝑦!"#$#!%&
'  is ith aircraft observation, 		𝑦!"#$#!%&

(  is the corresponding posterior CO2 mole 282 

fractions sampled at ith aircraft locations, and n is the number of aircraft observations over each 283 

region. The RMSE is computed over the n aircraft observations within one of the nine sub-regions. 284 

The mean differences indicate the magnitude of mean posterior CO2 bias, while the RMSE 285 

includes both random and systematic errors in posterior CO2. The bias and RMSE could be due to 286 

errors in either posterior fluxes or transport or both. When transport errors are smaller than errors 287 

in posterior fluxes, the magnitude of biases and RMSE indicates the accuracy of posterior fluxes.  288 

 289 

To evaluate the magnitude of posterior flux uncertainty estimates, we compare RMSE against the 290 

standard deviation of ensemble simulated aircraft observations (equation 3) from the Monte Carlo 291 

method (RMSEMC). The quantity 𝑅𝑀𝑆𝐸)* 	can be written as: 292 

𝑅𝑀𝑆𝐸)* = [
+

,-,.
∑ ((𝑦!"#$#!%&

(()*)
)"-,. − 𝑦/!"#$#!%&

(()*)
)1,-,.

"-,.2+ ]
!

"	(3)  293 

The variable  (𝑦!"#$#!%&
(()*)

)"-,. is the ith ensemble member of simulated aircraft observations from 294 

Monte Carlo ensemble simulations, 𝑦/!"#$#!%&
(()*) is the mean, and nens is the total number of ensemble 295 

members. For simplicity, in equation (3), we drop the indices for the aircraft observations used in 296 

equation (2). In the absence of transport errors, when the estimated posterior flux uncertainty 297 

reflects the “true” posterior flux uncertainty, we show in the Appendix that: 298 

RMSE = (
1

n
( y

aircraft

o
− y

aircraft

b )
i

2 )
1

2

i=1

n

∑
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𝑅𝑀𝑆𝐸1 = 𝑅!"#$#!%& + 𝑅𝑀𝑆𝐸)*
1           (4)  299 

where 𝑅!"#$#!%& is the aircraft observation error variance, which could be neglected on regional 300 

scales. We further calculate the ratio r between RMSE and 𝑅𝑀𝑆𝐸)*: 301 

𝑟 =
3)45

3)45#$
				                          (5) 302 

A ratio close to one indicates that the posterior flux uncertainty reflects the true uncertainty in the 303 

posterior fluxes when the transport errors are small.  304 

 305 

The presence of transport errors will make the comparison between RMSE and 𝑅𝑀𝑆𝐸)*  306 

potentially difficult to interpret. Even when 	𝑅𝑀𝑆𝐸)*  represents the actual uncertainty in posterior 307 

fluxes, the RMSE could be larger than 𝑅𝑀𝑆𝐸)* , since the differences between aircraft 308 

observations and model simulated posterior mole fractions RMSE could be due to errors in both 309 

transport and the posterior fluxes, while 𝑅𝑀𝑆𝐸)*  only reflects the impact of posterior flux 310 

uncertainty on simulated aircraft observations. In this study, we assume the primary sources of 311 

RMSE come from errors in posterior fluxes.  312 

 313 

The RMSE and 𝑅𝑀𝑆𝐸)*  comparison only shows differences in CO2 space. We further calculate 314 

the sensitivity of RMSE  to posterior flux using GEOS-Chem adjoint. We first define a cost 315 

function J as: 316 

𝐽 = 𝑅𝑀𝑆𝐸1				   (6)   317 

The sensitivity of the mean-square error to a flux, x, at location i and month j  is 318 

𝑤",7 =
89

8:%,'
× 𝑥",7   (7) 319 
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This sensitivity is normalized by the flux magnitude. Equation 7 can be interpreted as the 320 

sensitivity of the RMSE2 to a fractional change in the fluxes. We can estimate the time-integrated 321 

magnitude of the sensitivity over the entire assimilation window by calculating: 322 

𝑆" =
∑ <=%,'<
#
'(!

∑ ∑ <=),'<
#
'(!

*
)(!

   (8) 323 

where P is the total number of grid points and M is the total number of months from the time of 324 

the aircraft data to the beginning of the inversion. The numerator of equation (8) quantifies the 325 

absolute total sensitivity of the RMSE2 to the fluxes at the ith grid. Normalized by the total absolute 326 

sensitivity across the globe, the quantity 𝑆" indicates the relative sensitivity of RMSE2 to fluxes at 327 

the ith grid point. Note that 𝑆" is unitless, and it only quantifies sensitivity, not the contribution of 328 

fluxes at each grid to RMSE2. 329 

 330 

2.6 Regional masks  331 

We provide posterior NBE from 2010 – 2018 using two sets of aggregated regions, for a few 332 

selected FLUXNET tower sites, and the underlying gridded product. The regional mask in Figure 333 

3A is based on a combination of seven plant function types condensed from MODIS IGBP and the 334 

TRANSCOM -3 region mask (Gurney et al., 2004). There are 28 regions in Figure 3A: six in NA, 335 

four in SA, five in Eurasia (north of 40˚N), three in tropical Asia, three in Australia, and seven in 336 

Africa. The regional mask in Figure 3B is based on latitude and continents, and there are 13 regions 337 

in total.  338 

 339 

3 Dataset description 340 
 341 
We present the gridded fluxes as globally, latitudinally, and regionally time series. We show the 342 

nine-year average fluxes aggregated into 28 and 13 geographic regions (Figure 3). The 343 
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aggregations are geographic (latitude and continent), bio-climatic (biome by continent), and flux-344 

oriented (for a set of selected flux sites).  For each region in the geographic and biome aggregations, 345 

we show nine-year mean annual net fluxes and uncertainties, and then the annual fluxes for each 346 

region as a set of time-series plots.  The month-by-month fluxes and uncertainties are available in 347 

tabular format, so the actual aggregated fluxes may be readily compared to bottom-up extrapolated 348 

fluxes and Earth System models. Users can also aggregate the gridded fluxes and uncertainties 349 

based on their own defined regional masks. Table 5 provides a complete list of all data products 350 

available in the dataset. In section 4, we describe the major characteristics of the dataset.  351 

4 Characteristics of the dataset  352 

4.1 Global fluxes 353 

The annual atmospheric CO2 growth rate, which is the sum of fossil fuel emissions and total annual 354 

sink over land and ocean, is well-observed by NOAA surface CO2 observing network 355 

(https://www.esrl.noaa.gov/gmd/ccgg/ggrn.php) (Freidlingstein et al., 2019). We compare the global total 356 

flux estimates constrained by GOSAT and OCO-2 with the NOAA CO2 growth rate from 2010–357 

2018, and discuss the mean carbon sink over land and ocean. Over these nine years, the satellite-358 

constrained atmospheric CO2 growth rate agrees with the NOAA observed CO2 growth rate within 359 

the uncertainty of posterior fluxes (Figure 4). The mean annual global surface CO2 flux (in Gt C/yr) 360 

is derived from the NOAA observed CO2 growth rate (in ppm/yr) using a conversion factor of 361 

2.124 GtC/ppm (Le Quéré et al., 2018). The estimated growth rate has the largest discrepancy with 362 

the NOAA observed growth rate in 2014, which may be due to a failure of one of the two solar 363 

paddles in May 2014 (Kuze et al., 2016). Over the nine years, the estimated total accumulated 364 

carbon in the atmosphere is 41.5 ± 2.4 GtC, which is slightly lower than the accumulated carbon 365 

based on NOAA CO2 growth rate (45.2 ± 0.4 GtC). On average, the land sink is 20 ± 8% of fossil 366 
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fuel emissions, and the ocean sink is 30 ± 1% of fossil fuel emissions (Figure 4). These numbers 367 

are within the ranges of the corresponding estimates from GCP 2019 (Freidlingstein et al., 2019). 368 

The mean NBE and ocean sink from GCP 2019 are 21 ± 10% (~1.0 GtC estimated residual NBE 369 

uncertainty) and 26 ± 5% (~0.5 GtC estimated ocean flux uncertainty) of fossil fuel emissions 370 

respectively between 2010–2018. The GCP NBE here is calculate as the residual differences 371 

between fossil fuel, ocean fluxes, and atmospheric CO2 growth rate, and it is also equivalent to the 372 

sum of carbon fluxes from land use changes, land sink, and residual balance reported by GCP. 373 

Over these nine years, we estimate that the land sink ranges from 37% of fossil fuel emissions in 374 

2011 (a La Niña year) to only 5% in 2015 (an El Niño year), consistent with GCP estimated range 375 

of 35% in 2011 to 7% in 2015. We estimate that the ocean sinks range from 39% in 2015 to 23% 376 

of fossil fuel emissions in 2012, larger than the GCP estimated ocean flux ranges of 25% to 28% 377 

of fossil fuel emissions (Freidlingstein et al., 2019).  378 

4.2 Mean regional fluxes and uncertainties 379 

Figure 5 shows the nine-year mean regional annual fluxes, uncertainty, and its variability between 380 

2010–2018. Table 6 shows an example of the dataset corresponding to Figure 5 A, C, and E. It 381 

shows large net carbon uptake occurs over Eurasia, NA, and Southern Hemisphere (SH) mid-382 

latitudes. The largest net carbon uptake is over eastern US (-0.4 ± 0.1 GtC (1s uncertainty)) and 383 

high latitude Eurasia (-0.4 ± 0.1 GtC) (Figure 5A, B). We estimate a net land carbon sink of 2.5 ± 384 

0.3 GtC/year between 2010–2013 over the NH mid to high latitudes, which agrees with 2.4 ± 0.6 385 

GtC estimates over the same time periods based on a two-box model (Ciais et al., 2019). Net uptake 386 

in the tropics ranges from close-to-neutral in tropical South America (0.0 ± 0.1 GtC) to a net source 387 

in northern Africa (0.6 ± 0.2 GtC) (Figure 5A, B). The tropics exhibit both large uncertainty and 388 

large variability. The NBE interannual variability over northern Africa and tropical SA are 0.5 GtC 389 
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and 0.3 GtC respectively, larger than the 0.2 GtC and 0.1 GtC uncertainty (Figure 5C, D). We also 390 

find collocation of regions with large NBE and GPP interannual variability (Figure S4).  391 

 392 

4.3 Interannual variabilities and uncertainties 393 

Here we present hemispheric and regional NBE interannual variabilities and corresponding 394 

uncertainties (Figures 6 and 7, and corresponding tabular data files). In Figure 6, we further divide 395 

the globe into three large latitude bands: tropics (20°S–20°N), NH extra-tropics (20°N–85°N), and 396 

SH extra-tropics (60°S–20°S). The tropical NBE contributes 90% to the global NBE interannual 397 

variability (IAV). The IAV of NBE over the extra-tropics is only about one-third of that over the 398 

tropics. The dominant role of tropical NBE in the global IAV of NBE agrees with Figure 4 in 399 

Sellers et al. (2018). The top-down global annual NBE anomaly is within the 1.0 GtC/yr 400 

uncertainty of residual NBE (i.e., fossil fuel – atmospheric growth – ocean sink) calculated from 401 

GCP-2019 (Friedlinston et al., 2019) (Figure 6). 402 

 403 

Figure 7 shows the annual NBE anomalies and uncertainties over a few selected regions. Positive 404 

NBE indicates reduced net uptake relative to the 2010–2018 mean, and vice versa. Also shown in 405 

Figure 7 are GPP anomalies estimated from FLUXSAT. Positive GPP indicates increased 406 

productivity, and vice versa. GPP drives NBE in years where anomalies are inversely correlated 407 

(e.g., positive NBE and negative GPP), and TER drives NBE in years where anomalies of GPP 408 

and NBE have the same sign or weakly correlated. Over tropical SA evergreen broadleaf forest, 409 

the largest positive NBE anomalies occur during 2015–2016 El Niño, corresponding to large 410 

reductions in productively, consistent with Liu et al. (2017). In 2017, the region sees increased net 411 

uptake and increased productivity, implying a recovery from the 2015–2016 El Niño event. The 412 
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variability in GPP explains 80% of NBE variability over this region over the nine-year period. In 413 

Australian shrubland, our inversion captures the increased net uptake in 2010 and 2011 due to 414 

increased precipitation (Pouter et al., 2014) and increased productivity. The variability in GPP 415 

explains 70% of the interannual variability in NBE. Over tropical south America Savanna, the 416 

NBE interannual variability also shows strong negative correlations with GPP, with GPP 417 

explaining 40% of NBE interannual variability. Over the mid-latitude regions where the IAV is 418 

small, the R2 between GPP and NBE is also small (0.0–0.5) as expected. But the increased net 419 

uptake generally corresponds to increased productivity. We also do not expect perfect negative 420 

correlation between NBE anomalies and GPP anomalies, as discussed in section 2.5. The 421 

comparison between NBE and GPP provides insight into when and where net fluxes are likely 422 

dominated by productivity.  423 

 424 

4.4 Seasonal cycle  425 

We provide a top-down CO2 constrained regional mean NBE seasonal cycle and its variability and 426 

uncertainty. The seasonal cycle of NBE, including its phase (i.e., transition from source to sink) 427 

and amplitude (peak-to-trough difference), have large uncertainties, not only over the less-428 

observed tropical regions, but also over the extra-tropics (e.g., Yang et al., 2007; Keppel-Aleks et 429 

al., 2012). Figure 8 shows NBE and GPP seasonal cycles for six selected regions. In general, the 430 

months that have larger productivity corresponds to months with a net uptake of carbon from the 431 

atmosphere. The NH mid-to-high latitudes have larger seasonal cycle amplitudes (Figure 8A, B) 432 

compared to the other regions, and their NBE seasonalities are more closely linked to that of GPP 433 

(R2 = 0.9). In the tropics, the relationship between NBE and GPP seasonality is less clear partially 434 
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due to the weak seasonality of NBE (Figure 8E, F). The variability and uncertainty of monthly 435 

mean fluxes are larger over the tropics and the SH extratropics than over the NH extratropics.  436 

5 Evaluation against independent aircraft CO2 observations   437 

5.1 Comparison to aircraft observations over nine sub-regions 438 

In this section, we evaluate posterior CO2 against aircraft observations over nine sub-regions listed 439 

in Table 4 and Figure 2. We compare the posterior to aircraft CO2 mole fractions above planetary 440 

boundary layer and up to mid troposphere (1–5 km) at the locations and time of aircraft 441 

observations, and then calculate the monthly mean error statistics between 1–5 km. The aircraft 442 

observations between 1–5 km are more sensitive to regional fluxes (Liu et al., 2015; Liu and 443 

Bowman, 2016). Scatter plots in the left column of Figure 9 show regional monthly mean de-444 

trended aircraft CO2 observations (x-axis) versus the simulated detrended posterior CO2 (y-axis). 445 

We used NOAA global CO2 trend to detrend both the observations and model simulated mole 446 

fractions (ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_trend_gl.txt). Over the NH regions (A, 447 

B, C, D) and Africa (F), the R2 is equal or above 0.9, which indicates that the posterior CO2 captures 448 

the observed seasonality. The low R2 (0.7) value in South Asia is caused by one outlier. Over 449 

Southern Ocean, Australia, and SA, the R2 is between 0.2 and 0.4, reflecting weaker CO2 450 

seasonality over these regions.  451 

 452 

The right panel of Figure 9 shows the monthly mean differences between posterior CO2 and aircraft 453 

observations (black), the number of aircraft observations (blue bar, right y-axis), RMSE (equation 454 

2) (blue line), and RMSEMC (equation 3) (red line). The magnitude of mean differences between 455 

posterior CO2 and aircraft observations is less than 0.5 ppm except over Southern Ocean, which 456 

has a -0.8 ppm bias. The mean differences between posterior CO2 and aircraft observations are 457 
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primarily caused by errors in transport and biases in assimilated satellite observations, while 458 

RMSEMC is ‘internal flux error’ projected into mole fraction space.   With the exception of the 459 

Southern Ocean, for all regions mean bias is significantly less than RMSEMC, which suggests that 460 

transport and data bias in satellite observations may be much smaller than the internal flux errors.  461 

 462 

As demonstrated in section 2.5, comparing RMSE and RMSEMC is a test of the accuracy of posterior 463 

flux uncertainty estimate. Over all the regions, the differences between RMSE and RMSEMC are 464 

smaller than 0.3 ppm, which indicates a comparable magnitude between empirical posterior flux 465 

uncertainty estimates from Monte Carlo method and the actual posterior flux uncertainty over the 466 

regions that these aircraft observations are sensitive to. These aircraft observations are sensitive to 467 

fluxes over a broad region as shown in Figure S5.  468 

 469 

5.2 Comparison to aircraft observations from ATom and HIPPO aircraft campaigns 470 

Figures 10 and 11 show comparisons to aircraft CO2 from ATom 1–4 campaigns spanning four 471 

seasons, and HIPPO 3–5 over the Pacific Ocean between 1–5 km. The vertical curtain comparisons 472 

are shown in Figure S6 and S7. The mean differences between posterior CO2 and aircraft CO2 are 473 

quite uniform (within 0.5 ppm) throughout the column except over the Atlantic Ocean during 474 

ATom 1–2 and the Southern Ocean during ATom 1 (Figures S6 and S7). Also shown in Figures 475 

10 and 11 are RMSE of each aircraft campaign (middle column) and the ratio between RMSE and 476 

RMSEMC (right column). A ratio larger than one between RMSE and RMSEMC indicates errors in 477 

either transport or low of posterior flux uncertainty estimates (section 2.5).  478 

 479 
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Over most of flight tracks during ATom 1–4, the posterior CO2 errors are between -0.5 and 0.5 480 

ppm, the RMSE is smaller than 0.5 ppm, and the ratio between RMSE and RMSEMC is smaller than 481 

or equal to 1. However, off the coast of Africa during ATOM -1 and -2 and over Southern Ocean 482 

during ATOM-1, the mean differences between posterior CO2 and aircraft observations are larger 483 

than 0.5 ppm. During ATOM-1 (29 July – 23 Aug 2016), the mean differences between posterior 484 

CO2 and aircraft CO2 show large negative biases, while during ATOM-2 (26 Jan 2017–21 Feb 485 

2017), it has large positive biases off the coast of Africa. The ratio between RMSE and RMSEMC 486 

is significantly larger than one over these regions, which indicates an underestimation of posterior 487 

flux uncertainty or large magnitude of transport errors during that time period.  488 

 489 

We further run adjoint sensitivity analyses over the three regions with ratios significantly larger 490 

than one to identify the posterior fluxes that could contribute to the large differences between 491 

posterior CO2 and aircraft observations during ATOM 1–2. We run the adjoint model backward 492 

for three months from the observation time and calculate Si defined in equation (7). Adjoint 493 

sensitivity analysis indicates that the large mismatch between aircraft observations and model 494 

simulations during ATOM-1 and -2 off the coast of Africa could be potentially driven by errors in 495 

posterior fluxes over tropical Africa (Figure S8). These large posterior CO2 errors and large ratio 496 

over Southern Ocean during ATOM-1 are driven by flux errors in oceanic fluxes around 30°S and 497 

over Australia (Figure S9).  498 

 499 

During the HIPPO aircraft campaigns, the absolute errors in posterior CO2 across Pacific are less 500 

than 0.5 ppm except over the Arctic Ocean and over Alaska in summer (Figure 11), consistent 501 

with Figure 10A. The large errors over the Arctic Ocean may be related to both transport errors 502 
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and the accuracy of high latitude fluxes. Byrne et al. (2020) provide a brief summary of these 503 

challenges in simulating CO2 over high latitudes with 4° x 5° resolution transport model. 504 

Increasing the resolution of the transport model may reduce transport errors over high latitudes. 505 

 506 

We run adjoint sensitivity analysis over the high-latitude regions where the differences between 507 

posterior CO2 and aircraft observations are large (Figure 11). The adjoint sensitivity analysis 508 

(Figure S10) shows that the large errors over these regions could be driven by errors in fluxes over 509 

Alaska as well as broad NH mid-latitude regions.  510 

 511 
6 Discussion 512 

Evaluation of posterior flux uncertainty estimates by comparing posterior CO2 error statistics 513 

(RMSE, Equation 2) with the standard deviation of ensemble simulated CO2 from Monte Carlo 514 

uncertainty quantification method (RMSEMC, equation 3) has its limitations. When RMSE and 515 

RMSEMC are similar in magnitude, this indicates small magnitude of transport errors and 516 

reasonable posterior uncertainty estimates. A much larger RMSE than RMSEMC could be due to 517 

errors in either transport or underestimation of posterior flux uncertainty or both. The presence of 518 

transport errors makes the interpretation of the RMSE and RMSEMC complex. A better, independent 519 

quantification of transport errors is needed in the future in order to rigorously use the comparison 520 

statistics between aircraft observations and posterior CO2 to diagnose flux errors.  521 

 522 

Comparison to aircraft observations shows regionally-dependent accuracy in posterior fluxes. 523 

ATom observations show seasonally-dependent biases over the Atlantic, implying possible 524 

seasonally dependent errors in posterior fluxes over northern to central Africa. Therefore, we 525 

recommend combining NBE with other ancillary variables, e.g., GPP, to better understand carbon 526 
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dynamics. Combining NBE with component carbon fluxes can shed light on the processes 527 

controlling the changes of NBE (e.g., Bowman et al, 2017; Liu et al., 2017). NBE can be written 528 

as: 529 

NBE= TER + fire - GPP   (8)  530 

where TER is total ecosystem respiration (TER) (Figure 1). Satellite carbon monoxide (CO) 531 

observations provide constraints on fire emissions (Arellano et al, 2006, van der Werf, 2008; Jones 532 

et al, 2009; Jiang et al., 2015, Bowman et al, 2017; Liu et al., 2017). In addition to FLUXSAT-533 

GPP product used here, solar induced chlorophyll fluorescence (SIF) can be directly used as a 534 

proxy for GPP (e.g., Parazoo et al, 2014). Once NBE, fire, and GPP carbon fluxes are quantified, 535 

TER can be calculated as a residual (e.g., Bowman et al, 2017; Liu et al., 2017, 2018).  536 

 537 

Because of the diffusive manner of atmospheric transport and the limited observation coverage, 538 

the gridded flux values are not independent from each other. The errors and relative uncertainties 539 

of the fluxes at each individual grid point are larger than regional aggregated fluxes. For the same 540 

reason, comparing NBE with flux tower observations needs caution, though we provide NBE at a 541 

few flux tower sites.  542 

 543 

The variability and changes are more robust than the mean NBE fluxes from top-down flux 544 

inversions in general (Baker et al., 2006b). The errors in transport and potential biases in 545 

observations are mostly stable in time, so biases in the mean fluxes tend to cancel out when 546 

computing interannual variability and year-to-year changes (Schuh et al., 2019; Crowell et al., 547 

2019).  548 

 549 
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The global fossil fuel emissions have ~5% uncertainty (GCP, 2019). However, they are regionally 550 

inhomogeneous. We neglect the uncertainties in fossil fuel emissions, which will introduce 551 

additional error in regions of rapid fossil fuel growth or in areas with noisier statistics (Yin et al., 552 

2019). In the future, we will account for uncertainties in fossil fuel emissions. 553 

 554 

The posterior NBE includes all types of land fluxes except fossil fuel emissions, which is 555 

equivalent to the sum of land use change fluxes and land sinks published by GCP. The sum of 556 

regional NBE and fossil fuel emissions is an index of the contribution of any specific region to the 557 

changes of atmospheric CO2 growth rate. Even over the continental US, where fossil fuel 558 

emissions are ~1.5 GtC/year, the changes of regional NBE can significantly modify contributions 559 

to the changes of atmospheric CO2 (Liu et al., 2018). Since NBE has high variability and its 560 

predicted changes in the future are likely to have large uncertainties, quantifying regional NBE is 561 

critical to monitoring regional contributions to atmospheric CO2 growth rate, and ultimately to 562 

guide mitigation to limit warming to 1.5°C above pre-industrial level (IPCC, AR6).  563 

 564 

7 Summary   565 

Terrestrial biosphere carbon fluxes are the largest contributor to the interannual variability of the 566 

atmospheric CO2 growth rate. Therefore, monitoring its change at regional scales is essential for 567 

understanding how it responds to CO2, climate and land use. Here, we present the longest terrestrial 568 

flux estimates and their uncertainties constrained by XCO2 from 2010–2018 on self-consistent 569 

global and regional scales (CMS-Flux NBE 2020). We qualitatively evaluate the net flux estimates 570 

by comparing its variability with GPP variability, and provide comprehensive evaluation of 571 

posterior fluxes and the uncertainties by comparing posterior CO2 with independent aircraft CO2. 572 
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The estimated posterior flux uncertainty agrees with the expected uncertainty in the posterior 573 

fluxes based on the comparison to aircraft CO2 observations. This dataset can be used in 574 

understanding controls on regional NBE interannual variability, evaluating biogeochemical 575 

models, and provide support the monitoring of the regional contributions to the changes in 576 

atmospheric CO2.  577 

 578 

8 Data availability and future update 579 

The CMS-Flux NBE 2020 data is available at:  https://doi.org/10.25966/4v02-c391 (Liu et al., 580 

2020). The regional aggregated fluxes are provided as csv files with file size ~10MB, and the 581 

gridded data is provided in NetCDF format with file size ~10MB. The full ensemble posterior 582 

fluxes used to estimate posterior flux uncertainties are provided in NetCDF format with file size 583 

~20MB. Table 7 lists the sources of the data used in producing and evaluating the CMS-Flux NBE 584 

2020 data product. 585 

 586 

The quality of XCO2 from satellite observations is continually improving. The OCO-2 v10 XCO2 587 

will be released in June 2020, and the full GOSAT record (June 2009–Jan 2020) processed by the 588 

same retrieval algorithm as OCO-2 will be released around the same time. Continuing to improving 589 

the quality of satellite observations and extending the NBE estimates beyond 2018 in the future 590 

will help us better understand interactions between terrestrial biosphere carbon cycle and climate 591 

and provide support in monitoring the regional contributions to the changes of atmospheric CO2. 592 

Thus, we plan a future update of the dataset on an annual basis, with a goal to support current 593 

scientific research and policy making. 594 
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greenhouse sampling program. Part of the research was carried out at Jet Propulsion 620 

Laboratory, Caltech.   621 

 622 

Appendix  623 

As shown in Kalnay (2003): 624 

𝑅𝑀𝑆𝐸1 = 𝑅!"#$#!%& + 𝐻𝑃
!𝐻> (A.1) 625 

where 𝑅!"#$#!%&  is the aircraft observation error variance, and 𝑃!  is the posterior flux error 626 

covariance. The H is linearized observation operator, which transfers posterior flux errors to 627 

aircraft observation space, and 𝐻> is its adjoint. In the Monte Carlo method, the postieror flux 628 

error covariance 𝑃! is approximated by:  629 

𝑃! =
+

,-,.
𝑋!𝑋!

> (A.2) 630 

where 𝑋! is the ensemble perturbations written as:  631 

𝑋! = 𝑥! − �̅�! (A.3) 632 

where 𝑥! is the ensemble posterior fluxes from Monte Carlo, and �̅�! is the mean.  633 

Therefore, 𝐻𝑃!𝐻> can be written as:  634 

𝐻𝑃!𝐻> =
+

,-,.
[ℎ(𝑥!) − ℎ(�̅�!)][ℎ(𝑥!) − ℎ(�̅�!)]> (A.4) 635 

The right hand side is the same as the definiation of RMSEMC in the main text.  636 

Therefore, when the posterior flux uncertainty estimated by Monte Carlo method represents the 637 

actual uncertainty in posterior fluxes, equation (A.1) can be written as: 638 

𝑅𝑀𝑆𝐸1 = 𝑅!"#$#!%& + 𝑅𝑀𝑆𝐸)*
1     (A.5).  639 

It is the same as equation (3) in the main text.  640 
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 975 

Figure: 1 Data flow diagram with the main processing steps to generate regional net 976 
biosphere change (NBE). TER: total ecosystem respiration; GPP: gross primary production. 977 
The green box is the inversion system. The blue boxes are the inputs for the inversion system. 978 
The red boxes are the data outputs from the system. The black box is the evaluation step, 979 
and the grey boxes are the future additions to the product. 980 
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 986 

Figure: 2 The spatial and temporal distributions of aircraft observations used in evaluation 987 
of posterior NBE. (A) The total number of aircraft observations between 1–5 km between 988 
2010–2018 at each 4° x 5°grid point. The rectangle boxes show the range of the nine sub 989 
regions. (B) The total number of monthly aircraft observations at each longitude as a 990 
function of time.  991 
 992 
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 994 

Figure: 3 Two types of regional masks used in calculating regional fluxes. The mask in (A) is 995 
based on a combination of condensed seven MODIS IGBP plant functional types, 996 
TRANCOM-3 regions (Gurney et al., 2004), and continents. The mask in (B) is based on 997 
latitude and continents.  998 
 999 

 1000 

 1001 

 1002 

 1003 

 1004 

 1005 

 1006 

https://doi.org/10.5194/essd-2020-123

O
p
e
n
 A

c
c
e
s
s  Earth System 

 Science 

Data

D
is

c
u
s
s
io

n
s

Preprint. Discussion started: 7 July 2020

c© Author(s) 2020. CC BY 4.0 License.



 39 

 1007 

Figure: 4 Global flux estimation and uncertainties from 2010 –2018 (black: fossil fuel; green: 1008 
posterior land fluxes; blue: ocean fluxes; magenta: estimated CO2 growth rate; red: NOAA 1009 
CO2 growth rate).  1010 
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1011 
Figure: 5 Mean annual regional NBE (A and B), uncertainty (C and D), and variability 1012 
between 2010–2018 (E and F) with two types of regional masks.  1013 
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 1014 

Figure: 6 The NBE interannual variability over the globe (black), the tropics (20°S–20°N), 1015 
SH mid-latitudes (60°S–20°S), and NH mid-latitudes (20°N–9°0N). For reference, the 1016 
residual net land carbon sink from GCP (Friedlingstein et al., 2019) and its uncertainty is 1017 
also shown (magenta).  1018 
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 1023 

Figure: 7 The NBE interannual variability over six selected regions. Blue: annual NBE 1024 
anomaly and its uncertainties. Green: annual GPP anomaly based on FLUXSAT. 1025 
 1026 
 1027 
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 1030 

Figure: 8 Blue: climatological NBE seasonality over six selected regions shown in Figure 3A; 1031 
blue shaded: NBE monthly uncertainty and variability (1-sigma) over nine years. Green and 1032 
shaded: monthly mean GPP and its variability (1-sigma) over nine years. The names of each 1033 
region are shown on individual subplots. 1034 
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 1038 

Figure: 9 Comparison between posterior CO2 mole fraction and aircraft observations. Left 1039 
panel: detrended posterior CO2 (y-axis) vs. detrended aircraft CO2 (x-axis) over nine regions. 1040 
The dashed line is 1:1 line; right panel: black: the differences between posterior CO2 and 1041 
aircraft CO2 as a function of time; blue: RMSE (unit: ppm); red: RMSEMC. The blue bar 1042 
shows the number of aircraft observations (log scale) as a function of month.  1043 
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 1045 

 1046 

Figure: 10 Left column: the mean differences between posterior CO2 and aircraft 1047 
observations from ATOM 1–4 aircraft campaigns between 1–5 km (A–D). Middle column: 1048 
the Root Mean Square Errors (RMSE) between aircraft observations and posterior CO2 1049 
between 1–5 km. The color bar is the same as the left column. Right column: the ratio 1050 
between RMSE and RMESMC based on ensemble CO2 from the Monte Carlo uncertainty 1051 
estimation method.  1052 
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 1053 

Figure: 11 Left column: the mean differences between posterior CO2 and aircraft 1054 
observations from HIPPO 3-5 aircraft campaigns between 1–5 km (A–C) (unit: ppm). (unit: 1055 
ppm). The time frame of each campaign is in the figure. Middle column: the Root Mean 1056 
Square Errors (RMSE) between aircraft observations and posterior CO2 between 1–5 km 1057 
(unit: ppm). The color bar is the same as the left column. Right column: the ratio between 1058 
RMSE and RMSEMC based on ensemble CO2 from the Monte Carlo method.  1059 
 1060 
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 1067 
Table: 1 Configurations of the CMS-Flux atmospheric inversion system 1068 

 Model setup  Configuration  Reference 

Inversion general 

setup 

 

Spatial scale 

Spatial resolution 

Time resolution 

Minimizer of cost 
function 

 

Control vector 

Global 

4° latitude x 5° longitude 

monthly 

L-BFGS 

 
Monthly net terrestrial 

biosphere fluxes and 

ocean fluxes 

-- 

 

 

Byrd et al., 1994;  
Zhu et al., 1997 

Transport model  
 

Model name 
 

 

 
Meteorological forcing 

 

GEOS-Chem and its 
adjoint 

 

 
GEOS-5 (2010–2014) and 

GEOS-FP (2015–2019) 

Suntharalingam et al., 
2004 

Nassar et al., 2010 

Henze et al., 2007 
Rienecker et al., 2008 
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 1071 
Table: 2 Description of the prior fluxes and assumed uncertainties in the inversion system  1072 

Prior fluxes Terrestrial 

biosphere fluxes 
Ocean fluxes 

 

Fossil fuel emissions 

 

Model name CARDAMOM-v1 ECCO-Darwin ODIAC 2018 

Spatial resolution 4° x 5° 0.5° 1° x 1°  

Frequency  3-hourly 3-hourly hourly 

Uncertainty Estimated from 

CARDAMOM 

100% same as Liu et al. 

(2017) 

No uncertainty  

References Bloom et al., 2006; 

2020 

Brix et al, 2015; Carroll et al., 

2020 

 

Oda et al., 2016; 2018 
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 1075 

 1076 
Table: 3 Description of observation and evaluation dataset. Data sources are listed in Table 7. 1077 

 Dataset name and version References 
Satellite XCO2  ACOS-GOSAT v7.3 O’Dell et al., (2012) 

OCO-2 v9 O’Dell et al., (2018) 
Aircraft CO2 observations ObsPack OCO-2 MIP CarbonTracker team (2019) 

HIPPO 3-5 Wofsy et al. (2011) 

ATOM 1-4 Wofsy et al.(2018) 
INPE Gatti et al., (2014) 

ORCAS Stephens et al., 2017 
GPP FLUXSAT-GPP Joiner et al., (2018) 
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 1079 
 1080 
Table: 4 Latitude and longitude ranges for seven sub regions.  1081 

Region Alaska Mid-lat NA  Europe            East Asia South Asia 

Longitude 

range 

180°W–125° W 125°W–65°W 5°W–45°E 110°E–160°E 65°E–110°E 

Latitude 

range 

58°N–89°N 22°N-58°N 30°N–66°N 22°N–50°N 10°S–32°N 

Region Africa South 
America 

Australia Southern 
Ocean 

Longitude 

range 

5°W–55°E 95°W–50°W 120°E–160°E 110°W–40°E 

Latitude 

range 

2°N–18°N 20°S–2°N 45°S–10°S 80°S–30°S 
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 1084 

Table: 5 List of the data products. 1085 

Product Spatial resolution Temporal 

resolution when 

applicable 

Data format Sample data 

description in the 

text 

Total fossil fuel, 

ocean, and land fluxes 

Global Annual csv  Figure 4 (section 

4.1) 

Climatology mean 

NBE, variability, and 

uncertainties 

PFT and continents 

based 28 regions 

 

N/A csv Figure 5  (section 

4.2) 

Geographic-based 

13 regions 

csv 

Hemispheric NBE 

and uncertainties 
 NH (20°N-90°N), 

tropics (20°S-

20°N), and SH 

(60°S-20°S) 

Annual  csv Figure 6 (section 

4.3) 

NBE variability and 

uncertainties 

PFT and continents 

based 28 regions 

Annual csv Figure 7 (section 

4.3) 

Geographic -based 

13 regions 

csv 

NBE seasonality and 

its uncertainties 

PFT and continents 

based 28 regions 

Monthly  csv Figure 8 (section 

4.4) 

Geographic -based 

13 regions 

csv 

Monthly NBE and 

uncertainties 

PFT and continents 
based 28 regions 

Monthly csv N/A 

Geographic -based 

13 regions 

csv 

Gridded NBE and 

uncertainties 
4° (latitude) x 5° 

(longitude) 

Monthly  NetCDF   N/A 

Region masks PFT and continents 

based 28 regions 

N/A csv Figure 3 (section 

2.4) 

Geographic -based 

13 regions 

csv 

Fluxes at a few 

selected flux tower 

sites 

 Monthly csv N/A 
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 1088 

 1089 

Table: 6 The nine-year mean regional annual fluxes, uncertainties, and variability. Regions 1090 
are based on the mask shown in Figure 5A (Figure 5.csv). Unit: GtC/year 1091 

Region name (Figure4.csv) Mean NBE Uncertainty Variability 

NA shrubland -0.14 0.02 0.05 

NA needleleaf forest -0.22 0.04 0.06 

NA deciduous forest -0.2 0.04 0.07 

NA  crop natural vegetation -0.41 0.06 0.18 

NA grassland -0.04 0.03 0.03 

NA savannah 0.03 0.02 0.03 

Tropical South America (SA) evergreen broadleaf 0.04 0.1 0.28 

SA savannah -0.09 0.06 0.18 

SA cropland -0.07 0.03 0.07 

SA shrubland -0.03 0.02 0.08 

Eurasia shrubland savanna -0.44 0.07 0.14 

Eurasia needleleaf forest -0.41 0.07 0.12 

Europe cropland -0.46 0.09 0.16 

Eurasia grassland 0.02 0.08 0.13 

Asia cropland -0.37 0.13 0.08 

India 0.14 0.09 0.14 

Tropical Asia savanna -0.12 0.11 0.08 

Tropical Asia evergreen broadleaf -0.09 0.09 0.12 

Australia (Aus) savannah grassland -0.11 0.02 0.09 

Aus  shrubland -0.07 0.01 0.05 

Aus cropland -0.01 0.01 0.03 

African (Afr) northern shrubland 0.04 0.02 0.03 

Afr grassland 0.03 0.01 0.01 

Afr northern savanna 0.54 0.15 0.49 

Afr southern savanna -0.27 0.18 0.33 

Afr evergreen broadleaf 0.1 0.07 0.09 

Afr southern shrubland 0.01 0.01 0.01 

Afr desert 0.06 0.01 0.04 
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 1094 

Table: 7 Lists of data sources used in producing and evaluating posterior NBE product.  1095 

Data name Data Source 
ECCO-Darwin 
ocean fluxes 

 https://data.nas.nasa.gov/ecco 
 

CARDAMOM  
NBE and uncertainties 

https://doi.org/10.25966/4v02-c391 

ODIAC http://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2019.html 
GOSAT b7.3  https://oco2.gesdisc.eosdis.nasa.gov/data/GOSAT_TANSO_Level2/

ACOS_L2S.7.3/ 
OCO-2 b9 https://disc.gsfc.nasa.gov/datasets?page=1&keywords=OCO-2 
ObsPack https://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php 
ATom 1-4 

https://daac.ornl.gov/ATOM/guides/ATom_merge.html 
HIPPO 3-5 https://www.eol.ucar.edu/field_projects/hippo 
INPE https://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php?id=obspack_

co2_1_INPE_RESTRICTED_v2.0_2018-11-13 
and  

FLUXSAT-GPP https://gs614-avdc1-pz.gsfc.nasa.gov/pub/tmp/FluxSat_GPP/ 
Posterior NBE https://doi.org/10.25966/4v02-c391 
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