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Abstract 

Carbon has long been applied as an electrochemical sensing interface owing to its unique 

electrochemical properties. Moreover, recent advances in material design and synthesis 

particularly nano materials, has produced robust electrochemical sensing systems that display 

superior analytical performance.  

Carbon nanotubes (CNTs) are one of the most extensively studied nanostructures because of 

their unique properties. In terms of electroanalysis, the ability of CNTs to augment the 

electrochemical reactivity of important biomolecules and promote electron-transfer reactions 

of proteins is of particular interest. The remarkable sensitivity of CNTs to changes in surface 

conductivity due to the presence of adsorbates permits their application as highly sensitive 

nanoscale sensors. CNT-modified electrodes have also demonstrated their utility as anchors 

for biomolecules such as nucleic acids, and their ability to diminish surface fouling effects. 

Consequently, CNTs are highly attractive to researchers as a basis for many electrochemical 

sensors.  

Similarly, synthetic diamonds electrochemical properties, such as superior chemical inertness 

and biocompatibility, make it desirable for both (bio) chemical sensing and as the 

electrochemical interface for biological systems. This is highlighted by the recent 

development of multiple electrochemical diamond based biosensors and bio interfaces. 
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Introduction 

Electrochemical analysis is a simple, cost effective method to quantitatively and qualitatively 

determine the levels of electroactive species in a solution. Advantages of electroanalytical 

techniques over other detection methods such as chromatography, luminescence and 

spectroscopy are their low cost, ease of use, accuracy and reliability. Varieties of techniques 

are available to researchers to study the electrochemistry of electroactive species in solution. 

Analytical techniques employed include cyclic voltammetry, differential pulse voltammetry, 

chronoamperometry, linear sweep voltammetry and stripping voltammetry. All of them are 

effective electroanalytical techniques after being optimised to obtain the best electrochemical 

response. These processes can be influenced by several factors, including the nature of the 

analyte under investigation, the type of electrode and the choice of electrolyte. Specifically, 

the size and morphology of the electrode and the fabrication method used can be influential 

on the voltammetric response of the system [1]. 

Procedures in electroanalysis strongly depend on material aspects such as chemical and 

physical properties of electrode surfaces, the effects of the applied potential, adsorption, and 

coatings applied to the electrode surface to enhance detection. Carbon materials such as those 

depicted in figure 1, are widely used in electroanalytical investigations because of their 

chemical inertness, relatively wide potential window, low background current, and suitability 

for different types of analysis. For example, other electrode materials, such as sputtered metal 

electrodes, exhibit reduced potential windows and lifetimes in comparison to carbon  

materials [2]. 

Carbon nanomaterials, such as, graphene, carbon nanotubes (CNTs), crystalline diamond, and 

diamond-like carbon, all display exceptional electrochemical properties which has resulted in 

their widespread application. The potential of these materials is unquestionable in sensing 

applications, as the novel carbon-derived nanomaterials possess properties that are 

unfathomable in bulk materials. This results in their capability to operate with not only a 

higher sensitivity and selectivity in harsh environments but also over greater temperature and 

dynamic ranges. Historically, a number of materials including platinum, gold, and various 

forms of carbon have been exploited as electrode materials for electrochemical detection  

[3-7]. Graphene, CNTs and diamond are the polymorphs of carbon that have been widely 

employed as electrode materials for electrochemical sensing in recent years. Consequently, 

this review focuses on the recent (< 5 years) incorporation and use of carbon-derived 
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nanomaterials for electrochemical sensing applications and their potential implications. 

Moreover, as the excellent properties of carbon nanomaterials, such as large surface–to–

volume ratio, high conductivity and electron mobility at room terature, have led to numerous 

advances in electrochemical sensors. This review aims to highlight the application of carbon 

based sensors in multiple fields as electrochemical sensors for DNA, proteins, pollutants, 

metal ions, gases, and immunosensors. 

The impact of the discovery of the C60 bucky-ball by Smalley et al. [8], coupled with the 

emergence of an additional carbon crystal structure alongside graphite and diamond, led to the 

development of CNTs by Iijima group [9]. From their discovery in the early 1990s CNTs 

have attracted significant attention in multiple disciplines including physics [10], chemistry 

[11-13] and materials sciences [14, 15], an interest that has yet to wane. The interest in CNTs 

is due to their chemical stability and distinguishing mechanical and electronic properties. 

These features are ultimately a product of their distinct structure compared to that of 

traditional carbon fibres and graphite. CNTs possess a cylindrical structure produced from 

hexagonal “honeycomb’ lattices fabricated from sp2 carbon units. This lattice structure results 

in a closed topology with nanometre diameters and lengths in the micron range. CNTs consist 

of two defined structural groups single- (SWCNTs) and multi-wall carbon nanotubes 

(MWCNTs) [16, 17]. SWCNTs are comprised of a 1 – 2 nm diameter closed graphite tube 

rolled (seamless) from an individual graphite sheet, whereas MWCNTs are the product of the 

“Matryoshka” like nesting of multiple individual graphite cylinders with diameters typically 

ranging from 2 to up to 25 nm and a gap between tubes similar to the interlayer spacing in 

graphite of approximately 0.34 nm [18]. The influence of CNT structure is particularly 

evident in their electrical behaviour, where depending on their helicity (symmetry of the two-

dimensional carbon lattice) and diameter, they act in a fashion similar to that of a 

semiconductor or metal [19-22].  

The electronic properties of CNTs, particularly SWCNTs, are well-defined and are known to 

exhibit comparable characteristics to quantum dots and wires at low temperatures including 

single-electron charging and Coulomb blockade [23-26]. Coupling these features with the 

additional favourable properties inherent to nanostructures, such as high surface to volume 

ratios, unique confinement effects and altered (from the bulk) physical and chemical 

properties [27], have resulted in wide ranging applications. The high number of applications is 

due to enhanced selectivity, sensitivity and faster electrochemically reversible responses at 

standard temperatures and pressure. Applications include but are not limited to chemical 
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sensors [28-32], catalyst scaffolds [33-36], energy storage and conversion [27, 31, 37] and 

electronic devices [25, 38, 39]. 

Additionally, when CNTs are used as electrodes in electrochemical reactions, they display 

greater electron transfer capabilities [40]. Moreover, they possess significant potential as 

biosensors due to their ease in supporting protein immobilisation while maintaining the 

proteins inherent activity [41, 42]. CNTs have been exploited in multiple electrochemical 

sensors because of their ability to facilitate electron transfer reactions with electroactive 

species in solution and the electrode interface [43-46].  

The literature indicates that CNTs demonstrated better behaviour than materials traditionally 

used as electrode interfaces which display good conductivity and chemical stability. 

Electrochemical transducers that exploit CNTs as substrates offer significant improvements in 

the performance of amperometric enzyme electrodes [47, 48], immunosensors [49, 50] and 

nucleic-acid sensing devices [51, 52] because of their increased sensitivity and improved 

signal-to-noise ratio. CNT – modified electrode interfaces are highly attractive for a myriad of 

amperometric oxidase and dehydrogenase based biosensors because of the augmented 

electrochemical reactivity of species such as nicotinamide adenine dinucleotide (NADH)  

[53-55] and hydrogen peroxide [56, 57]. CNT based transducers have been shown to amplify 

bio-catalytic reactions and provide a platform for multiple enzyme tags. When aligned as 

“forests”, CNTs often act similarly to molecular wires, providing enhanced electron transfer 

between the underlying electrode and the enzymes redox centre [58-62]. The unique 

properties of CNTs have resulted in their exploitation in a range/multitude of diverse fields 

including sensors [40, 63, 64], actuators [40, 65] and energy storage [66, 67]. 

As the resistivity of conducting materials is dependent on the number of electron carriers 

available and the potential availability of electrons and electron holes, the semi-conducting 

nature of graphite is a result of the free movement of the π-electrons above and below the 

hexagonal graphene layer. On the other hand, the unique electrical properties of CNTs are a 

product of the π – bonding between the carbon atoms and their quasi – one-dimensional 

shape. This is a consequence of the defined circumference of the nanotubes, which limits the 

number of potential electron states. As a consequence, the semi – metal nature is altered, 

resulting in the opening of a band gap at the Fermi energy level. For CNTs with larger 

diameters, the potential band gap decreases as the spacing between the graphene layers 

decreases. Therefore, electron transfer can occur without scattering over relatively large 
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distances of several micrometres depending on the mechanical quality of the nanotubes  

[68-70]. Electron transfer is primarily driven by the conducting states available along the 

CNT structure with each conducting state providing a quantum conduction via the 

transportation of one spin up and one spin down electron/hole. However, because of 

significant reflection at the CNT – contact interface, which is a result of difficulties in 

accessing the various electron states; a consequence of their reduced numbers and specific 

configurations. This is because the number of transmitted electrons or holes is dependent on 

the amount of available states. Overall, this causes the drop in voltage conducted through both 

metallic and semiconducting CNTs across the CNT contacts but not along the tube itself  

[70, 71]. 

Moreover, coupled with the non-scattering ‘ballistic’ electron transfer, the mechanical 

robustness of CNTs allows them to withstand current densities up to 1010Acm-2, which is ~3-4 

orders of magnitude higher than most metals [41, 72, 73]. Consequently due to their attractive 

electrical properties, CNTs have long been considered a potential alternative for silicon – 

based circuits [74-76] and they have many promising applications in the field of nano-

electromechanical systems [77-79]. Individual nanotubes can be utilised to fabricate 

transistors and the connections between transistors in integrated circuits because of their 

capability to act as either metallic- or semi- conductors [80, 81]. This is highly advantageous 

as the miniaturisation of conventional metal oxide semiconductors silicon transistors are fast 

approaching fundamental physical limits [82, 83]. The potential implementation of CNT – 

based circuits affords the potential continued miniaturisation of transistor dimensions is an 

essential factor for improved integrated circuit performance and the potential implementation 

of CNT – based circuits [83].  

Diamond 

The potential of diamond as an electrochemical transducer has attracted remarkable interest 

due to its chemical stability, wide potential window, low background current and  

bio-compatibility [53, 84-86] of other commonly exploited materials such as silicon (Si) [87, 

88], silicon dioxide (SiO2) [89, 90], tin dioxide (SnO2) [91, 92], gold (Au) [93, 94] and glassy 

carbon [95, 96]. High-quality diamond films typically possess a potential window of ≥ 3.25 

V, owing to the large over-potentials for both oxygen and hydrogen evolution [97, 98] as a 

result of diamond to be either insulating, semiconducting or metallic, with its appearance 
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moving from transparent to black (optical gap of 5.47 eV), as a result of diamonds ability to 

be either p- or n-type doped [97-99].  

Diamond interfaces demonstrate distinctive properties because the electronic properties can 

be optimised by termination with either oxygen, hydrogen or hydroxide groups [99]. When 

terminated with hydrogen the surface is hydrophobic [100, 101]. In contrast, when oxygen is 

used for termination the surface is inherently hydrophilic [102]. Despite diamond being 

renowned for its bio – compatibility, chemical inertness and DNA bonding stability, the 

application of diamond in chemical sensors or electronics has yet to be properly exploited. 

This lack of use was due to the associated high cost of their production and refinement. The 

development of methodologies to cost effectively fabricate nano – crystalline diamonds, 

which display properties that are interchangeable with properties of a single crystal diamond, 

has opened up multiple avenues for future research in the development of innovative products 

for a multitude of potential applications [103-105]. For example, Petrakova and colleagues 

developed a non-toxic nanoscale diamond carrier which demonstrated simultaneous 

transfection of cells and spatiotemporal fluorescence imaging of DNA without the need for 

DNA labelling. The system was based on fluorescent nano-diamond particles coated  

non-covalently with polyethylenimine. This can form reversible complexes with DNA as 

detailed below in Figure 2, section a of which illustrates the electrostatic formation of the 

fluorescent nano-diamond – polyethylenimine –DNA complex, this involves the negatively 

charged nanodiamond interacting with the positively charged polyethylenimine, which in turn 

complexes the DNA, once the complex penetrates the target cell the DNA is then released. 

Diamond-like carbon 

Carbon can crystallise in both sp2 graphite and sp3 diamond forms, the majority of which are 

chemically very stable. Consequently, under static conditions, they can be considered as inert 

species. Both can interact with liquids or gases in a manner defined by the influence of sliding 

contacts, such as terminating bonds at the interface. Diamond-like carbon (DLC), amorphous 

carbon or amorphous hydrogenated carbon is a non – crystalline carbon with a high 

percentage of diamond – like (sp3) bonds. Hydrogen-free DLC thin films have an increased 

fraction of sp3 configuration and are fabricated by either filtered cathodic vacuum arc, pulsed 

laser deposition, or mass selected ion beam deposition [106-109]. Alternatively,  

sp2 configured hydrogenated amorphous carbon fabricated via plasma enhanced chemical 
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vapour deposition or reactive sputtering techniques [110-113]. The presence of sp3 bonding is 

safeguarded by ensuring the deposition flux is made up of a high percentage of medium 

energy ions (approx. 100 eV) [114]. 

Recently, DLC films have emerged as an area of significant interest for certain 

electrochemical applications. This interest is a result of characteristic and desirable properties 

being realised; such as mechanical hardness, low surface roughness, enhanced elastic modulus 

and chemical inertness, as well as its semiconductor nature, with a tuneable band gap of 1 to 4 

eV (approximately) [115]. 

Nitrogenated DLC films have been exploited as both electrochemical probes for trace metal 

analysis and as coatings for glucose oxidase biosensor selective membranes [116-119].  

DLC probes have been reported as glucose biosensors [86, 120, 121] and as microelectrode 

based probes for multiple medical applications [106, 122-125]. 

The sp3- carbon/sp2 hybridisation ratio of the DLC interface may be adjusted and controlled 

depending on the deposition process and conditions. DLC can also be doped to form 

conductive/semi – conductive materials to tailor them to a specific application, whether that 

be electronic [126], optical [127], mechanical [128] or biomedical [129] applications. 

CNTs for chemical sensing 

Electrochemical sensors based on CNTs 

With the advent of nanotechnology came the capability to manipulate at the atomic level and 

synthesise uniquely organised molecular structures. In the last few decades, CNTs have been 

the focus of intense research because of their remarkable mechanical and electronic properties 

coupled with their chemical stability and heat conduction [25, 130-132]. Diamond  

(the hardest natural material) is an insulator and graphite is one of the softest conducting 

materials in nature. The electronic properties of CNTs are unique to the carbon family 

because of the unique atomic structure (– large surface to volume ratios with diameters of a 

few nanometres and lengths of up to 100 µm, forming extremely thin wires that possess the 

hardness of diamond and the conductivity of graphene –) and mechanical deformations which 

make them useful in the development of miniaturised sensors that are sensitive to chemical, 

mechanical and physical environments [59, 78, 133]. Electrochemical sensors are composed 
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of an electrochemical cell which incorporates a minimum of two electrodes to form a closed 

electrical circuit and a transducer where the charge transport (which is always electronic) 

occurs, whereas, the charge transport in the analyte sample can be either electronic, ionic, or 

mixed. CNTs electronic properties are a consequence of the graphene sheets curvature. 

Carbons electron clouds are transformed from a uniform distribution along the C–C backbone 

in graphite to an asymmetric distribution within and around the cylindrical sheet of the 

nanotube. A rich π-electron conjugation forms outside the tube as a result of the electron 

clouds distortion making the CNT electrochemically active [63, 134-136]. Doping SWCNTs 

with electron donating and withdrawing molecules such as NO2, NH3, and O2 either transfers 

electrons to or withdraws electrons from SWCNTs, giving the SWCNTs more charge carriers 

or holes, in turn increasing or decreasing their conductance [137]. 

It has been shown not only can the electrochemical reactivity of important biomolecules be 

enhanced by CNTs [138-140], but the electron transfer reactions of proteins can also be 

promoted [141, 142]. CNT modified electrodes have demonstrated the capability to alleviate 

surface fouling which can occur, for example, in the case of direct oxidation of NADH due to 

the high over-potentials required, which result in fouling of the electrode surface by oxidation 

products [138]. Moreover, CNTs accumulate important biomolecules such as nucleic acid 

[143-145] which aids in the enhancement of the probes selectivity and sensitivity. In order to 

exploit CNTs in electrochemical sensing applications it is essential that the CNTs be 

appropriately functionalised [146-148] and immobilised [139, 149].  

Most commonly, CNTs are confined onto electrochemical transducers by coating electrode 

substrates with CNTS [10, 39, 150] or by incorporating them into composite electrodes  

[136, 151, 152]. While CNTs have played a significant role in enhancing the performance of 

electrochemical biosensors, such as enzyme electrodes, DNA biosensors and immunosensors 

[136] they have also demonstrated potential in electrochemical detection for various 

separation techniques including high-performance liquid chromatography [153, 154] and 

capillary electrophoresis [155, 156]. 

The electrochemical functionalisation of CNTs with metallic nanoparticles and the application 

of the resulting metal decorated CNTs has also seen increased interest in recent years 

particularly in areas related to sensing and catalysis [157-160]. For example, Wang et al. 

designed a one-pot hot-solution synthesis method for Ni12P5/CNTs hybrid nanostructures 

illustrated in figure 3. Hybrid structures attained current densities of 2 and 10 mA cm-2 when 
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over-potentials of just 65 and 129 mV were applied. In conjunction, the hybrid structure also 

demonstrated enhanced electrochemical performance in applications as an anode material for 

lithium ion batteries [159]. 

CNT-based amperometric transducers 

The use of surfactants to disrupt the strong Van der Waal attractive forces between CNTs and 

consequently improve their solubility, is seen throughout the literature. This methodology is 

preferred as it preserves the structure and properties of the CNTs much better than alternative 

approaches such as covalent modification [161] of the surface. 

Although various polymers [162-164], DNA [165] and detergents [166] have all shown 

potential as surfactants in this process, to date, sodium dodecyl sulfate (SDS) has been the 

most widely used [167-171]. SDS has been used to prepare suitable homogeneous dispersions 

of CNTs for the preparation of thin films at the electrode interface [172, 173]. Comparison of 

different CNTs dispersing strategies have been investigated [162-164] and applied to the 

fabrication of numerous modified electrode based sensing probes [68, 136].  

An additional application of CNTs is as nano-probes. Here, carbon nano-probes can be 

exploited as atomic force microscopy [174, 175] or scanning tunnelling microscope  

[176, 177] tips. 

CNT tips possess a number of advantages including: 

• intrinsically small diameters [178] 

• high ratio aspects that allow them to probe deep crevices and trench structures  

• ability to buckle elastically that limits the force applied by the atomic force 

microscope probe and reduce deformation and damage to biological and organic samples 

[174] and  

• easily modified to create functional probes.  

The use of functionalised nanotubes as atomic force microscope tips has opened up 

applications for molecular recognition and chemically sensitive imaging in chemistry and 

biology. Choi et al. reported significant improvements in CNT tip fabrication methods. This 

was achieved through implementation of an analogue control of the nano manipulation in 
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scanning electron microscopy, which has improved the accuracy of CNT mounting compared 

to their previous digital control system [178]. 

The authors intend to further investigate the capabilities of the CNT tips, through their 

optimisation for more challenging samples, including different materials and narrower 

trenches. TermehYousefi and co-workers demonstrated the ability of CNT-atomic force 

microscopic tips to probe the surface of an individual biological cell to potentially measure 

different properties of the cell. Significantly, the method demonstrated potential for the 

analysis of cancer cells as well as determining the physical interior properties of cells [174].  

A study from Slattery et al. determined that modification of an atomic force microscopic tip 

with SWCNTs, such as those in figure 4, enhanced the stability and sensitivity during the 

collection lifetime of an image. The authors determined that the smaller tip diameters also 

created a greater peak force which allowed the collection of the subsurface current collection 

on conducting polymer samples. This meant that the SWCNT tips could be used to produce 

current voltage maps of the surface and for multiple measurements without compromising the 

SWCNT attachment; making the tip suitable for high bias atomic force microscopic 

applications [179].  

CNT-based electrochemical DNA sensors 

Since Palecek’s discovery that DNA was electrochemically active, direct detection of DNA 

and its bases by electrochemical sensors [180], DNA based sensors (or genosensors) have 

been widely used in biomedical and environmental research in the detection of food and 

environmental pollutants, genetic diseases, and identification of viruses and bacteria [40]. The 

combination of CNTs with DNA has attracted significant attention as it contributes to the 

development of faster and more cost effective electrochemical DNA detection methods with 

improved sensitivity.  

Owing to the ability of CNTs in forming π- π bonds between their conjugated π systems and 

nucleobases they are ideal candidates for use in DNA and RNA sensing. Moreover, due to the 

inherent electrical conductivity of CNTs, they amplify the DNA/RNA sensing signal. The 

inherent conductivity of CNTs is significant because methods of amplification such as 

addition of NPs or enzymes that promote electron transfer are normally required to strengthen 

the usually weak DNA/RNA sensing signal [142].  
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Gutierrez et al., reported the use of MWCNT – modified glassy carbon electrodes for the 

detection and quantification of amino acids, albumin and glucose [181]. The authors observed 

that repeatable amperometric quantification of histidine, serine and cysteine was possible at 

low potentials for sub – micromolar concentrations. The probes were also capable of detecting 

glucose at a limit of 182 nM. Gutierrez et al. successfully demonstrated the probes application 

for the detection of carbohydrates in beverages and amino acids and albumin in 

pharmaceuticals. 

Similarly, work by Li and Lee [182] improved the detection limit of a DNA sensing system 

by a factor of 2 (approx. 140 pM) and significantly reduced the fabrication time by 

incorporating functionalised MWCNTS in the sensing system. They also anticipated that this 

advance in the fabrication system may be applied to the further miniaturisation of biosensors. 

DNA immobilised CNTs are ideally achieved by covalently binding DNA on a solid surface 

via a single point attachment. Most of the applications of immobilised oligonucleotide are 

based on the hybridisation between the immobilised oligonucleotide and its complementary 

DNA sequence. Guo et al. outlined the fabrication of a simple 8-Hydroxy-2′-deoxyguanosine, 

8-OHdG (a commonly identified biomarker for oxidative DNA damage) sensor that 

demonstrated excellent electrochemical response to the oxidation of 8-OHdG, see figure 5, 

section A, illustrates the enhanced response of the modified probe, while sections B & C 

illustrate the probes linear response at different pHs and scan rates respectively. The sensor 

had good sensitivity and repeatability with a detection limit of 1.88 x10-8 M. The probe itself 

was based on the modification of an underlying glassy carbon electrode with MWCNTS 

[181]. 

Work by Fedorovskaya et al. [183] demonstrated the application of an array of vertically 

aligned MWCNTs electrically coupled with a conducting substrate as a hybrid electrode for 

RNA recognition in solution. The authors prepared the hybrid electrodes by non-covalent 

immobilisation of decaribonucleotide ((pA)10) or its 5′-pyrene conjugate (PyrpA(рА)9) on the 

MWCNTs. It was observed that the capacitance of the hybrid electrodes increased upon 

potential cycling in the presence of complementary target oligonucleotide. The hybrid 

electrodes selectivity was clearly demonstrated as only complementary target recognition 

resulted in the evolution of the electrode capacitance. Moreover, the author observed 

improved selectivity and stability of the electrode probe was observed when the 5′-pyrene 

conjugate (PyrpA(рА)9) was used to prepare the hybrid electrode as it allowed the sensing 

interface to retain the probe-target oligonucleotide duplex on the MWCNT surface [183]. 
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Ozsoz’s group [182] described the development of a MWCNT-modified genosensor for the 

detection of Escherichia coli. The authors reported that the modified electrodes promoted 

enhanced adsorption of the DNA probe, on the electrode sensing interface. This has resulted 

in a threefold signal enhancement and lower detection limit (17 nM) compared to a 

corresponding un-modified sensor. As the DNA probe was selectively sequenced for the 

target analyte eliminating the necessity for an additional bio label and thus, simplifying the 

sensing procedure significantly by removing the use of a mediator and the need for extra 

experimental steps for indicator-DNA interaction.  

Zhang also reported the facile and efficient fabrication of a label-free impedimetric 

genosensor using CNTs functionalised with the Fe3O4 nanoparticles as the probe supporting 

substrate [184]. Zhang detailed that the Fe3O4/CNT nanocomposite membrane provided a 

large surface area with ideal biocompatibility for the probes DNA immobilisation. This 

method produced a highly sensitive (detection limit of 2.1 x 10-16 molL-1) biosensor for the 

detection of the Breakpoint Cluster Region protein / ABelson murine Leukaemia viral 

oncogene homolog 1 (BCR/ABL) fusion gene in chronic myelogenous leukaemia. Moreover, 

Zhang outlined the exceptional selectivity of the biosensor with successful discrimination of 

the target DNA from other sequences. Finally, the author highlighted that the probe did not 

involve a complicated fabrication procedure and the strategy employed could easily be 

adapted for the facile fabrication of other DNA electrochemical bio – sensing platforms [184].  

Liu and co – workers, outlined the development of a highly sensitive (possessing a limit of 

detection of 1 x 10 -16 M) and specific electrochemical sensing system for the detection of the 

pathogenic bacteria Clostridium tetani, responsible for tetanus, that was dependent solely on 

two nanophase materials: gold nanoparticles and MWCNTs. Liu highlighted that the 

electrochemical sensor was an ideal and rapid method for the early diagnosis of tetanus, 

broadening the use of the DNA amplification method and holding great promise for future 

ultrasensitive bioassay applications [185] Figure 6 below, illustrates the impact of the gold 

nanoparticle functionalisation on the sensor’s MWCNT morphology (A & B) and ultimately it 

sensitivity to the target analyte (D). 

CNT-based gas sensors 

The need for sensing gases arises from many applications in multiple fields including 

industrial, environmental and medical analyses. Conventionally, qualitative and quantitative 
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gas detection has been achieved via bulky instrumentation. An ideal alternative to these 

conventional methods is to use small scale sensors as they are considerably less expensive. 

However, their performance in the field must match that of established analytical instruments 

in order to gain acceptance. Therefore, nanomaterials as the sensing media/interface offer 

distinct advantages in their sensitivity and selectivity. 

Work by Li et al. [186] systematically investigated the sensing mechanisms of multiple CNT 

– based devices for the detection of NH3 and NO2. The authors determined that the interaction 

between the molecule and the CNTs at the metal – CNT contact was the dominant sensing 

mechanism at low analyte concentrations. The authors noted that both ammonia and nitrogen 

dioxide can physisorb to a pristine CNT but adsorption only resulted in small current changes 

through the device. It was also observed that if a CNT is attached to a gold nanowire lead, the 

most sensitive detection site was at the CNT near the CNT-Au contact, where chemisorption 

occurs. The resulting change in electron transfer and low-bias current led to a 30 % increase 

in the sensitivity of the sensor. 

Dhall and Jaggi reported an efficient procedure for the fabrication of two CNT hybrid 

composites for the detection of hydrogen gas. The authors exploited Raman and X-ray 

diffraction analysis to confirm the formation of hybrid composites. The results indicated that a 

nickel oxide functionalised – platinum decorated MWCNTs was more sensitive when 

compared to a cuprous oxide – functionalised – platinum decorated MWCNTs hybrid 

composite producing double the signal response for 0.05% H2 gas at 25 oC [187]. 

Work from Kim and co – workers [188] detailed the fabrication of a p-channel field-effect 

transistor -type NOx gas sensor using MWCNTs, a gold electrode was deposited on to a 

MWCNT film coated on to a p-type silicon wafer. The fabricated sensor proved useful for the 

detection of NOx gas at various gate-source voltages. Although the authors observed that the 

decreased resistivity of the gas sensor as a function of absorbed NOx could be countered by 

increasing the electrode spacing of the sensor.  

In a study by Cismaru et al. [189] the design of a new type of radio frequency gas sensor 

based on an electromagnetic band cap resonator with couple-line structure in the centre area, 

covered by an MWCNT's transducer layer for the detection of methane. The characteristic 

interaction between methane molecules and CNTs was enhanced by the coupled waveguides 

which resulted in a high value of sensitivity, ten times greater than that observed for a sensor 
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unmodified by MWCNTs. Moreover, the frequency downshift was a further proof of the 

effect of methane on CNTs, i.e., an increase in resistance due to a decrease in the number of 

holes in the CNT electronic structure. The results presented, together with the compact 

dimensions of the device, clearly demonstrate the capabilities of CNTs in RF applications for 

sensing purposes [189].  

Asad et al. [190] described the development of wearable Copper-SWCNTs-based sensors that 

exhibit enhanced response for hydrogen sulfide gas over a range of 5 ppm to 150 ppm. The 

authors demonstrated the rapid response time the sensor with a recovery time of 10 s to 15 s. 

The work also demonstrated the high selectivity of the sensor for the target gas, hydrogen 

sulfide, particularly in the presence of high concentrations of interfering gases. The authors 

report that the Copper-SWCNT modified polyethylene terephthalate flexible sensors were 

stable and offered reproducible responses at room temperature with the sensing performance 

remaining consistent over various bending radii. The authors hypothesised that the response 

observed was due to the Copper-SWCNT system strongly adsorbing hydrogen sulfide. The 

fabricated sensors were capable of real-time analysis of hydrogen sulfide with high 

sensitivities (concentrations as low as 5 ppm) and low power (1 V) consumption that enabled 

their integration with low power microelectronic circuits. 

Zhang’s group [191] reported the fabrication of a novel NO2 sensor that exploits reduced 

graphene oxide-CNT-SnO2 hybrids as the sensing element. These were prepared by 

hydrothermal treatment of graphene oxide-CNT in the presence of tin (IV) chloride. The 

sensors displayed high sensitivity (5 ppm NO2), rapid response (8 compared to the  

135 seconds reported previously [192]) and fast recovery rate (77 compared to 200 seconds to 

return to baseline). Enhanced selectivity and response stability for NO2 at room temperature 

was also achieved in comparison to previously reported reduced graphene oxide -based NO2 

sensors [191]. 

Abudulla et al. [193] reported the development of a polyaniline functionalised multiwalled 

carbon nanotubes (PANI/MWCNTs) based nanocomposite for the detection of trace levels of 

ammonia (NH3) gas. The authors outline the PANI/MWCNT nanocomposite based sensors 

improved sensor response (15.5 % versus 2.58%) and response/recovery characteristics 

(response time of 6 s rather than 965 s and a recovery time of 35 s rather than 1140 s) in 

comparison to an un-functionalised probe.  
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Flexible electronics have multiple potential applications including integrated electronic 

devices and wearable sensors. At present a large area of research had focused on improving 

such devices robustness with an emphasis on their flexibility, particularly its reliability. 

Inspired by the natural world, researchers are attempting to mimic the “healability” of 

multiple organisms. Moreover, to further appeal to industry researchers are striving to develop 

transparent materials that can be affixed to products such as clothing without impacting its 

appearance. Bai et al. [194], report the development of a flexible “healable” transparent 

chemical gas sensor device assembled from a functionalised with oxygenated functional 

groups, such as carbonyl, hydroxyl and epoxy groups MWCNTs network-coated 

polyelectrolyte multilayer film. The authors described how the layer by layer assembled 

polyelectrolyte multilayer films successfully imparted “healability” to the functionalised 

MWCNT network layer by the lateral movement of the underlying healable layer, bringing 

the separated areas of the MWCNT layer back into contact in the presence of water. The 

authors detail how the sensor may be cut and restored multiple times with a small (2 %) drop 

in the sensors performance after several cycles. It was shown that with the superior CNT 

network structures being anchored on self-healing substrates, that the sensor exhibited robust 

flexibility, good transparency, and reliable water-enabled “healability” and was capable of gas 

sensing performance at room temperature. This work demonstrated the potential to develop 

healable transparent nano – electronics with the exciting benefits of reduced raw material 

consumption, decreased maintenance costs, improved lifetime, and robust functional 

reliability [194].  

In their work Piloto and co – workers [195] demonstrated the scalable fabrication of ultrathin 

CNT conductometric sensors that operate at room temperature in a surfactant-free process. 

This is a benefit as the majority of CNT fabrication process are not scalable or depend on 

CNT surfactant based dispersions, the surfactants are often difficult to remove and can cause 

issues in their later applications. The films were robust, thin and could be integrated into 

flexible and transparent electronic applications. The sensor performed well at low 

concentrations, exhibiting limits of detection of 1 ppm for NO2 and 7 ppm for NH3. The 

authors attributed the high sensitivity to the high density of CNTs deposited in an ultrathin 

film (~ 5 nm) by dip coating. Further improvements in the sensing performance were 

achieved via sonication of the CNTs film. The authors hypothesised that the CNT films can 

be used as sensing layer for the development of inexpensive, high performance room 

temperature gas sensors.  
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Finally, Humayun et al., [196] reported the fabrication of chemoresistive sensors based on 

SnO2 nanocrystal functionalised MWCNTs for detecting CH4 gas with 10 ppm limit of 

detection. The authors stated that the sensors sensitivity even for trace analytes, (single ppm 

level),coupled with its significant reversible relative resistance change, was directly related to 

the extent of successful functionalisation of the MWCNT surface by the SnO2 nanocrystals, as 

no response was observed for CH4 by un-functionalised MWCNT based probes. 

Electrochemistry has always provided analytical techniques characterised by instrumental 

simplicity, moderate cost and portability [197]. The application of diamond surfaces as an 

electrochemical sensing interfaces has rapidly increased in recent years with the advent of 

improved fabrication and modification techniques. Here we discuss diamonds the 

effectiveness of diamond as a substrate for an electrochemical sensor and its application as a 

probe for numerous analytes. 

Boron-doped diamond (Characterisation of diamond surfaces) 

The ratio of sp2/sp3 carbon is often an indicator for diamond purity, and Raman spectroscopy 

is the traditional technique for estimating this ratio [198]. In a recent work, the sp2 content of 

carbon sites was determined using boron-doped diamond electrodes to examine the 

electroactive quinone groups present [199]. The sp2 content of is generally associated with the 

provision of pH active functional groups and enhanced electrocatalytic properties. Ayres et al. 

also noted that this technique was sensitive enough to detect quinone groups even on 

electrodes which had low sp2 content, observing quinone signal demonstrated a 3 × signal to 

noise ratio. The authors were also able to distinguish between four different electrodes and 

place them in order of increasing sp2 surface content and proposed quinone surface coverage 

measurements as an alternative method to Raman microscopy. 

Metronidazole 

Metronidazole is a substituted imidazole antibiotic widely used to treat anaerobic bacterial 

infection caused by Helicobacter pylori, and protozoal infections [200]. Amar et al., [201] 

conducted cyclic voltammetry and square wave voltammetry of metronidazole at a boron–

doped diamond electrode in an aqueous medium. For comparison, performances of a silver 

electrode and a glassy carbon electrode were also studied. In cyclic voltammetric 

Brought to you by | University of Gothenburg
Authenticated

Download Date | 10/11/17 3:18 AM



Carbon nanomaterials and their application to electrochemical sensors; a review 

18 / 48 

experiments, Ammar reported an irreversible cathodic peak corresponding to the nitro group 

in metronidazole, with the maximum current obtained using the boron-doped diamond 

electrode. In addition, a limit of detection of 65 nmol L- 1 was obtained.  

Ziram 

In another study, Stankovic et al. reported the amperometric detection of the pesticide ziram 

using boron-doped diamond electrodes. The working electrode was embedded in a polyether 

ether ketone body with an inner diameter of 3 mm, and was characterised to possess a 

resistivity of 0.075 Ω cm and a boron doping level of 1000 ppm. A wide linear range from 10 

to 1000 nM was obtained with an estimated limit of detection of 2.7 nM at the electrode, and 

replicative experiments showed a standard deviation of less than 3 %. The proposed method 

was successfully applied for ziram quantification in spiked river water samples [202]. 

Oxalic acid 

Watanabe et al. [203] reported the development of a prototype microfluidic device using 

boron-doped diamond electrodes patterned on alumina chips. The device was utilised to 

analyse the oxalic acid content in vegetables. Detection of this compound in biological 

materials is desirable, because it acts as an anti – nutrient, as a toxin, and in the formation of 

calcium oxalate which gives rise to kidney stones. As the oxalate di – anion (C2O4
2-) is 

oxidised at a high positive potential; it can be electrochemically detected using a boron-doped 

diamond electrode, which was otherwise demonstrated to be difficult using conventional 

electrodes such as glassy carbon electrodes [204]. This is a consequence of boron-doped 

diamond electrodes superior resistance to fouling, a product of their compact sp3 

configuration, in comparison to the porous sp2 structure of glassy carbon. The authors 

reported that flow injection analysis of oxalic acid at the fabricated device was successful and 

that electrochemical conditioning steps without changing the solution were effective for 

obtaining reliable and reproducible signals. Furthermore, the high durability of boron-doped 

diamond allowed its application in robust treatments not only for conditioning but also as a 

measure against fouling.  
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Imatinib 

Boron-doped diamond has also been applied to an electroactive probe surface by Brycht et al. 

to detect the anticancer drug, imatinib on a voltammetric platform [205]. Cyclic voltammetry 

of imatinib at the electrode displayed an electrochemical irreversible response. The sensor 

was found to demonstrate irreversible and exclusive (in the absence of imatinib no redox 

peaks were observed over the entire working potential range) oxidation of imatinib which is 

an advantageous trait for trials in the in vivo space. A limit of detection of 6.3 nmol L-1 for 

imatinib was estimated. 

7-methylguanine 

Another biologically-derived entity, 7-methylguanine, is of interest to analysts due to its 

possible association with cancerous tumours [206]. Recent work by Sanjuán et al. has 

developed two detection schemes for 7-methylguanine. The first was a polycrystalline boron-

doped diamond film mounted in polyether ether ketone doped with a 0.1% of boron as the 

working electrode and its performance was compared with that of a glassy carbon electrode. 

The second electrochemical configuration used a 50 μL working solution drop on a screen-

printed graphite electrode where the 3.0 mm diameter graphitic working surface of the screen 

printed electrode served as the counter electrode and the Ag|AgCl pseudo reference acted as 

the reference electrode. This electrode scheme is depicted in Figure 7. 

The authors found that a ~50 % lower capacitive current and better defined oxidative peak 

features for 7-methylguanine were achieved at the boron –doped diamond electrodes relative 

to a glassy carbon electrode. Electrode selectivity in the presence of guanine and adenosine, 

which are known interfering species in the voltammetric determination of 7-methylguanine 

[208] was also evaluated. Separations of 120 mV and 300 mV were observed between peaks 

attributed to guanine and adenosine and 7-methylguanine, respectively [207]. Furthermore, 

calibration plots for 7-methylguanine were found to be linear in the range of 10 – 200 μM, 

with regression (R2 = 0.997) and a sensitivity of 0.0332 μA μM-1. Sanjuán and colleagues also 

identified the potential for applying the boron-doped diamond electrodes as sensing devices 

for 7-methylguanine in biological samples (DNA by extraction or other biological fluids, such 

as urine), which can serve as a biomarker for the detection of abnormal methylation patterns 

[207]. 
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Uric acid, ascorbic acid and dopamine 

Dopamine is a major neurotransmitter involved in initiating many behavioural responses to 

various stimuli, and it also plays a crucial role in the functioning of the central nervous, 

cardiovascular, renal, and hormonal systems, as well as emotional and reward processes 

[209]. Uric acid is the final oxidation product of purine metabolism and exists in biological 

fluids such as blood or urine. Disorders of uric acid are symptoms of several diseases such as 

gout and hyperuricemia [210]. Therefore, there is considerable research input into sensitive 

and selective detection of both species in the physiological space. To this end, nitrogen-

incorporated ultrananocrystalline diamond electrodes have been the focus of interest and were 

evaluated in the electrochemical detection of uric acid and dopamine by Skoog et al. [211].  

The authors conducted linear scan voltammetry of uric acid and dopamine in vitro from 0.2 V 

to 0.8 V at 10 mV/s. Uric acid concentrations varying from 0 to 200 μM were evaluated and a 

distinct oxidation peak was observed at a potential of 0.48 V as well as a linear relationship 

between the uric acid concentration and the peak current throughout the detection range. 

Dopamine concentrations were detected in a linear concentration range from 0 to 30 μM at an 

oxidation peak potential of 0.65 V. Importantly, the oxidative peaks between the two analytes 

were separated by ~ 200 mV when tested separately. However, attempts to detect the two 

analytes simultaneously were unsuccessful and only a single peak was observed due to 

overlapping of the individual signals [211]. Other researchers have also previously alluded to 

this overlap and obtained satisfactory resolution during simultaneous detection of dopamine 

and uric acids at nitrogen-doped diamond electrodes. For example, Shalini et al. demonstrated 

simultaneous detection of dopamine, uric acid, and ascorbic acid with significant peak 

separation using nitrogen-doped diamond electrodes [212, 213]. They noted that the nitrogen-

doped diamond electrodes demonstrated superior peak separation compared to others such as 

boron-doped diamond, graphite, and glassy carbon electrodes and hypothesised that this was 

due to the electrodes sp2 graphitic phase and the nanowire-like structure, a consequence of the 

incorporation of N2 in the growth plasma of the diamond electrodes. The authors also 

suggested that nitrogen-incorporated ultrananocrystalline diamond microneedle-based device 

may serve as an attractive platform for minimally invasive, continuous monitoring of 

physiologically relevant molecules [211]. 

Boron-doped diamond electrodes have also been applied towards the detection of dopamine 

and ascorbate. The simultaneous detection of both species using glassy carbon electrodes is 
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well known to be constrained by the similar oxidation potentials of both, as well as the larger 

concentration of ascorbate compared to that of dopamine in the brain where both are 

encountered. Furthermore, the oxidised product of dopamine, dopamine quinone, is reduced 

back to dopamine by ascorbate, thus giving rise to an amplified dopamine oxidation signal in 

the presence of ascorbate [214]. To be able to resolve the overlapping signals between both 

ascorbate and dopamine represents significant research gains in developing probes for in vivo 

dopamine/ascorbic acid detection. To this end, Qi et al. have prepared boron-doped diamond 

with different thickness using hot filament chemical vapour deposition and evaluated their 

performance in detecting dopamine and ascorbate. Cyclic voltammetry of both species 

performed at the electrodes showed a clear peak potential difference on 8 h- and 12 h-

deposited electrodes, indicating that the thickness of electrodes exhibited a strong impact on 

the resolution of dopamine/ascorbate oxidation peaks. Additionally, a limit of detection of 1 

μM dopamine in the presence of 1 mM ascorbic acid was the lowest at the 12 h-deposited 

boron-doped diamond electrode [215]. 

Yang and co-workers have compared the electrochemical properties and biosensing 

performance of nanodiamond-derived carbon nano-onions with three commonly used carbon 

materials: MWCNTs, graphene nanoflakes and glassy carbon [216]. Carbon nano-onions are 

spherical, closed carbon shells similar to the concentric layered structure of an onion. They 

are also often referred to as carbon onions or onion-like carbon. Those names cover all kinds 

of concentric shells, from nested fullerenes to small (<100 nm) polyhedral nanostructures 

[217]. Yang et al. reported the simultaneous detection of ascorbate, dopamine and uric acid at 

a nickel modified boron-doped diamond electrode by differential voltammetric measurements. 

The nanodiamond-derived carbon nano-onions demonstrated a superior sensitivity for 

dopamine detection over the MWCNTs. Moreover, nanodiamond-derived carbon nano-onions 

exhibited nearly 6× larger current density arising from dopamine oxidation than MWNCTs, 

along with sufficient peak separations of all three analytes (peak separations of ascorbate–

dopamine and dopamine–uric acid were 274 mV and 122 mV, respectively). Overall, 

nanodiamond-derived carbon nano-onions showed excellent electrocatalytic activities with 

fast electron transfer kinetics and large oxidation current densities, thus revealing a great 

potential for the detection of redox-active biomolecules with ultra-high sensitivity at the 

material [216].  

In a recent work, Peltola et al. [218], have combined tetrahedral amorphous carbon with 

nanodiamonds to provide a new platform for biosensor applications. The electrodes were 

Brought to you by | University of Gothenburg
Authenticated

Download Date | 10/11/17 3:18 AM



Carbon nanomaterials and their application to electrochemical sensors; a review 

22 / 48 

subjected to cyclic voltammetry in various concentrations of dopamine in the presence of  

1 mM ascorbic acid in phosphate buffered saline and rinsed in the same buffer between 

measurements. Performance evaluation of the electrodes showed hydroxyl functionalised 

nanodiamond showed the lowest detection limit (50 nM) for dopamine, followed by 

nanodiamond modified with a mixture of amine and hydroxyl groups and amine 

functionalised nanodiamond (100 nM). The dopamine detection limit for carboxyl 

functionalised nanodiamond was an order of magnitude higher (500 nM) than for hydroxyl 

modified nanodiamond. All the electrodes showed a broad linear range for dopamine 

detection: amine and hydroxyl functionalised nanodiamond 100 nM–1 mM, amine modified 

nanodiamond 100 nM – 1 mM, carboxyl functionalised nanodiamond 500 nM – 100 µM, and 

hydroxyl functionalised nanodiamond 50 nM – 1 mM. Sensitivities of the drop-casted 

electrodes were 0.195 – 0.248 A M-1 cm-2. Overall, the authors concluded that by using 

nanodiamonds on tetrahedral amorphous thin films, sensitivity towards dopamine could be 

improved. 

Glucose 

Most glucose sensors are based on the classic Clark’s experiment of glucose oxidase-glucose 

coupling at a sensor interface [219]. However, in recent times, various types of electrodes 

have been employed in such analysis particularly in biosensing where the problem associated 

with the transient decay of enzyme activity or pH- and temperature-related disruptions have 

been mitigated with the development of enzyme-less sensors [220, 221]. Readers are referred 

to the several publications devoted to enzymeless glucose detection, such as those of 

Scognamiglio et al.[222], Hasan et al. [223] and Carbone et al. [224]. 

Recently, Deng et al., have reported developing a nickel-microcrystalline graphite-boron 

doped diamond electrode for detecting glucose in vitro [225].The electrode determines the 

concentration of glucose via it’s oxidation to gluconolactone. The electrocatalytic activity of 

the nickel-based electrodes for glucose oxidation is associated with the formation of nickel 

oxide hydroxide layer at the electrodes surface. Deng observed that the electrode exhibited 

two linear dependence of current responses with glucose concentration ranges from 0.002 – 

0.5 and 0.5 – 15.5 mM with a high sensitivity of 1010.8 and 660.8 μA mM-1 cm-2, 

respectively. The electrode also exhibited a low detection limit of 0.24 μM (S/N = 3), good 
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selectivity and reproducibility, and excellent stability during the long-term electrochemical 

detection [225]. 

A stable and sensitive non-enzymatic glucose sensor prepared by modifying a boron-doped 

diamond electrode with nickel nanosheets and nanodiamonds has been reported by Dai and 

co-workers [216]. The electrode exhibited a stable, fast response, with two concentration 

ranges (similar to that of Deng et al., above); 0.2 – 12 and 31.3 – 1055.4 μM with a sensitivity 

of 20 μA mM-1 cm-2 and 35.6 μA mM-1 cm-2, respectively. The detection limit was estimated 

to be 0.05 μM (S/N = 3). The authors have attributed the lower sensitivity to the adsorption of 

intermediates from the oxidation of glucose (gluconolactone and sodium gluconate in a 0.1 M 

NaOH electrolyte), and the slower adsorption of glucose at higher concentration. Notably, the 

authors also applied the electrodes to human serum samples, where the recovery values of 

glucose obtained by standard additions of glucose to the serum samples ranged from 96.1% to 

103.1%, confirming that the sensor could be used practically for routine analysis of glucose in 

real-life biological samples [216]. 

Environmental analysis 

Hybrid diamond/graphite nanostructures for electrochemical applications have been 

synthesised using microwave plasma enhanced chemical vapour deposition by Guo and  

co-workers [181]. During the electrochemical study, a conductive hybrid diamond/graphite 

film was used as working electrode. Guo reported quasi-reversible behaviour at the electrode 

surface, mass controlled electrode reactions in aqueous and organic solutions and a wide 

potential window of about 3.1 V. Moreover, the electrode enabled low detection limits of 5.8 

ppb for Ag+ and 5.6 ppb for Cu2+, respectively. The good recovery values in tap water 

samples demonstrate the accuracy and feasibility of the hybrid diamond/graphite electrodes. 

The hybrid diamond/graphite electrode is thus a potential candidate for trace heavy metal ions 

detection. 

Phenol has been found in various sources including industrial effluents, coal gasification, 

pesticide production, fertilisers, dyes, and other chemicals. Despite it being biodegradable, the 

presence of phenol can be growth inhibitory to microorganisms at elevated concentrations 

[226] thus, its screening and quantification are important. Ajeel et al. [227] have developed 
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carbon black diamond composite electrodes for anodic degradation of phenol with the 

removal efficiency for phenol reported of more than 97% after 27 hours at pH 3. 

Very recent work by Hébert and co-workers has seen the development of a hybrid of the 

porous, conductive polymer of polypyrrole and diamond to yield a material with high double 

layer capacitance, low interfacial impedance, high charge storage capacitance, high resistance 

to corrosion and high biocompatibility [228]. The material was found to yield a double layer 

capacitance as high as 3 mF cm-2 and an electrochemical impedance typically 600 times lower 

than that an of un-functionalised diamond electrode in aqueous LiClO4. [229]. 

Biosensors 

Lactate levels in clinical practice are often used as a surrogate for illness and to gauge 

response to therapeutic interventions [230]. Tissue hypoxia or oxygen debt that cause high 

lactate levels in a person can often be a result of sepsis, shock, heart attack/failure, organ 

failure or diabetes. For these important reasons, lactate determination is a routine parameter in 

clinical evaluations, often through blood-gas analysers as the conventional route for lactate 

determinations, despite emerging strip-based technology [231]. Recently, the modification of 

a gold electrode with un-doped diamond nanoparticles to constitute a sensor and its 

applicability to the application of lactate was evaluated and reported [232]. Briones concluded 

that the sensor showed clear electrocatalytic responses towards lactate, demonstrating a linear 

concentration range from 0.05 mM to 0.7 mM, a sensitivity of 4.0 µA/mM, a detection limit 

of 15 µM and a good reproducibility (RSD 6%). Thus compared with commercial strip 

methods that yield limits of detection of 0.21, 0.30 and 20 mg/L, the lactate sensor achieved a 

reasonable limit of detection. 

Cochlear implants have been used for several decades to treat patients with profound hearing 

loss [233]. Despite this, cochlear implants provide only a very crude mimicking of only some 

aspects of the normal physiology [234]. A major problem is the delivery of independent 

stimulation signals to individual auditory neurons. Fine hearing requires significantly more 

stimulation contacts with intimate neuron/electrode interphases from ordered axonal  

re-growth, something current technology cannot provide.  

Cai et al. have explored the potential application of micro – textured nano – crystalline 

diamond surfaces on cochlear implant electrode arrays. The authors concluded that 
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regenerating auditory neurons showed a strong affinity to the nano – crystalline diamond 

pillars, and the technique could be used for neural guidance and the creation of new neural 

networks. Together with the unique anti-bacterial and electrical properties of nano – 

crystalline diamond, patterned surfaces could provide designed neural/electrode interfaces to 

generate independent electrical stimulation signals in cochlear implant electrode arrays for the 

neural population [186]. 

Zhang et al., have used a simple approach of low-power sonication-assisted seeding technique 

to fabricate a bio – functionalised nanodiamond -seeded interdigitated electrode for label-free 

pathogen detection [235]. Their findings showed that higher surface coverages were important 

for improved bacterial capture and could be achieved through proper choice of solvent, 

nanodiamond concentration, and seeding time. Based on electrochemical impedance 

spectroscopy of phosphate buffer solutions over a range of conductivities (737 µScm-1 – 

16500 µScm-1) at these nanodiamond-seeded interdigitated electrodes, the nanodiamond seeds 

were found to serve as electrically conductive islands only a few nanometers apart. When 

sensing bacteria from 106 CFU/mL E. coli O157:H7, the charge transfer resistance at the 

interdigitated electrodes decreased by ~38.8% which was nearly 1.5× better than that reported 

previously using redox probes. Further in the case of 108 cfu/mL E. coli O157:H7, the charge 

transfer resistance decreased by ~46%, which was similar to the magnitude of improvement 

reported using magnetic nanoparticle-based sample enrichment prior to impedance detection. 

Thus, the authors concluded nanodiamond seeding allowed impedance biosensing in low 

conductivity solutions with competitive sensitivity [235]. 

Conclusion 

The unique properties of carbon nanomaterials have extensively contributed to the 

development and evolution of electrochemical sensors and biosensors. Both the novel and 

modified carbon based probes often display enhanced analytical performance with respect to 

conventional non- nanostructured electrochemical systems.  

Electroanalytical methods using sensing and biosensing devices involving carbon 

nanostructure modified electrodes are showing promise for application to real-life analytical 

detection. In particular CNTs and diamond have been exploited as electrode materials for 

electrochemical sensing for a myriad of analytes. The unique properties of CNTs, diamond 

Brought to you by | University of Gothenburg
Authenticated

Download Date | 10/11/17 3:18 AM



Carbon nanomaterials and their application to electrochemical sensors; a review 

26 / 48 

and diamond – like films have extensively contributed to the design of novel nanostructured 

electrochemical sensors and biosensors, with enhanced analytical performance compared to 

traditional electrochemical sensing systems. Although some challenges still remain, for 

example, reproducibility and scalability of current “nano” devices, the sensing systems are 

very much affected by the properties of the nanostructures used, (e.g. diameter and the 

chirality of SWCNTS). Furthermore, more appropriate estimations of some performance 

characteristics and their application for sensing analytes in real – world samples are necessary 

before potential commercialisation. 

The impact of carbon nanomaterials in modern electrochemical systems is supported by the 

superior performance analytically, coupled with their novel properties such as the 

electrocatalytic ability of carbon nanomaterial modified electrodes, such as the enhanced 

active surface area of CNTs and the anti-fouling capability of diamond and diamond like 

surfaces.  

Moreover, as new, tuneable methodologies for the synthesis and functionalisation of carbon 

nanomaterial continue to be developed, the authors envision that this will result in a rising 

number of important electroanalytical applications in the near future in multiple fields of 

interest, such as rapid and sensitive medical analyses, drug quality monitoring, food and 

environment security.  

The authors also anticipate that a large portion of future efforts will focused on the 

development of bioinspired new hybrid carbon sensors that are capable of being processed on 

flexible substrates. The overall progress of this research field will have enormous implications 

for both fundamental scientific discovery and technological development. The potential 

sensors could be used to study electron transfer in naturally occurring biomolecules. 

Particularly as such an investigation of the interface of biology and electronics could lead to 

the fabrication of novel portable devices for use in advancing both human health and 

environmental monitoring globally. 
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Figure legends 

 

Figure 1 Schematic illustration of individual allotropes of CNTs. Reproduced from  

Ref. 136 with permission from the Royal Society of Chemistry. 

 

Figure 2 Example a fluorescent nano-diamond -based device. (a) Schematic of the 

formation of fluorescent nano-diamond – polyethylenimine –DNA complex based on 

electrostatic interactions and release of DNA after entering the cell. (b) Schematics of 

electrical charge density in the proximity of a fluorescent nano-diamond particle for 

fluorescent nano-diamond – polyethylenimine (left) and FND– polyethylenimine –DNA 

(right) complexes and the corresponding band bending of energetic levels in the diamond.  

(c) Photoluminescence spectra of oxidized fluorescent nano-diamond s and fluorescent nano-

diamond – polyethylenimine and fluorescent nano-diamond – polyethylenimine –DNA 

complexes recorded in aqueous solution (FND concentration: 0.2 mg ml-1) using an 

excitation wavelength of 514 nm. Formation of fluorescent nano-diamond – polyethylenimine 

complex causes a significant decrease in nitrogen-vacancy – luminescence compared to 

oxidized fluorescent nano-diamond s. The level of nitrogen-vacancy – luminescence increases 

again upon binding of negatively charged DNA, which compensates for the positive charge of 

polyethylenimine. Reproduced from Ref. 103 with permission from Royal Society of 

Chemistry. 
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Figure 3 Illustration of the synthetic process for the monodisperse Ni12P5 nanoparticles 

(a) and the Ni12P5/CNT nanohybrids (b). Reproduced from Ref. 159 with permission from the 

Royal Society of Chemistry. 

 

Figure 4 Scanning electron micrographs of fabricated nanoprobes for AFM: (a) J-tip 

and (b) B-tip types. These probes were fabricated to scan the sidewalls of a feature. 

Reproduced with permission from reference [179] Choi J, Park BC, Ahn SJ, Kim DH, Lyou J, 

Dixson RG, Orji NG, FU J, Vorburger TV, " Evaluation of carbon nanotube probes in critical 

dimension atomic force microscopes," Journal of Micro/Nanolithography, MEMS, and 

MOEMS, Mack CA, 15 (3) Number, 034005, (2016), Copyright Journal of 
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Micro/Nanolithography, MEMS, and MOEMS (2016) Society of Photo Optical 

Instrumentation Engineers. 

 

Figure 5 Shows (A) CV of bare GCE (a), MWCNTs/GCE (b) with 8.0 µM 8 –OhdG in 

0.2 M PBS (pH 7.0), at 100 mVs-1. (B)CVs of 8 μM 8 OHdG on MWCNTs/GCE in 0.2M 

PBS at different pH:4,5,6,7,8,9; at 100mVs-1. In set is the linear relationship of Epa vs. pH. 

(C) CVs of 8 μM 8 OHdGat MWCNTs/GCE with different scan rates (50 – 500mV-1) in 0.2 

M PBS (pH7.0). Inset is the linear relationship of Epa vs. ν. Reprinted from Biosensors and 

Bioelectronics, 86, Guo Z, Liu X, Wu G, Lu X, Constructing a novel 8-hydroxy-2′-

deoxyguanosine electrochemical sensor and application in evaluating the oxidative damages 

of DNA and guanine, 671-676, Copyright (2016), with permission from Elsevier. 

 

Figure 6 (A) SEM analysis of the morphology of MWCNTs; (B) SEM analysis of the 

morphology of MWCNTs/AuNPs; (C) CV measurements of the GCE after every processing 
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step; (D) pre-experiment of the sensor for the detection of target DNA (1.0 x 10 -12 M). 

Reproduced from Ref. 185 with permission from the Royal Society of Chemistry. 

 

Figure 7 Electrochemical cell configuration used for the electroanalytical detection of 7-

methylguanine [207] Reprinted from Electrochimica Acta, 138, Sanjuan I, Hernandez-Ibanez 

N, Foste CW, Banks Ce, Iniesta J, Boron-doped diamond electrodes explored for the 

electroanalytical detection of 7-methylguanine and applied for its sensing within urine 

samples, 671-676, Copyright (2016), with permission from Elsevier. 
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