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Abstract:

Background:

Recent  advances  in  developing  biocompatible  materials  for  treating  bone  loss  or  defects  have  dramatically  changed  clinicians’
reconstructive armory. Current clinically available reconstructive options have certain advantages, but also several drawbacks that
prevent them from gaining universal acceptance. A wide range of synthetic and natural biomaterials is being used to develop tissue-
engineered bone. Many of these materials are currently in the clinical trial stage.

Methods:

A selective literature review was performed for carbon nanostructure composites in bone tissue engineering.

Results:

Incorporation of carbon nanostructures significantly improves the mechanical properties of various biomaterials to mimic that of
natural bone. Recently, carbon-modified biomaterials for bone tissue engineering have been extensively investigated to potentially
revolutionize biomaterials for bone regeneration.

Conclusion:

This review summarizes the chemical and biophysical properties of carbon nanostructures and discusses their functionality in bone
tissue regeneration.

Keywords: Bone tissue engineering, Carbon nanostructures, Composites, Bone reconstruction.

1. INTRODUCTION

A large clinical need exists for bone reconstruction, including underlying conditions and causes such as high-energy
trauma  (e.g.  road  traffic  accidents),  tissue  degeneration  (e.g.  osteoporosis),  infection  (e.g.  osteomyelitis),  and
developmental deformities [1]. In trauma and orthopaedic surgery, extended bone loss is associated with considerable
technical and physiological issues. In the quest for alternative therapeutic strategies, research is focusing on the concept
of tissue engineering to assist the progress of bone tissue regeneration.

Advantageous  translation of tissue  engineering strategies to  several surgical  specialties has motivated  clinicians
to  adopt these approaches  in  bone  tissue  engineering  of   defects  [2, 3]. The  elemental  approach  underlying  tissue
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engineering is to combine a biomaterial scaffold with cells, and/or biologically active cues to form a construct, which
promotes regeneration of organs and tissues [4, 5]. The biomaterial scaffold design should consider physicochemical
properties,  microstructure,  and  degradation  in  vivo.  A  suitable  scaffold  will  (i)  possess  an  interconnected  porous
structure with surface properties that are beneficiary for the adherence, growth and differentiation of appropriate cells
and enable the exchange of nutrients and metabolic waste, and (ii) be biodegradable with a rate to compliment tissue
growth and regeneration [6].

Currently, there is also a need for better filler materials that can be used in the reconstruction of large bony defects
and implants that are mechanically robust and suited to their biological environment. A material measuring less than
100  nanometers  (nm)  in  at  least  one  dimension  is  the  widely  accepted  definition  for  a  ‘nano’  particle,  material  or
structure  [7,  8].  Due  to  their  unique  properties,  carbon  nanostructures  are  being  used  for  a  variety  of  applications,
including imaging, cancer therapy, drug delivery, and regenerative medicine [9, 10]. Carbon nanostructures have special
mechanical, electrical magnetic, optical, chemical, and other biological properties because of their high aspect ratio and
large surface area [11 - 14].

In this  review we discuss the currently available reconstructive options for  bony defects,  followed by currently
available biomaterials and tissue engineering techniques.  Furthermore,  we discuss the use of carbon nanostructures
which enhance biomaterials in bone tissue engineering.

2. BONE RECONSTRUCTION

The traditional methods for management of bony defects include autografting and allografting cancellous bone,
distraction osteogenesis, and applying vascularized free tissue transfer of the fibula and iliac crest [15, 16]. Despite
several advantages, a number of drawbacks are associated with their use [17 - 20]. The generalized properties of bone
reconstruction interventions have been summarized in Table 1 including their biophysical properties, the relative risk to
the  patient,  and  the  practicability  of  the  intervention  (i.e.  availability  and  cost)  [17  -  31].  The  biggest  shortfall  of
allografts, xenografts, demineralized bone matrix (DBM), and alloplasts is that they lack either osteoinductive and/or
osteoconductive properties, and in some cases lead to disease transmission and/or rejection [17, 19, 22].

The  osteogenic,  osteoinductive,  and  osteoconductive  properties  of  autografts  are  ideal,  whereas  their  use  is
associated with minimal risk of infectious disease transmission [19]. Since bone grafts are avascular and dependent on
diffusion, the size of the defect and the viability of the host bed can limit their application. Autografts have restricted
availability and are often difficult to harvest, causing additional morbidity. In addition, insufficient integration of bony
autografts  may  necessitate  secondary  surgical  procedures.  Volume  maintenance  of  the  new  bone  can  also  be
problematical  due  to  unforeseeable  bone  resorption.

By definition, an allograft is tissue harvested from one individual and transplanted in another of the same species
[32]. Use of bone allografts has similar drawbacks as autograft except the associated donor site morbidity, but increases
the  risk  of  infectious  disease  transmission.  Fresh-frozen  or  freeze-dried  allografts  are  available  as  structural  and
morselized forms [33]. Allografts are osteoconductive and provide a scaffold framework for host tissue to grow in.
Contrarily, it has moderate osteoinductive properties at best. Following implantation, the host is believed to ellicit a
complex immune response [33, 34]. Freeze-drying or freezing the allograft is imperative in restricting this immune
reaction;  although,  the  crucial  osteoinductive,  osteoconductive,  and  mechanical  properties  of  the  material  may  be
reduced.

Vascularized bone transfers import vascularized tissue into the defect and can be used to bridge larger bone defects.
They are, however, associated with significant donor site morbidity, limited availability, technical difficulties, and long
operating times [35].

Distraction osteogenesis, a surgical procedure used to lengthen bone, entails a corticotomy to fracture the bone into
two segments followed by distraction to allow osteogenesis in the gap. When distraction has led to the desired length,
the bone is allowed to heal. This technique has the benefit of increasing the length of bone as well as the volume of the
surrounding  soft  tissue.  However,  multiple  procedures  are  required  to  achieve  the  desired  results,  considerable
morbidity  is  caused  to  the  patient,  and  there  is  a  major  risk  of  infection  [36].

2.1. Biomaterials in Bone Tissue Engineering

Recent developments in the field of biomaterials and tissue engineering have led to many compounds and materials
with a wide range of favourable properties to be used for implantation [37 - 39]. Oryan et al. have provided an excellent
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review  on  the  classic  options,  as  well  as  emerging  biomaterials  in  bone  tissue  engineering;  including  a  list  of
commercially  available  bone  graft  substitutes  [17].
Table 1. Properties of bone reconstruction interventions.

Bone
Reconstruction
Intervention

Relative Properties
Biophysical Properties Risk to Patient Practicability

Osteo-
conductive

Osteo-
inductive

Osteo-
genic

Osseo-
integration

Structural
Framework

Additional
Morbidity

Disease
Transmission Rejection Availability Cost

Cancellous autograft
[17, 19, 22] +++ ++/+++ +++ +++ -/+ ++/+++ - - + ++/+++

Cortical autograft [17,
19, 22] ++/+++ ++/+++ ++/+++ +++ +++ ++/+++ - - +/++ ++/+++

Distraction
osteogenesis [23 - 26] +/+++ ++/+++ ++/+++ N/A N/A +/++ - N/A + ++/+++

Allograft [17, 19, 22] +/+++ -/+ - ++/+++ -/+++ - + +/++ +/+++ +/+++
Xenograft [17] +/+++ + - ++/+++ -/+++ - ++ +++ ++/+++ +/++
Deminieralized bone
matrix [17, 19] +/+++ ++ ++/+++ ++/+++ -/+++ - + +/++ ++/+++ +/++

Alloplasts [17, 19] +/+++ -/++ - ++/+++ -/++ - - -/+ +++ +
Polymers [27 - 29] ++/+++ ++/+++ ++/+++ ++/+++ +/++ - - - +/+++ +/+++
Carbon nanostructure
composites [30, 40 -
43]

++/+++ ++/+++ ++/+++ ++/+++ ++/+++ - - - +/+++ ++/+++

Optimal intervention +++ +++ +++ +++ +++ - - - +++ +
Relative properties are subjectively graded by the authors based on the literature referenced. Grey shading in each cell highlights the shortcomings of
each bone reconstruction intervention. ‘Optimal intervention’ is suggested by the literature [17, 19]. Osteoconductivity is the ability of new bone
cells/colonise and spread [19]. Osteoinductivity is the ability/stimulate or promote bone formation [18, 19]. Osteogenicity is the presence of bone-
forming cells within the bone graft [19, 20]. Osseointegration is the formation of bony tissue around the implant without the growth of fibrous tissue
at the bone–implant interface [44]. N/A = Not applicable, - = none, / = range, + = low, ++ = moderate, +++ = high, (e.g. ++/+++ means moderate to
high).

Bone with its complex molecular and anatomical components can be analysed as a ‘composite’ material. It consists
of collagen, bone mineral, and water. The mineral component can be approximated as hydroxyapatite (HA) with the
molecular formula: Ca10(PO4)6(OH)2), which in addition incorporates silicon, carbonate, and zinc. Some biomaterials
currently used for bone regeneration aim to mimic its molecular microenvironment. Furthermore, the main function of
bone is loadbearing and structural support. It has a high elastic Young’s Modulus ranging from 12 to 18 GPa [27].

To date,  metals have been preferably selected as structural  implants to replace or reinforce bone owing to their
superior mechanical properties. The majority of the materials are, however, not suitable for implantation due to the
host’s poor tolerance of dissolution products. Currently acceptable materials are based on titanium, cobalt, iron, nickel,
zirconium, tantalum, gold and silver. Alloys have been made of these base metals aiming to improve their properties,
including ultimate strength, elastic modulus, fabricability, ductile behaviour, and corrosion resistance. There are three
alloy  systems  available:  titanium  alloys,  stainless  steel  (chromium,  iron,  and  molybdenum),  and  cobalt-chromium.
These metallic implants, however, have many drawbacks including stress shielding, which may result in bone atrophy
and osteoporosis, palpability, risk of infection, extrusion, and particulate leaching [45 - 47].

DBM  is  derived  from  allograft  bone  and  prepared  by  pulverization  of  bone  to  a  specific  size.  This  process  is
followed by acid extraction of the mineralized part of bone [33, 34, 48], resulting in a mixture of collagen, growth
factors, and proteins [48, 49]. In addition, different carriers, such as HA, glycerol, gelatin, and calcium sulfate can be
added to the composite [48, 50]. DBM does not provide mechanical support, although its osteoconductive properties are
highly  desirable.  It  has  superior  osteoinductive  properties  compared  to  allograft  bone  due  to  the  release  of  growth
factors during the demineralization phase [33, 34].

Many other non-metallic materials have been investigated for implantation in bony defects, including bioglasses and
ceramics, as well as polymers such as polymethylmathacrylate (PMMA) and ultrahigh molecular weight polyethylene
(UHMW-PE). PMMA is mainly used to affix implants. Although adhesive, it does not bond to either the bone or the
implant. UHMW-PE, applied as a biomaterial for orthopaedic implants, has a low coefficient of friction and a nonstick
self-lubricating surface. The major disadvantage of UHMW-PE has been wear resulting in particle debris that is not
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biocompatible and can lead to loosening of the prosthesis. Ceramics have poor strength and are brittle. They have been
mainly  used  for  filling  smaller  bony  defects.  The  most  popular  ceramics  have  been  tri-calcium  phosphate  and  the
derived ceramic HA. Tricalcium phosphates are porous ceramics that mimic the microstructure of cancellous bone.
Bioglass  has  a  porous  structure  that  supports  tissue  ingrowth  and  improves  implant-tissue  interface  and  stability.
However, it’s more suited for load-free areas due to its low fracture resistance..

Synthetic bone substitutes, used as bone ‘fillers’, are vastly osteoconductive. They carry minimal risk of disease
transmission  and  range  from  those  with  minimal  osteoinductive  capacity  (calcium  sulphate)  to  those  with  high
osteoinductive capacity (Bone Morphogenic Proteins (BMP), such as BMP-2 and BMP-7). Calcium sulfate has been
implanted as a bony substitute since the 19th century [33]. Current forms of processed calcium sulfate include Osteoset
(Wright Medical, Arlington, TN, USA), and Bone Plast (Interpore Cross International, Irvine, CA, USA). Osteoset is
indicated for filling small bony defects [51]. Coralline calcium phosphate has a highly organized microstructure, with
large  interconnected  pores  that  simulate  the  structure  of  cancellous  bone  [51].  Pro-Osteon,  a  synthetized  coralline
calcium phosphate converted into hydroxyapatite by heat (Interpore Cross International, Irvine, CA, USA) is available
for the treatment of metaphyseal defects [51]. It has a long resorption time, which is one of its initial disadvantages.
Vitoss  (Orthovita,  Malvern,  PA,  USA)  is  a  β-tri-calcium  phosphate  designated  for  bony  defects  of  the  pelvis,
extremities,  and  spine  [51].  Vitoss  is  excessively  porous  and  promotes  cell-mediated  remodelling  and  resorption
following implantation [51]. It, however, often requires the addition of bone marrow to function properly.

Both synthetic and natural polymers have been extensively investigated. Synthetic degradable polymers, such as
polycaprolactone  (PCL),  polyvinyl  alcohol  (PVA),  and  polylactides  (PLLA,  PLDA),  polyorthoester  (POE),
polyanhydrides, polyglycolide (PGA) and especially poly(lactide-co-glycolide) (PLGA) are most commonly used for
bone regeneration [4].

Xenografts are transplantation from another species into humans, such as from bovine [52], porcine, and equine [53]
sources.  There  are  also  many  marine  sources  (such  as  coral,  algae,  cuttlefish,  and  others)  which  have  also  been
identified to extract hydroxyapatite and/or calcium carbonate materials and scaffolds [54]. While potentially in high
abundance, xenografts have low osteoinductive and osteogenic potential, as well as have the potential to cause cross-
species rejection in some cases [55].

2.2. Advances in Materials for Bone Tissue Engineering

Lack of interactions or unsuitable interactions between synthetic materials and tissues remain a major concern; often
resulting in implant failure [56 - 59]. When considering biomaterials suitable to support bone tissue engineering, these
should stimulate and support both the in-growth of bone as well as remodelling and maturation of bone by providing
geometrical cues and suitable stiffness. It is paramount that scaffolds provide sufficient initial mechanical strength to
substitute for the loss of the diseased or absent tissue and biodegrade at a rate which is compatible with tissue ingrowth
and maturation [4]. No single natural or synthetic compound has similar mechanical properties and bioactivity as bone
tissue, which is made of both inorganic and organic components [60]. A common strategy to overcome this issue, and
enhance implant biocompatibility has been to modify their surface and microarchitecture with functional moieties and
to combine them with other materials to form composites [61 - 65]. A wide range of nano- and micro-scale materials
have been utilized in bone tissue engineering, including natural and synthetic polymers [66, 67], ceramics [68 - 70],
composites [27, 71, 72], metals [73, 74], and even extracts from coral [75, 76] or sponge, coming from either naturally-
occurring (e.g. collagen) or synthetic (e.g. PLGA or PGA) sources [60]. Functional moieties are usually selected to
generate biocompatible matrices by carrying specific cues and/or growth factors or non-fouling surfaces, preventing the
adherence of undesired proteins and cells.

In  addition  to  improving  biocompatibility  of  implants  and  bone  fillers,  several  strategies  for  improving  the
mechanical  properties  (compression  and  flexural)  of  polymeric  scaffolds  have  been  employed  including  that  of
synthetic biodegradable polymers. The integration of harder materials into polymeric scaffolds has been investigated for
decades [77 - 79]. Noteworthy strategies include the addition of hydroxyapatite and tri-calcium phosphate [80]. The
achieved improvement in mechanical properties from such strategies is still in the range of trabecular bone and not
comparable to that  of  cortical  bone.  Majority of  nonmetallic  materials  have not  found widespread use as structural
implants owing to inherent deficiencies in mechanical properties,. This has prompted scientists to design and develop
mechanically compatible scaffolds that can accommodate the mechanical properties of bone [4, 81], are biocompatible,
and induce bone regeneration.



Carbon Nanostructures in Bone Tissue The Open Orthopaedics Journal, 2016, Volume 10   881

3. CARBON NANOSTRUCTURE COMPOSITES

Over the last 20 years there has been a sharp rise in bone tissue engineering research [1, 4, 60, 66, 82], especially
around the use of carbon nanostructures [30, 83 - 85]. Although carbon nanostructures are promising materials for bone
tissue engineering for their light weight, strength, conductivity and stability [72, 86], they cannot be readily used in their
pure form as synthetic bone tissue and have therefore been combined with other materials to create new composites [72,
86]. Consequently, carbon nanostructure-reinforced composites are an emerging class of high-performance materials
with unique mechanical properties [41, 42, 64, 65, 72, 78, 87 - 95], having both a high Young’s modulus and tensile
strength [27, 96 - 105] (Table 2).
Table 2. Physical properties of carbon nanostructures.

Structure
Tensile

Strength (GPa)
Young’s

Modulus (GPa) References
Bone
Cortical Bone      0.051-0.133      12-18 [27, 96, 106]
Cancellous Bone      0.0074      0.1-0.5 [27, 106]
Metal Alloys
Stainless Steel      0.586      190 [106]
Co-Cr alloy      1.085      280 [106]
Ti-alloy      0.965      116 [106]
Ceramics
Alumina      0.300      380 [106]
Zirconia      0.820      220 [106]
Bioglass      0.042      35 [106]
Hydroxyappetite      0.050      95 [106]
Carbon Nanostructure
Graphene      130      1000 [97, 98, 107]
Graphene nanoribbons      170-175      ~1000 [101, 108]
Graphene oxide nanoplatelets      --      220 [97, 99, 100]
Carbon Nanotubes
SWCNT      126      650 - 5500 [103, 104]
DWCNT      23-63      -- [116]
MWCNT      >63      200 – 1950 [103 - 105]
Nanodiamonds      >60      170-1220 [102, 103]
Co = cobalt, Cr = chromium, DWCNT = double-walled carbon nanotubes, MWCNT = multi-walled carbon nanotubes, SWCNT = single-walled
carbon nanotubes, Ti = titanium

3.1. Carbon Nanostructures

Graphene, a basic building-block of carbon nanostructures, is a honeycomb lattice of carbon atoms in a single layer.
Graphene’s planar structure and sp2-hybridized carbon bonds enable it to react in a number of reactions, such as carbine
insertion  reactions,  cyclo-additions,  and  click  reactions  [97].  It  is  one  of  the  thinnest  and  strongest  materials  ever
examined [107, 110]. Other carbon nano-scale allotropes include multi-walled carbon nanotubes (MWCNT), single-
walled carbon nanotubes (SWCNT), buckyballs, ultra-short single-walled carbon nanotubes (US-SWCNT), graphene
nanoribbons, and (graphite) nanoplatelets (Fig. 1), each with their own unique attributes.

Carbon  nanotubes  (CNTs)  are  cylinders  of  rolled-over  sheets  of  graphene,  with  a  typical  diameter  of  a  few
nanometers and aspect ratios of up to 130 000 000:1. Typically, they are insoluble in water, but could be made soluble
via chemical modification with single-stranded DNA or phospholipids containing a polyethylene glycol (PEG) moiety,
for example. CNTs can be classified into two categories based on their structure: 1) single walled (SWCNTs), which
consist of one layer of grapheme cylinder and 2) multi-walled (MWCNTs), which contain multiple layers of graphene
cylinders [111]. SWNTs have photoluminescence properties that could be advantageous for applications in imaging and
diagnostics, whilst MWNTs provide a larger surface, which could better facilitate external functionalization [112, 113].

Nanodiamonds (NDs), which are diamonds typically measuring 4-10 nanometres in diameter, are different from
graphene-based materials as they are sp3 hybridized in a crystal lattice [114] rather than taking on planar architecture of
graphene. NDs have excellent protein binding properties and can be carriers of molecules such as BMP-2 and basic
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fibroblast growth factor (b-FGF) [115]. Mochalin et al. provide a broad overview of ND synthesis, purification, de-
aggregation, surface modifications, properties and applications [116].

Fig. (1). Carbon Nanostructures Graphene (left), single-walled carbon nanotube (top), buckyball (right).

Pristine carbon nanostructures are incompatible with aqueous solvents and therefore much effort has been made to
‘functionalize’  these  molecules.  As  such,  carbon  nanostructures,  including  graphene,  CNTs  and  NDs,  can  be
functionalized  with  alkyl,  carboxyl,  or  other  groups  [117,  118]  to  improve  solubility  and  dispersion  [30].  These
functionalizations can affect the carbon nanostructure’s physical properties, as well as its osteogenic, osteoconductive
and osteoinductive abilities [6, 40, 71, 109, 117, 119 - 121].

3.2. Carbon Nanostructure-polymer Composites

The nano-dimensionality of carbon nanostructures offers potentially higher bonding energy and larger surface area.
These properties increase the possibility of interfacing with the nanocomposite polymeric scaffold [79, 122]. Many
biocompatible polymers, fillers, excipients, and other materials are currently being evaluated for clinical use, not only in
bone tissue engineering. Seal [123], Rezwan et al. [27], Middleton et al. [28], and Armentano et al. [29] and others have
reviewed some of the most common biodegradable, bioresorbable, bioerodable, and/or bioabsorbable polymers [4, 124],
which  could  potentially  be  used  in  conjunction  with  carbon  nanostructures  as  fillers.  Other  review  articles  and
individual studies have investigated properties of carbon nanostructure-containing polymeric composites [64, 65, 71,
72, 87, 88, 125, 126]. While Mittal et al. [72] and Venkatesan et al. [30] summarize the properties of CNTs, graphene
and  polymers,  many  of  the  factors  they  describe  can  be  applied  to  other  carbon  nanostructures  and  scaffolding
materials. “Such properties not only depend on the inherent properties of the polymer and the filler, but also on the size
and shape of the filler, the distribution of filler within the polymer matrix, and the physical and/or chemical interactions
between the polymer and filler” [40].

Graphene and its planar derivatives [e.g. graphene oxide and reduced graphene oxide (nanoplatelets)] have been
shown to be an effective filler in polymer composites, and in some instances, outperform CNTs as a filler [72, 127 -
129]. In some cases, such as with specific polymers, graphene may be the preferential carbon nanostructure of choice.
For  example,  low  nanofiller  content  graphene  nanoplatelets  performed  significantly  better  than  CNTs  in  terms  of
enhancing  “tensile  strength,  Young’s  modulus,  fracture  toughness,  fracture  energy,  and  resistance  to  fatigue  crack
growth” [128]. In another instance, MWCNTs were only shown to be effective in epoxy composites when ‘unzipped’
into graphene nanoplatelets, most likely due to increased surface area and the physical properties of epoxy scaffolding
[129].

A wide range of literature reviews and studies exist summarizing the synthesis methods and physical properties of
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polymeric composites containing CNT fillers [43, 71, 72, 77, 79, 83, 85, 92, 109, 130 - 143]. Venkatesan et al. describe
scaffolds from chitosan, collagen, gelatin, PCL, PLGA, and PLLA, among others [30]. Most of these composites show
clear signs that CNTs enhance the polymers’ ability to replace bone tissue. The electrical conductivity of CNTs also
brings  an  interesting  element  to  the  use  of  bone  material,  as  electric  stimulation  of  10  mA at  10  Hz has  shown to
increase cell proliferation, increase extracellular calcium, and upregulate collogen type-1 [144].

Similar to graphene and CNTs, ND composites are also demonstrating effectiveness in bone tissue scaffolds [145,
146]. Mochoalin and Gogotsi have reviewed the literature for ND-polymer composites, which provides evidence that
NDs can improve the properties of the composite, such as the “Young’s modulus, hardness, high thermal conductivity
and  electrical  resistivity,  low  coefficient  of  friction,  chemical  stability,  and  biocompatibility”  [146].  Of  particular
interest are octadecylamine modified ND (ND–ODA), and composites of poly(l-lactic acid) with ND–ODA, which are
relatively non-toxic and have “Young’s modulus values close to cortical bone” [147]. NDs do not present the same high
aspect ratios as CNTs, yet their spherical shape and large surface area per unit of particle volume allow NDs to have a
few benefits over CNTs [146].

3.3. Carbon Nanostructure-ceramic Composites

Ceramics are of interest to bone tissue engineers due to their high stiffness, high strength, chemical inertness, and
low density; but has a lack of toughness and are prone to catastrophic failures if defects exist [148]. The incorporation
of carbon nanostructures aims to maintain the materials’ strengths, but also increases their toughness, prevents these
catastrophic  failures  from occurring,  and  increases  their  functionality  as  bone  tissue.  Case  in  point,  ceramics  with
functionalized graphene have improved physical properties and biological outcomes, such as enhanced osteogenicity
(better adhesion of the hMSCs), calcium deposition by osteoblasts, sintering temperature, and electrical conductivity
[149 - 151]. Simliarly, graphene nanosheet-HA nanorod (GNS-HA) composites display superior attributes to pristine
graphene oxide or hyaluronic acid [152].

There are a range of studies which mix CNTs with ceramic(-like) materials [30] such as hydroxyapatite [153 - 160]
and bioglass [69, 70, 151, 161 - 165]. CNTs significantly increase the “compressive strength and fracture toughness (by
106% and 21%, respectively)” [166] of diopside scaffolds at low concentrations (MWCNTs from 0.5-2 wt%). “Further,
the scaffolds exhibited good apatite-formation ability and supported adhesion and proliferation of cells in vitro” [166].

3.4. Carbon Nanostructure-polymer-ceramic Composites

Increasingly, studies are evaluating the effects of polymer-ceramic composites [167 - 169], as well as with carbon
nanotubes [80, 87, 162, 170 - 172]. There is still  much work to be done as there are an almost limitless number of
combinations of carbon nanostructures, polymers and ceramic(-like) compounds which could be mixed together. Early
results  do  look  promising.  For  example,  2-7%  MWCNTs  increased  the  roughness  of  a  poly(3-hydroxybutryate)-
bioactive  glass  composite  surface,  and  in  low  concentrations,  enhanced  cell  attachment  and  proliferation  [162].
Additionally, Chitosan-MWNTs-HA nanocomposites demonstrated a sharp increase in the elastic modulus by 114%
and compressive  strength  by 218%, by increasing MWNTs-chitosan weight  ratios  from 0 to  5% [90].  Plenty  more
examples of carbon nanostructures enhancing complex composites exist, yet the purpose of this review is not to list all
previously evaluated formulations. A more thorough investigation into the literature is required, such as a systematic
review of the formulations evaluated and the outcomes of such studies.

3.5. Effectiveness of Carbon Nanostructures in Bone Tissue

There are an almost an indefinite combination of carbon nanostructures, polymers, ceramics and other excipients
which could be combined to create a potential material for bone tissue repair. Nonetheless, a few promising candidates
have been tested both in the in vitro and in vivo settings. While there have been a large number of in vitro experiments
evaluating carbon nanostructures, there have not been many which have evaluated carbon nanostructures for bone tissue
engineering  using  in  vivo  models  to  date  [9].  Nonetheless,  carbon  nanostructures  continue  to  be  some of  the  most
promising materials for bone tissue engineering [9, 30].

Dubey  et  al.  have  recently  summarized  a  wide  range  of  studies  evaluating’s  graphene’s  potential  to  enhance
osteogenesis  [173].  Newman et  al‘s  review thoroughly evaluates studies in the literature from 2002 to 2013 which
evaluate the osteogenic and proliferative potential of SWCNT and MWCNT [119], as well as discusses the potentials
and pitfalls of CNT design and use. Pristine MWCNTs have been shown to delay the growth of human bone marrow
mesenchymal stem cell (hBMSC), however enhance differentiation. Cells “spread on MWCNTs toward a polygonal
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shape”, which is an important step in osteogenic differentiation [174]. In addition, hBMSCs preferred MWCNTs to
tissue  culture  plastic  for  attachment  and  growth,  supporting  the  osteoinductive  properties  of  MWCNTs  [174].
Nanodiamons  are  also  biocompatible  [91]  and  promote  osteoblast  adhesion  and  proliferation  (osteoconduction  and
osteogenesis) [175].

SWCNTs and MWCNTs have been shown to be used alone as scaffolding to promote bone cell (osteocytes and
osteoblasts)  proliferation in  vitro  [176].  A wide range of  studies  have shown positive  effects  of  CNT on bone cell
proliferation  [86,  159,  177  -  183].  In  2002,  Supronowicz  et  al.  demonstrated  for  one  of  the  first  times  that  CNT
composites  can  promote  osteoblast  functions  that  are  responsible  for  the  organic  and  inorganic  phases  of  bone
composition  [144].  Since  then,  several  carbon  nanostructure  composites,  such  as  carbon  nanofiber-polycarbonate
urethane (PCU), CNT-poly(lactic acid) (PLA) and CNT-PLGA, were shown to enhance adhesion of osteoblasts in vitro
[83, 184 - 186].

Usui et al. have exhibited that MWCNTs implanted into ccy mice “show high bone-tissue compatibility, permit
bone repair, become integrated into new bone, and accelerate bone formation stimulated by recombinant human bone
morphogenetic protein-2 (rhBMP-2)” [31]. Bhattacharya found that when SWCNT composites were placed in a critical-
sized rat calvarial defects, there were few signs of rejection or inflammation and showed adequate bone formation was
[187]. Similarly, carbon nanohorns, a type of CNT, have been shown to be both compatible and effective in bone tissue
regeneration within rat calvarial bone defects [188]. Likewise, nanodiamonds have also been promising materials in
vivo.  Addition  of  oxygen-terminated  ND  particles  to  a  poly(L-lactide)-co-(e-caprolactone)  scaffold  significantly
increased bone marrow-derived stem cell attachment and proliferation in vivo, along with enhanced bone formation
after 24 weeks in vivo [189], which has also been confirmed in vitro [190].

4. TOXICITY OF CARBON NANOSTRUCTURES

While carbon nanostructures have been described as “extremely effective and very safe biomaterials” [9] in both in
vitro and in vivo testing for bone engineering applications [191], carbon nanostructures present toxicological effects
[191 - 201]. This toxicity should be taken into account when engineering synthetic bone tissues. It must also be noted
the  release  of  CNTs  can  occur  not  only  during  production,  but  also  during  the  usage  and  disposal  phases  of  these
applications [202].

The  pharmacodynamics,  pharmacokinetics,  and  toxicokinetics  of  a  carbon  nanostructure  can  vary  significantly
based  upon  the  specific  dimensions,  surface  properties/functionalization,  bio-durability  and  the  protein  corona
surrounding the carbon nanostructure [193, 203]. As the toxicological effects of a carbon nanostructure will most likely
differ once combined into a composite, and the fact that many composite materials have been independently tested for
safety,  we  have  focused  on  describing  the  toxicological  effects  of  common  carbon  nanostructures  below  without
potential composite materials. Complicating the matter is the fact that studies are difficult to compare due to there being
different  species,  dosing,  vehicles,  functionalizations,  and  characterisation  techniques;  resulting  in  problematic
interpretation  and  inadequate  risk-assessment  [192,  204].

4.1. Biodistribution and Biodurability

Biodistribution and biodurability of carbon nanostructures is of key concern when developing implants containing
these materials. Until this process is understood, their use in the clinic will be obstructed [205]. Pristine CNTs have
been found both at the site of exposure as well as other tissues up to 24 months post-administration [206 - 209]. The
biodistribution  of  carbon  nanostructures  is  primarily  based  upon  the  allotrope  and  its  chemical  functionalization.
Pristine (non-functionalized) carbon nanostructures appear to be of most concern in regard to in vivo accumulation.
Following intravenous injection, “pristine SWCNTs distributed the entire body with major accumulations in the liver,
lungs, and spleen over an extended period of time” [210]. Similarly, when pristine MWCNTs were injected into mice,
they “accumulated in the liver, lungs and spleen” [211].

Functionalizations can dramatically change a CNTs pharmacokinetic properties and biodegradability [212]. One
study  finds  that  the  accumulation  of  CNTs  is  ameliorated  by  the  degree  of  functionalization  [213]  rather  than  the
functionalization’s characteristics (e.g. chemistry or size) [211], however other studies find that degradation rates are
functionalization-specific [214]. Ali-Boucetta and Kostarelos suggest functionalization leads to rapid excretion through
the bladder-urine route, whereas non-covalently coated CNTs show major accumulation in the liver and spleen [205].
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4.2. Cytotoxicity

Cytotoxicity of carbon nanostructures has been observed along a range of cell  lines,  concentrations,  production
methods, excipients and assays [215]. However, recent studies have shown that CNTs have relatively low levels of
cytotoxicity and are safe for clinical use [9, 185].

Studies suggest that there are two main mechanisms of carbon nanostructure toxicity: inflammation and reactive
oxidative species (ROS), which are inter-related [192, 216]. Production of ROS results in lipid peroxidation, protein
alteration, and intracellular GSH depletion, leading to NF-kB activation which in turn upregulates IL-1β, IL-6, TNF-α,
iNOS (proinflammatory markers) to trigger cell death [216, 217].

Carbon  nanostructures  have  some properties  which  make  them cytotoxic,  particularly  to  immune  cells.  Carbon
nanotubes (CNTs) and fullerenes have been shown to by cytotoxic to alveolar macrophages [199], as well as induce
human T-lymphocyte [218] and fibroblast  [198] apoptosis  in  culture.  Surface oxidation of  CNTs has demonstrated
toxicity in vitro, inducing apoptosis in human T lymphocytes [218]. Surface oxidation of CNTs by acidic treatment
leads to a dose-dependent cytotoxicity to human neuroblastoma cells [219]. In a mouse model, MWCNTs coated with
an acid-based polymer led to higher levels of macrophage-induced inflammation and oxidation [220].

The dimensions,  such as  length,  width,  and aspect  ratio  of  a  carbon nanostructure  can potentially  determine its
toxicological  properties.  Murphy  et  al.  demonstrated  that  for  CNTs  there  is  a  length-dependant  increase  in  acute
cytokine  release  from  THP-1  macrophages,  which  is  most  likely  due  to  frustrated  phagocytosis  [221].  There  are
conflicting results on whether thinner CNTs appear to be more toxic than thicker CNTs [193, 195, 196, 222], however
CNTs with lower aspect  ratios demonstrate greater  toxicity to human lung-tumor cell  lines [223].  Imperfections or
defects  in  carbon  nanostructures  can  also  play  a  role  in  undesired  toxicity.  MWCNTs  present  higher  levels  of
genotoxicity  with  higher  levels  of  defects  [224].

Carboxyl groups have be implicated as a pro-inflammatory functionalization on CNTs [193, 225]. Lanone et al.
suggest toxicity could be due to increased bioavailability, negative charge of the functionalization (possibly leading to
higher  levels  of  internalisation  by  macrophages),  or  both  [193].  Conversely,  amino  [226]  and  polyethylene  glycol
(PEG) [216] groups can reduce CNT cytotoxicity, whereas albumin coating can specifically reduce SWCNT toxicity
[227]. Furthermore, Wang et al. demonstrated that Pluronic F108 coating decreases (while albumin increases) the lung
fibrosis  potential  of  MWCNTs  by  reducing  lysosomal  injury  [228],  suggesting  that  it  is  important  to  consider  the
excipient used with carbon nanostructures in a composite.

Some experiments have shown that nanodiamonds have little to no cytotoxicity or genotoxicity across a range of
tissues [229]. However other studies have detected ND-mediated cytotoxicity, proliferation, inhibition and oxidative
stress in HeLa cells, as well as genotoxicity in higher concentrations [230]. Further evaluations are necessary to fully
assess the toxicology of nanodiamonds.

4.3. In Vivo Toxicity

Acute and sub-chronic mouse and rat studies are summarized by Clichici et al. [192], Lanone [193] and Zhao et al.
[215]. They all recommend standardized testing of carbon nanostructures due to the complicated nature of the molecule
class and the lack of consistent testing in the literature. Similar to the cytotoxic effects of carbon nanostructures, ROS
and inflammation appear to be the main causes of toxicity, leading to inflammation, fibrosis, granulomas and apoptosis
[215]. Following implantation of CNTs, a majority of in vivo studies have reported on local reactions [9].

A wide range of inhalation toxicology studies have been performed evaluating CNTs as it is believed that CNTs are
generated in the combustion of fuels [231 - 233] as well being an occupational hazard during CNT manufacturing [191,
234]. Lanone et al. [193] describe how the size and dimensions of a (carbon nano-) ‘particle’ or ‘fibre’ effects how a
nanostructure might react in the lung. Gernand and Casman’s meta-analysis of carbon nanotube pulmonary toxicity
studies [235] found that the metallic impurities, CNT length and diameter, and aggregate size contribute the most to
pulmonary toxicity. A nanoparticle may be more confined to the lungs whereas a nanofibre would have a greater effect
on the pleura (e.g.  like asbestos).  It  has been shown in two different mouse models that long MWCNTs “results in
asbestos-like,  length-dependent,  pathogenic  behaviour”  [236,  237].  Following  intrapharyngeal  or  intratracheal
administration  of  SWCNTs  and  MWCNTs  in  mice  and  rats;  “inflammation,  epithelioid  granulomas  (microscopic
nodules), fibrosis, and biochemical/toxicological changes in the lungs” [191] were observed, independent of how they
were synthesized, or the metal content or type [191, 200, 201]. Furthermore, in a comparative inhalation study in mice,
“SWCNTs were more toxic than quartz” [191], a common reference material and known chronic occupational health
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hazard [200, 201]. Although inhalation toxicology may pose a threat to those manufacturing the CNTs or other carbon
nanostructures,  evidence  suggests  there  should  be  minimal  inhalation  exposure  while  a  clinician  installs  a  carbon
nanostructure-based composite implant [238].

Further research, methods development and standardization are required to truly evaluate a carbon nanostructure
composite’s toxicological profile over its life cycle [238], especially once implanted in a patient.

4.4. Human Exposure Toxicity

Although  they  are  promising  materials,  carbon  nanostructures  for  bone  tissue  engineering  are  currently  in  the
preclinical stage of development. Huckzo and Lange have evaluated fullerene soot with a high level of SWCNTs was
tested to asses topical activity in human volunteers, which resulted in no signs of skin irritation or allergic risk [239].
However,  as  of  October  2015,  the  authors  have  not  found  an  evidence  of  carbon  nanostructures  being  used  in
randomized clinical trials registered in European Union (clinicaltrialsregister.eu) or United States (clinicaltrials.gov). It
is also unclear when these technologies might enter clinical trials for therapeutic purposes.

CONCLUSION

Carbon nanostructures present an interesting case for bone tissue engineering. They can be used as an additive to
currently available materials to form a composite which is osteogenic, osteoconductive and osteoinductive. It is clear
that there are a wide range of studies which paint an incomplete, yet informative, picture regarding carbon nanotube
functionality and toxicity as a potential filler for bone tissue engineering [192, 205]. Ideally, a composite, whether made
from carbon nanostructure(s), polymer(s), and/or ceramic(s), would have to possess all of the biophysicochemical and
biomedical properties required of a bone substitute, without exorbitantly increasing the cost to manufacture the goods.
Once a composite containing carbon nanostructures is refined and selected, it will require thorough investigations both
in vitro and in vivo to ensure efficacy and safety as required by the regulatory agencies. If developing a new composite
for clinical  application,  it  would be wise to ensure this  formulation was differentiated enough from the intellectual
property landscape to allow commercial development of a product through the cost and time required to undertake and
complete clinical trials.

While  some  allotropes  of  carbon  present  cytotoxicity  and  inhalation  toxicity  in  certain  instances,  carbon
nanostructures appear to be safe enough to continue to be evaluated for clinical use. There is evidence that shows that
once a carbon nanostructure is fixed into a solid composite form, the effects of carbon nanostructure toxicity can be
reduced [90], possibly due to reduced bioavailability, both in particulate form and/or in solution. Toxicokinetic studies
suggest that a high level of functionalization of carbon nanostructures might be preferential in vivo.  Once a carbon
nanostructure detaches from an implant, this high degree of functionalization could prevent bioaccumulation in the liver
and spleen. In the case of a long-term implant for bone defects, persistence at 24 months may or may not be beneficial,
depending on the level of resorption desired. Based on this potential stability, it may be worthwhile to consider carbon
nanocomposites for other uses than only bone defects, such as for joint replacement or full prosthetics.

Currently, the literature is fractured with pockets of combinations for fillers and scaffolding molecules being tested.
What  is  missing  from  the  literature  is  a  systematic  evaluation  (e.g.  factorial  experiment/design  of  experiment)  of
different carbon nanostructures, polymers, ceramics, cements, bioglasses, fillers and/or excipients in a single evaluation
platform.  Furthermore,  standardized  experimental  models  and  desired  outcomes  (e.g.  Young’s  modulus,  elastic
strength,  HA  deposits,  etc.)  to  evaluate  engineered  bone  tissue  have  not  yet  reached  consensus  in  the  academic
community.

Although carbon nanostructures show promise, it must be noted that the high cost of carbon nanostructures has been
an obstacle to widespread adoption [21]. The high cost of carbon nanostructures becomes even more exacerbated within
regulated biomedical applications, as the cost of cGMP-grade material could be further prohibitive. Just as with DNA
sequencing, demand and production of carbon nanostructures will increase. With economies of scale, production costs
of carbon nanostructures should (hopefully) reduce significantly to allow further testing and evaluation.

Lastly,  other  technologies,  such  as  cellular  therapies,  platelet  therapies,  growth  factors,  and  other  regenerative
medicines are being developed in parallel to carbon nanostructures. It is unclear which of the technologies might be the
most effective or safe, but it is clear that there is potential for these technologies to be combined synergistically [10, 76,
240 - 242].
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LIST OF ABBREVIATIONS

b-FGF = Basic fibroblast growth factor

BMP = Bone morphogenic protein

cGMP = Current good manufacturing practice

CNT = Carbon nanotubes

Co = Cobalt

Cr = Chromium

DBM = Demineralized bone matrix

DNA = Deoxyribonucleic acid

DWCNT = Double-walled carbon nanotubes

GNS-HA = Graphene nanosheet-hydroxyapatite

GPa = Gigapascals

GSH = Glutathione

HA = Hydroxyapatite

hBMSC = Human bone marrow mesenchymal stem cell

MWCNT = Multi-walled carbon nanotube

ND = Nanodiamond

ND–ODA = Octadecylamine modified nanodiamonds

nm = Nanometers

PCL = Polycaprolactone

PGA = Polyglycolide

PLDA = Poly-D-lactide

PLGA = Poly(lactide-co-glycolide)

PLLA = Poly-L-lactide

PMMA = Polymethylmathacrylate

POE = Polyorthoester

PVA = Polyvinyl alcohol

ROS = Reactive oxidative species

SWCNT = Single-walled carbon nanotube

Ti = Titanium

UHMWPE = Ultra-high molecular weight polyethylene

US-SWCNT = Ultra-short single-walled carbon nanotube
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