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Abstract 

An electrochemical DNA biosensor based on a carbon nanodots (CDs) modified screen-

printed gold electrode as a transducer is reported in this work. CDs were synthesized by 

thermal carbonization of ethyleneglycol bis-(2-aminoethylether)-N,N,N’,N’-tetraacetic acid 

(EGTA) and characterized by different techniques (DLS, TEM, FTIR, Raman). The electrode 

surface modification was accomplished by drop-casting a suspension of CDs. SEM analysis 

and cyclic voltammetry were used to characterize the resulting modified electrode. Synthetic 

25-mer or 100-mer DNA capture probes, capable to hybridize with a specific sequence of the

pathogen Helicobacter pylori or the cystic fibrosis transmembrane regulator (CFTR) gene

were attached to the CDs-gold surface. A 25-bases synthetic fully complementary sequence

or a single nucleotide polymorphism to the DNA capture probe and a 373-bases PCR

amplicon of exon 11 of CFTR containing a sequence complementary to the capture probe,

were employed as target. The hybridization event was electrochemically monitored by using

safranine as redox indicator, which selectively binds to double stranded DNA (dsDNA). A
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detection limit of 0.16 nM was obtained for the 25-mer synthetic target DNA. The biosensor 

shows a very high reproducibility and selectivity, allowing to detect a single nucleotide 

polymorphism. It has been applied to the detection of F508del mutation in the CFTR gene.  

Introduction 

Nanomaterial-modified detection systems represent a chief driver towards the adaption of 

electrochemical methods for sensing applications, since nanomaterials enable functional 

tunability, ability to self-assemble, enhancement of surface area and novel electrical, optical 

and catalytic properties that emerge at this scale [1-3]. This results in tremendous gains in 

terms of sensitivity, selectivity and versatility [4]. 

Carbon dots (CDs) are defined as nanoparticles mainly composed of carbon, with a size 

below 10 nm [5-11]. These materials have attracted intense interest because their 

photophysical properties resembling in some respects those commonly found in 

semiconductor quantum dots (QDs), for example high photostability [5,12,13]. Besides, the 

CDs can be produced easily from a wide range of raw materials and excel by their robust 

chemical inertness and high solubility in aqueous media. Compared with traditional QDs, 

CDs have unique properties such as high biocompatibility, due to the absence of toxic metal 

ions, and do not require scarce elements or stringent, intricate, tedious, costly, or inefficient 

preparation steps [10,14]. This makes them promising potential substitutes for QDs in 

biolabeling, bioimaging, drug delivery, analytical sensing and photocatalysis.  

A variety of preparative methods, such as acidic oxidation [15], microwave [16], ultrasonic 

[17], electrochemical oxidation [18], hydrothermal [19], supported synthesis [20], arc 

discharge [21], and laser ablation [22] methods, have been developed to synthesize CDs. 

Typically, CDs contain many carboxylic acid moieties at their surface, thus imparting them 

with excellent water solubility and the suitability for subsequent functionalization with 

various organic, polymeric, inorganic, or biological species. Based on distinct optical 

features, CDs have been employed as fluorescent probes for biological and environmental 

sensing [6]. However, these nanomaterials, unlike other carbon based nanomaterials, have 

not been widely explored as electrode modifiers for electrochemical biosensors development

[23]; although it is well known that nanostructuring of the working electrode through the 
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application of nano-sized modifiers offers attractive new features, such as : (1) 

Nanostructured electrodes, especially those using carbon nanotube and graphene-based 

materials, exhibit faster electron transfer kinetics due to their extremely high conductivity 

along particular directions [24]. (2) The high surface area of nanostructured electrode 

modifiers can enhance the adsorption kinetics of analyte species. (3) Nanostructured 

materials can act as highly selective and tunable catalysts, due to their unique electronic or 

plasmonic structure. This is especially useful within detection systems using electrocatalysis 

[25]. (4) The surface chemistry of nanostructured systems can be tuned towards directing the 

assembly for particular capture probe or analyte species [26]. Such selective immobilization 

methods are enabled through nanomaterial modifiers and offer microarray-based pathways 

towards parallelized detection. The few works found in the literature reporting application of 

CDs in electrochemical sensors and biosensors are mainly focused on the electrocatalytic 

properties of this nanomaterial towards O2 and H2O2 reduction, which was employed for 

glucose [27,28] or H2O2 [29] biosensing, or towards an analyte of interest such as dopamine 

[30] or 2,4,6-trinitrotoluene [31]. No results are reported concerning DNA biosensors. 

However, the detection of specific DNA sequences or DNA mutations using electrochemical 

biosensors may greatly reduce the assay time and simplify the analytical protocols compared 

to the traditional DNA sequencing methods. These fast monitoring approaches are needed 

for quick preventive actions and early diagnosis [32-37].  

In the present work we have synthetized carbon dots by a thermal carbonization method [38] 

and we have used them to nanostructure screen-printed gold electrodes for the 

immobilization of unmodified oligonucleotides with the aim of developing a DNA biosensor.  

Other carbon materials, such as carbon nanotubes, have been previously employed in 

electrochemical DNA biosensors. However, these devices require chemically modified 

oligonucleotides, such as oligonucleotides with the 5´-aminogroup, which were covalently 

bonded to the carboxyl group of carbon nanotubes [39-42]. For the accurate and selective 

detection of hybridization we have used safranine, which is a very selective electrochemical 

molecular probe, with different binding affinity to single stranded DNA (ssDNA) and double 

stranded DNA (dsDNA) [43]. 

We have focused on (1) understanding how specific nano-sized modifiers may be applied to 

influence the DNA probe immobilization, since in this case thiolated probes are not required, 
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as well as on (2) the electron transfer event, because this is key to achieving gains in 

sensitivity, selectivity and versatility of the resulting detection system. 

 

Materials and methods 

 

Chemicals 

Sodium phosphate and sodium chloride were obtained from Scharlab Co. Safranine O (SAF) 

and all other chemicals used in this work were reagent grade quality, and were obtained from 

Sigma-Aldrich Co., Water was purified with a Millipore Milli-Q-System (18.2 MΩ cm) and 

all solutions were prepared just prior to use. Double stranded calf thymus DNA (dsDNA) 

was also purchased from Sigma-Aldrich Co. dsDNA stock solutions (1.0 mg/ml) were 

prepared in 0.1 M phosphate buffer (PB) pH 7.0 solution. The DNA solutions UV absorbance 

ratio (A260/A280) was about 1.9, suggesting that the DNA was free of protein [44]. Using a 

molar absorptivity of 6600 M-1 at 260 nm [45] the concentration in base pairs (bp) of DNA 

was determined. Single stranded calf thymus DNA (ssDNA) was obtained by boiling in water 

capped vials containing dsDNA in 0.1 M PB pH 7.0 solution for 30 minutes. To prevent 

spontaneous renaturation, this reaction was subsequently quenched in an ice-bath. The 

resulting denatured DNA samples were stored frozen at -20ºC. Custom made synthetic 

oligonucleotides, 25-mer and 100-mer, from the pathogen bacterium Helicobacter pylori and 

the Cystic Fibrosis Transmembrane Regulator Gen, respectively, were supplied by Sigma-

Aldrich Co. Genomic DNA was isolated from peripheral blood leukocytes from cystic 

fibrosis patients by standardized procedures (commercial Kit Purogene from Qiagen GmbH, 

Hilden, Germany) as we previously described [46]. The PCR samples consisted of wild type 

(WT) and mutated (F508del) sequences, validated by sequentiation methods carried out in 

the Medical and Molecular Genetics institute (INGEMM) of Madrid (Spain). Synthetic 

oligonucleotides and DNA samples sequences amplified by polymerase chain reaction (PCR) 

are respectively listed in Table 1 of SI. 

 

Synthesis of CDs 

CDs were prepared by thermal carbonization using ethyleneglycol bis-(2-aminoethyl ether)-

N,N,N’,N’-tetraacetic acid (EGTA) as the carbon source and 
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tris(hydroxymethyl)aminomethane (TRIS) as the surface passivation agent following the 

method previously described by Gaber Ahmed et al. [38]. Briefly, EGTA (2 mmol) and TRIS 

(8 mmol) were dissolved in deionized water (30 mL) and heated at 150 ºC on a hot plate until 

near dryness. A pale-yellow gel was formed. Then 1 mL of water was added and the previous 

procedure was repeated 5 times in about 30 min. The temperature was then increased to 180 

°C until the pale-yellow gel turned to reddish-orange. Finally, the gel was dissolved in about 

25 mL deionized water, filtered through 0.45 μm nylon filter and the solution purified by 

dialysis through dialyzer tube (MWCO, 3.5 KDa) for 3 days. The final solution was stored 

under 4 °C until use. 

 

Experimental techniques 

 

The Fourier transform infrared spectroscopy (FTIR) spectrum was recorded on a Bruker 

IFS60v Fourier-transform infrared spectrometer. Transmission electron microscopy (TEM) 

measurements were performed on a FEG S/TEM (Talos F200X, FEI) electron microscope. 

UV-vis absorption spectra were recorded on a double beam PharmaSpec UV-1700 series 

Shimadzu spectrophotometer operating from 200 nm to 800 nm. Fluorescence emission 

spectroscopy was carried out on a Cary Eclipse Varian spectrofluorimeter. UV-visible 

absorption and fluorescence emission spectra were performed in 0.1 M PB pH 7.0 solution 

in 1.0 cm quartz cells. Absorbance titrations were carried out at 60 µM of dsDNA in the 

absence and in the presence of increasing amounts of CDs from 0.5 to 5.5 µM in 0.1 M PB 

pH 7.0 solution. Fluorescence titrations were carried out at a 1.3 µM of the CDs while the 

concentration of dsDNA was varied from 0 to 750 µM.  

Dynamic light scattering (DLS) measurements were performed at 25ºC using a VASCO 

Particle Size Analyzer from Cordouan Technologies. 

Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements were 

carried out at room temperature with an Autolab PGSTAT 30 potentiostat from Eco-Chemie 

(KM Utrecht, The Netherlands) using the software package GPES 4.9 (General Purpose Elec. 

Experiments). Integrated screen-printed gold electrodes (4 mm diameter, AuSPEs) from 

DropSens S.L (Oviedo, Spain) that include a gold working, a silver pseudoreference and a 

gold counter electrode were used as electrochemical cells. The electrodes were connected 
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using a SPE Connector (DropSens S. L.) as interface. The parameters used in DPV 

measurements were: scan rate 10 mV/s; pulse amplitude 50 mV; pulse width 0.2 s. All the 

differential pulse voltammograms presented were baseline-corrected using the application 

included in GPES version 4.9 software. No changes in current or potential values were 

observed relative to data obtained without such application.  

Raman spectroscopy measurements were carried out using a micro-Raman spectrometer 

equipped with a 632.8 nm line of He-Ne laser (WITec GmbH, Ulm, Germany). The laser 

power on the sample was 1 mW, the integration time, 0.5 s and a 50x objective lens was used. 

Raman samples were prepared by depositing 8 μL of a 277 µM CDs solution on a glass 

substrate and air drying. 

Scanning electron microscopy (SEM) images were registered using a Philips XL30-FEG 

microscope. SEM samples were prepared by deposition of 10 μL of a 3.5 nM CDs solution 

onto gold AFM plates. These plates are glass substrates (1.1 cm x 1.1 cm) covered with a 

chromium layer (1–4 nm thick) onto which a gold layer (200–300 nm thick) was deposited 

(Arrandee Co. Werther, Germany). Prior to use, gold surfaces were annealed for 2 min in a 

gas flame in order to obtain Au (111) terraces. Samples were then air dried. 

Zeta potential was determined at 25 ºC using a Zetasizer Nano ZS instrument (Malvern 

Instrument Ltd., Grovewood, Worcestershire, UK). Elemental Analysis measurements were 

carried out using a LECO CHNS-932 system. For Elemental Analysis, DLS and FTIR 

measurements a 277 µM CDs stock solution was directly used. 

 

Preparation of the CDs modified screen-printed gold electrodes (AuSPEs) 

AuSPEs were electrochemically activated by immersing them in a 0.1 M H2SO4 solution. 

Then, the potential was cycled (10 times) from -0.200 V to 1.20 V at 100 mVs-1 and the 

electrodes were washed with deionized water. Afterwards, the electrode was modified with 

5 μL of the 3.5 µM CDs suspension and air dried for 24 hours. These modified electrodes are 

denoted in the text as CDs/AuSPEs. 

 

Immobilization of DNA on CDs/AuSPEs.  

For dsDNA or ssDNA immobilization, 10 µl of 2.0 mM ds or ssDNA in 0.1 M phosphate 

buffer (PB) pH 7.0 solution were drop-casted onto a CDs/AuSPE followed by air-drying 
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(dsDNA/AuSPE or ssDNA/CDs/AuSPE). Afterwards, the resulting modified electrode was 

soaked in sterilized water for 30 min and rinsed with water to remove any un-adsorbed DNA.  

In the case of DNA oligonucleotides 10 µL of 40 µM synthetic (HP1, WT) sequences were 

transferred onto the CDs/AuSPE. Afterwards, the electrode was kept at room temperature for 

24 hours. Then, it was soaked in sterile water for at least 30 min. 

 

Denaturation of PCR DNA samples 

PCR samples were denatured immediately before use by heating at 100 ºC during 20 minutes 

followed by rapid cooling in an ice bath [47]. 

 

Hybridization and detection 

CDs/AuSPEs modified with the capture probe (HP1/CDs/AuSPE or WT/CDs/AuSPE) were 

subsequently hybridized (1h 40 ºC) with 10 µL of the analyte: synthetic oligonucleotides (20 

µM complementary, non-complementary or SNP sequence) or denatured PCR (5.0 ng µL-

1wild type or mutated samples). After the hybridization step, DNA modified electrodes were 

immersed in 0.1 M phosphate buffer (PB) pH 7.0 solution containing 1.0 mM of safranine 

(SAF) and the potential was cycled (100 times) at 100 mV/s. Then, the electrodes were rinsed 

with sterile water, placed in 0.1M PB pH 7.0 solution, and differential pulse voltammograms 

(DPVs) were immediately recorded. 
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Results and Discussion 

 

Preparation and Characterization of carbon dots (CDs) 

CDs were prepared by thermal decomposition of EGTA/TRIS as described in the 

experimental section. The corresponding size distribution histogram, obtained by measuring 

the average size of around 100 CDs by dynamic light scattering (DLS), indicates that these 

nanoparticles are monodisperse and have an average size of 3.4 nm ranging from 2 to 5 nm 

in diameter (Figure 1A of SI). Zeta potential is another important parameter related to 

nanoparticle stability or aggregation in a dispersion and can have significant implications on 

product performance since it is a measure of the magnitude of the electrostatic or charge 

repulsion/attraction between particles. The zeta potential was found to be -26 ± 0.3 mV. This 

value according to the literature indicates that the CDs have a great stability. In fact, the 

potential zeta decreases until -8.1 ± 0.2 mV after 12 months of storage, which confirms their 

lack of tendency to aggregate. 

The FTIR spectrum was used to investigate the surface functional groups of CDs. The 

hydroxide groups or water molecules give stretching bands at 3000 and 3454 cm-1 indicating 

the good water-solubility of CDs. The FTIR spectrum also shows the stretching vibrations of 

C=O at 1650 cm-1 and the –N-H stretching peak at 1543 cm-1. Bands at 2800-2930 cm-1 and 

1050-1120 cm-1 are assigned to the stretching vibrations of C-H and C-OH/C-O-C. These 

results indicate that CDs are surrounded by –CONH2 and –OH groups (Figure 1B of SI). The 

optical properties of CDs were also studied by UV-vis absorption and fluorescence 

spectroscopy in order to characterize this nanomaterial. The UV-vis absorption spectrum 

shows a broad peak around 360 nm (Figure 1C of SI). The fluorescence spectrum shown in 

Figure 1D of SI reveals a narrow and symmetric emission band at 440 nm when excited at 

260 nm 

 

The TEM images (see Figures 2A of SI and 2B of SI) reveal that the as-synthesized CDs are 

mostly spherical. Fast Fourier Transform (FFT) analysis was used to measure the spacing of 

the planes (Figure 2C of SI). It was found to be 2.1 Å, which is characteristic of the CDs 

(100) plane. The diameters of the CDs are distributed in a narrow range, with an average 

value of 3.5 ± 0.2 nm. Elemental analysis confirms the composition of CDs. The results 
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obtained were: 55.10% C, 0.29% N and 10.17% H. From these data and taking into account 

the size of the CDs obtained by DLS, a concentration of 277 µM CDs was estimated. The 

synthesized CDs were also characterized by Raman spectroscopy. The Raman spectrum (see 

Figure 3SI) shows two peaks centered at 1330 and 1602 cm-1, corresponding to the D band 

and G band, respectively, which are characteristic of graphitic carbon materials. The G band 

is attributed to the in-plane stretching vibrations of sp2 carbon atoms and the D band is 

attributed to another in plane vibration of sp2 carbon atoms in the presence of structural 

defects [48]. The intensity ratio ID/IG is an indicator of the crystallinity or disorder in graphitic 

systems. For the synthesized CDs the ID/IG ratio is ~1.22, indicating a disordered structure, 

probably due to the presence of functional groups from the precursors. 

The results obtained with the different characterization techniques confirm the success of the 

CDs synthesis. 

 

Electrochemical behavior of CDs gold screen-printed electrodes (AuSPEs). 

For the development of the biosensing platform, the first step consisted in nanostructuring a 

AuSPE electrode with CDs (CDs/AuSPE). 5 μL of 1.5, 3.5, 7.0 µM CDs suspension were 

drop casted on the electrode surface, following the procedure described in the experimental 

section and depicted in Scheme 1. Best results concerning stability were obtained when 3.5 

µM CDs suspensions were employed. 

The resulting nanostructured electrode surface was analyzed by SEM. Figure 1 shows the 

SEM image of the CDs deposited on a gold surface at different magnification. It can be 

observed that the Au surface is partially covered by CDs, which can be clearly distinguished 

as spots randomly distributed on the gold surface. Moreover, the CDs show near spherical 

morphologies and homogeneous size. As a control, the SEM image of the unmodified gold 

substrate was recorded and it is shown in Figure 4 of SI. 

 

 

Scheme 1. 

 

Figure 1.  
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Nanostructuring of the AuSPE electrode with CDs must affect its voltammetric response. As 

can be seen in Figure 2, the characteristic cyclic voltammetric response of gold in 0.1 M 

sulfuric acid changes after electrode modification with CDs. The oxidation wave increases 

in current and shifts to more positive potential, from 0.81 V to 0.87 V. However, the sharp 

reduction peak decreases in current and shifts to less negative potential. This effect is 

consistent with a change in the different planes of the gold surface, after modification, being 

this change stronger in some planes than in others, indicating that a carbon/gold screen-

printed electrode has been prepared. 

 

Figure 2.  

 

To further characterize these CDs modified electrodes, their cyclic voltammetry response in 

0.1 M PB pH 7.0 solution was recorded (black curve of Figure 5 of SI). No redox response 

is observed in a wide potential window. Moreover, we have studied the electrochemical 

behavior of two different redox probes at the CDs modified electrode in 0.1 M PB pH 7.0 

solution. In particular, safranine (SAF) and K3[Fe(CN)6] were chosen for this purpose. For a 

positive redox probe, such as SAF, the cyclic voltammetry at CDs/AuSPE nanostructured 

electrode (Figure 5A of SI, red curve) shows a reversible redox couple ascribed to the 

oxidation/reduction of the dye in aqueous media, at a formal potential (E°) value of −0.694V. 

The peak potential separation of 76 mV is close to that expected for a freely diffusing one 

electron reversible redox process and is due to one of the two electronic transitions of SAF 

[49]. Compared with the response observed at bare AuSPE electrode (Figure 5A of SI, blue 

curve), the anodic current intensity is clearly enhanced. In addition, there is a decrease in the 

∆Ep (from 97 mV to 76 mV). These effects can be explained by considering not only that 

CDs cause an increment of the relative surface area, but also that they can be involved in the 

oxidation and reduction process. In the case of the negative charge probe (Fe(CN)6
3-) the 

shape of the cyclic voltammetric response at CDs modified electrodes (red curve of Figure 

5B of SI ) was similar to that observed at a bare gold electrode (blue curve of Figure 5B of 

SI) with a slight decrease in the ∆Ep. This fact suggests the absence of any kind of electrostatic 

repulsion between the probe and the CDs modified electrode. 
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Interaction of CDs with DNA. 

CDs may exhibit interaction with DNA [3], which can be used for different applications. 

Hence, we focused our attention on studying this interaction by UV-vis absorption and 

fluorescence spectroscopy. The absorption spectrum of a solution containing 60 µM of 

double stranded calf thymus DNA (dsDNA) in 0.1 M PB pH 7.0 solution shows the 

characteristic band at 260 nm. Upon addition of increasing amounts of CDs (up to 5.5 µM), 

a significant increase in the absorption band is observed (See Figure 6A of SI). This effect 

may be ascribed to the interaction of electron pairs of oxygen atoms present in CDs with 

DNA bases forming hydrogen bonds. Although all the spectra are relatively similar in shape 

there is a shift to lower wavelengths due to the concentration changes, suggesting that there 

is an interaction between the DNA and CDs. 

Interaction between DNA and CDs was also studied considering the fluorescence of CDs. In 

absence of DNA, exciting at 360 nm, the characteristic symmetric band at 440nm is observed 

(see black curve of Figure 6B of SI). Moreover, the CDs have a large Stokes shift, which is 

beneficial for the distinction of the target from the background signal in imaging [50]. The 

addition of DNA gives rise to a gradual reduction in the emission intensity with no evident 

shift in the emission maximum. The quenching of fluorescence emission observed for CDs 

upon binding to DNA is due to a charge transfer between CDs and DNA. 

The interaction strength of CDs and DNA can also be quantified by using the Stern-Volmer 

equation, F0/F=1+KSV[DNA]. From a plot of Fo/F versus [DNA] the quenching constant 

(KSV) was calculated to be 1.4±0.2 x 104 M-1. This value is comparable to those reported for 

a number of ligands that interact stronger with DNA, such as (9-anthryl)methylammonium 

chloride (AMAC), N-ethyl-(9-anthryl)methylammonium chloride (N-Et-AMAC), and 3-(9-

anthryl)propylammonium chloride (APAC) with KSV values of 1.0 x 104, 1.2 x 104, and 1.4 

x 104 M-1, respectively [51]. 

 

Analytical Applications of CDs modified electrodes in DNA Biosensors 

Considering the results discussed above, we evaluated the possibility of using the CDs 

modified gold electrode as a novel electrochemical transducer for applications in the 

development of DNA sensing devices. For this purpose, we employed a sequence of 
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Helicobacter pylori as a prototype system. Helicobacter pylori is a bacterium that can cause 

digestive illness and even stomach cancer. It has been chosen as a case of study within the 

framework of developing approaches of broad applicability.  

A 25-mer sequence of this bacterium (HP1) was directly immobilized onto the CDs/AuSPE 

modified electrode as described in the experimental section. Based on the interaction between 

the DNA and the CDs, and according to the literature, oligonucleotides such as HP1 can be 

adsorbed by carbon based nanomaterials via π-π stacking interactions of the DNA bases and 

hydrogen bonding, while it must overcome electrostatic repulsion at the same time [52].  

One of the strategies employed in the development of electrochemical DNA biosensors is the 

use of a redox probe for the hybridization detection. Different redox active molecules have 

been employed for this purpose. Among them, safranine (SAF) has been demonstrated to be 

a good hybridization detector since it interacts to different extent with dsDNA and ssDNA 

[43], giving very different voltammetric responses at dsDNA and ssDNA/CDs modified 

electrodes. Hence, in this work we have employed SAF as a redox indicator of the 

hybridization event in the CDs based DNA electrochemical biosensor developed. The dye is 

accumulated on the DNA layer present at the electrode surface by holding the potential at 

-0.75 V, potential cycling from -0.90 to -0.50 V and at open circuit. Best results were obtained 

by consecutive potential cycling (100 cycles). The cyclic voltammograms (CVs) of SAF 

accumulated on the CDs/AuSPE before and after modification with ssDNA and dsDNA were 

recorded (Figure 7 of SI). SAF does not accumulate in the CDs modified electrode 

(CDs/AuSPE) as is evident from the low signal obtained (black curve). However, at DNA 

modified electrodes (ds or ssDNA/CDs/AuSPE) a high peak current due to the 

oxidation/reduction of SAF accumulated on the DNA layer is observed, being this current 

higher for dsDNA than for ssDNA (see Figure 7 of SI), as it would correspond to an 

intercalative mode of interaction. To better discriminate between signal and current 

background and to reach a higher sensitivity, differential pulse voltammetry was employed 

in these studies. 

For the biosensor development, the changes in Differential Pulse Voltammogram (DPV) 

peak currents of the dye accumulated at DNA probe modified CDs/AuSPE before and after 

hybridization with the DNA target were employed to detect the hybridization event. In the 

first hybridization test, a complementary (HP2C) and a non-complementary sequence 
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(HP2NC), as control, of the DNA probe were selected as the target DNA. The hybridization 

and labeling steps are described in the Experimental Section. DPVs, before and after 

hybridization, are shown in Figure 3. As can be seen, hybridization of HP1 with the 

complementary HP2C chain in the biosensor recognition layer resulted in a dramatic 

enhancement in the DPV response, whereas virtually no change in current was obtained for 

the non-complementary sequence (compare curves black and black dashed in Figure 3). The 

changes observed in peak currents suggest that both the hybridization process and the target 

sequence of the Helicobacter pylori DNA fragment can be recognized using this system. As 

a control, to assess the main role of CDs, the same set of experiments was carried out using 

gold and carbon screen-printed electrodes (CSPEs) without CDs. In both cases, there was no 

increase in the DPV response after hybridization with the complementary sequence and 

accumulation of SAF (see Figure 8 of SI). 

As can be seen in Figure 4, the current response at -0.700 V increases upon increasing the 

amount of the target sequence used, with excellent correlation (R2 = 0.998) over the range of 

0.001 to 20 µM. The detection limit, calculated as the concentration corresponding to the 

HP1 signal plus 3 times the standard deviation, was determined to be 0.16 nM. Compared to 

the value obtained (22.5 nM of HP2C) in the same conditions using thiolated 25-mer 

Helicobacter pylori sequences as probes immobilized on bare AuSPEs without CDs, this 

detection limit is more than 100 times lower [43]. In addition, the reproducibility was 

evaluated using 5 different biosensors. A RSD of 5 % was obtained. The stability of the 

biosensor was also evaluated. For this purpose, different modified electrodes, prepared in the 

same manner (HP1/CDs/AuSPE), were used to detect the DNA target sequence of HP2C 

over a period of three months without losing the ability of detection.  

To evaluate the selectivity of the biosensor a target sequence containing a single mismatch 

in the middle of the sequence (denoted as HP2SM) was employed under the same 

hybridization conditions for the perfectly matched sequence. One would expect that the 

hybridization of HP1with the single-mismatched target will give a distorted double-helix, 

which may interact with SAF in a different way. Based on this assumption, one would 

anticipate a different biosensor response when compared to hybridization with a fully 

complementary target sequence (HP2C). Figure 3 shows the DPV responses. As can be seen, 

there is a significant decrease in the peak current values obtained with the single-mismatched 
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sequence (grey dotted curve of Figure 3) compared to the response obtained after 

hybridization with the fully complementary sequence, HP2C (black curve of Figure 3). This 

diminution in the peak current could be interpreted as a decrease in the binding constant of 

SAF with the distorted helix. 

 

Figure 3.  

Figure 4 

Screening of specific gene mutations associated with cystic fibrosis  

In order to assess the broad applicability of the DNA biosensor developed, and since it is 

capable of detecting a single mismatch, it was also applied to the detection of gene mutations 

based on mismatches associated to human diseases in real DNA genomic samples. 

Sequencing of genes is the gold standard for identifying these mutations. However, these 

methods have serious drawbacks as routine diagnosis tools, because of their labor intensity 

and cost. DNA biosensors present advantages, in particular simplicity and low cost [34-37]. 

Therefore, we applied the developed DNA biosensor to the detection of mutations associated 

to cystic fibrosis (CF) in real DNA PCR amplicons extracted from blood cells. The more 

common mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR) 

associated to CF is the mutant allele F508del [53,54], which is a three-nucleotide deletion 

that causes the loss of a phenylalanine residue of the CFTR protein. This mutation was chosen 

as case of study in this work. Patients suffering CF present this mutation among others.  

The biosensor was developed following the strategy depicted in Scheme 2. The mutation 

detection relies on the comparison of the voltammetric transduction of the hybridization 

reaction between the immobilized probe (a synthetic oligonucleotide of 100 bp 

complementary to the Wild type sequence) and the target DNA, which is a wild type (WT) 

or mutated (MUT) sequence. PCR samples comprising around 373 bp PCR amplicons of 

exon 11 of CFTR gene without the deletion (WT) from healthy people, or carrying the 

F508del mutation (MUT) from patients suffering the disease (see Table 1 of SI) were 

denaturized before hybridization with the probe. The biosensor response was obtained from 

the corresponding DPVs of SAF accumulated on the dsDNA layer formed on the electrode 

surface after hybridization. As a control, in addition to the wild type amplicon (WT), a non-

complementary sequence (NC) was also used.  
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Figure 5A shows the bar diagram of the biosensor response for the F508del mutation, wild 

type (WT) and the non-complementary sequence (NC sequence). As can be seen, when the 

hybridization takes place with the mutated sequence the signal obtained is 1.5 higher than 

that obtained with the probe before the hybridization. However, when the hybridization takes 

place with the complementary sequence the signal is 2 times higher. Moreover, when the 

non-complementary sequences are used, the biosensor response is similar to that obtained 

with the probe, confirming that unspecific hybridization does not take place. 

To avoid electrode-to-electrode variations and to have a better signal processing, we have 

plotted the percentage of normalized probe signal increment vs the DNA sequence used as 

target (see Figure 5B). The percentage of normalized probe signal increment was calculated 

by the ratio of the difference between the signal obtained before and after hybridization and 

the signal of the probe. As can be seen, the percentage is 100% after hybridization with the 

wild type sequence (healthy people), whereas this value decreases to 37.5% if the target is a 

sample carrying the mutation (CF patients). When no hybridization takes place, the signal 

increment is less than 10%. Considering that the error associated to each measure is less than 

5%, it can be concluded that the proposed screening method discriminates between wild type 

and mutated samples, that is, from people with or without CF. The reproducibility was 

evaluated from the response of five different biosensors (prepared in the same manner) to 

either wild type or mutated target DNA. 95% of reproducibility was obtained in all cases.  

The developed methodology can be used as rapid and precise screening method for the 

detection of gene mutations, without the need of previously modifying the DNA with an alkyl 

thiol group as an alternative to the classical gene assay. These mutations can be used to trace 

generational inheritance patterns associated with specific diseases [55]. In addition, the 

developed biosensor compares favorably to other DNA biosensors based on a similar method 

for the hybridization detection (Table 2SI), considering important analytical properties, such 

as sensitivity and detection limit [51,43,56-59]. 

 

Scheme 2.  

Figure 5.  
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Conclusions. 

We have developed a novel approach for electrochemical DNA biosensor development using 

disposable electrodes modified with CDs, synthesized by simple thermal carbonization of 

ethyleneglycol bis-(2-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA). These 

synthesized CDs are non-toxic, increase the performance of the electrochemical transductor 

of the DNA sensor and are very efficient for the immobilization of unmodified 

oligonucleotides keeping their hybridization capability. These biosensors are also useful for 

the detection of gene mutations in real human DNA extracted from blood cells. CDs based 

electrochemical sensors are expected to compete well with corresponding fluorimetric 

sensors [60], particularly in view of point-of-care applications. 
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Figure captions 

Scheme 1. Preparation of nanostructured CDs/AuSPE electrodes. 

Figure 1. SEM image of the synthetized CDs deposited onto a gold substrate at 300000x (A) 

or 100000x (B) magnification. 

Figure 2. Cyclic voltammogram of AuSPE (black curve) and CDs/AuSPE (dotted curve) 

electrodes in 0.1 M H2SO4 solution. 

Figure 3. DPVs response of HP1/CDs/AuSPE in 0.1 M PB pH 7.0 solution before (grey 

curve) and after hybridization with: a single mismatched, HPSM (grey dotted curve), a fully 

complementary, HP2C (black curve), and a non-complementary sequence, HP2NC (black 

dashed curve), after accumulation of SAF by consecutive potential cycling. Inset: Scheme of 

the hybridization process.   

Figure 4. DPVs response of HP1/CDs/AuSPE in 0.1 M PB pH 7.0 solution after hybridization 

with different concentrations (from 1.0 nM to 20 µM) of the fully complementary sequence, 

HP2C, after accumulation of SAF by consecutive potential cycling. Inset: Calibration plot 

obtained. Error bars were estimated with the standard deviation of five different biosensors 

(n=5). 

Scheme 2. Scheme of the DNA biosensor development. 

Figure 5. A) Peak current bar diagrams of the biosensor response before (Probe) and after 

hybridization with: a fully complementary (Probe-WT), a mutated F508del (Probe-Mutated) 

and a non-complementary (Probe-NC) sequences using SAF as redox indicator. B) Signal 

processing of the biosensor response. Percentage of normalized probe signal increment with: 

mutated (CF patients), non-mutated (healthy people) and non-complementary sequence. 
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