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Abstract
We demonstrated the replacement of the Pt catalyst normally used in the counter electrode of a

dye-sensitized solar cell (DSSC) by a nanocomposite of dry spun carbon multi-walled

nanotube (MWNT) sheets with graphene flakes (Gr-F). The effectiveness of this counter

electrode on the reduction of the triiodide in the iodide/triiodide redox (I−/I−3 ) redox reaction

was studied in parallel with the use of the dry spun carbon MWNT sheets alone and graphene

flakes used independent of each other. This nanocomposite deposited onto fluorinated

tin-oxide-coated glass showed improved catalytic behavior and power conversion efficiency

(7.55%) beyond the use of the MWNTs alone (6.62%) or graphene alone (4.65%) for the

triiodide reduction reaction in DSSC. We also compare the use of the carbon MWNT/Gr-F

composite counter electrode with a DSSC using the standard Pt counter electrode (8.8%). The

details of increased performance of graphene/MWNT composite electrodes as studied are

discussed in terms of increased catalytic activity permitted by sharp atomic edges that arise

from the structure of graphene flakes or the defect sites in the carbon MWNT and increased

electrical conductivity between the carbon MWNT bundles by the graphene flakes.

(Some figures may appear in colour only in the online journal)

1. Introduction

Dye-sensitized solar cells (DSSC) have been demonstrated to

be a viable, low cost method of producing solar electricity

by use of a mesoporous layer of a semiconducting charge

collector with a sensitizing dye, a redox mediator of I−/I−3
and a Pt catalyst to complete the redox reaction [1], of

which a structural schematic of a standard and our carbon

MWNT/graphene composite device is shown in figure 1. The

highest performing DSSCs of these types can reach power

conversion efficiencies of over 11% [2]. This is achieved

by depositing platinum on a transparent conductive oxide

(TCO) substrate. There exists a drawback with using Pt in any

low cost application due to its scarcity as a precious metal.

This has led to efforts to find suitable replacements for the

Pt catalyst in DSSC with low cost materials, including the

use of carbon black, hard carbon spherules, polymer counter

electrodes, nanocarbon, electrospun carbon and composites of

conducting polymer/Pt or conducting polymer/carbon [3–13].

In an ideal situation, a single material may take the place

of both TCO and the platinum catalyst, depending on the

properties of the material itself. For carbon-based materials,

a good catalyst needs to have sharp atomic edges exposed

to the electrolyte in the DSSC. In carbon nanotubes, this

is usually achieved at defect sites where dangling bonds

are exposed to the electrolyte, which can be found during

formation or induced in a simple post-processing, such as

an O3 treatment [14]. This need for a good catalyst also

needs to be balanced against having good structural integrity

for the carbon nanotubes to be good conductors, as too

many defects in the structure will harm the conductivity

of the nanotubes. In general, these properties need to be
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Figure 1. (a) Schematic of a dye-sensitized solar cell.
(b) Schematic of a dye-sensitized solar cell with a carbon
MWNT/graphene composite. The expansion of the counter
electrode portion of the scheme is to show the placement of the
graphene to act as a conducting bridge and as a space to offer the
sharp atomic edges for catalysis.

balanced against each other, in order to create a good catalyst

and conductive substrate. This paper describes an alternative

solution to the balancing issue, using dry spun multi-wall

carbon nanotubes [15] and exfoliated graphene from aqueous

solution [16]. The highly catalytic graphene is functionalized

onto the carbon MWNTs to support the reduction of the I−3
in the redox couple that mediates the charge between the two

electrodes of the DSSC. We show that using both the graphene

and the carbon MWNT in a functional network is necessary

to obtain DSSC performance comparable to the Pt-coated

standard counter electrode.

Carbon nanotubes have previously been used as a counter

electrode in DSSCs [17–19] where they have been tested

to give high power conversion efficiencies. The carbon

nanotubes that show results that are closest to Pt are usually

single-walled carbon nanotubes (carbon SWNTs), with the

carbon MWNTs showing lower overall power conversion

efficiency when compared to carbon SWNTs. While there

is a clear advantage to using carbon SWNTs in the counter

electrodes of DSSCs, there is greater development in the

method of mass production of carbon MWNTs, which makes

it valuable to investigate methods to improve the reductive

properties of carbon MWNTs in the I−/I−3 redox couple in

the DSSCs.

Graphene films have been used as the DSSC counter

electrode for more than just a catalyst material [12, 20–22]. It

has also been used as an optically transparent replacement for

the more traditional transparent conductive oxides of indium

tin oxide (ITO) and fluorinated tin oxide (FTO). There have

been demonstrations of a graphene substrate replacing ITO

for a solid state DSSC with a power conversion efficiency of

0.84% and a transparency 70.7% at 1000 nm wavelength [23].

Being an ordered carbon, it also suggests itself as a possible

candidate for use as a catalyst in the counter electrode of

the DSSC. In general electrochemical characterization tests

of carbon materials, it has been demonstrated that catalysis

has been performed at defect sites and atomic edges [24], so

if graphene can be organized to present sharp atomic edges

then a high rate of reduction can be achieved with a small

amount of material. However, using pure graphene is not

conducive to a good device, as most deposition techniques

will result in smooth surfaces of graphene on the DSSC which

does not allow for a high surface area of interaction between

the redox couple and the graphene’s atomic edges in the

catalytic component of the graphene, which has been noted

to be critical in the operation of a DSC using carbon-based

catalysts [7].

There also has been a recent report on the usage of

graphene and carbon MWNTs used in conjunction. In that

report, graphene has been used to keep carbon MWNTs

aligned in a transfer process from a substrate of SiO2 to

an FTO substrate used in the DSSC, primarily using the

graphene as a binder to keep the carbon MWNTs aligned

with respect to each other, rather than to use graphene for

participation in the reduction of triiodide to iodide [20]. The

work presented in this paper took a different approach, using

carbon MWNTs that were aligned from a dry spinning process

and using the carbon MWNTs to be a mechanical support

structure for the graphene participant in the reduction of the

triiodide used in the DSSC, and to provide a lower overall

sheet resistance of the counter electrode by connecting the

bundles of carbon MWNTs with the graphene flakes, rather

than using the graphene as a support structure for transferring

vertically aligned carbon MWNTs.

2. Experimental set-up

Glass with a fluorinated tin oxide surface layer (SnO2:F, FTO

glass, 8 �/square, Hartford Glass) was cut and sonicated in

a successive series of baths of DI water, ethanol, acetone

and toluene for 15 min each and then set under a UV lamp

for 15 min to clean the surface. After cleaning they were

immersed in a bath of 40 mM solution of aqueous TiCl4
for 30 min at 70 ◦C and then removed and rinsed with DI

water which helps with adhesion of the TiO2 layer to the

substrate [25]. The TiO2 active layer (Dyesol NR-18) was

then doctor-bladed onto the FTO plate surface to a thickness

of approximately 10 μm, dried at 100 ◦C for 15 min and

then a second layer (Dyesol WER-O4) was doctor-bladed

on top of the transparent, active layer, and dried again at

100 ◦C for 10 min. This bilayer of paste was then sintered

for 30 min at 500 ◦C. After this first sintering operation

the FTO plates were then immersed in a new 40 mM

solution of aqueous TiCl4 at 70 ◦C for 30 min, cleaned in

DI water, and sintered a second time at 500 ◦C for 30 min.

These plates were then cooled to 80 ◦C immersed in a 1:1
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Table 1. Comparison of DSC cell performance.

Counter electrode Uoc (V) Isc (mA cm−2) FF (%) R/� (�)
Counter electrode
j0 (mA cm−2)

MWCNT 0.74 15.54 0.576 6.62 30 6.0
MWCNT and graphene 0.75 16.05 0.627 7.55 15 18.4
PT reference 0.79 16.27 0.688 8.8 n/a 15.5
Graphene 0.75 13.09 0.473 4.64 94 1.29

ratio of acetonitrile and tert-butanol with 2.52 × 10−4 M

of cis-diisothiocyanato-bis(2,2′-bipyridyl-4,4′-dicarboxylato)

ruthenium(II) bis(tetrabutylammonium) in solution, known as

N719 dye.

The counter electrode FTO plate had a small hole drilled

into it and was cleaned in the same manner as the working

electrode above. When the FTO plate has been cleaned then

dry spun multi-walled carbon nanotube sheets were added as

made through a technique similar to what was discussed in

another paper [15]. Iron-coated silicon substrates are inserted

into a 3′′ quartz tube furnace and cleaned by vacuum purging

the tube three times and flowing helium to provide an inert

atmosphere. The furnace is heated to a growth temperature of

750 ◦C. Once the system is at the correct temperature a carbon

source gas of acetylene is injected into the furnace along with

hydrogen to provide growth enhancement. After 6–12 min

of growth time the acetylene and hydrogen is stopped and

the system is cooled to ambient. The substrates collected are

immediately ready for sheet pulling.

Solution processable graphene was made using a process

involving the method developed by Li et al [16]. The solution

was prepared by taking natural graphite and exfoliating it into

graphite oxide by a modified Hummers method. From there,

the graphite oxide was suspended in an aqueous solution

where it was subjected to dialysis to remove excess salts and

acids. This graphite oxide was then converted to graphene

oxide by ultrasonication and a solution of hydrazine and

ammonia was introduced into the solution to make graphene

from the reduction of graphene oxide.

The carbon MWNT sheets were dry spun and deposited

onto the surface of an FTO plate one layer at a time, then

densified with ethanol. Then a 0.075 ml drop of the graphene

solution was drop-cast onto the carbon nanotube sheets and

the solution was evaporated at 80 ◦C. These last two steps

were repeated until five layers of MWCNTs and 0.375 ml

of graphene solution were deposited onto the FTO plate.

After the final addition of graphene solution, the counter

electrode was sintered at 250 ◦C for 10 min to remove

any oxygen functionalized on the graphene and carbon

nanotubes [26]. Reference counter electrodes composed of

five layers of MWCNT sheets, drop-castings of 0.375 ml

of graphene solution and thermally decomposed Pt counter

electrodes were also used for comparison. The two plates

were sandwiched together with a 60 μm Surlyn R© gasket and

then hot pressed to form a seal. The electrolyte used in this

test was composed of 1-methyl-3-propylimidazolium iodide

(0.6 M), iodine (0.03 M), guanidine thiocyanate (0.1 M)

and 4-tert-butylpyridine (0.5 M) in acetonitrile. The cells

were then masked and tested on a Thermo Oriel solar

Figure 2. Comparison of DSC cells with MWCNTs, MWCNTs
and graphene, and Pt reference cell.

simulator set at A.M. 1.5 G radiation with the intensity set at

100 mW cm−2. Impedance measurements were taken under

operating conditions (solar stimulation) under zero applied

bias over the range of 106–10−2 Hz range with a 10 mV ac

amplitude using a PGZ 301 potentiostat/galvanostat/EIS.

Sheet resistances of the counter electrode materials were

also measured by depositing the counter electrode materials

on glass slides with contacts made by silver paste. The

intention of this procedure was to help in determining the

serial resistive losses of the counter electrode material.

3. Results and discussion

The addition of graphene to the MWCNT sheets yielded a

respectable increase over using the MWCNT sheets alone in

the DSSC. Figure 2 is a comparison of the I–V curves with

different counter electrodes, with table 1 giving a summary of

the data in figure 2. Deposition of graphene onto the carbon

MWNTs is confirmed by SEM micrographs in figure 4. The

composite shows the greatest improvement is in the fill factor

(62.7%) compared to using graphene alone (47.3%) or the dry

spun carbon MWNTs (57.6%). To properly interpret why this

is so, we must take a look at the electrochemical impedance

of the solar cells, which is shown in figure 3. Modeling

of the DSSCs equivalent circuit arises from the method

discussed in [27] for the carbon MWNTs, the composite

MWNT/graphene and the Pt counter electrode, while the

graphene counter electrode DSSC was better described by a

separate model, both of which are shown in figure 5. The Rct

3
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Figure 3. Nyquist plot of the MWCNT sheet counter electrode and
the composite MWCNTs and graphene counter electrode with Pt
reference.

of the counter electrode is determined by the first semicircle

of the impedance graph which means that the Rct of the

counter electrode of the devices show yield values of 20,

4.3, 1.4 and 1.7 � for graphene, carbon MWNTs, composite

MWNTs/graphene and platinum reference cell, respectively.

The use of graphene alone does not fit the model well with

the experiment in the standard equivalent circuit, but is more

amenable to a different modeling set-up that is outlined

in [5], which was used for modeling DSSCs using carbon

black, specifically for ones that had insufficient thickness, and

consequently surface area for chemical reduction, for high

performance. From the values of Rct, we can give estimates

of the exchange current density jo at the counter electrode.

The exchange current density of an electrode (j0) and Rct have

a relationship as shown in equation (1):

j0 = RT

nFRct
(1)

where R is the universal gas constant, T is the absolute

temperature, F is the Faraday constant and n is the

stoichiometric number of electrons involved in a reaction. In

a practical concern, for a good exchange current density in

a DSSC counter electrode, a significantly higher exchange

current density above the photoelectrode’s produced current

density is desirable. For each of the counter electrodes, table 1

gives a summary of the exchange current densities involved.

The EIS of the composite of carbon MWNTs and graphene

shows an explanation as to why there is an increased fill factor

over the use of carbon MWNTs or graphene alone. The lower

Rct means there are fewer losses at the electrolyte/counter

electrode interface, giving a better operation for the cell,

but still having a number of losses through the diffusion

resistance through the cell, giving a lower performance than

the Pt reference cell. The second semicircle, corresponding

to the TiO2/dye interface with electrolyte, is smaller than

the one seen in the MWNTs. The carbon MWNTs cannot

reduce the I−3 as quickly as it can be generated at the working

electrode, as reduction takes place at the sharp atomic edges of

carbon materials. For carbon-based counter electrodes, such

as carbon MWNTs, the reduction takes place at the defect

sites and the carbon MWNTs do not have enough of these

defect sites to keep up with the production of I−3 at the

photoanode. This would then build up to a steady state where

there is more I−3 at the TiO2/dye and electrolyte interface,

which would show up on an EIS test as a larger capacitance

than what one would see using a Pt counter electrode. This

buildup of charge would also have an effect on the Voc of the

DSSC by having more I−3 at the interface, i.e. there would

be more recombination of charge which would lower the

electron density in the TiO2 and give a lower yield of both

current and a lower open circuit voltage, which is what we see

when we compare carbon MWNTs to the Pt reference. The

Figure 4. (a) SEM picture of MWCNT sheet without graphene and (b) with the addition of graphene: the increase in surface area allows for
more reduction of the redox reaction. Inset of (b) shows a close-up of graphene connecting two bundles of carbon MWNTs creating a bridge
across the two.
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Figure 5. (a) Simulation of equivalent circuit for standard DSSCs,
where there is a capacitive and resistive element at the
TiO2/electrolyte interface and at the counter electrode, with a series
and Warburg impedance. (b) Simulation of equivalent circuits used
for graphitic counter electrode materials. For this paper, we found
that graphene only fits the model of (b) while the MWCNTs and
MWCNTs/graphene made good fits to both models.

poor performance of the Gr-F graphene alone has a similar

explanation as well. Without the carbon MWNTs to provide a

structure for the graphene, they formed smooth layers on top

of one another, limiting the total surface area as in the case for

optimization tests for carbon black counter electrodes. When

we took the sheet resistance of each of the counter electrode

materials on a glass substrate we can lend even more weight to

this reasoning. In the sheet resistance measurements on glass

substrates, the sheet resistance of the graphene was Rsh =
94 �/square. When compared to the five layers of carbon

MWNTs (Rsh = 30 �/square) or the composite of MWNTs

and Gr-F (Rsh = 15 �/square) Gr-F alone showed a much

higher resistance than the other materials tested. This high

serial resistance and low available surface area of the graphene

paints a clear picture as to why the graphene alone is not a

good counter electrode material. The Gr-F alone e is unable

to avoid high serial resistive losses when acting as the counter

electrode material, and the graphene alone is also incapable

of keeping up with the I−3 generation of a standard DSSC. The

serial resistive losses from the motion of the electrons through

the carbon MWNTs to the substrate give a lower fill factor

than that of the platinum counter electrode, even though the

Rct of the platinum was higher. Platinum, being of the order

of a few nanometers thick, has negligible resistive losses to the

FTO substrate when compared to any of the carbon materials.

Therefore only the composite of MWCNT/Gr-F can solve

the problem of having low enough charge transfer resistance

Rct (which is provided by the Gr-F component) and, at the

same time, a low sheet resistance Rsh < 15 �/square (which

is provided by the multiple layers of carbon MWNT sheets

connecting graphene flakes). Such a functional composite is,

in fact, an analog of the Pt/FTO composite counter electrode

in which GRN plays the role of Pt for low Rct, while

MWCNTs play the role of FTO for Rsh.

4. Conclusion

In this paper we demonstrated the necessity of using a
composite of graphene and carbon MWNTs for the efficient
reduction of I−3 at the counter electrode, allowing us to
develop a DSSC free of platinum that gives a power
conversion efficiency of 7.55%, which shows a performance
86% as efficient as the Pt reference cell used in this study.
The study of these cells supports the idea that, for efficient
performance of a carbon-based counter electrode, there needs
to be many sharp atomic edges exposed to the ions in the
electrolyte for increased catalytic effect, i.e. low enough Rct,
which can be achieved through the use of depositing graphene
onto sheets of carbon MWNTs. At the same time, the addition
of graphene flakes provides the necessary Rct, increasing
the conductivity of the carbon MWNTs/Gr-F nanocomposite
and decreasing sheet resistance and the cell’s overall internal
resistance.
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