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Zusammenfassung

In dieser Arbeit untersuche ich Phononen und die elektronische Bandstruktur von Kohlenstoffnan-
otubes. Die beiden Problemkreise sind durch die Ramanspektroskopie, meine experimentelle Meth-
ode, eng verzahnt. Durch die Vielzahl von optischen Übergängen bei unterschiedlichem Durchmess-
er oder Chiralität sind Ramanspektren von Kohlenstoffnanotubes über den ganzen sichtbaren Bereich
von resonanter Streuung hervorgerufen. Sie haben dadurch ein ungewöhnlich intensives Ramansignal,
es ist sogar möglich, das Ramanspektrum eines einzelnen Tubes mit kommerziellen Spektrometern
zu messen. Dieser erfreulichen experimentellen Tatsache standen gerade wegen der Resonanzeffekte
Schwierigkeiten bei der Interpretation der Spektren gegenüber, die wegen der Resonanzeffekte nicht
zu verstehen waren. Die gängige, nicht resonante Theorie der Ramanstreuung sagte zwar Phononen
im Frequenzbereich der experimentellen Spektren voraus, versagte aber bei genauerem Hinsehen.
Experimentell waren es vor allem die folgenden Punkte, die mich an der etablierten Interpretation
zweifeln ließen:

- Die Auswahlregeln der Ramanspektren, die ich mit Hilfe von linearem und zirkularem Licht an
ungeordneten Proben bestimmt habe (Kapitel 3.), zeigten, dass lediglich voll symmetrische A1

Phononen und auch diese nur in paralleler Polarisation entlang der Nanotubeachse zur Streu-
ung beitragen. Die Standardinterpretation hingegen stützte sich auf Moden verschiedener Sym-
metrie.

- Die identische Frequenzveränderung der hochenergetischen Phononen unter hydrostatischem
Druck ließ sich nicht mit der Vorstellung von longitudinalen und transversalen Phononen
verbinden (Kapitel 4.).

- Die Frequenz der Ramanmoden in Kohlenstoffnanotubes änderte sich mit der Wellenlänge des
anregenden Lasers (Kapitel 6.). Dieses ungewöhnliche Verhalten versuchte ich zunächst mit
leicht unterschiedlichen Phononenfrequenzen in verschiedenen Nanotubes zu erklären, was
aber zu Widersprüchen führte.

Zusammengenommen schien es mir notwendig nach einer neuen Interpretation der Ramanspektren
von Nanotubes zu suchen. Die neue Idee basiert auf doppelresonanter Ramanstreuung, wie wir sie
auch für Graphit gefunden haben. Sie ist nicht nur in der Lage, die Form der Ramanspektren ohne
weitere Annahmen korrekt vorherzusagen, sie löst auch die oben angeführten Probleme. Insbesondere
erklärt sie vollständig die Abhängigkeit der Ramanmoden von der Anregungsenergie.

Während meiner Untersuchungen stieß ich immer wieder auf Fragestellungen, die sich mit exper-
imentellen Methoden nicht oder nur schwierig beantworten ließen. So hatte ich mir etwa überlegt,
dass der Schlüssel für ein Verständnis der Hochdruckexperimente in den Phononeneigenvektoren
von chiralen Tubes liegt oder der für die Auswahlregeln in einer stark anisotropen Absorption. Ein
Großteil dieser Arbeit befasst sich deshalb mit ab initio Berechnungen von Nanotubes. Die berech-
neten Eigenvektoren zeigen, dass tatsächlich Schwingungen in chiralen Nanotubes nicht mehr entlang
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der Achse oder entlang des Umfanges erfolgen, sondern eine beliebige Auslenkungsrichtung in Bezug
auf die Achse haben (Kapitel 4.). Die ab initio Rechnungen zur optischen Absorption bestätigten
meine Vorstellung von den optischen Eigenschaften, zeigten mir aber auch, dass sich die elektron-
ische Bandstruktur von Kohlenstoffnanotubes stark von der vom Graphit abgeleiteten unterscheidet.
Ich habe daraufhin ein Reihe von Nanotubes berechnet und ihre elektronische Bandstruktur genauer
untersucht (Kapitel 5.). So reduziert etwa die Krümmung der Graphitwand im allgemeinen die Ban-
dlücke in halbleitenden Nanotubes. Sie wirkt sich aber auch auf die für Ramanstreuung wichtigen
optischen Übergänge aus, die zum Teil um 0.1 eV zu kleineren Energien verschoben werden. Die
Bündelung der Tubes zu einer hexagonal geordneten Struktur wie sie experimentell meist vorliegt,
verschiebt die elektronischen Übergänge weiter zu kleineren Energien. Darüber fhinaus entsteht durch
die Wechselwirkung zwischen den einzelnen Nanotubes auch eine elektronische Dispersion senkrecht
zur Achse, ein Punkt der in der Interpretation experimenteller Ergebnisse bisher vernachlässigt wurde.
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Chapter 1
Introduction

Carbon nanotubes were discovered almost 10 years ago. The first report by Iijima1 was on

the multiwall form, coaxial carbon cylinders with a few tens of nanometers in outer diame-

ter. Two years later single walled nanotubes were reported.2, 3 They are typically between

1 and 1.5 nm in diameter, but several microns in length. After a slow start in the mid 90’s

the field suddenly exploded two years ago. A first application – displays made out of field

emitting multiwall tubes – is planned to be comercially available during the next years.4

Other proposed applications include, e.g., nanotubes in intergrated circuits, nanotube actua-

tors, or nanotubes for hydrogen storage.5–9 From a physics point of view they are probably

the best realized example of a one-dimensional system. Around the nanotube’s circumfer-

ence the wave vector is quantized, whereas k can take continous values along the axis. The

abundance of new phenomena found in single-walled nanotubes comes not only from the

confinement per se, but also from the multiple ways to contruct a tube. The best known ex-

ample for a sudden change in the nanotube properties with their particular structure is their

electronic dispersion. Depending on the direction of the confinement direction with respect

to graphite nanotubes are metallic or semiconducting. The band structure can even be further

manipulated, e.g., by introducing defects into a tube.10

When I started to work on nanotubes I was fascinated by the apparent contradiction between

two models we developed to explain the pressure dependence of the nanotube Raman spectra:

On the one hand, we studied the elastic properties of the tubes within macroscopic elasticity

theory.11 On the other hand, I tried to work out the phonon eigenvectors with group projector

techniques and found that they strongly vary with the microscopic structure of a tube.12 I

was particularly interested in the high-energy part of the Raman spectrum between 1500

and 1600 cm−1 where the confined graphene optical modes give rise to a peculiarly shaped

group of peaks. My idea at this point was to study the Raman spectrum to find out more

5



6 Chapter 1. Introduction

Figure 1.1: Unit cells of an armchair
(10,10), a zig-zag (17,0), and the chi-
ral (12,8) and (13,7) tubes. The di-
ameters of the four tubes are between
13.3 and 13.8 Å.

(17,0)

(10,10) (12,8) (13,7)

about carbon nanotubes. The first step was to explain the origin of the high-energy modes.

Interestingly, this turned out to be the difficult part; only recently we proposed a model,

which I believe finally solves the problem.13 For some time, however, I only found out

what the peaks are not. For example, the two most dominant peaks are not LO and TO-like

vibrations split by confinement and curvature as we thought in the beginning.14 Most of the

difficulties were due to the strong resonances in nanotubes which dominate the Raman signal.

The scattering cross section is so large that it is even possible to obtain a Raman spectrum

on single tube in dilute samples.15, 16 At this point – thinking about resonant scattering in

general – also the so-called D mode in graphite and nanotubes came into the picture.17 This

disorder-activated Raman peak was long known to depend on the energy of the exciting

laser.18 We showed that this unusual dependence is naturally explained by a double resonant

Raman process.19–21 Double resonant scattering is, in fact, the origin of the entire Raman

spectrum in single walled carbon nanotubes.13 Before discussing all these points in detail I

want to give a short introduction to Raman scattering on nanotubes and to the state of the

research as it was two years ago.

1.1. Raman scattering on nanotubes

Single walled nanotubes can be regarded as long and narrow cylinders made out of a single

graphene sheet. To specify the structure of an ideal infinitely long tube three quantities have

be known: the diameter, the translational periodicity along the z axis, and the way in which

the graphene hexagons are placed on the cylinder wall. All three quantities, however, are

determined by the chiral vector ccc = n1aaa111 +n2aaa222, the vector around the tube circumference

in terms of the unit cell vectors of graphene aaa111 and aaa222. Thus, the common way to refer to

a particular tube is to give the tuple (n1,n2). Fig. 1.1 shows the unit cells of four different

nanotubes with diameters d ≈ 13.5 Å. The (10,10) and the (17,0) tube to the left are examples

of the achiral (n,n) armchair and (n,0) zig-zag tubes. In achiral nanotubes the carbon-carbon
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bonds point around the circumference or along the z axis. In chiral nanotubes like the (12,8)

and the (13,7) tube in Fig. 1.1 the translational periodicity and the unit cell is much larger

than in achiral tubes. Despite the many atoms in the unit cell single walled carbon nanotubes

are – in some sense – simple from a structural point of view. They are single orbit systems,

i.e., a tube can be constructed from a single carbon atom by the symmetry operations, and

thus perfect for the application of group theory.22 The symmetries of nanotubes I discuss in

Chapter 2.

Figure 1.2: High resolution TEM picture
of a bundle of single walled nanotubes.
The hexagonal packing is nicely seen in
the edge-on picture. Taken from Ref. 23.

Single walled nanotubes produced by laser abla-

tion or the arc-discharge technique have a nar-

row Gaussian distribution of diameters d = |ccc|/π
with mean diameters d0 ≈ 1.2− 1.5nm and σ ≈
0.1−0.2nm.23 The chiralities, i.e., the angle Θ be-

tween ccc and aaa111, are in contrast evenly distributed

ranging from zig-zag tubes Θ = 0◦ to armchair

tubes Θ = 30◦.24 Another well known structure

which single walled tubes show are the hexagonal-

packed bundles they form during the growth pro-

cess. Fig. 1.2 shows a TEM picture of such a bundle. The wall to wall distance between two

tubes is in the same range as the interlayer distance in graphite 3.41 Å.

Multiwall nanotubes have similar lengths as single walled tubes, but much larger diameters.

Their inner and out diameters are around 5 and 100 nm, respectively, corresponding to ≈ 30

coaxial tubes. Confinement effects are expected to be less dominant than in single walled

tubes, because of the large circumference. Many of the properties of multiwall tubes are

already quite close to graphite.

The first Raman spectra of carbon nanotubes were published 1993 by H. Hiura and cowork-

ers.25 This very first spectrum looked exactly like graphite with a single peak ≈ 1580cm−1.

J. M. Holden et al.26 for the first time reported the group of broad Raman peaks just be-

low 1600 cm−1, which is typical for single walled nanotubes. They obtained their result by

subtracting the spectra of catalysts free and Co-catalyzed nanotubes; the latter process was

known to produce not only multiwall tubes and amorphous carbon, but single walled tubes

as well.3, 26 A tentative assignment of all Raman modes to calculated frequencies was made

by Rao et al.27 Partly, this assignment is still considered to be correct. The high-energy part

of the spectrum, however, is not explained by a simple correspondence between a Γ point

eigenfrequency and an observed experimentally peak. In Fig. 1.3 I show a Raman spectrum

of single walled nanotubes taken on a present day sample. The first order spectrum has three
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Figure 1.3: Raman spectrum of single
walled nanotubes excited with 488 nm.
The spectrum is typical for semicon-
ducting nanotubes.
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distinct features, the radial breathing mode around 200 cm−1, the D mode, a disorder induced

Raman peak, and the high-energy modes between 1500 and 1600 cm−1.

Figure 1.4: Radial
breathing mode of an
(8,4) nanotube with a
diameter of d = 8Å.

In the radial breathing mode all carbon atoms move in phase in

the radial direction creating a breathing like vibration of the en-

tire tube, see Fig. 1.4. The force needed for a radial deformation

of a nanotube increases as the diameter and hence the circumfer-

ence decreases. The expected dependence of the radial-breathing

mode frequency on diameter ωRBM = C/d was used to measure

the diameters of single walled nanotubes.27, 28 Although this sim-

ple approach is still used to some extent, it was found to be insuf-

ficient for a precise determination of the diameter because of ad-

ditional van-der-Waals forces in nanotube bundles and resonance

effects.29–31 In high-pressure experiments Venkateswaran et al.29

and our group30 found that the normalized pressure dependence of the radial breathing mode

was ≈ 16 times larger than the normalized shift of the high-energy modes. The striking dif-

ference in the pressure slopes can only be explained by the additional van-der-Waals forces

between the tubes in a bundle. Since the van-der-Waals forces are much weaker than the

intertube interaction, the tube-tube distance and thus the frequency of the radial breathing

modes changes more rapidly under pressure than the diameter and the length of the tube

itself.30 In turn, the van-der-Waals force constants also contribute to the radial breathing

mode frequency at ambient pressure. The total frequency is given by the diameter dependent

part plus a (to first approximation constant) upshift by the tube-tube interaction. The exact
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magnitude of this upshift is not known yet. The values obtained by pressure experiments and

calculations range from 5 to almost 30 %.29–33

Figure 1.5: Raman spectrum in the low
energy range measured with different
excitation wavelengths. Modified fig-
ure from Ref. 31.

The second reason why the low-energy Raman spec-

trum yields only a rough estimate of the diameter

is resonant scattering. Milnera et al.31 thoroughly

studied the Raman spectrum of the radial breathing

mode as a function of the excitation energy between

1.44 and 2.71 eV; selected spectra are reproduced in

Fig. 1.5. It can be nicely seen how the spectrum

changes when excited with different laser energies.

The diameters obtained from the two lowest traces

by the 1/d dependence differ by ≈ 13%. The de-

pendence of the scattering frequency on excitation

energy points to selective resonances with different

tubes and/or different scattering wave vectors. I dis-

cuss this point in detail in connection with the D

mode in graphite and nanotubes (Chapter 6.). The

electronic energy bands of single walled nanotubes

depend in a first approximation only on the diame-

ter,34, 35 whereas the chirality is important for the higher order corrections.36, 37 A measured

resonant spectrum is given by a convolution of the electronic and vibrational properties of

the nanotubes. Milnera et al.31 modeled their spectra assuming a homogeneous distribution

of chiralities and found good agreement with the measured spectra in Fig. 1.5.

Of course, it is possible to qualitatively compare the diameters in, e.g., two samples grown at

different temperatures, by Raman scattering.28, 38 Values for the mean diameter or even for

(n1,n2) as recently claimed by Jorio et al.,16 however, must be treated with care. The results

depend much on the parameters chosen for the diameter dependence of the radial-breathing

mode frequency ωRBM = C/d and assumed the electronic band structure. In Chapter 5. I

study the electronic band structure for isolated and bundled nanotubes by first principles

methods. In particular, I show that the simple tight-binding approximation is not precise

enough for an assignment of (n1,n2) values.

The D mode at 1350 cm−1 in Fig. 1.3 has been known in graphite for 30 years.17 It does

not orginate from a Γ point Raman active vibration. Tuinstra et al.17 showed that the D

mode peak is induced by disorder. They measured different graphite samples and found that

the intensity of this mode increases linearly with decreasing crystallite size. In a further
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Figure 1.6: High-energy Raman spectra of a) graphite, b) single walled, and c) multiwall nanotubes.
The dashed vertical line is at 1582 cm−1, the E2g phonon energy in graphite. Note that at 1582 cm−1

(dashed line) single walled nanotubes have a local minimum in the Raman intensity.

investigation Vidano et al.18 studied the graphite Raman spectrum as a function of excitation

energy. Their measurements revealed a Raman puzzle, which remained unsolved for almost

20 years: The frequency of the D mode shifted with the energy of the exciting laser. A similar

shift as in graphite is found in multiwall and single walled nanotubes as well.39, 40 Recently,

we showed that this dependence is due to a double resonant Raman process, which selects a

particular wave vector for a given excitation energy. Since the phonon band is dispersive, the

change in wave vector fulfilling the double resonant condition results in a shifting phonon

energy as observed experimentally.19

The high-energy part of the Raman spectrum in Fig. 1.3 is, like the radial breathing mode,

specific to single walled nanotubes. It consists of 3 to 4 close by peaks when the excitation

energy is in the green or blue energy range. These peaks are broad – e.g., the dominant fea-

tures at 1593 and 1570 cm−1 have a half width at full maximum of 16 and 30 cm−1 – and do

not have a Lorentzian line shape. The high-energy Raman spectrum varies only slightly with

tube diameter.38, 41 In Fig. 1.6 I compare the high-energy spectrum of a) graphite, b) single

walled, and c) multiwall tubes. Graphite has a single Raman active mode at 1582 cm−1. The

scattering phonon is of E2g symmetry with an in-plane optical eigenvector, i.e., the two car-

bon atoms in the hexagonal unit cell move out of phase within the graphite planes. Similar

vibrations also give rise to the high-energy spectra in nanotubes, but additionally the con-

finement around the circumference and the curvature of the graphene sheet must be taken

into account.

The wave vectors kθ in the circumferential direction are quantized because of the finite length

of the circumference. The wavelength of any quasiparticle must be equal to π d/m, where m

is an integer. When m = 0, i.e., an infinite wavelength, the nanotube eigenvector corresponds

to the eigenvector of graphene at the Γ point. If m = 0 phonon eigenvectors transform as
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the fully symmetric representation and they are Raman active. The two other Γ point Raman

active representations of nanotubes are E1 and E2 corresponding to m = 1 and 2, respectively.

Thus, in a simple “only confinement” picture the nanotube Raman spectrum can be obtained

in the following way:∗ Find the optical frequencies in graphene at k = 0,2/d, and 1/d in

the direction of the reciprocal chiral vector. These are the high-energy Raman modes in

nanotubes. This easy approach obviously fails to explain the details of the experimental

spectra. As can be seen in Fig. 1.6 the Raman spectrum of single walled nanotubes has a

minimum at the graphite frequency [compare the dashed lines in a) and b)] and the dominant

peak is at higher frequency. Within zone folding A1 modes always have the same frequency

as the Γ mode in graphene. The only mode predicted to be significantly above 1580cm−1

is the E2 mode, because of the overbending in the graphene phonon dispersion. This would

mean that E2 phonons yield the highest Raman intensity and that scattering by A1 modes is

negligible in nanotubes. Both findings are not only uncommon in Raman scattering on other

materials, they also contradict the experimental findings on nanotubes, see Chapter 3..

Including the effect of curvature in the calculation of the phonon frequencies is less straight-

forward than including confinement. Two hand-waving explanations predict opposite shifts

of the graphene frequency when the sheet is rolled up, and, moreover, the experimental find-

ings are contradictory as well. Experimentally, a softening of the second order spectrum

was observed by Thomsen.40 Since the second order spectrum reflects the phonon density

of states, he concluded that the curvature shifts the phonon frequencies to lower energies.

However, as already pointed out, the first order spectrum is at slightly higher frequencies

in nanotubes than in graphite. When a graphene sheet is rolled up to form a nanotube the

pure sp2 bonding of graphite is distorted and the bonds become partially sp3 hybridized.

Diamond as an example of a material with only sp3 bonding, has the lowest optical phonon

frequency of all carbon materials. Therefore, a down-shift of the phonon energy is expected.

On the other hand, the carbon bonds are shorter on a curved wall than on a flat sheet; the

angles vary correspondingly. This distortion is similar to a small compressive strain, which

should yield a blue-shift of the vibrational frequencies.

Resonant scattering as described for the radial-breathing and the D mode is important in the

high-energy range as well. The spectrum shown in Fig. 1.3 was excited with a laser wave-

length λL = 488nm and is considered to be typical for semiconducting nanotubes. The spec-

tral shape in the high-energy range varies strongly at different laser energies.42–44 In Fig. 1.7

I show Raman spectra recorded with three different excitation energies, which were ob-

tained by Rafailov et al.44 The two lowest traces with λL = 488nm on two different samples

∗This is basically the approach used by Rao et al.27 in the first assignment of the Raman active modes.
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Figure 1.7: Raman spectra in the high-
energy range excited with three different
laser energies and on two samples with
a mean diameter d0 = 1.3 and 1.45 nm,
respectively. Taken from Ref. 44.

are very similar to the high-energy Raman spectra

shown above. For red excitation additional peaks ap-

pear on the low-energy side of the spectrum. In the

infrared (1.61 eV) the shape of the blue spectrum is

more or less recovered. It was first pointed out by

Kasuya et al.42 that this dependence of the high-

energy spectrum on excitation energy can be ex-

plained by the different electronic structure of metal-

lic and semiconducting nanotubes. The first singu-

larities in the joint density of states are in the red for

metallic tubes, but in the infrared and near UV in

semiconducting tubes.34, 35 A detailed investigation

of the Raman intensities in nanotubes normalized

to a CaF2 reference signal was later published by

Rafailov et al.44 They showed that indeed the metal-

lic resonance in the red is accompanied by a loss of

resonant enhancement for semiconducting tubes as

expected from the joint density of states.

1.2. Summary

In this introduction to Raman scattering on nanotubes I discussed the three features in the

first order spectra, the radial-breathing mode, the disorder induced D mode, and the high-

energy modes in metallic and semiconducting tubes. For each of these distinct parts of

the Raman spectrum the term “resonant scattering” turned up sooner or later. Resonant

scattering is more difficult to describe theoretically than non-resonant scattering, because

not only the vibrational modes, but also the details of the electronic states, the selection

rules for optical absorption, and the electron-phonon coupling between particular electronic

and vibrational states must be considered. This work tries to approach these problems from

different viewpoints and with a number of techniques ranging from Raman scattering to ab

initio calculations.

All selection rules are consequences of symmetry. Chapter 2. is therefore devoted to the

symmetry properties of single-walled carbon nanotubes. The concept of line groups for one-

dimensional systems is introduced. As an example for the application of group theory I show

how to obtain phonon eigenvectors in achiral nanotubes by projection techniques. In the last
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section I discuss the electronic states and their representations, which were obtained within

the tight-binding approximation by M. Damnjanović and I. Milošević using the modified

group projector technique.45 An important question for the interpretation and understanding

of Raman spectra is the symmetry of the observed phonon modes. In Chapter 3. I explain

how to measure Raman tensor invariants on unoriented samples using linearly and circularly

polarized light. Experimentally I found that even the symmetry of the scattered light is dom-

inated by resonances and optical absorption, which somehow frustrates the use of the Raman

tensors to learn more about the phonons – in particular the phonon eigenvectors – involved

in the scattering process. Another experimental method, however, allows to study the high-

energy eigenvectors, namely, Raman scattering under high pressure. I show in Chapter 4. that

circumferential and axial eigenmodes are distinguished by their expected pressure slopes,

because of the highly anisotropic nature of carbon nanotubes. The apparent discrepancies

between the theoretical prediction and the experimental observations motivated me to cal-

culate the phonon eigenvectors of chiral nanotubes by first principles methods. The results

of the calculations, which were done with the ab initio code SIESTA developed by P. Or-

dejón and coworkers,46, 47 are presented in the last section of Chapter 4. An introduction to

the SIESTA method and a description of the various calculations performed in this work are

collected in Appendix I.. To obtain a better understanding of the electronic band structure,

in particular, the effects of the nanotube curvature and the bundling of the tubes, I performed

first principles band structure calculations for a series of chiral and achiral nanotubes. The

results are presented in Chapter 5. where I also study the validity of the frequently used zone-

folding approximation of the graphene π orbitals for finding the electronic states in single

walled carbon nanotubes. Finally, Chapter 6. comes back more explicitly to resonances. The

unusual frequency shift of the disorder mode in graphite and nanotubes I show to be due

to double resonant Raman scattering. I disuss our recent suggestions that the entire Raman

spectrum of carbon nanotubes is in fact caused by a double resonant process and present first

calculations and measurements to support our idea.
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Chapter 2
Symmetry

When discussing symmetry in crystals and group theory solid state physicists are usually

familiar with two concepts: point groups of molecules and space groups of infinite three-

dimensional crystals and their isogonal point groups. Low-dimensional systems are often

described within the same concepts. Either only some high-symmetry points and their point

groups are considered or a three-dimensional crystal is constructed and space groups are

used. Applying the first idea is of course possible for carbon nanotubes as well. It bears

the risk of missing additional symmetry operations besides the translational periodicity (as

in fact happened for carbon nanotubes) and reduces the power of group theory. The second

way out – constructing a crystal – is impossible for carbon nanotubes without reducing the

symmetry of the single tube. The good news is that groups for low-dimensional systems

exist, and many of their properties have been tabulated in a number of papers.48–52 These

groups are the diperiodic groups for two-dimensional structures and line groups for one-

dimensional systems like carbon nanotubes. The properties of these groups were studied at

the University of Belgrade for more than three decades, currently in the group of M. Damn-

janović. They recently also worked out the modified group projectors, a method to apply

projector techniques to infinite groups.

After introducing the structure of carbon nanotubes in more detail in Section 2.1. I describe

their line-group symmetries in Secion 2.2. The rest of this chapter investigates the application

of group theory to study physical properties of nanotubes. I find the phonon eigenmodes of

achiral nanotubes by a graphical and the modified group projector technique in Section 2.4.2.

and 2.5.1. In the last section I present the electronic dispersion of nanotubes in a symmetry-

adapted tight-binding approximation.

15
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Figure 2.1: Graphene hexagonal
lattice and the construction of an
(8,4) nanotube. The two vectors
aaa111 and aaa222 form the unit cell of
graphene. The circumference of
the tube is specified by ccc = 8aaa111 +
4aaa222, the tube axis is perpendicu-
lar to ccc. The smallest lattice vec-
tor along the z axis is the translation
periodicity of the tube, in this case
aaa = −4aaa111 + 5aaa222. The three circles
highlight the primitive translations
in graphene which correspond to a
C4 symmetry operation of the tube
(see next section).
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2.1. Structure of carbon nanotubes

In the introduction I mentioned that a single-walled nanotube is uniquely determined by

the tuple (n1,n2) specifying the chiral vector ccc. In this section I summarize the structural

properties in terms of the two integers n1 and n2. Extensive reviews can be found in some

books on carbon nanotubes, e.g., Ref. 53.

The hexagonal graphene unit cell is spanned by the two vectors aaa111 and aaa222. They form an

angle of 60◦ and their length is |aaa111| = |aaa222| = a0 = 2.461Å, see Fig. 2.1. Graphene has two

atoms in the unit cell located at the origin and at 1
3(aaa111 +aaa222). To obtain a (n1,n2) nanotube

first a long and narrow rectangle is cut from the graphene sheet. The direction and length of

the narrower side is given by the vector ccc = n1 · aaa111 +n2 · aaa222. This sheet is then rolled up to

a cylinder so that ccc becomes the circumference of the tube. The direction of the nanotube

axis is naturally perpendicular to ccc. In Fig. 2.1 I illustrate how to find the circumferential

and axial direction for an (8,4) nanotube. First ccc is constructed (thin broken lines) and then

the axial direction perpendicular to ccc (thin full lines). The translational periodicity along

z is the smallest possible lattice vector along the z axis; for the (8,4) tube the translation

period aaa = −4aaa111 +5aaa222, see Fig. 2.1. The two conditions for constructing a tube also yield

an analytic expression for aaa

aaa = −2n2 +n1

nR
aaa111 +

2n1 +n2

nR
aaa222, (2.1)

and

a = |aaa| =

√

3(n2
1 +n2

2 +n1 n2)

nR
a0 (2.2)
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Tube Radius Translation Period
n N r a

(n1,n2) GCD(n1,n2) n2
1 +n2

2 +n1n2 a0

√
N/2π

√
3Na0/nR

(n,n) n 3n2
√

3a0 n/2π a0

(n,0) n n2 a0 n/2π
√

3a0

Chiral angle Helical angle
q = nC/2 Θ w φ

(n1,n2) 2N/nR arcos [(n1 +n2/2)/
√

N] see Eq. (2.6) arcos[w/
√

w2 +3/R]
(n,n) 2n 30◦ 1 30◦

(n,0) 2n 0◦ 1 60◦

Table 2.1: Structural parameters and symmetry properties of chiral, achiral, and zig-zag nanotubes.
The symbols are explained in the text; this list is meant as a quick reference only.

where n is the greatest common divisor of n1 and n2, R = 3 if (n1 − n2)/3n is integer and

R = 1 otherwise. The number of graphene cells in the nanotube unit cell q follows from the

total cell area

St = a ·d = aaa× ccc =

√
3

2
· 2(n2

1 +n2
2 +n1 n2)

nR
a2

0

divided by the area of the graphene cell Sg =
√

3
2 ·a2

0; d is the diameter of the nanotube. The

number of carbon atoms in the nanotube unit cell is finally given by

nc = 2q = 4
n2

1 +n2
2 +n1 n2

nR
. (2.3)

Since a depends inversely on n and R the translation periodicity and thus the number of

carbon atoms varies strongly for tubes with similar diameter. For example, the number of

atoms in the unit cells for the tubes shown on page 6 in Fig. 1.1 range from 40 for the (10,10)

to 412 for the (13,7) tube. A (13,8) nanotube – indistinguishable from the (13,7) at first sight

– has 1348 atoms in the unit cell, because both n and R = 1 in this example. In Table 2.1 I

compiled a list of the structural parameters of carbon nanotubes; the other quantities listed

in the Table will be introduced throughout this chapter.

2.2. Symmetry of carbon nanotubes

Symmetry belongs to the properties of single walled nanotubes which strongly depend on the

particular choice of (n1,n2). In fact, every chiral nanotube belongs to a different line group.

Only an (n,n) armchair and an (n,0) zig-zag tube with the same n have the same symmetry.

Another interesting result is that although achiral tubes have mirror planes not present in

chiral tubes and thus appear more symmetric, they are in fact of lower symmetry, i.e., the
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number of symmetry operations is smaller because of the small order of the principal screw

axis. Symmetries of carbon and other nanotubes were studied extensively by Damnjanović et

al.22, 45, 54, 55 In the following I will introduce the reader to the fundamental concepts and the

meaning of their results. Those interested in the exact derivations are referred to the original

work.

Line groups describe the symmetries of systems with a translational periodicity in only one

direction. Along the periodic axis, the z axis, the system is considered to be infinite. A

line group symmetry operation must transform a point z̃ on this axis either into itself or into

another point z′ at the axis separated from z̃ by ba, where a is the primitive translation and b

an integer. Therefore, only the following symmetry operations (and their combinations) are

compatible with one-dimensionality: (i) pure translations along z, (ii) rotations Cn around the

z axis by any angle 2π/n, (iii) rotations around an axis perpendicular to z by 180◦, C′2 or U ,

(iv) reflections at a plane either containing the z axis, σv, or perpendicular to it, σh, and (v)

the inversion, I. The infinitely many line groups LLL are products LLL = ZZZPPP, where PPP is a point

group containing only the operations (ii) - (v). ZZZ is the group of generalized translations, i.e.,

screw axis, pure translations, and glide planes.

To find the line group of carbon nanotubes Damnjanović et al.22 looked for the graphene

space group operations which are preserved when the graphene sheet is cut and rolled up to

form a nanotube. It turns out that pure translations in graphene transform into pure rotations

or screw operations in nanotubes. To give an example, consider the chiral vector ccc = n1 aaa111 +

n2 aaa222 = n · (ñ1 aaa111 + ñ2 aaa222) = n · ccc′, where n is the greatest common divisor of n1 and n2.

Obviously, translations by ccc′ leave the graphene lattice invariant, because ccc′ is a graphene

lattice vector, see Fig. 2.1 where ccc′ is indicated by the circles around the atoms. When

the sheet is rolled up to a tube ccc′ becomes the nth section of the circumference and the

translations by ccc′ a rotation by 2π/n around the z axis. Single walled nanotubes thus have n

pure rotations in their line groups denoted by Cs
n = (Cn)

s (s = 0,1, . . . ,n−1). In a similar way

the other primitive translations of graphene become the screw axis TTT w
q of the nanotubes. The

other graphene symmetry operations which need to be considered for nanotubes are rotations

by 180◦ around an axis perpendicular to the sheet and reflections. As shown in Fig. 2.2 chiral

and achiral nanotubes have C′2 or U axes. For the two achiral tubes shown at the right this

symmetry is immediately seen in the Figure; the U axis in the chiral tube can be verified by

rotating this page by 180◦. The U ′ axis located between two carbon atoms is related to U by

the screw symmetry of the tube. Achiral nanotubes also have a number of mirror and glide

planes, some of them are shown in Fig 2.2. Chiral nanotubes never have mirror planes. A
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Figure 2.2: Symmetries of chiral and achiral nanotubes – horizontal rotational axes and mirror and
glide planes. Left: Chiral (8,6) nanotube with the line group TTT 12

148DDD2; one of the U and U ′ axes are
shown. Middle and right: zig-zag (6,0) and armchair (6,6) nanotube belonging to the same TTT 1

12DDD6h

line group. Additionally to the horizontal rotational axes, achiral tubes have also σh and σv mirror
planes, the glide plane σv′ , and the rotoreflection plane σh′ . Taken from Ref. 22.

reflection which transforms the graphene hexagon into itself necessarily mixes the z and the

two other axes and thus cannot be a line group symmetry operation.

The full symmetry group of a carbon nanotube is the product of the point group PPP = DDDn

(chiral) and DDDnh (achiral) and the axial group ZZZ = TTT w
q ; q was already defined in Eq. (2.3) as

the number of graphene unit cells in the unit cell of the tube, w will be given below. Note

that all nanotubes have nonsymmorphic line groups, the isogonal point group is larger than

PPP. To summarize, the line groups and isogonal point groups of achiral tubes are

LLLAZ = TTT 1
2nDDDnh = LLL2nn/mcm isogonal point group: DDD2nh (2.4)

and of chiral tubes

LLLC = TTT w
q DDDn = LLLqp22 isogonal point group: DDDq (2.5)

with the parameters

w =
q

n
Fr

[

n

qR

(

3−2
n1 −n2

n1

)

+
n

n1

(
n1 −n2

n

)ϕ(n1/n)−1
]

(2.6)

and

p = qFr

{
nR

q · (2n1 +n2)

[

q ·
(

2n2 +n1

nR

)ϕ(2n1+n2/nR)−1

−n2

]}

, (2.7)

where Fr[] is the fractional part of a rational number and ϕ(m) the Euler function. I included

the international notation, although I will not use it in this work, for a better reference to the

Tables of Kronecker Products in Ref. 52 and 51.∗ The generating element for the groups

∗Care must be taken when working with those Tables, because the symbols n,m,q, and p in the references
have completely different meanings.
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given in Eq. (2.4) and (2.5) are the screw generator (Cw
q |na

q
), Cn, U , and, for achiral tubes

only, σx (one of the σv mirror planes). Every other symmetry operation can be expressed as

a combination of the generating elements, e.g., the horizontal mirror plane in achiral tubes

is obtained by σh = Uσx. (Cw
q |an

q
) denotes a rotation by 2πw/q followed by the fractional

translation an/q in the z direction. On the unwrapped sheet this corresponds to the primitive

graphene translation w
q

ccc+ n
q
aaa.

When acting on a particular carbon atom with an element of the line group the atom is either

left invariant or transformed to another position in the nanotube. Two important questions for

the application of group theory are (i) which operations leave the atom invariant – they are

known as stabilizers or the site symmetry of the atom – and (ii) how many different starting

atoms do I need to obtain the whole nanotube by the symmetry operations? Let us first turn to

the second question. We already saw that the primitive translations of graphene correspond

to the screw axis, simple rotations around z, and primitive translations in the tube. Therefore,

the number of starting atoms needed – referred to as distinct sites or orbitals – can at most

be 2, the number of atoms in the graphene unit cell. These two atoms, however, are mapped

onto each other by the U operation. Carbon nanotubes are thus single orbit systems; the

entire nanotube is obtained from a single atom by repeated application of (Cw
q |na

q
), Cn, and

U . Following Damnjanović et al.22 I define the position of the first atom rrr000 = 1
3(aaa111 +aaa222).

By convention the x axis is chosen to coincide with the U axis. In cylindrical coordinates

rrr000(r0,Φ0,z0) is given by (see Table 2.1)

rrr000 = (r ,2π
n1 +n2

2N
,

n1 −n2

2
√

6Na0

), (2.8)

where N = nqR = n2
1 +n1n2 +n2

2, see Table 2.1. An element of TTT w
q DDDn (the group generated

by the screw axis, pure rotations, and the horizontal rotation) gives the new atomic position

rrrtsu = (Cwt
q Cs

nUu|t na

q
)rrr000

=

[

r ,(−1)uΦ0 +2π
(

wt

q
+

s

n

)

,(−1)uz0 +
tn

q
a

]

(2.9)

where u = 0,1, s = 0,1, . . . ,n−1, and t = 0,±1,±2, . . .. By inspection of Eq. (2.9) it is easily

seen that not only the entire tube is generated by the symmetry elements as explained above,

but that, likewise, any element of TTT w
q DDDn maps the starting atom at rrr000 to another at rrrtsu, i.e.,

none of the operations leaves the atom invariant. For chiral tubes TTT w
q DDDn is already the full

line group symmetry. The problem of the stabilizers in chiral tube is thus trivially answered:

Chiral tubes have only the trivial stabilizer, the identity operation E. To find the answer for

achiral tubes we must look at the additional symmetry operations, which are introduced by
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the σx generator. Looking at Fig. 2.2 it is seen that σh in armchair tubes and one of the

vertical mirror planes σv = Cnσx in zig-zag tubes transform a given atom into itself. The site

symmetry of a carbon atom in armchair and zig-zag tubes is C1h.

2.3. Digression: Notations

Group theory is a field with a wide variety of notations, e.g., for the symmetry operations

and the irreducible representations. In the last section I assumed that the reader is familiar

with the Schönflies and the Koster-Seitz symbols for symmetry operations. Both notations

are quite popular for space groups; explanations and conversions can be found in a number

of textbooks.56–59 For the irreducible representations I will use two different notations in

this work: the molecular notation and the notation used in the papers on line groups. Both

have their benefits and their shortcomings. The molecular notation can again be found in

any textbook on group theory, I will therefore use it as the reference in this section. The

line group notation is very clear in the sense that it uses the full set of quantum numbers

to denote an irreducible representation. Moreover, it is not restricted to the Γ point of the

Brillouin zone as the molecular point group notation naturally is. I briefly introduce the line

group notation in this section and give a conversion table for the two notations at k = 0.

The isogonal point groups of chiral and achiral nanotubes belong to the dihedral groups and

the order of the principal rotation axis q is always even, see Table 2.1. In the molecular

or Mulliken notation non-degenerate irreducible representations are labeled by the character

A or B and doubly degenerate by E. The symbols A and B distinguish between the char-

acter of the q fold rotation being +1 and −1, respectively. The subscripts 1 and 2 for the

non-degenerate representations reflect the characters +1 and −1 of the U or C′2 axis. The

degenerate E representations have subscripts running from m = 1,2, . . . ,(q/2− 1), which

are derived from the character of the Cq rotation χEm(Cq) = 2cos(m ·2π/n). Finally, all

symbols carry the additional subscript g or u for even or odd parity under inversion in the

point groups of achiral nanotubes. Table 2.2 is a character table of the Dqh molecular point

group for q even corresponding to achiral nanotubes; the character table for chiral nanotubes

is obtained by omitting the symmetry operations involving the inversion and dropping the g

and u subscripts for the representations.

The line group notation also uses the symbols A and B for non-degenerate representations,

but A and B now stand for even (character +1) and odd (character −1) parity under the

vertical reflection σx. I first explain the notation used for the Γ point of the Brillouin zone or

k = 0. The other irreducible representations follow more or less the same idea. The general
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Table 2.2:
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table of the
Dqh point
groups with
even q;
α = 2π/q,
n = q/2. To
obtain the
table for Dq

omit I and
all following
symmetry
operations.
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Table 2.3: Character table for the
TTT w

2qDDDnh line groups. The charac-
ters for the chiral line groups can be
found in Ref. 49; they can also be
obtained from essentially the same
patterns as observed by a close in-
spection of this table. Note that
the inversion I = σhC2. The ±
superscript in the line group no-
tation does not correspond to the
g/u subscript in the molecular no-
tation. Here α = 2π/2n, t =
0,±1,±2, . . ., m = 1,2, . . . ,(n−1),
r = 0,1, . . . ,n−1, and k ∈ (0,π).
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A+
0 A−0 B+

0 B−0 A+
q A−q B+

q B−q E+
m E−m

A1g A2u A2g A1u B1g
1 B2u

1 B2g
1 B1u

1 Emg
3 Emu

3

B2u
2 B1g

2 B1u
2 B2g

2 Emu
4 Emg

4

1n even 2n odd 3m even 4m odd

Table 2.4: Correspondence between the line group notation for k = 0 and the molecular notation. Note
that the exact relation between g and u and the horizontal mirror parity (denoted as the superscript in
the line group notation) depends on the quantum number m being even or odd. The correspondence
for chiral nanotubes is obtained by omitting the ± superscript in the line group notation and the g/u

subscript in the molecular notation.

labeling of the representations at the Γ point is

k=0→ 0S
± ←σh parity
m ←m quantum number , (2.10)

where m is the absolute value of the quantum number of the z component of the angular

momentum and S stands for A, B, or E. The character for the rotation around the z axis

and the screw axis is given by 2cosmβ , where β is the rotation angle. For m = 0,n the

representations are non-degenerate, all other m have doubly degenerate E representations.

The two degenerate eigenstates are +m and −m. The σh parity is not to be confused with

even and odd transformation under inversion. The inversion is given by σhC2 and an even

parity under σh corresponds to g or u in the molecular notation depending on m being even or

odd, respectively. Non-degenerate representations exist only at the Γ point of the Brillouin

zone. At wave vectors k 6= 0,π the representations are fourfold or doubly degenerate in

achiral nanotubes, which is indicated by the symbols G and E, respectively. Chiral nanotubes

have only doubly degenerate representations. The fourfold degenerate representations kGm

are labeled in the same way as given above except that σh is no longer a symmetry operation

and the superscript is omitted. For the E representations the subscripts denote the irreducible

representation which is obtained for k → 0, e.g., kEA0
.

The character table of achiral line groups is given in Table 2.3. For the chiral line groups it

can be obtained by omitting the symmetry operations of achiral tubes not present in chiral

nanotubes or looked up in Ref. 49. Finally, Table 2.4 gives the correspondence between the

molecular and line group notation at the Γ point.

Although the line group notation might seem unfamiliar at first sight, it has the huge benefit

of using the full set of quantum numbers for the labeling of the irreducible representation,

which is particularly handsome when dealing with selection rules. For example, consider the

selection rules for Raman scattering in (xx) configuration, i.e., the incoming and scattered

light are polarized parallel to the nanotubes axis. The selection rules for optical absorption in

x polarization are ∆m = ±1 and σh = +1. The total change by the absorption and emission
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of a photon is thus ∆mtot = 0,+2,−2 and the total σh parity is left invariant (+1). Since

both m and σh must be conserved in the whole Raman process and the initial and final

electronic states are the same, the only phonon symmetries contributing to (xx) scattering are

0A+
0 = A1g and 0E+

2 = E2g.∗ This argumentation gives a better physical understanding and is

much simpler to perform than the reduction of the corresponding Kronecker product.

2.4. Phonon symmetries and eigenvectors

In the preceding sections I introduced the line and point group symmetries of carbon nan-

otubes. Every quasiparticle like electrons or phonons in nanotubes must belong to one irre-

ducible representation of those groups. Irreducible representations specify the rules under

which the eigenvector of a quasiparticle transforms under the symmetry operations. On the

other hand, the irreducible representations fully determine selection rules. If, e.g., the Ra-

man selection rules are measured experimentally, a first assignment of the observed Raman

modes to the theoretically expected phonon modes is possible. This assignment, however, is

not unique in most systems, because several phonons might belong to the same irreducible

representation. The vibrational modes are symmetry adapted bases of an irreducible repre-

sentation and the eigenvectors and eigenstates of the dynamical matrix. Nevertheless, I show

in this section that symmetry adapted displacements together with some general assumption

on the strength of the force constants give insight into the phonon frequencies and eigenvec-

tors expected in single walled nanotubes. The symmetry approach works particularly well

for achiral tubes, because of their mirror planes. We will see in Chapter 4. that the phonons

calculated by first principles methods agree very well with the predictions made by symme-

try. Before saying anything about selection rules, Raman scattering, or phonon eigenvectors

we must, however, find the possible phonon symmetries in carbon nanotubes.

2.4.1. The dynamical representation

The representation of all vibrations is the so-called dynamical representation, which is best

visualized as all atoms in the unit cell carrying a displacement vector. The phonon symme-

tries are found by decomposing the dynamical representation into its irreducible representa-

tions. There are multiple ways to do this. The most elegant – the site group analysis – uses

induced representations and obtains the phonon symmetries (and partly, also the eigenvec-

tors) from the full line or space group of the system and the stabilizer or site symmetry of

∗The conservation of the angular momentum quantum number is not strictly correct, since m is only a good
quantum number if Umklapp processes are omitted.
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the atoms. The benefit of this method is that is has to be carried out only once, tabelized,

and then can be looked up for a specific system. Exhaustive tables for space groups and an

introduction to the method can be found in the papers by Rousseau et al.60 and Fateley et

al.,61 for line groups they were published by Milošević and Damnjanović.62 The concep-

tionally easiest method, on the other hand, is to directly set up the dynamical representation

from the atomic and vector representation and to reduce it by hand (factor group analysis).

I will demonstrate this method by the example of a (10,10) armchair tube. In general, this

method for finding the phonon symmetries must be carried out for the specific system under

consideration.

As already mentioned the dynamical representation can be understood as the atoms in the

unit cell with a vector attached to every atom. To find the characters of this representation we

must look at the transformation properties of the atoms in the unit cell and the vector repre-

sentation. Every atom which is left invariant by a symmetry operation contributes +1 to the

character of the atomic representation, which then has to be multiplied by the transformation

properties of the attached displacement vector. In other words, the dynamical representation

ΓDR is the direct product of the atomic and the vector representation ΓDR = Γa ⊗Γvec. In

armchair tubes the only operations transforming an atom into itself are the identity E and the

horizontal mirror plane σh. All 40 atoms in the unit cell are invariant under both operations

yielding a character of 40 for E and σh in (10,10) armchair tubes; the other characters are

zero. The characters of the vector representation are given by

χvec = ±1±2cosβ , (2.11)

where β is the rotation angle and + and − hold for proper and improper rotations, respec-

tively. Since the dynamical representation is the product of the atomic and the vector repre-

sentation, we only need the character of the identity χvec(E) = 3 and the horizontal mirror

plane χvec(σh) = 1. By multiplying the character of both representations we finally obtain

χDR(E) = 120, which is equal to the number of the normal modes 3nc, and χDR(σh) = 40;

the other characters are zero. We thus obtained the characters of the dynamical represen-

tation. The next and final step for finding the normal modes of the (10,10) nanotube is to

reduce this representation into irreducible representations of the point group D20h.

A representation can be decomposed into the sum of its irreducible representations by the

following formula

fα =
1

g
∑
G

χ(α)(G)⋆ χ(ΓDG)(G), (2.12)

where fα is the frequency number, the times the irreducible representation α appears, g is

the order of the symmetry group, its number of symmetry elements; the sum is over all
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Phonon symmetries at the Γ point m

(n,n) 2(A+
0 ⊕B+

0 ⊕A+
n ⊕B+

n )⊕A−0 ⊕B−0 ⊕A−n ⊕B−n ⊕∑m(4E+
m ⊕2E−m ) [1,n−1]

(n,0) 2(A+
0 ⊕A−0 ⊕A+

n ⊕A−n )⊕B+
0 ⊕B−0 ⊕B+

n ⊕B−n ⊕∑m 3(E+
m ⊕E−m ) [1,n−1]

(n1,n2) 3(A+
0 ⊕A−0 ⊕A+

q/2
⊕A−

q/2
)⊕∑m 6Em [1,q/2−1]

Table 2.5: Phonon symmetries of single walled nanotubes at the Γ point. The subscript for k = 0 was
omitted for clarity. The last column specifies the range of m in the sums of the doubly degenerate
representations.

symmetry operations G. The proof of Eq. (2.12) can be found in any group theory textbook,

e.g., Ref. 56, 58. For the A1g representation, for example, Eq. (2.12) reads

fA1g
=

1

80
(1 ·120+1 ·40) = 2. (2.13)

A (10,10) armchair tube has two vibrational modes of A1g symmetry. The frequency numbers

of the other representations are easily found with the help of Table 2.2. The total decompo-

sition for a (10,10) armchair tube at the Γ point is

Γ(10,10)
DC =2A1g ⊕ A1u ⊕ 2A2g ⊕ A2u ⊕ 2B1g ⊕ B1u ⊕ 2B2g ⊕ B2u ⊕ 2E1g ⊕ 4E1u

⊕ 4E2g ⊕ 2E2u ⊕ 2E3g ⊕ 4E3u ⊕ 4E4g ⊕ 2E4u ⊕ . . . ⊕ 2E9g ⊕ 4E9u

=2( 0A+
0 ⊕ 0B+

0 ⊕ 0A+
10 ⊕ 0B+

10 )

⊕ 0A−0 ⊕ 0B−0 ⊕ 0A−10 ⊕ 0B−10 ⊕∑m=1,9
(4 0E+

m ⊕ 2 0E−m ).

(2.14)

This result can be generalized for armchair, zig-zag, and chiral nanotubes. I list he phonon

symmetries at the Γ point in these three types of tubes in Table 2.5 in the line group notation.

The phonons at other k points can be found in the paper by Damnjanović et al.22

The Raman ΓR and infrared active Γir vibrations transform according to the representation

of the second rank tensor and the vector representation, respectively.50

ΓR =[Γvec ⊗Γvec] = 0A+
0 ⊕ 0E−1 ⊕ 0E+

2 (⊕0B+
0 ) =A1g ⊕E1g ⊕E2g (⊕A2g)

(2.15)

Γir =Γvec = 0A−0 ⊕ 0E+
1 =A2u ⊕E1u. (2.16)

The irreducible representation A2g given in paranthesis in Eq. (2.15) is totally antisymmetric.

It can only contribute to resonant Raman scattering and is usually not expected to have strong

intensities in Raman experiments. In the introduction, however, I showed that resonances

play a dominant role in Raman scattering on carbon nanotubes. Therefore, we cannot exclude

antisymmetric contributions to the scattered light as in non-resonant Raman experiments. In

Chapter 3. I discuss the selection rules for Raman scattering in more detail and show how to

obtain the contributions of the four representations in Eq. (2.15) experimentally.
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2.4.2. Projection operators I: Arrow drawing

Projection operators in group theory solve the problem: How do I find a function transform-

ing as a particular irreducible representation? I used the term function in a general sense; in

the case of phonons it stands for the displacement pattern of the eigenvectors.

Consider an arbitrary function F . This function can, in general, be expanded into several

irreducible representations F = ∑α ∑n cn
αζ n

α , where α labels the irreducible representations,

cn
α are the coefficients of the expansion, and the ζ n

α are functions transforming according to

the representation α . A projection operator defined by

P
(β )
l(n) =

dβ

g
∑G

D
(β )
ln (G)∗G (2.17)

applied to F picks out the symmetry adapted function ζ (β )
l . In Eq. (2.17) dβ is the degeneracy

of the irreducible representation β , g the order of the symmetry group, G are the symmetry

operations, and D
(β )
ln is the lnth element of the representation matrix D(β ).

As a simple example how to work with projection operators I take a vector (x,y,z) in the D4h

point group. In the last section we found that the vector representation is the sum A2u ⊕E1u.

I look for the part of the vector transforming according to A2u. A projection onto non-

degenerate representations is particularly easy, because the representation matrix D(β ) is

equal to the characters of the representation. The full projection according to Eq. (2.17) and

Table 2.2 reads

P(A2u)(x,y,z) = 1
16 (E +C4 +C−1

4 +C2 −C′21 −C′22 −C′′21 −C′′22 − I − . . .)(x,y,z)

= 1
16 [(x,y,z)+(y,−x,z)+(−y,x,z)+(−x,−y,z)− (x,−y,−z)−

(−x,y,−z)− (y,x,−z)− (−y,−x,−z)− (−x,−y,−z) . . .]

= 2
16 (0,0,8z) = (0,0,z).

The z component of a vector transforms as the A2u representation in the D4h point group. The

result is easily checked with the character table and the known transformation properties of

z. To summarize, to project a function F onto a non-degenerate representation first transform

F by the symmetry operations of the group, then multiply the result by the character of the

symmetry operation, and finally sum over the transformed functions.

The projection to degenerate representations is more involved. Here one needs a matrix

representation to set up the projection operator. The construction of a matrix representation

is usually done with the standard symmetry adapted basis, which for E1u in the D4h point

group is (x,y). The transformation properties of this standard basis straightforwardly yield
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Figure 2.3: Projection to the circumferential A1g displacement pattern in a (5,5) nanotube. The
displacement vector of the starting atom (E symmetry operation) is successively transformed into
vectors at the all the other atoms in the unit cell. To project onto the fully symmetric representation
the newly obtained displacement vector is multiplied by 1, the character of A1g for all symmetry
operations.

a possible matrix representation, which is two-dimensional for E1u. The extension of the

simple vector example from the last paragraph is trivial, since the standard basis is contained

in the vector representation.

To find the symmetry adapted displacement pattern a graphical version of the projection

operators is particularly handy. In Fig. 2.3 I depict the unit cell of a (5,5) nanotube, where

the z axis is pointing at the reader. The full and open circles represent the atoms in the

two graphene sublattices, i.e., their z components are different. The atomic displacements

are indicated by the arrows next to the atoms. The function F is now a circumferential

displacement at the atom located at rrr000. I want to project this displacement onto the A1g

representation, which yields one possible phonon mode belonging to the fully symmetric

representation. The sequences of pictures (excluding the last at the right lower corner) shows

how the displacement vector transforms under the symmetry operations of the nanotube.

In, e.g., the second picture (Cs
5) the nanotube is rotated by s2π/n around the z axis, and

the starting atom with the attached displacement vector is transformed into another black

atom. The displacement vector is multiplied by +1 to project onto the fully symmetric

representation. Note that every atom is reached twice. E.g., the starting atom is transformed
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Figure 2.4: Projection of an axial A1g displacement pattern. Only four selected symmetry operations
are depicted. The two different symmetry operation reaching a particular atom yield opposite dis-
placements which add up to zero. Axial modes never belong to the A1g representation in armchair
nanotubes.

into itself by σh (lower left corner); likewise Cs
5 and IC

(2s+1)
10 yield the same atoms. The fully

symmetric circumferential displacement pattern I obtain by summing over all pictures and

multiplying by 1/40. The result is shown in the last picture in the right hand lower corner.

One atom is located at every atomic position; the displacement vectors are normalized. I

projected an A1g circumferential mode, where the atoms of the two graphene sublattices

are vibrating out-of-phase. On the unwrapped nanotube this displacement corresponds to

one of the doubly degenerate high-energy E2g vibrations at the Γ point of graphene. The

graphene frequency is around 1580cm−1; a similar frequency is expected for the nanotube

circumferential A1g displacement.

Up to now the results of the projection might seem trivial; rolling up the E2g-like displaced

carbon sheet leads the same type of mode in a nanotube. But let us repeat the A1g projec-

tion with an axial displacement. In Fig. 2.4 I show four selected symmetry operations of

the (5,5) armchair tube from an axial displacement of the first atom, see E operation. The

two pairs E,σh and Cs
5, IC

(2s+1)
10 yield the same transformed atoms. The horizontal mirror

reflects the axial displacement into its negative, which is then multiplied by +1 for the A1g

projection. When summing over the symmetry operations the axial E and σh displacement

cancel; the same result is obtained for all other symmetry operations that project onto the

same atom, e.g., the C5 and IC7
10 pair. An axial phonon eigenvector is, therefore, never of

A1g symmetry in armchair carbon nanotubes. The axial high-energy mode corresponding to

the circumferential eigenvector in Fig. 2.3, is of A1u symmetry and hence not Raman active.

As a last example I project a circumferential displacement with the help of the P
(E2g)

1(1)
op-

erator. I demonstrate only the E, Cs
5, and σx• symmetry operations to explain projection

operators to degenerate representations. According to Eq. (2.17) I first need a possible set

of transformation matrices for E2g; the standard basis of E2g is (x2 − y2,xy). The matrix
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representation of the identity for E2g and any other two-dimensional representation is

D(E)E2g =

(
1 0
0 1

)

. (2.18)

To operate with P1(1) (I dropped the superscript for the representation) I first transform the

atom with the displacement atom and then multiply the result by the element in the first

row and first column of the matrix (2.18), i.e., by +1. The projection with the E operation

is shown in the first picture in Fig. 2.5. The representation matrix for Cs
5 is found with the

help of the symmetry adapted basis (x2−y2,xy), the transformation properties of (x,y) under

rotation, and the properties of the trigonometric functions. (x2 − y2,xy) transforms as (x,y)

under the rotation of the doubled angle

D(Cs
5)

E2g =

(
cos(2s ·2π/5) sin(2s ·2π/5)

−sin(2s ·2π/5) cos(2s ·2π/5)

)

. (2.19)

This is a general rule; any basis of Em transforms under the principal rotation by α as (x,y)

rotated by mα around the z axis. The symmetry operation C5 transforms the starting atom

plus its displacement vector into the atom rotated by 72◦ around z. The transformed displace-

ment vector is then multiplied by cos144◦ ≈ −0.81. This is shown in the second picture of

Fig. 2.5 for C±5 and C2
5
±

. Finally, the matrix representation of σx1 is

D(σx1)
E2g =

(
1 0
0 −1

)

, (2.20)

since σx1(x
2 − y2) = x2 − (−y)2 = (x2 − y2) and σx1(xy) = −(xy). The matrices of the other

σx• reflections can be set up from σx1 followed by Cs
5. The displacement pattern after apply-

ing P1(1)(σx•) is shown in the third picture in Fig. 2.5. The atomic displacement obtained by

the full projection is shown in the last picture of the figure. The circumferential mode has

four nodes around the circumference and corresponds to a graphene high-energy mode away

from the Γ point of the graphene Brillouin zone.

C
5

s

E s
x

E2g

Figure 2.5: Projection of an E2g circumferential displacement pattern in a (5,5) nanotube. Only the
E , Cs

5, and the σh symmetry operations are shown. The projection operator used in this figure is

P
(E2g)

1(1) . The other projection operators applied to a circumferential displacement yield either the mode
degenerate to the one shown or an in-phase displacement of the two graphene sublattices.
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Figure 2.6: Projection of all Raman active displacement patterns in armchair nanotubes. Although
group theory allows the mixing of displacements belonging to the same representation, a mixing of the
different axial and circumferential displacements is unlikely because of the different force constants.

What displacement patterns do the other possible projection operators of E2g yield, e.g.,

P
E2g

1(2)
multiplying by the element in the first row and second column after operating with a

symmetry transformation? Using P1(2) one finds the mode degenerate to the one in Fig. 2.5.

The degenerate eigenmode is obtained from a given eigenvector by a 90◦ rotation of the dis-

placement pattern around the tube. If C4 is not a symmetry operation of the nanotube the

displacement vectors must be extended to the new atomic positions. The resulting eigenvec-

tor has its nodes where the atoms are fully displaced in Fig. 2.5 and vice versa. The pair of

projection operators P2(2) and P2(1) project onto another degenerate E2g mode, namely, an

in-phase displacement of the two graphene sublattices.

2.4.3. Symmetry adapted phonon eigenvectors

In Fig. 2.6 I show all circumferential, radial, and axial displacement patterns which are non-

vanishing for the projections onto the Raman active representations A1g, E1g, and E2g in

armchair nanotubes. Clearly, axial eigenvectors are singled out; axial modes always belong

to the E1g representation in armchair tubes. This is due to the non-trivial σh stabilizer. Dis-

placements within the mirror plane (circumferential and radial) must always transform as +1

under the horizontal reflection. This is conform with A1g and E2g symmetry, where a possible

representation matrix is the identity matrix. In contrast, axial displacements transform as −1

under σh, which is only fulfilled by the E1g Raman active representation. Non-degenerate

representations have a constant displacement magnitude. The Em representations have eigen-

vectors with 2m nodes around the circumference; the in-phase and out-of-phase combination

of the two graphene sublattices belong to the same representation in armchair tubes.
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A1g E1g E1g

E1g E2g E2gE2g

A1g

Figure 2.7: Projection of all Raman active displacement patterns in zig-zag nanotubes. Every circle
corresponds to two atoms located on top of each other at different z positions. If the two atoms
representated by the same circle are displaced in the same direction only one displacement arrow is
shown for both.

The stabilizer in zig-zag nanotubes is the vertical reflection σx. The totally symmetric

phonons therefore show displacements within this mirror plane, i.e., an axial high-energy

vibration and the radial breathing mode. The ordering of the E1 and E2 symmetry modes

is more complicated in zig-zag than in armchair tubes, because both plus and minus par-

ity are possible for σx, see Eq. (2.20). Nevertheless, if we concentrate on the high-energy

displacement patterns in Fig. 2.7 we find that the direction of the tangential displacement

in zig-zag tubes is opposite to the displacement in armchair tubes. For example, the E1g

high-energy mode is axial in armchair but circumferential in zig-zag tubes. I summarized

the displacement patterns for the high-energy modes in achiral nanotubes in Table 2.6

By symmetry the displacement patterns in armchair and zig-zag tubes belonging to the same

irreducible representation can mix to form the “true” phonon eigenvector. However, a mixing

of the high-energy eigenvectors shown in Fig. 2.6 and 2.7 with either in-phase displacement

patterns or radial modes can safely be excluded, because of the frequencies expected for these

vibrations. The frequencies of the three high-energy modes are around 1600cm−1 similar to

the graphene optical frequency. The phonon displacement with the next highest energy is the

out-of-phase radial displacement around 800cm−1 (E2g and E1g representation in armchair

and zig-zag tubes, respectively). All other Raman active vibrations are even lower in energy.

For the other displacement patterns of same symmetry the differences are not as drastic. In

A1g E1g E2g

(n,n) circumferential axial circumferential
(n,0) axial circumferential axial

Table 2.6: Displacement direc-
tion of the high-energy tangen-
tial modes in armchair and zig-
zag nanotubes.
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most cases, however, a relative energy splitting of 50% is predicted by zone folding. I thus

expect the atomic displacements in armchair and zig-zag tubes to point either along the z

axis, the circumference, or into the radial direction.

In the projection of the phonon eigenvectors the non-trivial stabilizers in armchair and zig-

zag tubes played a crucial role. In particular, the transformation of a displacement pattern

under reflection allowed me to distinguish the two displacement directions tangential to the

nanotube wall. In chiral tubes there are no mirror planes. The atomic stabilizer is only

the identity operation; the other symmetry transformations do not leave an atom invariant.

Projection operators in chiral tubes yield only very general results. The fully symmetric

displacements must be in-phase for the radial, but out-of-phase for the two tangential A1

modes, because of the horizontal U axes. The Em representations have 2m nodes around

the circumference and both the in-phase and out-of-phase combination of the radial and

the two tangential displacement directions. This yields a total of 6 modes for E1 and E2,

respectively. Axial and circumferential eigenvectors of similar frequency now belong to the

same symmetry. The phonon eigenvectors cannot be deduced from symmetry and some

general assumptions on the strength of the force constants alone. The expected mixing of the

two tangential displacements is verified by the first-principles calculations, which I present

in Chaper 4.

2.5. Symmetry adapted electronic band structure

First work on the electronic states in carbon nanotubes concentrated on the electronic den-

sity of states in a zone-folding approximation. The starting point of these analyses was the

tight-binding expression for the π orbitals of a graphene sheet, which was then modified to

account for the confinement around the nanotubes circumference.34, 63, 64 I introduce and dis-

cuss this approach in Chapter 5. in connection with the electronic band structure of isolated

and bundled nanotubes. An early work by White and coworkers65 and later on the studies

by Damnjanović et al.,45 however, used a different approach to solve the tight-binding prob-

lem for nanotubes. Instead of simplifying the problem by making reference to the graphene

sheet they used the high symmetry of carbon nanotubes. With a modified group projectors

technique, Damnjanović et al.45, 66 reduced the tight-binding Hamiltonian of the whole nan-

otube to a Hamiltonian for a single carbon atom, which was solved analytically. I give the

analytic solution in Section 2.5.2. after an introduction to modified group projectors in the

next paragraph and the following section.



34 Chapter 2. Symmetry

Group projectors are particularly powerful for single walled carbon nanotubes because of the

single orbit character of this system. In the last section I showed how the classical projectors

help in finding the symmetry adapted eigenvectors for k = 0. The restriction to the Γ point

of the Brillouin zone was necessary to work with the isogonal point group instead of the

line group of nanotubes. Line and space groups are infinite and the projection operator in

Eq. (2.17) sums over infinite elements. Even the restricted sum over the elements of the

point group may be quite large; setting up the matrices for the degenerate representations is

a tedious procedure. Modified group projectors circumvent these problems by the following

ideas:

1. The projection on any irreducible representation is reduced to the projection onto the

fully symmetric representation. This projection is particularly simple, because all rep-

resentation matrices are equal to 1. Of course, one has to pay for a simpler projection

operator, in this case by having to enlarge the Hilbert space. When dealing with a pro-

jection operator we want to find in a Hilbert space H the functions |µ 〉 transforming

according to the irreducible representation µ . To work with the modified projector

the original Hilbert space H is multiplied by Hµ∗

. The functions |µ 〉⊗ |µ∗ 〉, which

are invariant under any symmetry operation (fixed point), reside in the product space

H⊗Hµ∗

.

2. What is the advantage in looking for the fixed points in the larger space than for the

functions transforming as µ in the original space? Consider a group which is a product

of a number of generators, i.e., a product of cyclic groups. In Section 2.2. I mentioned

that the line groups of single walled nanotubes have only three or four generators. In

fact, every line or space group is such a product. Let us further assume that we already

found the fixed point |x〉 for all generators γ1,γ2, . . . ,γn. Then any product or power

of the γi will have the same fixed point. To find the fixed point of the whole symmetry

group in the increased auxiliary Hilbert space it is sufficient to look for the common

fixed point of the generating elements. Instead of summing over all symmetry oper-

ations like for classical projection operators we need to solve only the eigenproblem

with the eigenvalue 1 for the generating elements.

3. The last simplification is obtained when induced representations are used. The carbon

atoms in nanotubes had their own symmetry – the stabilizer, a subgroup of the full

nanotube line group. The total space of any physical problem is then spanned by the so-

called interior spaces attached to the atoms. The interior space is given by the physical

problem we want to study, e.g., for phonons the interior space is the three-dimensional
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vector space. To construct the whole nanotube we need to give only the position of

a single atom and the line group symmetry. Likewise, the total space is completely

determined by the interior space of this atom. If the symmetry adapted basis or even

the eigenvectors of a Hamiltonian are known for the representing atom, the basis or

the eigenvector is easily found for the whole tube using symmetry operations. Note

that the concept of induced representations also works for infinite representations like

plane waves.

Modified group projectors allow the implementation of symmetry into computer programs.

First the problem of finding the eigenvalues and eigenfunctions of a Hamiltonian is restricted

to the interior space of the orbit representative. An auxiliary Hamilton operator is constructed

for the space Hµ∗

and the functions |µ 〉 are required both to yield fixed points in the in-

creased Hilbert space and to be eigenvectors of the auxiliary Hamilton operator. Finally, the

induced representation in the original total Hilbert space is constructed. Modified group pro-

jectors are, in general, not intended to be used by hand like the graphical version I presented

in the last section. Nevertheless, I sketch in the following how to find the E1g eigenvectors of

an armchair nanotube by the modified group projectors. This is meant to give a rough idea

how those projectors actually work.

2.5.1. Projection operators II: Modified group projectors

In this section I again find the E1g phonon eigenvectors of armchair tubes, but with the help

of the modified group projectors. In Fig. 2.8 I show schematically the six projection steps,
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Figure 2.8: The modified group pro-
jector technique: a) The total space
is divided into interior spaces of the
atoms b) The interior Sint is spanned
by |α 〉0, |ν 〉0, |µ 〉0, . . . c) To construct
the fixed point in the auxiliary space
the functions in Sint are multiplied by
|µ∗ 〉. d) The auxiliary space H0

aux of
the representing atom contains the fixed
points |µ1〉0, |µ2〉0, . . . , |µ fµ 〉0 e) A
fixed point |µ tµ 〉 of the total auxiliary

space H
big
aux is induced with the operators

switching between the interior space. f)
The symmetry adapted basis |µ tµ ,m〉 is
the partial scalar product 〈µ∗m|µ tµ 〉.
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which I first describe in general and then apply to my example. Fig. 2.8a) depicts the total

space H of the physical problem. The Hilbert space is divided into an infinite number of

interior spaces (rectangles) each belonging to a different atom in the nanotube (or any other

system). The interior space Sint of the representing atom is singled out in Fig. 2.8b). Since

nanotubes are single orbit systems one interior space represents the total space. For, e.g.,

phonon eigenvectors the interior is a three-dimensional vector space. Sint is spanned by

the functions |α 〉0, |ν 〉0, |µ 〉0 . . . transforming as the irreducible representations α,ν,µ . . .

of the nanotube symmetry group. With the modified group projector I want to find the

functions |µ 〉 transforming as µ . I first construct the auxiliary space H0
aux = Sint ⊗H(µ∗)

with the functions |α 〉0⊗|µ∗ 〉, |ν 〉0⊗|µ∗ 〉, |µ 〉0⊗|µ∗ 〉, . . . as shown in Fig. 2.8c) and d).

Only |µ 〉⊗|µ∗ 〉 is left invariant under any symmetry operation of the group. The generally

reducible representation in H0
aux constructed from the representation Dδ in the interior space

is

γ µ(SSS) = Dδ (SSS)⊗D(µ∗)(GGG ↓ SSS) (2.21)

for the example of achiral nanotubes and the vector representation

γ µ(C1h) = Dvec(C1h)⊗D(µ∗)(GGG ↓C1h). (2.22)

SSS is the stabilizer of the atoms equal to C1h = {E,σ} in armchair or zig-zag nanotubes.

The symbol (GGG ↓ SSS) denotes that the full symmetry group GGG is restricted to SSS, i.e., only

those symmetry operations belonging to SSS are considered. The trace of γ µ(SSS) is equal to

the frequency number fµ , the number of times the irreducible representation µ appears in

the reducible representation Dδ . The eigenvectors of γ µ(SSS) to the eigenvalue 1 are the fixed

points |µ1〉0, |µ2〉0, . . . , |µ fµ 〉0 we are looking for.

The fixed points |µ tµ 〉0 of the interior auxiliary space H0
aux of the representing atom 0 are

now expanded to the total auxiliary space H
big
aux. A fixed point |µ tµ 〉 in H

big
aux is obtained with

the transformation operator |µ tµ 〉 = Bµ |µ tµ 〉0, where

Bµ =
1√
Z

∑
t

Et
0 ⊗β µ

t =
1√
Z

∑
t

Et
0 ⊗ Iδ ⊗D(µ∗)(Zt). (2.23)

The sum in Eq. (2.23) is over all elements of the transversal. The transversal is the group

of symmetry operations Zt transforming the atoms of the same orbit into each other; Z is

the order of the transversal. The operator E t
0 ⊗β µ

t transforms the fixed point |µ tµ 〉 of the

representing atom into the fixed point |µ tµ 〉t of another atom t. Et
0 literally switches between

the atoms; it is a matrix with the 0t’th element equal to 1, all other are zero. β µ
t = Iδ ⊗

D(µ∗)(Zt) takes care of the symmetry in the auxiliary Hilbert space. The identity matrix Iδ
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of the interior space is used only to enlarge the dimension. The sum over the fixed point in

all interior spaces t is the fixed point in the total auxiliary space H
big
aux. The action of Bµ is

shown in Fig. 2.8e). Finally, in Fig. 2.8f) the symmetry adapted basis in the original Hilbert

space H is extracted with the help of the partial scalar product

〈µ∗m|µ tµ 〉 = 〈µ∗m |(|µ tµn〉⊗ |µ∗m〉) = |µ tµm〉. (2.24)

The vectors |µ tµm〉 in the total Hilbert space H is the m’th component of the tµ’th eigen-

vector transforming according to the irreducible representation µ .

After discussing the modified group projectors in a general way I now apply the method

to the problem of finding the phonon eigenvectors transforming as E1g in a (5,5) armchair

nanotube. As already mentioned the interior space for this physical problem is the three-

dimensional vector space, the reducible representation is the vector representation, and the

stabilizer in armchair nanotubes is C1h. With the standard basis of E1g (xz,yz) Eq. (2.21)

reads

γ E1g(C1h) = Dvec(C1h)⊗D(E1g)(G ↓C1h) (2.25)

=
1
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(2.26)

The trace Tr[γ E1g(C1h)] = 2, i.e., two phonons in armchair tubes are of E1g symmetry as

already obtained in Section 2.4.1. The two eigenvectors (0,0,0,0,1,0) and (0,0,0,0,0,1)

are the fixed points in the auxiliary space H0
aux. In the following I consider only the first

fixed point for simplicity; its vector can be expressed as

|E1g1〉0 =





0
0
1



⊗
(

1
0

)

+





0
0
0



⊗
(

0
1

)

= z0 ⊗
(

1
0

)

, (2.27)

where z0 stands for the z displacement component of the representing atom. The two vectors

(1,0) and (0,1) are a basis of E1g in the nanotube’s symmetry group. Note that we already

found that E1g modes are always axial in armchair nanotubes. Only the z component in the

interior space of the representing atom transforms as E1g. Since no line group symmetry
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operation transforms the principal axis in the x or y axis, the eigenvector for the whole tube

will be axially as well. I did not specify the particular armchair nanotube up to now. The

finding of only axial E1g eigenvectors is therefore valid for any armchair nanotube.

With the fixed point in the interior space of the representing atom I have to induce the fixed

point in the total auxiliary space H
big
aux. The transversal for armchair nanotubes is TTT w

q DDDn =

TTT 2nDDDn. To apply the transformation operator BE1g to the first fixed point |E1g1〉0 I need an

E1g matrix representation for the generators of the transversal and its combinations

Cn =

(
cos2π/n sin2π/n

−sin2π/n cos2π/n

)

(C2n|a
2)

k=0
=

(
cosπ/n sinπ/n

−sinπ/n cosπ/n

)

U =

(
−1 0

0 1

)

(Cs
nCl

2nUu|l a
2)

k=0
=

[

(−1)u cosπ 2s+l
n

sinπ 2s+l
n

−(−1)u sinπ 2s+l
n

cosπ 2s+l
n

]

. (2.28)

In Eq. (2.27) I separated the eigenvector |E1g1〉0 into a sum of two direct products. Therefore

we can skip the identity representation Iδ appearing in β µ
t in Eq. (2.23)

|E1g1〉 =
[
E000

0 ⊗β E1g

000 +E010
0 ⊗β E1g

010 +E100
0 ⊗β E1g

100 +E030
0 ⊗β E1g

030 +E200
0 ⊗β E1g

200+

+E050
0 ⊗β E1g

050 + · · ·+E001
0 ⊗β E1g

001 +E101
0 ⊗β E1g

101 . . .
][

z0 ⊗
(

1
0

)]

with (A⊗B)(A′⊗B′) = (AA′)⊗ (BB′) and c l = cos(l ·2π/n), s l = sin(l ·2π/n)

= z000 ⊗ ( 1
0)+ z010 ⊗ ( c1

−s1 )+ z100 ⊗ ( c2
−s2 )+ z030 ⊗ ( c3

−s3 )+ z200 ⊗ ( c4
−s4 )

+ z050 ⊗ ( c5
−s5 )+ · · ·+(−z001)⊗ (−1

0)+(−z101)⊗ (−c1
s1 ) . . . (2.29)

The interior coordinate system is transformed together with the atoms. Therefore the z com-

ponent of the displacement changes sign under the U operation, which I indicated by the

minus sign at z for the symmetry operations in Eq. (2.29) containing U (the last two). The

vector in Eq. (2.29) is the fixed point in the total auxiliary Hilbert space H
big
aux. To finally

find the phonon eigenvectors |µ1m〉 = |E1g1,1〉 and |E1g1,2〉 transforming as E1g I take

the partial scalar product and obtain

|E1g1,1〉 = 〈E∗1g1|E1g1〉 = z000 + c1 · z010+

+ c2 · z100 + c3 · z030 + c4 · z200 + c5 · z050 + . . .z001 + c1 · z101 . . .

|E1g1,2〉 = 〈E∗1g2|E1g1〉 = −s1 · z010 − s2 · z100−
− s3 · z030 − s4 · z200 − s5 · z050 + · · ·+ s1 · z101 . . . (2.30)

Fig. 2.9 shows the two phonon eigenvectors |E1g1,1〉 (left) and |E1g1,2〉 (right), which are

degenerate. The displacement pattern to the left can already be found on page 31 in the
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Figure 2.9: Degenerate E1g phonon
eigenvectors in armchair nanotubes
obtained with the modified group pro-
jector technique. For the transforma-
tion explicitly written in Eq. (2.30) the
atoms were labeled correspondingly in
the left hand tube.

upper right corner of Fig. 2.6, where the same eigenvector was projected with the help of

the graphical projectors. It is a mode with two nodes around the circumference and an in-

phase displacement of the two graphene sublattices. In an isolated, finite molecule these

eigenvectors are a rotation around the x and y axis. The projection of the second fixed point

of γ E1g(C1h) yields the two degenerate high-energy modes of E1g symmetry. Similarly, the

other results of Section 2.4.2. can also be obtained with the modified group projector tech-

nique. In chiral nanotubes group projectors per se are not suited for finding the eigenvectors,

because of the trivial stabilizer in this tubes. After introducing the technique in this section I

now turn to the projection of the electronic states in carbon nanotubes.

2.5.2. Tight-binding electronic dispersion

Solving the Hamiltonian for the electronic states in carbon nanotubes within the tight-binding

or any other approximation is quite involved, because of the many atoms in the unit cell.

Throughout this chapter, however, we saw how much the vibrational properties of nanotubes

are simplified by their symmetry. Essentially the same methods can be applied to the elec-

tronic states as well. Modified group projectors also help in solving an Hamiltonian. Instead

of projecting to the eigenvalue +1 as for finding the symmetry adapted displacement pat-

tern, the functions are additionally required to be the eigenvectors of an auxiliary Hamilton

operator Hµ = H ⊗ Iµ , where Iµ is the identity representation in H(µ∗). As described in the

previous section the auxiliary operator is then restricted to the interior space of the represent-

ing atom, its eigenvalues yield the electronic dispersion, and its eigenfunctions induce the

irreducible representations for the whole nanotube.

The tight-binding Hamiltonian assumes only nearest neighbor interaction with the same

carbon-carbon interaction energy γ0 for the three neighbors. The latter assumptions neglects

the curvature of the graphene sheet; the extension to different γ0 is given in Ref. 45. More-

over, only the π orbitals of graphene are considered as I dicuss in Chapter 5. The auxiliary
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Hamiltonian in the interior space of the representing atom is

H
↓
µ = γ0

3

∑
i=0

D(µ∗)†
(Zi), (2.31)

where i runs over the nearest neighbors of the representing atom. With the symmetry adapted

basis |k,m,Π〉, where Π stands for the parities and is only defined at high-symmetry points

of the Brillouin zone, the Hamiltonian in Eq. (2.31) is straightforwardly solved for tubes of

any chirality.

εm(kz) = ±γ0

√

∑3

i=1
(1+ cosψi) (chiral tubes 2.32a)

with

ψ1 = −ka
n2

q
+2π m

2n1 +n2

qnR
, ψ2 = ka

n1

q
+2π m

n1 +2n2

qnR
, and ψ3 = ψ2 −ψ1

(2.32b)

εm(kz) = ±γ0

√

1+4cos
ka

2
cos

mπ
n

+4cos2
ka

2
(armchair tubes 2.32c)

εm(kz) = ±γ0

√

1+4cos
ka

2
cos

mπ
n

+4cos2
mπ
n

(zig-zag tubes 2.32d)

Note that the two limiting cases of armchair and zig-zag tubes are contained in the expression

for chiral in tubes in Eq. (2.32) by setting, e.g., for armchair tubes n1 = n2 = n. Most of

the electronic states belong to the doubly degenerate E irreducible representation in chiral

nanotubes. At k = 0,π and some selected m also the non-degenerate representations appear,

but their energies are far beyond the visible and will not be considered here. In armchair and

zig-zag tubes the electronic states at the Γ point are doubly degenerate as well except for

m = 0,n. For k 6= 0,π the electronic bands are, in general, four-fold degenerate in achiral

nanotubes. For a compilation of the electronic symmetries in achiral and chiral nanotubes

see Table 2 in Ref. 45.

As two examples of the electronic band structure of achiral nanotubes I show in Fig. 2.10 the

bands of a metallic (11,11) and a semiconducting (19,0) nanotube. The plots were obtained

from Eq. (2.32) with γ0 = 2.75eV. The bands lying closest to the Fermi level are labeled by

their irreducible representation at the Γ point. The vanishing gradients of the electronic bands

at k = 0 and around 2π/3 in the armchair and k = 0 in the zig-zag tubes, which yield the

singularities in the density of states, are nicely seen. In armchair nanotubes of reasonable size

the singularities for transitions in the visible are well separated in energy and are associated

with different k vectors. The situation is different in the zig-zag tubes, with Γ as the only

critical point in this energy range. In general, both in chiral and achiral tubes the k vectors of
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Figure 2.10: Bandstructure of an
(11,11) armchair and an (19,0)
zig-zag nanotubes. The two
bands crossing at the Fermi level
in the armchair tubes are of EB

11

and EA
11 symmetry, the super-

scripts specify the B+
11 and A+

11

representation at the Γ point, re-
spectively; the other armchair
bands belong to the Gm represen-
tation. The labels at the left axis
name the irreducible representa-
tion at the Γ point for the first
singularities, which are between
2π/3a < ks < π/a in the arm-
chair and at k = 0 in the zig-zag
tubes.
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vanishing slope are determined by the parameter R = 3 for tubes with (n1 −n2)/3n integer

and R = 1 otherwise, see Section 2.1.55 If R = 3 as in all armchair and most metallic chiral

nanotubes the singularities associated with visible optical transitions arise from k vectors

between 2/3 and the boundary of the nanotube Brillouin zone. In contrast, all semiconducting

chiral tubes, all zig-zag tubes, and some metallic chiral nanotubes as, e.g., the (12,6) tube,

belong to the class with R = 1. Then only Γ and X are critical points with a large electronic

density of states. This interesting difference in the electronic band structure will play a major

role in defect induced Raman scattering, which I discuss in connection with the D mode in

carbon nanotubes and graphite in Chapter 6.. We will see there that only tubes with R = 3 are

expected to show a double resonant Raman process leading to the experimental observation

of this mode. I discuss the symmetries of the electronic bands in more detail in connection

with the Raman selection rules in the next chapter. Here I only stress that optical transitions

between the two bands crossing at the Fermi level are forbidden by selection rules for any

polarization of the light.

The band structure is more complicated in chiral nanotubes as exemplified in Fig. 2.11a)

for a metallic (15,6) and 2.11b) for a semiconducting (12,8) tube. The (15,6) tube belongs

again to the class R = 3 and correspondingly the valence and conduction band cross at kF ≈
2π/3 in the homogeneous tight-binding approximation. The crossing of the two bands is,

however, forbidden by symmetry; the bands show a level anticrossing and develop a small

singularity at the Fermi energy if the curvature is included in the calculation.55 Many of

the differences in the band structure of achiral and chiral nanotubes arise because of the

absence of mirror planes and the much smaller Brillouin zone in chiral nanotubes. The

missing reflection symmetries split the four-fold degenerate bands in achiral nanotubes to
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Figure 2.11: Bandstructure of
a (15,6) metallic (d = 1.47nm)
and a (12,8) semiconducting (d =
1.37nm) chiral tube. In the metallic
tube the bands cross at k = 2π/3a,
because R = 3. The energy of
the bands corresponding to the first
four singularities in (a) are marked
by gray dots; the symmetries in (a)
for E > 0 refer to the downbending
band, vice versa for E < 0.
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two doubly degenerate E bands. This is nicely seen in Fig. 2.11, in particular around the

2π/3 singularities in the metallic and the Γ point in the semiconducting tubes. The splitting

of the metallic singularities was already predicted from the zone-folding approximation when

the higher-order terms of the graphene tight-binding structure are included.36 The effect of

the larger translational periodicity in chiral nanotubes can also be observed in the figure. I

selected here two chiral examples with a large greatest common divisor n – otherwise the

band structure plot would be almost black on this scale. The periodicity along the nanotube

axis is 3.6 times larger in the (15,6) than in the (11,11) tube; correspondingly the Brillouin

zone is smaller by the same factor. When following, e.g., the E32 band in Fig. 2.11a) across

the two zone boundaries it becomes apparent that an electronic dispersion similar to the G10

in Fig. 2.10a) is obtained by unfolding the dispersion to an extended zone scheme.

2.6. Summary

The high-symmetry of single walled carbon nanotubes greatly helps in studying and pre-

dicting their physical properties. In this chapter I introduced line groups to describe the

symmetries of one-dimensional systems. Except for (n,0) zig-zag and (n,n) armchair nan-

otubes with the same n every nanotube belongs to a symmetry group of its own. The isogonal

point groups of carbon nanotubes are given by q, the number of graphene cells in the unit cell

of the nanotubes, namely, Dqh = D2nh for achiral and Dq for chiral tubes. After discussing

the symmetry properties of carbon nanotubes I found the phonon displacement patterns and

the electronic bands of single walled nanotubes using two different projector techniques.
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The graphical version of the projection operators is particularly helpful when looking for

the phonon eigenvectors of a system. Using this “arrow drawing” technique I showed that

the atomic displacement for vibrations in achiral tubes is fixed by their mirror symmetries.

The large difference between the tangential and radial force constants, moreover, results in

exclusively radial, circumferential, or axial phonon eigenvectors. Chiral nanotubes do not

have such mirror planes in their symmetry groups and, even more importantly, their stabi-

lizer is only the trivial identity operation. Their phonon modes are not given by symmetry,

but need to be calculated as the eigenvalues of the dynamical matrix. I expected the high-

energy modes to be of mixed circumferential and axial character; a topic which is further

investigated with high-pressure experiment and ab initio calculations in Chapter 4.

The modified group projectors is a projector technique developed only recently by Damn-

janović et al.45, 66 Problems of the classical projectors arising from infinite symmetry groups

or infinite-dimensional representations are solved by this method. The modified group pro-

jectors together with a homogeneous tight-binding approximation yield a simple expression

for the electronic bands of carbon nanotubes. I presented the electronic dispersion of two

achiral and chiral nanotubes and pointed out the fundamental differences and similarities in

their electronic dispersion. The most prominent features in the electronic dispersion are the

points of vanishing slope, which give rise to the typical singularities in the one-dimensional

density of states. These points are at k = 0 in semiconducting, zig-zag, and some metallic

chiral nanotubes, and around 2/3 of the Brillouin zone in armchair and most metallic chiral

tubes. This peculiar difference is important for the defect induced double-resonant Raman

process, which will be discussed in Chapter 6.
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Chapter 3
Raman Scattering and Tensor Invariants

When a new material is discovered – or a long-known material suddenly turns out to be of

great physical interest – Raman spectroscopy is usually among the first experimental tech-

niques used for characterization. Raman spectra can be recorded on small and poor samples,

but provide deep insight into the physical properties as well as the material quality. During

the last decade Raman spectrometers got rather cheap and easy to handle, in particular, the

single-grating spectrometers working with a notch filter. Papers concentrating on prepara-

tion methods very often contain figures with a Raman spectrum comparing them with known

spectra of the same material. On the other hand, the Raman process yields information not

only on the vibrational properties. To name only a few examples, resonant scattering is

deeply influenced by the electronic states of a system, phase transitions are nicely studied

by recording the Raman spectra, and experiments under external pressure allow us to un-

derstand the elastic properties as well. Probably the most important question when trying to

interpret the Raman spectrum of a new material is the experimentally observed symmetry of

the modes. If a single crystal is at hand, the exact structure of the material is known, and

the Raman process is essentially non-resonant, determining the mode symmetry is straight-

forward, although it may still be involved experimentally. If either of these conditions fail,

however, a more detailed analysis has to be performed. I show in this chapter how the sym-

metry of the Raman scattered light can be measured on unoriented samples. The strongly

anisotropic Raman tensor I found experimentally on nanotubes points to a scattering process

which is dominated by the electronic and optical properties.

The chapter starts with a very brief introduction to the Raman effect in Section 3.1. con-

centrating on the selection rules and the Raman tensors for the nanotube symmetry group.

How to deduce the phonon symmetry from unoriented crystals is explained in Section 3.2.

In Section 3.3. I discuss my experimental setup, which was also used for the excitation en-

45
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Figure 3.1: Feynman diagram of a first-order Raman
process. An incoming photon with frequency ω1 and
wave vector kkk1 excites an electron-hole pair. The elec-
tron is then scattered inelastically emitting a phonon
with frequency ω and wave vector qqq. The electron-
hole pair recombines under the emission of the scattered
photon (kkk2,ω2). Modified figure from Ref. 67.
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ergy dependent measurements in Chapter 6. The results for the tensor invariants and the

symmetry of the Raman scattered light in single and multiwall nanotubes are presented in

Section 3.4. Additionally, I discuss ab initio calculations of the optical absorption spectra

and the symmetry properties of the D mode in graphite.

3.1. Selection rules

First order Raman scattering is a three step process as shown in Fig. 3.1. The absorption of

an incoming photon with a frequency ω1 creates an electron-hole pair, which then scatters

inelastically under the emission of a phonon with frequency ω , and finally recombines and

emits the scattered photon ω2.67, 68 In this work I concentrate on resonant scattering and may

thus neglect all other possible time orders of the Raman process. I have to include, however,

the details of the electron-photon and the electron-phonon coupling. Let the polarization of

the incoming (outgoing) light be σ (ρ) and the Hamiltonian for electron-radiation interaction

HeR,σ (HeR,ρ ). The electron-phonon coupling is described by Hep. The matrix element K2 f ,10

of the process in Fig. 3.1 is then69

K2 f ,10 = ∑a,b

〈ω2, f , i |HeR,ρ |0, f ,b〉〈0, f ,b |Hep |0,0,a〉〈0,0,a |HeR,σ |ω1,0, i〉
(E1 −Ee

ai − iγ )(E1− ¯hω −Eebi − iγ )
,

(3.1)

where |ω1,0, i〉 denotes the state with an incoming photon of energy E1 = ¯hω1, the ground

state 0 of the phonon (no phonon excited), and the ground electronic state i; the other states

are labeled accordingly. The initial and the final electronic states are assumed to be the same;

the sum is over all possible intermediate electronic states a and b. The final phononic state

is denoted by f . The Ee
ai are the energy difference between the electronic states a and i; the

lifetime of the excited states γ was taken to be the same.67, 69

Right now, I am only interested in selection rules, i.e., I am asking whether the matrix ele-

ment in Eq. (3.1) is zero or not. The quickest way to work out the selection rules for Raman

scattering in carbon nanotubes is to use the conservation of the quasi-angular momentum
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Scattering geometry Phonon symmetries
line group notation molecular notation

(z,z) 0A+
0 A1g

(x,z), (z,x), (y,z), (z,y) 0E−1 E1g

(x,x), (y,y) 0A+
0 , 0E+

2 A1g, E2g

(x,y), (y,x) 0B+
0 , 0E+

2 A2g, E2g

Table 3.1: Phonon symmetries conserving the angular momentum quantum number and the σh parity
in the Raman configurations. In chiral tubes σh is not a symmetry operation; the superscript ± and
the subscript g are omitted.

m and the parity σh (the latter only for achiral tubes). If I treat m as a conserved quantum

number I implicitly assume that no Umklapp processes occur in the Raman transition.51 An

extension to more general transitions, in particular in defect induced scattering, will be done

in Chapter 6.21 The Raman tensors found by the more general treatment are, however, es-

sentially the same as those I give below. The eigenstates in Eq. (3.1) are composed of an

electronic, a vibronic, and a photonic part. The quantum numbers are conserved for the total

eigenstate. Since the initial and final electronic state is the same – I exclude vibro-electronic

coupling70, 71 – ∆m = 0 and σh = +1 for the electronic part. A z polarized optical transi-

tion conserves the angular momentum ∆m = 0 and changes the mirror parity σh = −1; for

transitions polarized perpendicular to the tube axis ∆m = ±1 and σh = +1.50 The change in

angular momentum and parity induced by the absorption and emission of a photon must be

compensated by the phonon. For z polarized incoming and outgoing light – (zz) configura-

tion – the angular momentum and the parity are fully conserved by the photons. Therefore,

only A+
0 = A1g phonons are allowed in this scattering configuration. In (xz) or (zx) scattering

geometry ∆mphoton = ±1 and σh,photon = −1 giving rise to E−1 = E1g phonon scattering. The

selection rules are summarized in Table 3.1 for all possible scattering configurations.

How do the Raman tensors of the modes given in Table 3.1 look? Again, this question can

be answered by group projector techniques. Nevertheless, an inspection of the table together

with symmetry arguments is sufficient to find the general form of the Raman tensors. The

A1g representation appears only for parallel polarizations, hence all non-diagonal elements

of its Raman tensor are zero. Various symmetry operations transform the xx and the yy

components into each other in nanotubes. To obtain an A1g representation these two entries

of the tensor must be the same. The zz component, on the other hand, is linearly independent,

because all line group symmetry operations preserve the z axis. I thus obtained diag[a,a,b],

i.e., a purely diagonal matrix with αxx = αyy = a and αzz = b, see Table 3.2, as a general A1g

tensor of single walled nanotubes. E1g can only have xz,zx,yz,zy non-zero elements. Again

xz and yz transform into each other under the symmetry operations of the tubes and are not
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independent, whereas xz and zx are decoupled. Similarly, the other Raman tensors can be

found. I list them in Table 3.2. With a single crystal of carbon nanotubes, aligned not only

along the z axis, but in the plane perpendicular to z as well, the phonon symmetries and the

relative values of the tensor elements in Table 3.2 could be measured using the well-known

relation for the intensity in (es,ei) configuration I ∼ |es ℜei|, where ℜ is the Raman tensor.

At present nanotube single crystals are not available. Samples with a partial alignment along

the z axis or dilute nanotube samples on different substrates have been reported recently and

used for Raman experiments.15, 72–75 The symmetries of the Raman scattered light can also

be studied on unoriented samples by measuring the Raman tensor invariants,76, 77 which is

the topic of the next section.

3.2. Tensor invariants

As I discussed at the end of the last section determining the symmetry of the Raman scattered

light on a single crystal is straightforward from an experimental point of view. The interpre-

tation of the results, however, may still be difficult under resonant conditions or with an

unknown crystal structure. But how is the situation if the sample is completely unoriented?

At first sight this may seem to preclude any symmetry determination, which, of course, is

not correct. It is still possible to find the invariants of the Raman tensor by using different

scattering configurations. Invariants are those combinations of the tensor elements which

are left invariant under rotation.78, 79 I will show below that these tensor invariants can be

understood from the decomposition of the Raman tensor into irreducible tensors instead of

the representations of the crystal point group. First I demonstrate with a simple example

how to find the Raman intensities in the lab frame by integrating over all orientations of the

scattering elements.

Let us assume that I have a phonon with a diagonal Raman tensor with three elements a1 6=
a2 6= a3. Further, the scattering configuration in my lab frame is (ZZ). To find the Raman

A1g A2g E1g E1g E2g E2g





a 0 0
0 a 0
0 0 b









0 e 0
−e 0 0
0 0 0









0 0 c

0 0 0
d 0 0









0 0 0
0 0 −c

0 −d 0









0 f 0
f 0 0
0 0 0









− f 0 0
0 f 0
0 0 0





Table 3.2: Raman tensors of the phonons in carbon nanotubes. They are valid for the Dq and Dqh

point groups with q > 3, which refers to all realistic tubes.



3.2. Tensor invariants 49

intensity I have to integrate and average over all orientations of the crystal. Using Euler’s

angles80, 81

IZZ =
1

8π2

π∫

0

2π∫

0

2π∫

0

|ei ·ℜ · es|2 dψ dϕ sinθ dθ (3.2)

=
1

8π2

π∫

0

2π∫

0

2π∫

0

〈





sinϕ sinθ
cosϕ sinθ

cosθ









a1

a2

a3









sinϕ sinθ
cosϕ sinθ

cosθ



〉2 dψ dϕ sinθ dθ

(3.3)

integrating and rearanging yields

IZZ =
45ᾱ2 +4γs

′2

45
(3.4)

with ᾱ = 1
3(a1 +a2 +a3) (3.5)

γs
′2 = 1

2

[
(a1 −a2)

2 +(a2 −a3)
2 +(a3 −a1)

2
]
. (3.6)

The result in Eq. (3.4) holds for all parallel polarizations of the incoming and outgoing

linearly polarized light and for every Raman tensor except that γs
′2 then has a more general

form (see below). For perpendicular linear polarization, e.g., IXZ , the integration yields

IXZ = 3γs
′2/45. Now it becomes obvious that the symmetry can partially also be deduced

from experiments on unoriented crystals. For example, if the three elements of the Raman

tensor are the same (as for cubic point groups), Raman scattering is forbidden in crossed

linear polarization, and in parallel linear polarization we find IZZ = a2. On the other hand, a

fully uniaxial Raman tensor (a1 = a2 = 0,a3 = b) results in IXZ/IZZ = 1/3.

In Appendix II. I show how to generalize the results of the preceding paragraph for arbitrary

Raman tensors. The intensity on unoriented crystals follows directly from the transformation

of a tensor under rotation. A second rank tensor can be decomposed with respect to the

rotation group into a scalar (tensor of rank zero), an antisymmetric matrix (rank one), and

a symmetric traceless matrix (rank two). These irreducible components have well defined

quantum numbers and transformation properties under rotation. The matrix element for a

fixed orientation is obtained from the Wigner-Eckart theorem; the integration over all crystal

orientations is determined by the tensor invariants. Different authors use slightly different

invariants in Raman scattering. Following Nestor and Spiro82 I define the isotropic invariant

ᾱ = 1
3(αxx +αyy +αzz), (3.7)

the antisymmetric anisotropy

γ 2
as = 3

4

[
(αxy −αyx)

2 +(αxz −αzx)
2 +(αyz −αzy)

2
]
, (3.8)
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and the symmetric anisotropy

γ 2
s = 1

2 [(αxx −αyy)
2 +(αyy −αzz)

2 +(αzz −αxx)
2]+ 3

4 [(αxy +αyx)
2

+(αxz +αzx)
2 +(αyz +αzy)

2],

(3.9)

where αi j (i, j = x,y,z) are the elements of the Raman matrix as given in Table 3.2 for carbon

nanotubes.

The scattering intensity on an unoriented sample in any scattering configuration can be ex-

pressed by a linear combination of the tensor invariants, see Appendix II. For linear parallel

(‖) and perpendicular (⊥) polarization of the incoming and scattered light the intensities are

given by (apart from a constant factor; Table II.2)

I‖ = 45ᾱ2 +4γ 2
s (3.10)

I⊥ = 3γ 2
s +5γ 2

as, (3.11)

which is the generalized result of Eq. (3.4). The quotient I⊥/I‖ is known as the depolarization

ratio ρ . Under non-resonant conditions the antisymmetric invariant γ 2
as = 0. Measuring the

intensity under parallel and crossed polarization is then sufficient to find the tensor invariants.

Under resonances antisymmetric scattering does not necessarily vanish. We need at least one

more independent measurement to find the tensor invariants. Using circular instead of linear

polarization the intensities in backscattering configuration are

I		 = 6γ 2
s (3.12)

I	� = 45ᾱ2 + γ 2
s +5γ 2

as, (3.13)

where I		 is the intensity for corotating and I	� for contrarotating incoming and outgoing

light, I		/I	� is the reversal coefficient P. Solving the system of four equations Eq. (3.10)-

(3.13) with respect to the tensor invariants we obtain as one possible solution82

45 ᾱ2 = I‖− 2
3I		, (3.14)

5γ 2
as = I⊥− 1

2 I		, (3.15)

6γ 2
s = I		. (3.16)

With the last quantity I	� we can measure the experimental error. The experimentally ob-

tained tensor invariants are only accepted as significantly different from zero if they are larger

than ∆I = |(I‖+ I⊥)− (I		 + I	�)|.
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Before I turn to the description of the experimental setup for measuring the tensor invari-

ants and the results for carbon nanotubes, I want to discuss in general the conclusions which

can be drawn from experiments on unoriented samples. The only symmetry which has a

non-vanishing isotropic part ᾱ is the fully symmetric representation in any point or space

group. Thus, phonons of A1 symmetry are readily distinguished from the other species. Of

particular interest is the observation of antisymmetric contributions to the Raman intensity,

i.e., γ 2
as 6= 0. If only the antisymmetric component is present the Raman peak originates from

a phonon transforming as the totally antisymmetric representation, in the point group of nan-

otubes this is A2 (see Table 3.2). Totally antisymmetric scattering is rather rarely observed

experimentally; more frequent is an antisymmetric contribution to a degenerate mode.82–84

The only possible modes in nanotubes showing mixed symmetric and antisymmetric scat-

tering are E1 modes. For example, a strong incoming resonance with an optical transition

which is allowed in z polarization, but forbidden in x or y polarization yields in the matrix

representation of the E1 Raman tensor c 6= d in Table 3.2. Such antisymmetric contributions

where reported by Rao et al.74, 85, 86 for multiwall nanotubes. Degenerate modes have a sym-

metric anisotropy γ 2
s different from zero, but ᾱ2 = 0. A large ratio ᾱ2/γ 2

s can serve as an

indicator for scattering by E1 and E2 symmetry modes in carbon nanotubes.

3.3. Experiments

The light scattered by a material consists of an elastically scattered part – Raleigh scatter-

ing – and an inelastically scattered part – Raman scattering. The cross section for Raleigh

scattering exceeds the one for Raman scattering by several orders of magnitude. Moreover,

the difference in energy between the Raman signal and the incoming light is on the order

of 10−2. The experimental setup must, therefore, be optimized to detect weak signals in the

vicinity of the intense Raleigh peak. A standard Raman experiment nowadays uses lasers

for excitation. A triple-grating spectrometer or a single-grating system with a notch filter

suppresses the elastically scattered light and disperses the Raman spectrum. The spectrum is

recorded with multichannel detectors like charge-coupled-device (CCD) cameras.

In the present work scattering was excited by Ar+ or Kr+ laser lines or an HeNe laser.

The excitation density was kept below 100 W/cm2 to avoid heating of the strongly absorbing

nanotubes material. The two spectrometers used for the measurements and the detailed setup

I describe in the following.
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Triple-grating DILOR XY800

The setup is shown schematically in Fig. 3.2. The laser light first passes a small prism

monochromator to remove the plasma lines of the laser. It is then focused onto the sample

with a commercial photo objective ( f = 35mm) or a achromat-meniscus lens ( f = 60mm).

The scattered light is collected in backscattering geometry. The first two gratings of the

spectrometer are used to suppress the elastically scattered light. They are arranged in sub-

tractive mode – placed “back to back” – and thus act as a narrow band pass filter of variable

wavelength. The light is dispersed by the last grating (1800 mm−1) and collected by a

charge-coupled-device detector. In the green and blue energy range a liquid nitrogen cooled

back-thinned CCD was used, in the red a Peltier cooled CCD without back thinning. The

resolution achieved with a 200 µm entrance slit is between 1.5cm−1 at 647 nm and 3 cm−1

at 488 nm, which is much smaller than the width of the Raman peaks observed in carbon

nanotubes. The specific strengths of this spectrometer for experiments on nanotubes are its

flexibility, i.e., it is not restricted to particular excitation energies, and for the observation of

the radial breathing mode at ≈ 200cm−1 the narrow width of the filtering by the first two

gratings.

Single-grating DILOR LABRAM

The Labram is a compact micro Raman spectrometer depicted in Fig. 3.3. The plasma lines

are removed by an interference filter before the notch filter reflects the laser beam into an

optical microscope. An 100x objective was used to focus the light onto the sample and collect

the backscattered radiation. The scattered light again reaches the notch filter, where the light

triple grating
spectrometer

entrance optics

CCD

Ar laser
Ar /Kr

laser

+ +

prism
mono

CCD (infrared)

sample

Fresnel

Figure 3.2: Experimental setup for the Raman measurements with the DILOR XY800. The plasma
lines of the Ar+/Kr+ or Ar laser are removed by the prism monochromator. After passing a Fresnel
rhomb the light is reflected and focused onto the sample. The backscattered light is analyzed with a
triple-grating spectrometer and collected by a CCD.
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Ar laser
HeNe laser
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notch filer
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spectrometer
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sample

Fresnel

Figure 3.3: Experimental setup for Raman measurements with the DILOR LABRAM. The entrance
optics of the Labram spectrometer are shown schematically. An interference filter (interf.) rejects the
plasma lines of the HeNe or Ar laser. The laser is reflected by the notch filter and focused with a
microscope objective onto the sample. The Raman scattered light passes the notch filter, is focused
onto the entrance slit of a single-grating spectrometer. The spectrometer is equipped with a Peltier
cooled CCD.

within a bandwidth of ≈ 3nm of the laser line is reflected, whereas the other wavelengths

pass the notch filter. To further suppress stray light and to increase the spatial resolution a pin

hole with a diameter d = 200 µm is placed into an intermediate focus. Finally the scattered

light is focused onto the entrance slits of a single grating spectrometer (1200 mm−1) and

collected with a Peltier cooled CCD. By the construction of the entrance optics the Labram

is restricted to excitation wavelengths for which an interference and notch filter combination

is available; I used the 632 nm HeNe line and the 514 and 488 nm Ar line for excitation.

Single grating spectrometers became increasingly popular because they are easy to handle

and comparatively cheap. Another advantage is their high throughput allowing the obser-

vation of weak signals. On the other hand, the observation of Raman modes close to the

laser line is usually not possible. I was only able to record the radial breathing mode of

single walled nanotubes when working with red excitation and using two SuperNotch filters

to suppress the Raleigh scattered light. For the green and blue laser line only a single Su-

perNotch and SuperNotchPlus filter was available, respectively. Moreover, the difference in

wavelength between the incoming and outgoing light is 1.5−2 times smaller for these exci-

tation energies than for 632 nm; the light scattered by the radial breathing mode was within

the band widths of the notch filter. The experimental resolution was around 3cm−1 in the

red and 5cm−1 in the blue energy range.
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3.3.1. Polarized measurements

The tensor invariants of the Raman scattered light are obtained from a linear combination of

the intensities in linear and circular polarization as shown in Section 3.2.. To determine them

experimentally I need to record the Raman intensities in parallel, perpendicular, corotating,

and contrarotating polarization without changing the illumination level or removing any po-

larizing elements in the light path between the measurements.76, 77, 82 The basic setup I used

– a combination of two linear polarizing elements (a Fresnel rhomb and a polarization filter)

and a λ/4 wave plate – is shown in Fig. 3.4. With the position of the polarizing elements

as indicated in the figure a backscattering Raman spectrum under corotating polarization is

recorded: The light coming from the laser is vertically polarized. After passing the Fres-

nel rhomb (90◦ position) the light is horizontally linear polarized. The angle between the

principle axis of the λ/4 wave plate and the horizontal plane is 45◦; the light is circularly

polarized after passing the wave plate. It is then focused onto the sample and the scattered

beam consists of a left and right hand circularly polarized part. Going back through the

λ/4 wave plate the circular polarization is converted into linear polarization. The corotating

part is polarized vertical and the contraroting part horizontal (the circular polarizations are

specified in the lab frame). Only vertically polarized light can pass the analyzer and thus be

recorded by the spectrometer and the CCD.

In the experiments the polarization direction of the analyzer was chosen according to the

larger sensitivity of the spectrometer, which is horizontal in the blue and vertical in the red

energy range. The intensities in the four different polarizations are then obtained by rotating

the Fresnel rhomb and the λ/4 wave plate. Let us assume that the analyzer is vertical, the

Ar/Kr LaserFresnel rhomb
(90°)

l/4 wave plate
(45°)

Spectrometer
with CCD

Analyser
(vertical)

Nanotubes

Figure 3.4: Setup for the measurements of the tensor invariants. The polarization direction of the
incoming light is chosen by the Fresnel rhomb. The laser then passes a λ/4 zero-order wave plate
and is focused onto the sample. The scattered light comes back through the λ/4 plate, is analyzed
with a polarization filter, and focused onto the entrance slits of the spectrometer.
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Figure 3.5: Raman spectra of CCl4

a) under linear and b) circular polar-
ization. Next to the fully symmetric
mode at 460 cm−1 and the mode at
314 cm−1 the measured depolariza-
tion ratio ρ and reversal coefficient
P are given.
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Raman intensities are then given by
parallel I‖ Fresnel rhomb 0◦ λ/4 wave plate 0◦ analyzer vertical
perpendicular I⊥ 90◦ 0◦ vertical
corotating I		 0◦ 45◦ vertical
contrarotating I	� 90◦ 45◦ vertical

I used high-precision zero-order wave plates for 488 and 647 nm excitation wavelength; only

a multi-order wave plate was available for 514 nm. The λ/4 wave plate was placed right be-

fore the focusing lenses or the microscope objective and aligned perpendicular to the laser

beam. The angular positions of all polarizing elements I verified by looking at the minima

and maxima in the intensity of the fully polarized laser light reflected at a metall surface and

by measuring the known tensor invariants of CCl4. Figure 3.5 shows the Raman spectra of

CCl4 in a) the two linear and b) the circular polarizations. In this molecule the fully symmet-

ric mode is characterized by only the isotropic invariant ᾱ2 being different from zero. For

the A1g peak at 460 cm−1 a depolarization ratio ρ = 0 and a reversal coefficient P = 0 are

expected, which is in excellent agreement with the measured values given in Fig. 3.5. All

other modes should show ρ = 0.75 and P = 6 (ᾱ2 = 0, γ2
as = 0). Deviations from the theo-

retical value are usually found for the reversal coefficient, because the circular polarizations

are much stronger affected by the non-ideal backscattering.70, 82 Whereas the theoretical de-

polarization ratio is the same regardless of the scattering geometry, the reversal coefficient,

e.g., in forward scattering is the inverse of the backscattering value. In CCl4 the measured

P for the non-fully symmetric modes varies between 3.6 at 780 cm−1 and 5.3 at 220 cm−1.

A better (more robust) indicator for the symmetry of a Raman mode than the raw values

of ρ and P are the ratios between the tensor invariants. In particular, the ratio between the

symmetric anisotropy and the isotropic invariant γ 2
s /ᾱ2 = 0.4 for the 460 cm−1 mode, but

γ 2
s /ᾱ2 is well above 100 for all other modes.
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Figure 3.6: Raman tensor in-
variants of the high-energy modes
in single walled nanotubes excited
with 488 nm. a) Parallel and per-
pendicular linear polarization yield-
ing ρ = 0.35 for all Raman peaks.
b) Corotating and contrarotating po-
larization with P = 1.01.
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3.4. Tensor invariants of carbon nanotubes

When I measured the tensor invariants on nanotubes I was expecting the spectral shape, in

particular of the high-energy modes, to change in the different polarizations. A decomposi-

tion of the different weights in the polarized spectra would then have allowed me to partly

identify the phonon symmetries contributing to the high-energy modes. Instead I found a

uniform behavior of all phonon modes over the entire range of measured Raman frequen-

cies.76, 77, 85, 87

In Fig. 3.6 I show the measured high-energy Raman spectra of single walled carbon nan-

otubes excited with 488 nm; part a) displays the two linear and b) the circular polarizations.

Only the overall intensity scales in the four polarized measurements. Moreover, the fac-

tors between the polarizations are almost the same as for the radial breathing mode around

200 cm−1 (Fig. 3.7) and the D mode at 1350 cm−1 for this excitation wavelength. The de-

polarization ratio is around ρ ≈ 0.34 and the reversal coefficient P ≈ 1.01 for all Raman

Figure 3.7: Raman tensor invari-
ants of the radial breathing mode
of single walled nanotubes excited
with 488 nm. a) Parallel and per-
pendicular linear polarization yield-
ing ρ = 0.34. b) Corotating and
contrarotating polarization with P =
1.01.
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modes. Changing the laser energy to 647 nm only slightly affects these values (ρ = 0.36

and P = 1.20), but again the ratios are the same in the entire Raman spectrum. The high-

energy mode in multiwall nanotubes, in contrast, has a depolarization ratio of ρ = 0.45 and

P = 1.64, see Fig. 3.8. Table 3.3 lists the tensor invariants I obtained in single and multiwall

nanotubes and graphite. The last column gives the ratio γ 2
s /ᾱ2 which is indicative of the

mode symmetry. For non-totally symmetric modes the ratio should be infinity, which agrees

nicely with the high ratio found for the E2g graphite high-energy mode. A purely diago-

nal Raman tensor, on the other hand, is characterized by γ 2
s /ᾱ2 = 0. Obviously none of the

single and multiwall Raman peaks belong to this category. Before further analyzing the sym-

metric and isotropic tensor invariants I briefly turn to the antisymmetric tensor component.

I find γ 2
as to be within experimental error for both multi and single walled nanotubes. This

is in contrast to the measurements on aligned multiwall nanotubes by Rao et al.74 who re-

ported the Raman spectra in (xy,z) and (z,xy) to differ by a factor of 1.7.85, 86 The reason for

the discrepancy is not fully resolved; however, determining selection rules by micro-Raman

scattering as done by Rao et al.74 is more difficult than by a macro-Raman setup, because

of the large collecting angle of the microscope objective. Difficulties with the experimental

setup indeed seem to be very likely in the reference, since it reports the depolarization ratio

of graphite as ρ = 1 instead of the E2g ratio of 0.75.85, 86

Interpreting the other tensor invariants of Table 3.3 and extracting the scattering phonon

symmetries requires further experimental input. From the vanishing antisymmetric compo-

nent I know the A2 contributions to be zero (e = 0 in Table 3.2) and the two independent E1

elements to the same (c = d), but I still have four independent parameters if I do not, e.g., ex-

clude a phonon symmetry explicitly. Additional information is found in a number of papers

where the Raman intensity was measured on nanotubes aligned along the z axis.15, 72, 73, 75, 88

Such measurements are not able to distinguish between A1 and E2 symmetry modes, but

Figure 3.8: Raman tensor invari-
ants of the high-energy modes in
multiwall nanotubes excited with
488 nm. a) Parallel and perpendicu-
lar linear polarization yielding ρ =
0.45 for all Raman peaks. b) Coro-
tating and contrarotating polariza-
tion with P = 1.64.
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Frequency (cm−1) 45ᾱ2 6γ2
s 5γ2

as ∆I γ2
s /ᾱ2

SWNT (λexc = 488nm) 1594 204 252 3 50 9.3
1565 64 80 1.5 20 9.3
1554 20 26 1.4 2 9.7
1350 14 17 2 −3 8.8

SWNT (λexc = 647nm) 1580 50 68 −0.5 2 10.0
1567 25 66 −0.4 7 10.9

SWNT (λexc = 488nm) 202 19 24 −0.3 3 9.6
183 7.8 9.6 0.04 0.7 9.2
167 3.6 5.0 0.1 0.8 10.3

MWNT 1581 2.5 5.8 0.8 0.5 17.2

graphite 1582 (E2g) 0.72 16.3 0.4 1 170
1350 1.3 2.4 0.0 0.4 13.4

Table 3.3: Tensor invariants (arb. units) of the Raman modes in single walled and multiwall tubes
and graphite. Quantities comparable to the experimental error ∆I can be considered zero. For single
walled nanotubes λexc = 488nm corresponds to the spectra shown n Fig. 3.6, while λexc = 647nm is
within the red resonance window. The error in the last column is 10 %.

combined with the tensor invariants the phonon symmetries can be uniquely identified. In

Ref. 76 I decomposed the Raman signal into A1, E1, and E2 components based on the first

aligned measurements which were then published.72, 89 In single walled nanotubes I thereby

found that at least 70 % of the total scattering intensity originates from the zz matrix element

of the fully symmetric modes.76, 77 In the meantime, however, A. Rinzler and his group pub-

lished Raman experiments on highly aligned nanotube fibers, which suggest an even higher

zz contribution.73, 88 I therefore base the following discussion on their new results.

The ratio between the symmetric anisotropy and the isotropic tensor invariant in terms of the

Raman matrix elements in Table 3.2 is given by [see Eq. (3.9)]

γ2
s

ᾱ2
=

9[(a−b)2 +6(c2 + f 2)]

(2a+b)2
. (3.17)

In the Raman measurements on nanotube fibers Hwang et al.88 reported the intensity in

parallel polarization perpendicular to the tubes axis I(xy,xy) to be zero. Since the nanotube

fibers are aligned with respect to the z axis but randomly oriented in the perpendicular plane

the (xy,xy) intensity is I(xy,xy) = a2 + f 2 = 0. The γ 2
s /ᾱ2 ratio in semiconducting tubes is

≈ 9. From Eq. (3.17) it is then immediately seen that the only non-zero Raman matrix

element is b = αzz. For red excitation γ 2
s /ᾱ2 is systematically a little higher, but not really

significantly different. The entire Raman signal of single walled nanotubes thus comes from

zz polarized totally symmetric A1(g) phonons. In multiwall nanotubes the γ 2
s /ᾱ2 ratio is

increasing to 17, which cannot be explained by zz scattering alone. Assuming nevertheless
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that only A1 phonons give rise to the measured spectra Eq. (3.17) yields a = −0.10 (b is

normalized to unity, c = f = 0 for A1 scattering), i.e., zz polarized A1 symmetry scattering

still dominates the Raman process. The only polarized measurements on aligned multiwall

nanotubes are those by Rao et al.74 They agree nicely that the by far strongest intensity

is found in (z,z) polarization, but report similar intensities for parallel (xy,xy) and crossed

(xy,z) polarization perpendicular to the tube axis. This implies that the assumption of only

A1 scattering is not fully justified. Including all Raman active symmetries in the analysis and

using the intensities of Ref. 74 I obtained relative contributions of ≈ 20% for E1 and E2 (still

xx scattering is negligible).76, 77 An increase in the traceless scattering intensity in multiwall

nanotubes is reasonable because of their large diameter. In the limit of d → ∞ all scattering

intensity is transferred to E2g, the Raman active graphite high-energy mode.

In single walled nanotubes only zz polarized Raman scattering is observed experimentally,

although two other representations are Raman active as well. Additionally surprising is that

even the radial breathing mode does not show xx and yy contributions. In this mode all

carbon atoms move in the radial direction; naively one would expect the in plane matrix

element to be larger than the axial matrix element. This argumentation, however, is based

solely on electron-phonon coupling and neglects the optical absorption in the Raman process.

It is thus only valid far away from resonances, but resonances are the key in understanding

Raman scattering on nanotubes. The optical absorption coefficient is highly anisotropic in

single walled nanotubes explaining the dominant (zz) component.

3.4.1. Optical absorption in nanotubes

To obtain first insight into the optical transition probabilities of carbon nanotubes I discuss

the symmetry imposed selection rules. As the example I use the (19,0) zig-zag tube; its band

structure I showed in Fig. 2.10 on page 41. Optical transitions are allowed between electronic

states with ∆m = 0,±1, in particular, ∆m = 0 for z polarized transitions and ∆m = ±1 for

x and y polarizations. Additionally, the σh parity is conserved in achiral nanotubes with

σh = −1 for z and σh = +1 for xy polarized photons. I labeled the electronic bands by their

irreducible representations at the Γ point in Fig. 2.10b), which is the only critical point for

transitions in the visible energy range in zig-zag tubes. The representations of the electronic

wave functions immediately show that (i) z polarized transitions are allowed starting from

any valence band to the conduction band of same m and (ii) only the two conduction and

valence bands closest to the Fermi level contribute to x and y polarized absorption. Zig-zag

tubes are thus almost transparent for visible light polarized perpendicular to the tube axis. In

chiral nanotubes σh no longer is a symmetry operation. Nevertheless, for chiral tubes with
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Figure 3.9: Optical absorption in a (10,0) zig-zag tube a), a (6,6) armchair tube b), and an (8,4) chiral
tube c). Full lines are for light polarized along the tube z axis, broken lines for perpendicular polar-
ization. The shaded area corresponds roughly to the visible energy range; the calculated transition
energies are not to be compared directly to experiment (see Chapter 5. for discussion).

R = 1, which have an electronic band structure similar to zig-zag tubes, I still expect the x and

y transition matrix elements to be small, because of the stringent selection rule in the higher

symmetry tubes. For armchair tubes [see Fig. 2.10a)] and chiral tubes with R = 3 symmetry

does not impose restrictions on the visible absorption besides the ∆m selection rules. The

singularities in the electronic density of states originate from the interior of the Brillouin

zone – around kF = 2π/3a – where σh is not a symmetry operation. Hand wavingly, one

might suggest that still z transitions are more likely than x or y polarized transitions, since a

very small change in the chiral vector changes an R = 3 tube into one with R = 1. To study

this question more profoundly I calculated the optical matrix elements in carbon nanotubes

by first principles methods (see Appendix I. and Chapter 5. for a discussion of the ab initio

method and band structure results).

In Fig. 3.9 I show the calculated absorption coefficient for a zig-zag, an armchair, and a

chiral nanotube. Full lines denote z polarized transitions, broken lines x and y polarization.

The calculated transition energies cannot be directly compared to experiment because of the

small diameter of the calculated nanotubes, hybridization effects in small diameter tubes,

and the error introduced by the local density approximation, see Chapter 5. To estimate the

range of the visible within the ab initio calculation I used the approximation by Mintmire

and White34, 35 and the normalized Raman measurements by Rafailov et al.44 The energy

region which correspond to the visible and near infrared (≈ 1.5− 2.5eV) in larger diame-

ter nanotubes is shaded in gray in Fig. 3.9. In zig-zag tubes optical absorption was most

restricted by symmetry. Comparing my ab initio results to the symmetry imposed selection

rules thus nicely verifies the calculations. Indeed in Fig. 3.9a) and z polarization (full lines) I
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find a series of square root like singularities, which are typical for the joint density of states

and thus the absorption probability in one-dimensional systems. For x polarized light only

the two lowest lying transitions contribute to the optical absorption as expected by symme-

try arguments. That this is really an effect of the vanishing matrix elements and not of the

energetic separation of the valence and conduction bands becomes apparent when looking

at the electronic band structure of the (10,0) nanotube in Fig. 5.7 on page 94. Additionally,

the ab initio calculations show that the matrix element for x polarized absorption even for

the allowed transitions is smaller than in z polarization; the singularities in the absorption

coefficient for x polarized light are twice smaller than those for z polarization. The optical

absorption for a (6,6) armchair tube is shown in Fig. 3.9b). For z polarized light metallic

tubes have only a single singularity for energies in the visible and below.34, 35 Moreover, the

absorption in metallic nanotubes is high at energies where it is low in semiconducting nan-

otubes and vice versa, which is known as the metallic resonance window in Raman scattering

for red excitation.43, 44 In x polarization only transitions to and from the bands crossing at

the Fermi level yield a non-vanishing matrix element, see the onset of the step around 1.1 eV

in Fig. 3.9b) (broken lines). Since the two crossing bands have a linear slope throughout

most parts of the Brillouin zone the joint density of electronic states and hence the absorp-

tion coefficient has a step-like behavior in b) in contrast to the square root peaks in the (10,0)

nanotube. The chiral (8,4) nanotube in Fig. 3.9c) somehow shows a “superposition” of the

zig-zag and the armchair behavior for perpendicular polarization. At low energy (≈ 1.5eV)

it has two square root singularities in the absorption strength, which are not fully resolved

by the calculations and apper as one peak. Above 3 eV a number of small peaks are seen as

in the armchair tube. The calculated absorption spectrum for z polarization resembles those

of the zig-zag tube, since both the (8,4) and the (10,0) tube are semiconducting.

Bulk nanotube samples always show a homogeneous contribution of chiralities. As a first

approximation of the optical absorption in such a sample I consider the average of the three

spectra in Fig. 3.9 for parallel and perpendicular polarization. When summing up part a) to

c) z polarized absorption is by a factor of ≈ 4 stronger than x polarized absorption over the

whole visible energy range (shaded area). Raman scattering involves both the absorption and

emission of a photon. If I assume both transitions to be resonant or nearly resonant I obtain a

factor of 16 between (zz) and (xy,xy) phonon scattering from the optical absorption strength

alone. Although this difference is large, it is in fact not sufficient to explain the experimen-

tally observed ratio between the two polarizations. On particularly well aligned nanotube

fibers Hwang et al.88 found a ratio of 1/127 between the Raman spectra recorded in parallel

and perpendicular polarization with respect to the nanotube axis.90 That the optical absorp-

tion for perpendicular polarization is additionally supressed by a screening of the external
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potential was first suggest by Ajiki and Ando.91, 92 It was recently confirmed by polarized

absorption experiments on nanotubes aligned in zeolite channels.93 Nanotubes grown by

this method are perfectly aligned within the channel and have a very small diameter d ≈ 4 Å,

i.e., only a very limited number of (n1,n2) nanotube can form within the channels. Li et

al.93 directly compared LDA band structure calculations to their measurements. Although

electronic transitions were expected from the calculated band structure, the sample was al-

most transparent when the light was polarized perpendicular to the nanotubes axis. The large

anisotropy in the optical absorption thus is the reason for the measured symmetry of the Ra-

man scattered light and the dominant intensity in (zz) polarization. Nevertheless, it would be

interesting to repeat such experiments for infrared excitation (≈ 1eV), where the absorption

probability is small for z polarized light.

3.4.2. Tensor invariants of the D mode

Before concluding this chapter I briefly comment on the tensor invariants I measured for the

D mode in single walled nanotubes and graphite. The defect induced D band is coming from

a double resonant Raman process, which is the topic of Chapter 6., and thus dominated by the

electronic properties in both materials. In single walled nanotubes the D mode scattered light

has the same symmetry as the other parts of the Raman spectrum, see Table 3.3. The ratio

between the anisotropic and the isotropic tensor invariant γ 2
s /ᾱ2 ≈ 9, i.e., the Raman tensor

is of the form diag[0,0,b]. In graphite the measured ratio of ≈ 13 is quite interesting. It is

often assumed that this mode has an A1 Raman tensor diag[a,a,b]. Under this assumption,

however, γ 2
s /ᾱ2 = 13 together with Eq. (3.17) yields a ≈ −1.5 for b normalized to unity.

This implies that the optical absorption in graphite – the first and last step in the double

resonant Raman process – is almost isotropic for light polarized parallel and perpendicular

to the c axis, which contradicts experiments and ab initio calculations.94, 95 In fact, in a

single graphene sheet z polarized transitions are forbidden below 6eV; for graphite I found

in a first principles calculation a factor of 10 in the visible range and below. The much lower

optical absorption for light polarized along c suggests a Raman tensor with only xx, yy, xy,

and yx non-vanishing elements as a better starting point. The optical phonons giving rise to

the D mode originate from the neighborhood of the K point in the graphite Brillouin zone,

see Chapter 6.19 To analyze the D mode Raman tensor I consider only phonons at the ΓK

line as a first approximation. The doubly degenerate E2g graphite optical mode splits into a

LO branch with A1 symmetry and a TO branch with B1 symmetry along the high-symmetry

ΓK direction. The LO A1 representation is correlated with the A1g⊕E2g representation in the

graphite point group (also with B1u and E1u which will not give an important contribution),
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whereas the TO B1 correspond to A2g⊕E2g and two odd representations. Since only the fully

symmetric A1g representation has a non-zero isotropic tensor invariant ᾱ2 the D band comes

from the LO graphite optical branch. Its Raman tensor has the general form

ℜ(D) =





a+ f f ·
f a− f ·
· · ·



 . (3.18)

With γ 2
s /ᾱ2 = 13 I find a = 1 and f = ±0.56. Note that the xx-yy isotropy is broken for

the D mode, because the scattering occurs for phonons far away from the Γ point. It would

be interesting to further confirm the Raman tensor I proposed in Eq. (3.18). Since the D

band is not Raman active in single graphite crystals the only opportunity is to measure a

sample which is only 2D unoriented, i.e., aligned along the c axis, but random within the

xy plane. The ratio between the crossed and parallel polarization after 2D integration of

ℜ(D) is I⊥/I‖(2D) = f 2/(a2 + f 2) = 0.25. To best of my knowledge such measurements

for the D mode were not performed so far; they were done, however, for its second order

overtone, the D∗ band. Nemanich and Solin96 reported a ratio of 0.4 between the crossed

and parallel polarized D∗ band in highly oriented pyrolytic graphite. This value in particular

confirms that the D mode does not have a fully symmetric Raman tensor for which a ratio of

I⊥/I‖(2D) = 0 follows for both the D and D∗ mode.

3.5. Summary

In this chapter I studied the symmetry of the Raman scattered light in single and multiwall

nanotubes and graphite. Partly the scattering phonon symmetries can be obtained on unori-

ented systems by finding the Raman tensor invariants from linearly and circularly polarized

measurements. In single walled nanotubes only (zz) polarized scattering contributes to the

Raman spectra, because of the highly anisotropic optical absorption coefficient in the tubes.

In ab initio calculations of the optical matrix elements I found a factor of ≈ 4 between z

polarized and x or y polarized incoming light, although the perpendicular absorption seems

to be additionally suppressed in the experiment. Multiwall nanotubes have small A1(xx), E1,

and E2 components in their Raman scattered light, but still A1(zz) dominates the experimen-

tal spectra (70−90%). Lastly, I discussed the Raman tensor of the D mode in graphite and

proposed an experiment to further clarify the exact symmetry of the disorder induced Raman

band.
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Chapter 4
Nanotubes Under Hydrostatic Pressure

Applying hydrostatic pressure to a material changes the volume and in anisotropic systems

also the shape of the unit cell. Studying the crystal structure under pressure already gives

valuable insight into the elastic properties of material. Pressure experiments are, however,

not restricted to finding the elastic constants. Every property of a material depends on the

shape and volume of the crystal unit cell and can be manipulated by an applied pressure.

In this chapter I show how high-pressure experiments help our general understanding of

Raman scattering by the high-energy modes in carbon nanotubes. Section 4.1. gives an

overview over the vibrational properties of carbon nanotubes under pressure. I develop in

Section 4.2.1. an elastic continuum model of carbon nanotubes under pressure, which is in

remarkably good agreement with more sophisticated calculations described later on. Be-

cause of the highly anisotropic structure of carbon nanotubes the pressure slope of a Raman

peak is expected to depend on the direction of the atomic displacement with respect to the

nanotube axis, which is in contrast with the experimentally observed uniform shift of all

Raman modes. I discuss in Section 4.4. that this apparent discrepancy is resolved by the

high-energy phonon eigenvectors. In chiral nanotubes the atomic displacement may point in

arbitrary directions with respect to the tube’s axis and even show an angular dependence of its

direction around the circumference. The homogeneous chirality distribution found in carbon

nanotubes samples then averages out the expected shear strain splitting under pressure.

4.1. Raman experiments under pressure

Raman studies under hydrostatic pressure were carried out many groups.11, 14, 29, 30, 97–101

The work concentrated on the pressure dependence of semiconducting nanotubes; one report

was published on metallic nanotubes (by our group).99 As an example for the evolution of
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Figure 4.1: a) High-energy Raman spectra of semiconducting nanotubes under almost ambient and
high pressure. b) Frequencies of the high-energy modes versus applied pressure. The normalized
pressure slopes are the same for the three modes. Data from Reference 11.

the high-energy Raman modes under pressure I show in Fig. 4.1 the measurements by Thom-

sen et al.11 The Raman spectrum shifts uniformly to higher frequencies under pressure. At

the same time the modes are seen to broaden significantly and also to loose in intensity. The

broadening and weakening of the signals under pressure are not fully understood yet. They

have been attributed to phase transitions and also to a loss of resonance because of the change

in the electronic band structure.29, 98, 102 I will not discuss this behavior any further, instead I

concentrate on the pressure dependence of the high-energy frequencies. In Fig. 4.1b) I plot

the frequencies of the Raman peaks versus applied hydrostatic pressure. The normalized

frequency shift d lnω/d p is the same for all high-energy modes. This seemingly ordinary

result is in fact surprising for a highly anisotropic material like carbon nanotubes.14, 99 In

uniaxial systems the different elastic properties along the principal axis and perpendicular to

it are, in general, manifested in different phonon frequency shifts under pressure.

Table 4.1 lists the normalized pressure derivatives obtained by the various groups. Pressure

slopes between 3.5 and 3.9 TPa−1 were reported in semiconducting nanotubes except in the

work by Peters et al.98 with the higher value of 4.5 TPa−1. The differences between the

references are due to varying mean values of the nanotubes diameter and – most likely also

– to different fitting of the raw spectra. However, the slopes for the three high-energy modes

reported on the same sample agree to within 3 %. Again Peters et al.98 are the only who

report a different slope for the third Raman peak, but in fact the Raman spectra taken in the

diamond anvil cell (Fig. 5 of Ref. 98) hardly show the third peak at all. Also the scattering

of the measured frequencies is much larger in this than in all other studies. For metallic nan-

otubes, unfortunately, only one Raman study under high pressures is available. In contrast
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to the semiconducting tubes the three Raman modes have indeed different pressure slopes.

The mode at 1592 cm−1 shows the same pressure dependence as the semiconducting peaks,

whereas a total splitting of 15 % is found for the two other peaks. To obtain a more quantita-

tive picture of the Raman frequency shifts I need to find the strain tensor in carbon nanotubes

under hydrostatic pressure and then calculate the strain dependent frequencies with the help

of the phonon-deformation potentials.

4.2. Elastic properties of carbon nanotubes

The relation between a macroscopic stress σi j applied to a material and the resulting micro-

scopic deformation εkl is usually described with the help of the elastic constant tensor Ci jkl

(repeated indices are to be summed over)103

σi j = Ci jklεkl. (4.1)

The symmetry of a crystal restricts the number of non-zero and linearly independent con-

stants Ci jkl . For example in nanotubes obviously Cxxxx = Cyyyy, since the tubes are isotropic

in the plane perpendicular to the z axis. The elastic constants can be measured by a variety

of techniques like ultrasound experiments or direct measurements of the lattice constants

under stress. Despite the large interest in the mechanical properties of carbon nanotubes, in

particular as reinforcement materials,104 successful measurements of the elasticity constants

have not been reported up to now. Young’s modulus E was investigated several times both

theoretically and experimentally; it was found to be on the order of the graphite value.105–107

For some selected tubes elastic constants were calculated with an empirical force constants

Reference Normalized pressure dependence (TPa−1)

Semiconducting tubes 1592 cm−1 1570 cm−1 1555 cm−1

Venkateswaran et al.29 3.5 3.4 –
Thomsen et al.11 3.6 3.7 3.7
Peters et al.98 4.6 4.5 2.0
Teredesai et al.97 3.7 3.6 3.7
Venkateswaran et al.101 3.7 3.9 3.7

Metallic tubes 1592 cm−1 1565 cm−1 1544 cm−1

Reich et al.99 3.8 4.1 3.5

Table 4.1: Logarithmic pressure derivatives of the high energy modes reported in the literature. The
ambient pressure frequencies in the headings of the columns differ somewhat in the references; the
number represents a label rather than an absolute frequency. The data of Venkateswaran et al.29 were
fitted by a straight line instead of the quadratic fit performed by the authors. Likewise, the two slopes
by Peters et al.98 were replaced by a single straight line.
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model by Lu.108, 109 Here I chose another way for finding the elastic response of nanotubes

under pressure. I approximate a nanotube by a hollow cylinder with closed ends and a finite

wall thickness made out of graphene. In addition to yielding the deformation of a nanotube

under pressure this model provides nice insight into the problem whether the different elastic

properties of graphite and carbon nanotubes follow plainly from the geometry of the tube or

some additional enforcement, e.g., by rehybridization.

4.2.1. Continuum model

The starting point of the continuum mechanical description is the equilibrium condition110, 111

∂σi j

∂xk

= 0, (4.2)

where xk are the normal coordinates. The generalized Hooke’s law in an isotropic medium

is given by

σik =
E

1−ν

( ν
1−2ν

εllδik + εik

)

(4.3a)

or – the inverse relationship –

εik =
1

E

[
(1+ν)σik −ν σ j jδik

]
, (4.3b)

where E is again Young’s modulus and ν Poisson’s ratio. The strain εik is defined by the

displacement vector uuu describing the shift of a point in the deformed material

εik = εki =
1

2

(∂ui

∂xk

+
∂uk

∂xi

)

. (4.4)

Inserting Hooke’s law (4.3) into Eq. (4.2) the fundamental equation of continuums mechanics

can be derived110

(1−2ν)∆uuu+graddivuuu=2(1−ν)graddivuuu− (1−2ν)rot rotuuu = 0. (4.5)

Since the rotation of uuu vanishes in our problem, Eq. (4.5) is further simplified, to yield, in

cylindrical coordinates,

divuuu =
1

r

∂ (r ur)

∂ r
+

1

r

∂uθ
∂θ

+
∂uz

∂ z
= const. (4.6)

Fig. 4.2 shows the continuum approximation of a single or multiwalled nanotube. The tube is

modeled as a finite hollow graphene cylinder of length l with closed caps and inner and outer

radius Ri and Ro, respectively. At z = 0 the displacement uz = 0 and increases continuously
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Figure 4.2: Continuum mechanical
model of a nanotube - a closed cylinder
of length l with inner radius Ri and outer
radius Ro. The boundary conditions un-
der hydrostatic pressure are indicated in
the figure; A is the ratio between the cap
area and the area supported by the cylin-
der walls A = R2

o/(R
2
i −R2

o).

z = 0- /2l l/2

R
o

R
i

s -( ) =R p
o

s -(± /2) =l Aps( )= 0R
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in both directions εzz = ∂uz/∂ z = const. The circumferential displacement uθ is independent

of θ , since our problem is rotationally symmetric, i.e., ∂uθ /∂θ = 0. Finally, according to

Eq. (4.6) 1/r · ∂ (r ur)/∂ r is again constant. The strains εii in cylindrical coordinates are

therefore given by11

εrr =
∂ur

∂ r
= a− b

r2
, εθθ =

1

r

∂uθ
∂θ

+
ur

r
= a+

b

r2
, and εzz =

∂uz

∂ z
= const. (4.7)

The constants a, b, and εzz are determined by the boundary conditions for σ under hydro-

static pressure. I assume that the pressure media cannot enter the nanotube σrr(Ri) = 0 and

σrr(Ro) = −p, where p is the applied pressure. Along the z direction the pressure transmits

a force −p · π R2
o to the caps of the tube. The area supported by the wall is π(R2

o −R2
i ) and

hence σzz = −R2
o/(R2

o −R2
i ) · p = −Ap. Inserting the boundary conditions into Eq. (4.3a) I

obtain the constants in Eq. (4.7)

a =εzz = −(1−2ν)
pA

E
b =− (1+ν)

pARi

E
. (4.8)

Reinserting the intergration constants into Eq. (4.7) finally yields the strain tensor in a nan-
otube under external hydrostatic pressure p

εrr =− Ap

E

[

(1−2ν)− (1+ν)
R2

i

r2

]

εθθ =− Ap

E

[

(1−2ν)+(1+ν)
R2

i

r2

]

εzz =− Ap

E
(1−2ν). (4.9)

The mixed strain components εi j, (i 6= j), vanish. The strain tensor in a nanotube under

pressure is thus given by two elastic constants E and ν and the cylinder geometry.

Before substituting typical values into Eq. (4.9) I briefly discuss the general implications

of the strain tensor found by the continuum approximation. The change in the tube length

or the translational periodicity along the z axis is described by εzz, while εθθ is the radial

or circumferential deformation. Both components are always negative for positive pressure.

Moreover, the circumferential deformation is always larger than the axial deformation

εθθ
εzz

= 1+
1+ν

1−2ν
R2

i

r2
> 1, (4.10)
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as expected for an anisotropic system. Note that the differences are plainly a consequence

of the cylindrical geometry; I assumed the nanotubes wall to be isotropic. The change in

the wall thickness, εrr, can be positive or negative. In particular, it depends on r when

going across the wall and at the inner radius εrr(Ri) > 0. For isolated single walled nan-

otubes a varying wall thickness is unlikely, since they consists only of one graphene sheet.

This unphysical result is omitted by choosing r0 =
√

(1+ν)/(1−2ν)Ri, i.e., εrr(r0) = 0.

However, as long as reasonable values for r are considered, e.g., another natural choice is

the mean value of Ri and Ro, εrr and εθθ do not depend very much on r in single walled

nanotubes.

The strain components which are responsible for the experimentally observed frequency

shift of the high-energy Raman modes are the circumferential and tangential strain compo-

nents. As I discussed in Chapter 2. the high-energy vibrations are parallel to the nanotube’s

wall. Hence εrr is negligible both for single and multiwall nanotubes. Consider now un-

wrapping the tube to a rectangle; the strain along the narrower, circumferential direction is

then εθθ and the longer side is deformed according to εzz. With typical values for the radii

and the elastic constants of single walled nanotubes (Ri = 5.2 Å, Ro = 8.6 Å, E = 1TPa−1,

and ν = 0.14)11, 106 I find εθθ (p) = −2.04TPa−1 p and εzz(p) = −1.07TPa−1 p. Within the

elastic continuum model the ratio between the circumferential and the axial strain is 1.9.

From this two-dimensional strain pattern the change in phonon frequency follows from a

linear expansion of the dynamical equation in the presence of strain. Before deriving the

phonon slopes under pressure I compare the results of the elastic continuum model to other

calculations of the elastic properties of carbon nanotubes.

4.2.2. Ab initio, tight-binding, and force-constants calculation

Two general approaches may be considered for theoretically finding the elastic properties of a

material. Either the lattice constants under stress are calculated by directly incorporating the

applied stress tensor into the calculation or the elastic constants are found from the second

derivatives of the energy in a strained unit cell. The former approach was used in my ab

initio calculation as well as by Venkateswaran et al.29 in tight-binding molecular dynamics;

the latter by Lu108, 109 in his force constants calculation.

In the ab initio calculations I considered three small diameter nanotubes, an armchair (6,6),

a zig-zag (10,0), and a chiral (8,4) nanotube. Details on the computational scheme and the

parameters are given in Appendix I.. The equilibrium lattice constant and the atomic posi-

tions were first obtained under ambient pressure by a conjugate gradient minimization. Then
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Figure 4.3: Ab initio calculation of the axial
(closed symbols) and circumferential (open sym-
bols) strain in single walled nanotubes bundles.
Circles refer to an (8,4), up triangles to a (6,6), and
down triangles to a (10,0) nanotube. The full lines
show a least square fit of the strain components in
the three tubes; the broken lines are for the contin-
uum approximation [see Eq. (4.9), r = 4.05 Å].
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I relaxed the geometry under the constraint of an hydrostatic stress tensor for several high-

pressure points. The circumferential εθθ = [r(p)−ra]/ra and axial strain εzz = [a(p)−aa]/aa

are shown in Fig. 4.3; r(p) and a(p) are the stress dependent radius and translational peri-

odicity, ra and aa are the ambient pressure values. As in the continuum approximation the

circumferential strain is larger than the strain along the nanotube axis. Moreover, the strain

components are found to a very good approximation to be independent of the chiralities of

the nanotubes, a parameter which is completely neglected within the continuum approxima-

tion. The calculated pressure slopes of the radial and axial strain are εθθ =−1.5TPa−1p and

εzz = −0.9TPa−1p (full lines in Fig. 4.3). This is in excellent agreement with the elasticity

model for r = 4.05Å as can be seen in Fig. 4.3, where the strains obtained from Eq. (4.9)

εθθ = −1.42TPa−1p and εzz =−0.86TPa−1p are shown by the broken lines. The similarity

between the elastic continuum model and the first principle calculations is quite remark-

able. The continuum mechanical approximation works well even in the limit of a single

atomic layer. A similar good agreement was found in two-dimensional semiconductors, see

Ref. 112.

Two other studies of the elastic properties of armchair tubes were reported in the litera-

ture. Lu109 calculated the elastic constants Ci jkl from force constants fitted to reproduce the

phonon dispersion in nanotubes. From the elastic constants for a two-layer (10,10) tube in

Ref. 109 the strain components are obtained with Eq. (4.1); they are given in Table 4.2. The

strains in both directions are somewhat smaller than within the continuum model. The split-

ting between the axial and circumferential strain is predicted to be 3.5. Venkateswaran et

al.29 performed molecular dynamics simulations of (9,9) single tubes and bundles of tubes

under pressure. The normalized axial and circumferential strain they reported in the bun-

dle is shown in Fig. 4.4. The compressibility along the axis is similar to the continuum
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Figure 4.4: Molecular dynamics simulation of the
axial (closed circles) and the circumferential (open
circles) strain under hydrostatic pressure. The data
points are taken from Fig. 4 of Ref. 29. The cir-
cumferential deformation shown here corresponds
to the average of the two radii under pressure re-
ported by Venkateswaran et al.29
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value, whereas the circumferential strain was found to be much larger than in the continuum

approximation.

Despite some differences in the absolute values of the predicted strains all four calculation

agree in the following fundamental points: Under hydrostatic pressure the circumferential

strain is by a factor of 2-4 larger than the axial strain. The linear compressibility along the

nanotubes axis is similar to graphite (−0.8TPa−1p).

4.3. Phonon frequencies in strained crystals

From a known strain tensor the phonon frequency shifts follow from the dynamical equation

modified to include terms linear in strain via the phonon-deformation potentials.114–117 The

phonon deformation potential relating the volume change of the unit cell with the frequency

shift under pressure is called the Grüneisen parameter. Neither the Grüneisen parameter nor

any other deformation potential are known for carbon nanotubes. Nevertheless, I show in the

r (Å) dεθθ/dp(TPa−1) dεzz/dp(TPa−1) εθθ/εzz

Continuum model 6.9 −2.04 −1.07 1.9
Elastic constants109 6.8 −1.74 −0.49 3.5
Molecular dynamics29 6.1 −3.41 −0.91 3.7

Continuum model 4.05 −1.42 −0.86 1.6
Ab initio 4.05 −1.5 −0.9 1.7

graphite113 −0.8 −0.8

Table 4.2: Axial and circumferential strain under hydrostatic pressure in the four approximations
discussed in this chapter. The first three rows are for radii typical for single walled nanotubes. The
next two rows demonstrate the excellent agreement between the elastic continuum model and ab initio

calculations. The experimental value for graphite is listed for comparison.
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following how to derive the vibrational frequencies in nanotubes under pressure by making

reference to the rolled up graphene sheet.

The basic idea of the approach is depicted in Fig. 4.5. The figure shows schematically a (6,6)

and an (8,4) tube under exaggerated hydrostatic pressure (corresponding to ≈ 100GPa). Be-

cause of the larger strain in the radial than in the axial direction, hydrostatic pressure changes

not only the area of the graphene hexagons but also distorts their shape. The sixfold hexag-

onal symmetry is broken under pressure, which splits the doubly degenerate E2g graphene

optical modes into a higher and lower frequency component vibrating parallel and perpen-

dicular to the higher strain direction, respectively. For the nanotubes this corresponds to a

stronger pressure dependence for a phonon eigenvector where the atomic displacement is

along the circumferential direction than for an axial vibration.

For a quantitative analysis I unwrap the tube to a narrow graphene rectangle. The strain

in the graphene sheet due to εθθ and εzz reads (after transformation to the principle axis of

graphene)99

ε =

(
εθθ cos2 Θ+ εzz sin2 Θ 1

2 sin(2Θ)(εzz− εθθ )
1
2 sin(2Θ)(εzz− εθθ ) εθθ sin2 Θ+ εzz cos2 Θ

)

(4.11)

separated into the hydrostatic and non-hydrostatic components

=
1

2
(εθθ + εzz)

(
1 0
0 1

)

+
1

2
(εθθ − εzz)

(
cos2Θ sin2Θ
sin2Θ −cos2Θ

)

; (4.12)

where Θ is the chiral angle. Obviously, the deformation of the graphene elementary cell

given in Eq. (4.11) is not purely hydrostatic for any chirality.

To find the phonon frequencies in the strained graphene cell I expand the dynamical equation

to terms linear in strain114, 117

−mv̈i = mω 2
0 vi + ∑

klm

K
(1)
ikmlεlmvk; (4.13)

where vvv is the atomic displacement, m the reduced mass of the atoms, and ω0 the strain free

frequency. The second summand describes the change in phonon frequency due to the strain;

Figure 4.5: Schematic picture of the distortion of a
(6,6) and an (8,4) nanotube under hydrostatic pres-
sure, i.e., εθ θ = 2εzz. The strain is fully symmetric
in the point groups of the tubes, but not for the
graphene hexagon. The hexagon area as well as
its shape are altered by applying pressure to a nan-
otubes.

(6,6) (8,4)
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Kikml = ∂Kik/∂εkl is the change in the spring constants of the strained crystal. The symmetric

tensor K(1) has only three nonzero components because of the hexagonal symmetry of the

graphene sheet, namely,103

K1111 = K2222 = m · K̃11

K1122 = m · K̃12 (4.14)

K1212 = m · 1

2
(K̃11 − K̃12) .

From the dynamical equation (4.13) I obtain an secular equation with the help of the K (1)

tensor components in Eq. (4.14) and the strain in the graphene sheet (4.11)114, 117

1

2

(K̃11 + K̃12)(εθ θ + εzz)+
(K̃11 − K̃12)(εθ θ − εzz)sin 2Θ

+(K̃11 − K̃12)(εθ θ − εzz)cos2Θ−2λ

(K̃11 − K̃12)(εθ θ − εzz)sin 2Θ
(K̃11 + K̃12)(εθ θ + εzz)−

−(K̃11 − K̃12)(εθ θ − εzz)cos 2Θ−2λ

≡ 0,

(4.15)

where λ = ω2 −ω2
0 is the difference between the squared strain dependent frequency ω and

the frequency in the absence of strain ω0. Diagonalizing Eq. (4.15) thus yields the relative

shift of the phonon energy in the strained graphene sheet.99

ω −ω0

ω0
=

∆ω
ω0

≈ λ
2ω2

0

=
(K̃11 + K̃12)

4ω 2
0

(εθθ + εzz)±
1

2

(K̃11 − K̃12)

2ω 2
0

(εθθ − εzz) . (4.16)

In Eq. (4.16) two phonon deformation potentials relate the frequency shift with strain. The

first deformation potential (K̃11 + K̃12)/4ω2
0 = −γ is the Grüneisen parameter, which de-

scribes the frequency shift for an hydrostatic deformation of the graphene hexagon. The

splitting of the modes under shear strain comes from the second term.

Interestingly, the frequency shift is independent of the chirality of nanotube, i.e., the way I

cut and strained the graphene rectangle. A mode vibrating parallel to εθθ , the high-strain di-

rection, always shifts according to the plus solution of Eq. (4.16), whereas vibrations parallel

to εzz have a frequency shift below the hydrostatic contribution. Between these two limiting

cases the phonon modes show a dispersion similar to, e.g., the dispersion in wurzite crystals.

The dependence of the phonon frequency on the displacement direction of the eigenvector in

strained materials is discussed in two papers by Anastassakis.118, 119

4.3.1. Pressure dependence of the phonons frequencies in nanotubes

The discussion of the last section was restricted to the unwrapped nanotube and the resulting

nonhydrostatic deformation of graphene. I now roll up the sheet again bearing in mind the



4.3. Phonon frequencies in strained crystals 75

phonon energies in Eq. (4.16). For armchair tubes – and achiral tubes in general – I found

in Chapter 2. the complete set of phonon eigenvectors by group projection operators and

some general assumptions on the strength of the force constants. The Raman active high-

energy A1g (0A+
0 ) and E2g (0E+

2 ) phonons are vibrating along the circumference in armchair

tubes, while the E1g (0E−1 ) mode has a purely axial eigenvector. The two circumferential

vibrations are according to Eq. (4.16) expected to have a pressure derivative higher than

the axial E1g mode by (K̃11 − K̃12)(εzz − εθθ )/2ω2
0 . In contrast, I presented in Section 4.1.

Raman experiments where the pressure slope was the same for all high-energy peaks. Before

discussing this apparent contradiction I briefly turn to metallic nanotubes, which indeed show

the expected splitting in experiment.

In Fig. 4.6 I present the phonon frequencies of metallic nanotubes as a function of applied hy-

drostatic pressure. The insets show the Raman spectra at a low (0.34 GPa) and high-pressure

(9.9 GPa) point. The intensity decrease, as in semiconducting nanotubes, is observed in

metallic tubes as well. The analysis of the data is difficult due to the close proximity of

the modes. Additionally, under pressure, the broadening of the peaks leads to a merging of

the lines (see insets in Fig. 4.6). Nevertheless, when fitting the high-energy peak with three

similarly sized Lorentzians or with a focus on the low and high-energy flanks for pressures

up to 10 GPa, I find a splitting of 0.56 TPa−1 between the peaks at 1544 and 1565 cm−1 and

a hydrostatic shift of 3.8 TPa−1. The third peak, at 1592 cm−1, which has been assigned to

semiconducting tubes, has a pressure derivative of 3.8 TPa−1.

For the comparison between the experiments and the theory developed in the last two sec-

tions I need to know the two phonon deformation potentials in Eq. (4.16). Table 4.3 lists

a compilation of measured and calculated results in carbon based material. The shear de-

Figure 4.6: High-pressure Raman scattering on
metallic nanotubes excited with an excitation en-
ergy 1.91 eV. The phonon energies were normal-
ized to the value at ambient pressure. Up triangles
refer to the mode at 1565 cm−1 at zero pressure,
down triangles to the one at 1544 cm−1, and the
open squares to the 1592 cm−1 mode. The latter
mode is usually assigned to semiconducting nan-
otubes at this excitation energy.44 The insets show
Raman spectra (Raman shift in cm−1) at p = 0.34
and 9.9 GPa and the fit to the data.
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γ
(K̃11 − K̃12)

2ω2
0

nanotubes33, 76 1.24 0.41
graphite 1.59113 0.66120

diamond (cubic)121 1.50 0.51

Table 4.3: Phonon deformation potentials for nan-
otubes (tight-binding calculation), graphite (exper-
iment and ab-initio calculation), and diamond (ex-
periment). The shear deformation potential in di-
amond is for an applied uniaxial stress along the
(001) direction.

formation potentials of graphene or graphite are not accessible experimentally, because of

graphite’s brittleness when an uniaxial stress is applied along the basal plane. Using the

circumferential and axial strain components obtained from elasticity theory and the elastic

constant calculations by Lu109 together with the phonon deformation potentials for graphene

and nanotubes I find an hydrostatic component γ · (εzz + εθθ ) = −(3.8± 1)TPa−1 p and a

shear strain splitting (K̃11 − K̃12)(εzz − εθθ )/2ω2
0 = −(0.6± 0.2)TPa−1 p. Both values are

in very good agreement with the experimental values for metallic nanotubes. The large

uncertainty is due to the uncertainties in the strain determination as well as in the phonon

deformation potentials. Precise measurements of the elastic properties of carbon nanotubes

are desirable to further clarify the high-pressure measurements.

The pressure dependence of the Raman peaks in metallic nanotubes is in general agreement

with the idea of predominantly axial and circumferential high-energy Raman active vibra-

tions. On the other hand, in semiconducting tubes only the hydrostatic part of the pressure

shift was observed experimentally. The possible explanation for the absence of the shear

strain splitting lies in the phonon eigenvectors of chiral nanotubes. In contrast to the higher-

symmetry achiral tubes the phonon eigenvectors of chiral tubes are not fixed by symmetry

because of the missing mirror planes, see Section 2.4. A distribution of displacement direc-

tions with respect to the circumference or the tube axis washes out the splitting introduced

by the shear deformation in Eq. (4.16).76, 118 Only the hydrostatic component is then ob-

served experimentally. To find out how the eigenvectors of chiral tubes actually look like I

calculated the phonons of two selected chiral and two achiral nanotubes by first principles

calculation.

4.4. Phonon eigenvectors of chiral tubes

The purpose for the ab initio calculations of the phonon eigenvectors in carbon nanotubes

was to get a qualitative insight into the vibrational properties of chiral nanotubes. The large

number of carbon atoms in the unit cell therefore restricted the possible nanotubes to exam-

ples with small diameters. Most other reports on ab initio calculations of nanotubes took

the opposite approach, i.e., selecting diameters close to the one present in real samples, but
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therefore had to stick to achiral tubes.122–125 The higher achiral symmetry, however, of-

ten imposes a too severe restriction on the properties of chiral tubes as we will see in the

following.

In the ab initio calculations I set up the dynamical matrix from the force constants obtained

by successively displacing two carbon atoms and using the screw axis symmetry as described

in detail in Appendix I.. Neither the mirror planes of achiral tubes nor the horizontal rota-

tion axes of chiral tubes were used explicitly (see also Chapter 2.). The deviations from

those symmetry operations in the eigenvectors measure the numerical accuracy of my cal-

culations. The dynamical matrix was then diagonalized to yield the phonon frequencies and

eigenvectors. In analyzing my results I concentrate on the eigenvectors and displacements,

since the curvature effects in the calculated 8 Å diameter nanotubes strongly alter the force

constants and phonon frequencies making them not suitable for a direct comparison to ex-

periment.12, 14, 126

4.4.1. Eigenvectors in small nanotubes∗

I first present the eigenvectors and frequencies of the two achiral nanotubes. The excellent

agreement between my calculated and the symmetry imposed eigenvectors made me confi-

dent about the calculational procedure. Figure 4.7a) and Table 4.4 show the A1g, E1g, and

E2g eigenvectors and frequencies of the high-energy modes in (6,6) and b) in (10,0) nan-

otubes. All high-energy modes are found to be softened compared to graphene (1660 cm−1

in my calculations) in these fairly small tubes, which is in good agreement with previous

ab initio calculations and experimental findings.40, 106 The softening appears to be a little

overestimated for the A1 circumferential mode, which is of A1u symmetry in the (10,0) tube

and at similar frequency (1550 cm−1) as the A1g mode in the (6,6) armchair tube. Note that

the ordering of the frequencies is non-trivially changed in the calculated tubes as compared

to simple zone folding. Both confinement and curvature effects are, however, much stronger

∗This section and parts of the following section are taken from Ref. 12. I did the calculations and the
analysis presented in the reference under supervision of Pablo Ordejón and Christian Thomsen who co authored
the paper.

Table 4.4: Frequencies and angle α between the
displacement and the circumferential direction for
the Raman-active high-energy modes and the ra-
dial breathing mode in achiral nanotubes. The
largest deviation (4◦) from the symmetry imposed
displacement was found for the E2g mode of the
zig-zag tube.

(6,6) (10,0)
ν (cm−1) α (◦) ν (cm−1) α (◦)

RBM 285 0 289 2
A1g 1545 0 1604 88
E1g 1600 90 1606 2
E2g 1629 0 1552 86
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A1g E1g E2g

A1g E1g E2g

a.)

b.)

Figure 4.7: Raman active A1g, E1g, and E2g high-energy modes a) of a (6,6) nanotubes and b) of a
(10,0) nanotube.

in the calculated tubes than in real samples with a typical mean diameter ≈ 14 Å. In phonon

calculations for achiral tubes of different diameter Dubay and Kresse found these effects

to decrease rapidly with increasing diameter.126 The calculated frequencies of the radial

breathing mode in Table 4.4 are for achiral nanotube bundles. As can be seen in Fig. 4.7 the

displacement patterns are in excellent agreement with the symmetry requirements. I found

that the angle α between the atomic displacement and the circumference deviates by at most

5◦ from the circumferential α = 0◦ or axial α = 90◦ direction, showing the numerical accu-

racy of the calculation. I stress again that in the calculation of the force constants the mirror

symmetries were not explicitly used.

In chiral nanotubes the atomic displacements are no longer, in general, along the cylindrical

axes. In Fig. 4.8a.) I show an A1 mode of an (8,4) tube and in b.) of a (9,3) tube. It can be seen

that the displacement is along the circumference in the (8,4), but parallel to the bonds in the

(9,3) nanotube. The smallest angle between the carbon-carbon bonds and the circumference

in the (9,3) tube is 30◦−θ = 16.1, which coincides with the displacement direction as given

Figure 4.8: a) A1 high-energy eigenvector of an
(8,4) nanotube with a frequency of 1505 cm−1. The
atomic displacement is parallel to the circumference,
i.e., α = 3◦ is close to zero. b) A1 high-energy eigen-
vector of a (9,3) tube (1627 cm−1). The displace-
ment is parallel to the carbon-carbon bonds. The di-
rection of the helix in both tubes, which is obtained
from the screw axis operation, is indicated by the
gray lines.

a.) (8,4)

b.) (9,3)
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Table 4.5: Frequencies and displacement di-
rections for the high-energy and the radial
breathing mode in chiral nanotubes. If the
displacement direction was found not to be
constant around the tube’s circumference the
mean value of α was given.

(8,4) (9,3)
ν (cm−1) α (◦) ν (cm−1) α (◦)

RBM 275 1 292 1
A1 1670 -87 1627 16
A1 1505 3 1519 -74
E1 1610 33 1620 38
E1 1591 -59 1607 -51
E2 1626 -6 1638 7
E2 1554 85 1587 -84

in Table 4.5. In the (8,4) tube I also found vibrations along the bond direction, but they were

of B1 and B2 symmetry and hence not optically active.

I now take a look at the degenerate modes in chiral tubes. In Fig. 4.9 I show an E1 eigenvector

of an (8,4) nanotube. I successively rotated the nanotube by 32◦ to show the reader how the

eigenvector evolves when going around the nanotube. As expected the magnitude of the

atomic displacement (the length of the ticks) is modulated by a sinϕ function. Contrary

to what is generally expected, however, the direction of the displacement varies as well.

Whereas the tick on the highlighted atom is perpendicular to one of the carbon-carbon bonds

in the first picture, i.e., α ≈ 40◦, they are almost parallel to the bonds with α ≈ 10◦ in last

two pictures; Table 4.5 lists the mean value α = 33◦. For the E2 eigenvector in the (8,4) tube

no such variation is seen. The same sequence as in Fig. 4.9 is presented in Fig. 4.10 for the

E2 mode with a frequency of 1626 cm−1. The atomic displacement is roughly parallel to the

circumference in all four pictures.

The angular dependence of the direction of the eigenvectors becomes more obvious when

plotting the atomic displacement along the z axis versus the circumferential displacement

(Fig. 4.11). The first two diagrams at the top in Fig. 4.11 corresponds to the A1 high-energy

(8,4) E1 0° 32° 64° 96°

Figure 4.9: Doubly-degenerate E1 eigenvector of an (8,4) tube with a frequency of 1610 cm−1. The
sequence shows the change in displacement when going around the tube in steps of 32◦. The atoms
which are highlighted by the small circles are connected by the screw symmetry of the tube.
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modes in the (8,4) and (9,3) tube. For simplicity I considered only the displacement of the

atoms belonging to the same graphene sublattice. Totally symmetric modes then show up as

a single point in such a plot. The dashed lines point along the carbon-carbon bonds; the co-

incidence between the displacement and the bond direction in the (9,3) nanotube is obvious.

A B symmetry mode (not shown) would be seen as two points in the z− xy displacement

diagram, because the character of the screw axis generator is −1.45 Open ellipses describe E

symmetry eigenvectors with a varying or “wobbling” displacement direction. The principal

axis of the ellipse gives the average angle of the eigenmode, i.e., α . The open ellipse with

α ≈ 33◦ of the (8,4) E1 symmetry mode corresponds to the eigenvectors in Fig. 4.9. The

degenerate eigenmode has the same ellipse. In general, the displacement of a degenerate

eigenmode is obtained from a given eigenvector by a 90◦ rotation of the coordinate system

around the z axis. The relationship between the axial and the circumferential displacement

is thus the same for degenerate phonons. Two ellipses perpendicular two each other repre-

sent degenerate modes of the same symmetry but different frequencies. Correspondingly,

the middle diagram of the (8,4) tube in Fig. 4.11 shows both the 1610 (α = 33◦) and the

1591 cm−1 (−59◦) E1 eigenvector.

In the middle panel to the right I depict the displacement for the E1 modes in the (9,3)

nanotube. The xy and the z displacment are again of similar magnitude, i.e., α ≈ 40◦ and

50◦, but they are now in phase and yield a constant direction of the atomic displacement

around the tube. Two other examples of almost closed ellipses are the E2 eigenmodes in

both tubes (lowest panels in Fig. 4.11). Although the eigenvectors are in fact wobbling, the

magnitude of the, e.g., the z displacement for the 1626 cm−1 E2 (8,4) mode is very small.

Therefore, the variation is not observable in the full eigenmode plot of Fig. 4.10.

(8,4) E2 0° 32° 64° 96°

Figure 4.10: E2 high-energy mode of an (8,4) nanotube with a calculated frequency of 1626 cm◦. The
atomic displacement is along the circumference and, in contrast to Fig. 4.9, no wobbling is evident.
The modulation of the displacement magnitude by a sin2ϕ around the circumference is nicely seen
when following the highlighted atom.
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Figure 4.11: z component of the displace-
ment versus the xy circumferential compo-
nent. Top: A1 high-energy eigenvectors of
an (8,4) tube (left) and a (9,3) tube (right).
The dashed lines point into the direction of
the carbon-carbon bonds, the full lines are
parallel to aaa111 and aaa222. Middle: E1 eigenvec-
tors of the two chiral nanotubes. The atomic
displacement direction is strongly varying in
the (8,4) nanotube resulting in an open dis-
placement ellipses. In the (9,3) nanotube the z

and circumferential component are similar in
magnitude but with an almost vanishing phase
difference. Bottom: E2 eigenvectors of the
chiral tubes. The small z or xy component re-
sult in a closed ellipse almost parallel to the
circumference or the nanotube axis.
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The symmetry of the phonon together with its displacement ellipse fully determine the

phonon eigenvectors. The symmetry yields the sinmϕ function of the axial and circumfer-

ential components, whereas the principle axes of the ellipses specify the relative magnitude

and the phase shift between the two components.

In Section 2.4. I discussed that symmetry arguments are not able to predict the phonon eigen-

vectors of chiral nanotubes. The absence of mirror planes and the low-symmetry confinement

wave vectors in chiral tubes affect their vibrational properties in a fundamental manner. In

particular, a classification of the high-energy modes into LO and TO vibrations is not appli-

cable to chiral nanotubes.

4.4.2. Diameter and pressure dependence of the eigenvectors

The crucial point for the wobbling and the mixed LO-TO character of the non-degenerate

modes in chiral tubes is the splitting in the axial and circumferential force constants intro-

duced by confinement and curvature. Naturally, the question arises how the modes and the

eigenvectors, in particular, will evolve if these two effects are reduced as in tubes with larger

diameter. To answer this question by first principles methods I needed to calculate a series of
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Figure 4.12: Phonon eigenvectors with an reduced
splitting of the axial and circumferential force con-
stants. The eigenvector calculated by first principles
methods is shown by the full dots (same as shown
in Fig. 4.11 in the (8,4) E1 diagram). The open dots
are the displacement ellipses for the E1 high-energy
eigenvectors after I slightly modified the force con-
stants. The splitting of the two E1 frequencies was
reduced by 25 %.
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chiral nanotubes with the same chiral angle. The next candidates for the (8,4) and (9,3) series

are a (12,8) and (12,6), which are beyond our computational capability. Nevertheless, to ob-

tain general insight into the eigenmode behavior with a reduced splitting, I slightly changed

the ab initio force constants to make them more similar. The relative splitting between, e.g.,

the two E1 high-energy phonons of the (8,4) tube was reduced by 25 %. In Fig. 4.12 I com-

pare the old displacement ellipses (full dots) with the ellipses obtained from the modified

force constants (open dots). It is nicely seen that the two eigenvectors look more degenerate,

i.e., the ellipses are more open. In the limit of identical force constants both eigenvectors will

degenerate to a circle. This limit corresponds to graphene, a tube with a infinite diameter, and

the displacement direction can be chosen arbitrarily as required. The splitting of the force

constants in real nanotubes will be less than in the small diameter nanotubes discussed here,

but different from zero. The wobbling and the mixed LO-TO character of the high-energy

phonons are thus even more dominant in real samples, because the wobbling is stronger for

the modified force constants in Fig. 4.12 than for the ab initio calculated.

Interestingly, my artificial modification of the force constants resembles very much the ef-

fects expected for the eigenvectors under hydrostatic pressure: At ambient pressure the cur-

vature of the tube’s wall softens the force constants in the circumferential direction, whereas

the axial force constants are not affected to first order approximation. Applying hydrostatic

pressure to the nanotubes reduces the radius of the tube by a factor of ≈ 2 more than the axial

direction as derived in Section 4.2. For the phonons this means that the circumferential force

constants increase more rapidly than the axial force constants [see Eq. (4.16)]. Consequently,

the curvature induced splitting of the forces reduces under pressure, i.e., a similar effect as

introduced by hand in the previous paragraph. In Fig. 4.13 I show the displacement ellipses

for the E1g eigenvector in an (8,4) nanotube bundle calculated for pressures up to 8 GPa.
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Figure 4.13: Pressure dependence of the E1g high-
energy eigenvector in the (8,4) nanotube. The white
to black points show the displacement ellipse for in-
creasing pressure from 0 to 8 GPa. Similar as ob-
served for the manilupation of the force constants
by hand, the “degeneracy” of the phonon eigenvec-
tor increases with pressure.
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Indeed qualitatively the same behavior as in Fig. 4.12 is observed in Fig. 4.13 as well. The

bad news is that the pressure dependence of the eigenvector itself makes the application of

Eq. (4.16) for the phonon frequency shift under pressure difficult. In deriving the relation I

implicitly assumed a constant direction of the atomic displacement in the strained crystal. A

detailed analysis of the first principles calculation of the frequencies and eigenvectors will

help in gaining a more fundamental understanding of the vibrational properties at ambient

and high pressures.

4.5. Summary

In this chapter I discussed the elastic and vibrational properties of carbon nanotubes under

high hydrostatic pressure and presented ab initio calculations of the phonon eigenvectors in

chiral tubes. The phonon eigenvectors in chiral nanotubes are, in general, of mixed circum-

ferential and axial character. This mixed character successfully explains the high-pressure

experiments. On the other hand, it implies that interpreting the two most prominent peaks in

the high-energy Raman spectrum of carbon nanotubes as being confined LO and TO vibra-

tions is incorrect.

To describe the elastic response of nanotubes to pressure I developed a continuum model of

carbon nanotubes within elasticity theory. The tube was approximated as a hollow cylinder

made out of graphene with a finite wall thickness and closed end. The linear modulus in the

circumferential or radial direction was found to be 2-3 times higher than in the axial direc-

tion, i.e., the deformation of the nanotubes unit cell under pressure is not fully hydrostatic.

Instead a shear strain is present in the graphene hexagons. Because of this nonhydrostatic
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strain component the E2g graphene optical mode is expected to split; its frequency under

pressure depends on the direction of the atomic displacement. For the nanotubes this implies

different pressure slopes for axial and circumferential vibrations, whereas Raman experi-

ments show uniform pressure dependencies of all high-energy modes. I proposed that the

apparent contradiction is resolved by the phonon eigenvectors, which may be of mixed LO-

TO character in chiral nanotubes.

To prove my idea I performed ab initio calculations of the phonons eigenvectors of two

chiral nanotubes. The calculated atomic displacement of the nondegenerate modes in chi-

ral tubes indeed pointed into various directions as I expected. Moreover, the degenerate E

eigenvectors even showed a “wobbling” of the displacement direction when going around the

circumference. This wobbling is seen as open ellipses in a plot of the z versus the circumfer-

ential displacement component; which is a way to uniquely specify a phonon eigenvector in

nanotubes.



Chapter 5
Band Structure of Isolated and Bundled
Nanotubes

The electronic structure of carbon nanotubes is characterized by a series of bands (sub- or

minibands) arising from the confinement around the nanotube’s circumference. The elec-

tronic properties are a focus in nanotube research because of their potential application, e.g.,

in transistors and integrated circuits. My attention was originally drawn to electronic struc-

ture calculations by the crucial role the optical absorption plays in resonant Raman scattering.

The critical points in isolated nanotubes, which are at the Γ point, the Brillouin zone bound-

ary, and sometimes also at kz ≈ 2π/3, give rise to the square-root like singularities in the

density of states typical for one-dimensional systems.34, 35 These singularities were directly

studied by scanning tunneling experiments127–129 and also identified in Raman scattering on

individual nanotubes.130 When the experimental findings are compared to a theoretical band

structure usually a zone-folding approach of graphene is pursued. This simple picture is fre-

quently expanded to small tubes (diameter d / 10 Å) and to bundles of tubes, although Blase

et al.131 showed convincingly that rehybridization has a significant effect on the electronic

states. Also ignored by this approach are intramolecular dispersions which are known to be

quite large in solid C60 and graphite.132, 133

In this chapter I study the electronic band structure of isolated and bundled nanotubes. Par-

ticular attention I pay to a comparison of first principles results to the simpler (but quicker)

tight-binding and zone-folding pictures. In Section 5.1. I introduce zone-folding together

with the graphene band structure and in Section 5.1.2. the widely used tight-binding ap-

proximation of the graphene π orbitals. The body of this chapter are ab initio calculations of

different chiral and achiral nanotubes. The effects of hybridization by curvature and bundling

85
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Figure 5.1: Electronic band structure of graphene
calculated with SIESTA. The electronic bands
cross at the K point of the graphene Brillouin zone.
For the labeling of the special points in the Bril-
louin zone the same notation as in graphite was
used. The irreducible domain in graphene thus cor-
responds to a cut in the ΓKM plane of the Brillouin
zone shown in Fig. 5.2b).
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of the tubes on the band structure will be considered in detail. In Section 3.3. I compare my

theoretical results to STM and Raman measurements.∗

5.1. Band structure of graphene

The electronic band structures of graphene and graphite were studied for decades both ex-

perimentally and theoretically.63, 94, 133, 135–142 I first briefly discuss the band structure of

these two materials before showing how to obtain the nanotube electronic dispersion by

zone-folding of graphene.

Graphene is formed by a single sheet of carbon atoms placed onto a hexagonal lattice. It is

one of the classical examples for covalent bonding in solid state physics. The σ and σ ∗ states

lying within the carbon plane are formed by s, px, and py hybridization; the nonhybridized,

pz derived π and π∗ states point perpendicular to the sheet. The band structure of graphene

calculated with SIESTA is shown in Fig. 5.1. The valence and conduction band (π and π ∗)
touch at the K point of the Brillouin zone making the material a zero gap semiconductor.

The σ valence and conduction bands, on the other hand, are strongly separated in energy;

the smallest transition energy is well above 10 eV.

The ABAB stacking of graphene yields graphite, one of the natural carbon forms. The inter-

layer coupling is very weak in graphite, thus allowing a reliable comparison between theory

and experiment for the single sheet as well. Since the number of carbon atoms in the unit cell

is doubled in graphite when compared to graphene, the electronic bands are expected to split

∗Section 5.2. to 5.4. are mainly taken from Ref. 134, which is currently under review for publication in
Physical Review B. The calculations and analyses I did under supervision by my thesis advisors, Christian
Thomsen and Pablo Ordejón, who co authored the paper.
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Figure 5.2: a) Electronic band structure of graphite in the ΓKM and the AHL plane. The panel to
the right shows the interlayer dispersion from the Γ to the A point of the graphene Brillouin zone.
The doubling of the carbon atoms splits the electronic bands of graphene in the ΓKM plane. Note
the strong dispersion of the σ ∗ and π bands in the ΓA direction. b) Graphite Brillouin zone. The
irreducible domain is shaded.

by the interlayer interaction. This behavior is nicely seen in the ΓKM plane in Fig. 5.2a).

In the AHL directions, however, the splitting is forbidden by symmetry; the electronic bands

shown in Fig. 5.2 are thus at least two-fold degenerate. An interesting consequence of the

particularly large splitting of the σ ∗ (∆E = 6.9eV) and the π (2.5eV) states at the Γ point but

their degeneracy at the A point is a strong interlayer dispersion of these two bands as can be

seen in the right panel of Fig. 5.2a). In Table 5.1 I compare the calculated electronic energies

of Fig. 5.2 to experimental values reported in the literature. The calculations of this work are

in good agreement with previous theoretical papers;133, 142 the comparison to experiments is

less satisfactory. In particular the energies of the lowest σ ∗ and the highest σ band deviate

by ≈ 30− 40% from the measured values, which by Schabel and Martin133 was attributed

to an incomplete cancellation of the Hartree self-interaction in the local density approxima-

tion. On the other hand, the experimental values scatter considerably as well (up to 20 %); a

compilation and discussion of different experiments can be found in Ref. 140.

5.1.1. Zone-folding

When the graphene sheet is cut and rolled to form a tube the wave vector around the cir-

cumference kkk⊥ is quantized by the boundary condition c/λ = c · k⊥/2π = integer (c is the

length of the chiral vector, see Chapter 2.). Along the z axis the wave vector kkkz can still

take continuous values. The allowed states in a nanotube thus correspond to parallel lines

in the graphene Brillouin zone. To first approximation the electronic bands of a nanotube

can be obtained by considering only the dispersion along those lines, which is known as the

zone-folding or confinement approximation. This widely used approach in fact neglects the
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Conduction bands Valence bands
Experiment (eV) Calculation (eV) Experiment (eV) Calculation (eV)

π
12.2a 11.5 −7.9b −6.2

11.3 −8.9b −8.7
σ 3.6c 4.9

7.4b 8.2 −4.3b −3.1
8.4b 8.3

aWillis et al.143

bTakahashi et al.140

cFauster et al.139

Table 5.1: Electronic energies at the Γ point of graphite for some selected bands. The energies
calculated in this work agree well with other ab initio calculations (not shown). The agreement
between theory and experiment is found to be fairly good.

rolling up of the sheet. The nanotube is simply treated as a graphene rectangle. kkk⊥ and kkkz

are found from the chiral vector ccc and the translational period aaa [see. Eq. (2.1)]

kkk⊥ =
2n1 +n2

qnR
kkk1 +

2n2 +n1

qnR
kkk2 (5.1a)

kkkz = −n2

q
kkk1 +

n1

q
kkk2, (5.1b)

where n is the greatest common divisor of n1 and n2, R = 3 if (n1 − n2)/3n integer and

R = 1 otherwise, and q is the number of graphene hexagons in the unit cell of the nanotube

(see Section 2.1.). kkk1 and kkk2 are the reciprocal lattice vectors of graphene with k1 = k2 =

4π/
√

3a0, where a0 is the lattice constant of graphene.

As an example I consider the Brillouin zone and the zone-folded bands of a (7,7) armchair

tube. In armchair tubes the relation for the quantized vectors in Eq. (5.1a) simplifies to

kkk⊥ = (kkk1 + kkk2)/2n = (kkk1 + kkk2)/14. The quantization direction is the ΓM direction in arm-

chair tubes. The graphene points in reciprocal space corresponding to the Γ point of the

nanotube are given by kkkΓ(m) = mkkk⊥, where m is the z quantum number of the angular mo-

mentum with −n =−q/2 < m ≤ q/2 = n (see Chapter 2.). The band with m = 0 thus always

includes the Γ point of graphene; whereas kkkΓ(n = 7) = (kkk1 + kkk2)/2, i.e., the M point of the

hexagonal Brillouin zone. The kkkz vector of armchair tubes is given by kkkz = (−kkk1 + kkk2)/2

pointing along the ΓKM line of the graphene Brillouin zone. The nanotubes zone boundary

is located at |−kkk1 + kkk2|/4 = π/a0. Since the K point of graphene is among the allowed

nanotube k vectors, armchair nanotubes always show the crossing of the valence and con-

duction band typical for two-dimensional graphene, see Fig. 5.1. In Fig. 5.3a) I show the

Brillouin zone of the (7,7) tube (white lines) on top of the graphene Brillouin zone. To

emphasize the hexagonal symmetry the background is a contour plot of the graphene π ∗ or-
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Figure 5.3: Brillouin zone of a) an (7,7) armchair and b) a (13,0) zig-zag tube. The background shows
a contour plot of the electronic energies of the π ∗ orbitals of graphene to emphasize the hexagonal
symmetry. kkk1 and kkk2 are the graphene reciprocal lattice vectors pointing along the ΓM direction. The
white lines are the allowed k values in the nanotubes; the Γ point of the tubes corresponds to the
states lying at m · kkk⊥ [m takes integer values ranging from (−n + 1) ≤ m ≤ n in achiral nanotubes].
For larger armchair and zig-zag tubes the separation between the allowed lines becomes smaller, but
the boundary of the tube’s Brillouin zone remains the same as indicated in the figure. Note that the
same Brillouin zone is obtained by restricting m to (−n/2+1) ≤ m ≤ n/2, but doubling the length of
kz [indicated by the dashed rectangle in a) and b)]. This corresponds to the so-called helical momenta
m̃ and k̃; see Damnjanović et al.45 for details.

bitals. In particular, this highlights the Umklapp rules for m and k when crossing the tube’s

zone boundary:51, 52 Following, e.g., the m = 0 band beyond π/a0 corresponds to changing

m from 0 to 7 at the boundary and going back to the nanotube Γ point.

When instead of an armchair tube a zig-zag tube of similar diameter is considered the allowed

lines are rotated by 30◦ around the Γ point and the Brillouin zone extension along kz is

reduced by
√

3. This is shown in Fig. 5.3b) for a (13,0) nanotube. Note that again the

nanotube Γ point of the m = n = 13 band coincides with the graphene M point. This is

true in general even for chiral nanotubes. In chiral tubes the highest m quantum number is

m = q/2. To find kkkΓ(q/2) let me assume that I am dealing with an R = 1 nanotube. From

Eq. (5.1) I obtain

kkkΓ(q/2) =
1

n

(
2n1 +n2

2
kkk1 +

2n2 +n1

2
kkk222

)

= GGG+
1

n

(n2

2
kkk1 +

n1

2
kkk2

)

, (5.2)

where GGG is a reciprocal lattice vector of graphene. The possible solution of Eq. (5.2) after

subtracting reciprocal lattice vectors are kkk1/2, kkk2/2, and (kkk1 + kkk2)/2. All three yield the M

point of graphene. For the tube with R = 3 the same can be proven by using the condition

(n1 − n2)/3n = integer. When comparing the results of zone-folding and first principles
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Figure 5.4: Electronic band structure of a (7,7) nanotube
obtained within the zone-folding approximation. The un-
derlying graphene electronic energies were calculated with
SIESTA. The m quantum numbers of the π∗ bands are indi-
cated in the figure. Bands with the same m have the same
style and color; black and gray lines of the same style were
used for bands which are connected by the Umklapp rule and
hence are degenerate at the corner of the Brillouin zone (see
text for details).

calculations I will therefore use the electronic energies corresponding to the graphene M and

Γ point to estimate the curvature effects on the electronic properties of nanotubes.

After having found the allowed k points in carbon nanotubes in terms of the chiral indices

(n1,n2) and the reciprocal graphene lattice vectors zone-folding of the electronic bands is

straightforward. In Fig. 5.4 I show the folded electronic dispersion of the (7,7) nanotube

obtained from ab initio calculations of graphene. The folded π ∗ bands are labeled by their m

quantum numbers. Similar calculations for other tubes I present in Section 5.2. in connection

with first principles results.

5.1.2. Graphene π orbitals

The band structure of graphene around the Fermi level and for transition energies well above

the optical range is determined by the π orbitals. The energetic separation of the bonding

and antibonding σ bands is on the order of 10 eV. A common approximation for the low-

energy electronic properties is hence a tight-binding Hamiltonian including only the carbon

2pz states.63 If, furthermore, the interaction is restricted to nearest neighbors only and the

overlap of the pz wave functions centered on different atoms is neglected a simple expression

is found for the π bands in graphene63

E(kkk) = ±γ0 w(kkk) = ±γ0 {3+ coskkk ·aaa1 +2coskkk ·aaa2 +2coskkk · (aaa1 −aaa2)}1/2 , (5.3)

where γ0 is the nearest neighbor interaction energy; the plus and minus sign hold for conduc-

tion and valence bands, respectively. Starting from Eq. (5.3) the electronic bands of carbon
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Figure 5.5: Comparison between the tight-binding approximation and ab initio calculations of
graphene. The ab initio results are shown by the full lines in all three pictures. a) The dashed (dot-
ted) lines are the tight-binding band structure obtained by fitting the ab initio Γ (M) point electronic
energies. They correspond to γ0 = 3.01eV and s = 0.07 (γ0 = 1.94eV, s = 0.17). b) Tight-binding
band structure (dashed lines) obtained from fitting the linear dispersion around the Fermi level at the
K point (γ0 = 2.45eV, s = 0.04). c) Tight-binding band structure (dashed lines) neglecting the nearest
neighbor overlap. γ0 = 2.7eV as used for the comparison to first principles results in the following
sections. The area shaded in gray indicates the range of optical transition energies and below.

nanotubes can be found by zone-folding as described in the previous section. Many stud-

ies on the electronic and optical properties of nanotubes and graphite were based on this

expression. For example, around the Fermi level Eq. (5.3) is to first order approximated

by E(kkk) =
√

3aγ0/2 · |kkk − kkkF |. Its first derivative with respect to kkkz yield the well-known

universal density of states in carbon nanotubes as found by Mintmire and White34, 35

DOS(E) =
2√

3γ0 a
· E
√

E2 −E2
t

with Et =
γ0 a√

3d
|3t −n1 +n2|, (5.4)

where t is integer. Since the universal density of states in Eq. (5.4) depends only on the

diameter of the tubes, it is conveniently used to interpret experimental data obtained on

bulk nanotube samples.43, 44, 144 Higher order terms of the tight-binding electronic energies,

however, introduce a dependence on the nanotube’s chirality as well.36, 37

The electronic energies in Eq. (5.3) are the same for the valence and conduction bands.

Looking back at Fig. 5.1, it is apparent that the band structure of graphene is rather poorly

approximated for kkk not being close to K. A slight improvement is obtained when the over-

lap between nearest neighbors is included, i.e., the asymmetry between bonding and anti-

bonding states is taken into account. In terms of the function w(kkk) defined in Eq. (5.3) the

valence (E−) and conduction (E+) bands are then given by37

E±(kkk) = ±γ0 w(kkk)/[1∓ sw(kkk)], (5.5)
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where s is the nearest neighbor overlap. To test the quality of the nearest neighbor tight-

binding description of the graphene π orbitals I fit the first principles results at high-symmetry

points of the Brillouin zone with Eq. (5.5). In Fig. 5.5 I show the ab initio band structure

of graphene (π orbitals only) in comparison to the tight-binding band structure. The dashed

lines in Fig. 5.5 are for γ0 = 3.01eV and s = 0.07, which I obtained from the Γ point elec-

tronic energies of the π and π∗ in graphene (-7.55 and 11.31 eV). Between Γ and K the

tight-binding approximation gives quite good results. Deviations result around the M point

of the Brillouin zone. Note that the inclusion of the asymmetry Eq. (5.5) only scales the

absolute energies. The separation of the conduction band from the Fermi level at the M is

therefore larger than that of the valence band in the tight-binding energies in contrast to the

first principles results. This does, however, not affect the transition energies. Using the M

point electronic energies to find γ0 and s does not give satisfactory results as can be seen

by the dotted lines in Fig. 5.5a). Naturally, the best agreement in the optical energy range

is obtained when fitting the electronic dispersion around the K point by straight lines, see

dashed lines in Fig. 5.5b). The better agreement at low electronic energies results, however,

in a large difference for the Γ point energies (2.81 for the conduction and −1.08 eV for the

valence band). Part c) in Fig. 5.5 shows the results for Eq. (5.3), i.e., neglecting the asym-

metry of the bonding and anti-bonding states, and γ0 = 2.7eV, which is a typical value for

nanotubes found in the literature. The overall agreement is similar to b).
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Figure 5.6: Difference between the
tight-binding π orbitals and the first
principles transition energies.

In general, the π orbital tight-binding approximation

gives a reasonable description of the graphene elec-

tronic energies even if only nearest neighbor interac-

tion is considered. The large advantage of the method

is the resulting simple formula for the graphene band

structure. Combined with zone-folding or the modi-

fied projection operators the electronic bands of car-

bon nanotubes are easily found within this approx-

imation. Nevertheless, a good agreement for the

graphene band structure to ab initio results is only achieved for a very limited range of elec-

tronic energies with a single value of γ0. In Fig. 5.6 I show the difference between the optical

transition energies obtained by first principles calculations and the π orbital tight-binding

approach around the K point of the Brillouin zone. The k range correspond to transition

energies below 3 eV [shaded area in Fig. 5.5c)]. The dashed line represents the tight-binding

band structure of Fig. 5.5b), the full line the band structure in c). Even in this low energy

range the transition energies differ by some 100 meV. Rolling up the sheet to a nanotube

induces further deviations. We will see in the following that the rehybridization of the π
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and σ states, which was first discussed by Blase et al.,131 cannot simply be neglected in the

description of the electronic energies in carbon nanotubes.

5.2. Isolated nanotubes

First principles studies of the electronic bands in ideal carbon nanotubes are surprisingly

rare in the literature. Blase et al.131 studied the rehybridization effects in small zig-zag nan-

otubes. They showed that the curvature of the nanotube wall strongly alters the band structure

by mixing the π∗ and σ∗ graphene states. In contrast, Mintmire and White concluded from

all-electron calculations of armchair tubes that the differences between first principles and

tight-binding calculations are negligible for small enough energies.145 I show in the follow-

ing that rehybridization indeed differently affects tubes of different chirality; the effect is

strongest in zig-zag tubes. I first discuss the band structure of a small armchair and zig-zag

nanotube paying particular attention to rehybridization. The calculated band structure of two

chiral nanotubes with a diameter d ≈ 8 Å are presented in a separate subsection. Finally, the

electronic dispersion in the optical range of a (19,0) tube is investigated. This tube has a

diameter of 15Å, which is typical for real nanotube samples.

5.2.1. Achiral nanotubes

In Fig. 5.7b) I show the band structure of an isolated (10,0) nanotube calculated with SIESTA.

Figure 5.7a) contains the graphene electronic dispersion folded once along the ΓM direction

and c) the tight-binding description including only the π orbitals. The dots in Fig. 5.7b)

indicate the non-degenerate bands with quantum number m = 0,n. The Γ point (kz = 0) of

the nanotube for these bands corresponds to the Γ and M point of graphene as discussed

in the previous section. If the curvature of the nanotube wall is neglected, the band struc-

ture of the zig-zag tube for the bands corresponding to m = 0,n (that is the non-degenerate

bands) would be the same as those of graphene along the Γ−M direction [dotted bands in

Fig. 5.7a) and b)]. Nanotube bands with other m’s would also have their counterpart in the

graphene band structure, but I will only analyze the comparison of the m = 0,n bands for

simplicity. Below the Fermi energy the (10,0) electronic dispersion agrees quite well with

the confinement picture, in particular in the low energy region. Correspondingly, the tight-

binding model, which is adjusted to reproduce the graphite electronic dispersion, gives an

adequate description of the nanotube band structure below EF . The conduction bands, how-

ever, are strongly affected by the rolling up of the graphene sheet. It was pointed out by Blase

et al.131 that the rehybridization in small nanotubes shifts the π∗ and σ∗ bands to lower and
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Figure 5.7: Band structure of a (10,0) isolated nanotube compared to a zone-folding and a tight-
binding calculation. a) ab initio graphene electronic dispersion along the ΓM direction folded at
the middle of the Brillouin zone; closed (open) symbols correspond to the first (second) half of the
graphene Brillouin zone, i.e., 0 ≤ k ≤ π/

√
3a0 (π/

√
3a0 ≤ k ≤ 2π/

√
3a0), where a0 = 2.47Å is

the lattice constant of graphene. b) ab initio calculation of a (10,0) nanotube. The dots mark the
electronic bands with m = 0,n quantum number, which in a zone-folding approximation should have
the same dispersion as the graphene band structure shown in a). c) Tight-binding calculation of the
(10,0) nanotube including only the π orbitals of graphene with γ0 = 2.7eV. The dots indicate the
bands with m = 0,n. The lattice constant a = 4.27 Å in a), b), and c).

higher energies, respectively. The energies of the π∗ states in graphene in the (10,0) tube at

the Γ point are downshifted by ≈ 1eV for the m = n and by ≈ 4.4eV for the m = 0 band.

While these bands are most strongly affected by the curvature of the tube, others are almost

unchanged when comparing Fig. 5.7a) and b). In particular, one of the degenerate graphene

σ∗ bands at 8.14 eV in my calculation is almost at the same energy in the (10,0) nanotube

and shows a similar k dependence. The tight-binding model is not able to reproduce the band

structure of the tube above the Fermi level. The differences in energy at the Γ point, which

is the critical point from which the singularities in the density of states originate, is vastly

exaggerated when omitting the rehybridization (see also Section 5.3.).

To study the effect of curvature on the band structure of a nanotube more systematically I

show in Fig. 5.8 the same calculations for a (6,6) armchair nanotube. The tube’s kz direction

is now along the ΓKM line of graphene. When comparing the graphene dispersion to the

non-degenerate bands of the (6,6) tube [indicated by the dots in Fig. 5.8b)] the overall agree-

ment seems to be much better than for the zig-zag tube discussed above. In particular, the

folded bands of graphene, see open symbols in Fig. 5.8a), are almost unaffected by the cur-

vature. Below EF even the accidental degeneracy of the π bands at the corner of the Brillouin
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Figure 5.8: Band structure of a (6,6) isolated nanotube compared to a zone-folding and tight-binding
approximation. a) Graphene ab initio calculation of the band structure along the ΓKM direction
folded at (kkk1 − kkk2)/2. Closed (open) symbols correspond to the bands originating at the Γ (M) point
of graphene. b) Ab initio calculation of an isolated (6,6) nanotube. The dots indicate the m = 0,n
bands, which correspond to the graphene dispersion shown in a). c) Tight-binding approximation of
the same tube with γ0 = 2.7eV. The lattice constant a = 2.47 Å in a), b), and c).

zone is reproduced by the ab initio calculations. Nevertheless, above the Fermi level the π ∗

conduction band at the Γ point is downshifted by 4.7 eV as in the zig-zag tube. Table 5.2 lists

some selected electronic energies in the (10,0) and the (6,6) nanotube and compares them

to the graphene values. The general trend as observed in Fig. 5.7 and 5.8 is reflected in the

explicit values given in the Table, i.e., (i) the conduction bands of carbon nanotubes are well

described in a zone-folding approximation, (ii) for the electronic bands originating from the

Γ point of graphene the upshift of the σ ∗ and the corresponding downshift of the π∗ states is

similar for armchair and zig-zag tubes with the same radius, and (iii) the conduction bands

derived from the graphene M point are strongly downshifted in the zig-zag tube, whereas

they are close to graphene in the (6,6) nanotube.

In Fig. 5.9 I give an expanded view of the band structure in the energy range of the π ∗ and

σ∗ bands at the graphene Γ point; the x axis represent 4/10 of the (10,0) and (6,6) Brillouin

zone. Full lines show the graphene band structure along the high-symmetry directions; the

gray dots are the non-degenerate bands of the (10,0) (left) and the (6,6) (right) nanotube.

The graphene bands are labeled by their irreducible representations at the Γ point and along

the ΓM direction for the zig-zag tube and the ΓK direction for the armchair tube. In this

picture the graphene dispersion was not folded to keep the figure as simple as possible. In

the enlarged picture it is apparent that, e.g., the Γ+
2 state and one of the bands forming the
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Table 5.2: Selected electronic energies at the Γ and M point of graphene compared to the Γ point
energies in nanotubes. In a zone-folding approximation the energy difference between graphene and
a nanotube is expected to vanish. The twofold degeneracy of the σ ∗ conduction bands is lifted in
carbon nanotubes. The calculated diameter of the nanotubes is given in the second column.

conduction valence
Γ M Γ M

d(Å) π(eV) σ (eV) π(eV) π(eV) σ (eV) π(eV)
graphene 11.3 8.2 1.7 −7.5 −3.2 −2.3
(10,0) 7.8 7.0 10.3 7.7 0.6 −7.8 −3.2 −2.3
(6,6) 8.2 6.6 8.1 10.3 1.5 −7.8 −3.2 −2.1
(8,4) 8.4 6.8 10.3 8.1 1.6 −7.7 −3.2 −2.3
(9,3) 8.5 7.0 10.2 7.9 1.7 −7.8 −3.3 −2.1
(10,5) 10.4 7.2 10.5 8.1 1.6 −7.7 −3.2 −2.3
(19,0) 14.9 7.5 10.2 8.2 1.4 −7.6 −3.2 −2.4

degenerate Γ−6 in graphene have similar energies and dispersion in graphene and in the tubes.

In contrast, the Γ+
4 band (π∗) and the second Γ−6 state are shifted by the rehybridization.

To understand this different behavior, let us consider the symmetry lowering by cutting a

graphene sheet and rolling it up to a nanotube. By doing so I lose all rotations by angles

other than 180◦ and all operations changing the graphene z coordinate like σh or the primed

rotations. In achiral nanotubes I preserve reflections perpendicular to the x and y axis. This

is a somehow local description of the symmetry of a curved sheet, since the point groups of

nanotubes involve translational symmetry operations of graphene.22 For the present purpose,

however, this picture is sufficient. In the lower symmetry group Γ−6 and Γ+
4 belong to the

same representation which is different from the original Γ+
2 irreducible representation. A

mixing and band repulsion can thus be expected for the two former bands. In the interior of

the Brillouin zone T1 and T3 (along the ΓK direction) and Σ2 and Σ4 (ΓM) are correlated with

the same representation. The behavior as expected by symmetry is nicely seen in Fig. 5.9.

Figure 5.9: Electronic dispersion of
graphene (full lines) around the Γ point
in the energy range of the lowest lying
conduction bands. The ΓM direction is
displayed to the left together with the
nondegenerate bands in a (10,0) nan-
otube (gray dots). To the right the
ΓK electronic dispersion of graphene
and the non-degenerate bands of a (6,6)
armchair tube (gray dots) are shown.
The irreducible representations of the
graphene electronic bands are given in
Slater’s notation.146
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At the Γ point the 2+ state is pinned at its graphene energy, whereas a mixing and band

repulsion is obvious for the 4+ and the 6− state. The mixing is only found for the Σ4 and

the T1 band in the zig-zag and armchair nanotube, respectively, as predicted. In the (10,0)

nanotube the symmetry analysis given so far is valid for all kz and the π conduction band

as a whole is expected to be downshifted. In armchair nanotubes, after passing the K point

mixing is forbidden by symmetry even for the bent sheet for the bands within ≈ 10eV of

the π∗ states. Their electronic energies corresponding to the graphene M point are thus more

weakly affected by band repulsion as I found in the ab initio calculations.

5.2.2. Chiral nanotubes

In Table 5.2 I already included the electronic energies of the calculated (n1,n2) chiral nan-

otubes corresponding to the Γ and M point of graphene. Both high-symmetry points are

always allowed states in carbon nanotubes. Therefore I can – as in achiral nanotubes – di-

rectly compare the graphene electronic energies to the ab initio calculations of the chiral

nanotubes to estimate the effect of hybridization. As can be seen in Table 5.2 the curvature

induced shift of the nondegenerate bands is of similar magnitude in chiral and achiral nan-

otubes of similar diameter. For the π∗ band originating from the Γ point of graphene, the

achiral tubes seem to indicate the two limiting cases with the strongest downshift in the (6,6)

armchair and the weakest in the (10,0) zig-zag tube. However, neither of the two chiral tubes

exhibits large differences to the zone-folding approximation for the bands derived from the

M point of graphene. The (10,0) zig-zag tube is here clearly singled out compared to chiral

or armchair tubes.

The full electronic dispersion for a (9,3) and an (8,4) nanotube is shown in Fig. 5.10a) and

b), respectively. In the inset in Fig. 5.10b) the secondary gap of 20 meV can be seen induced

in the (9,3) nanotube by curvature. The magnitude of the band gap is smaller than recently

estimated by Kleiner and Eggert,147 who considered the geometric effect of hybridization

on the secondary gap. Using their relation I find a band gap on the order of 100 meV. The

discrepancies might partly be due to the usual LDA problem of underestimating gap energies

and partly to the band repulsion which was not considered by Kleiner and Eggert.147

The energies of the next highest valence and conduction bands at the Γ point are remarkable

asymmetric with respect to the Fermi level. The asymmetry is particularly pronounced in the

(9,3) nanotube, but visible in the (8,4) tube as well. Two reasons account for the different

behavior below and above the Fermi level. First, the graphene electronic dispersion is slightly

different for the valence and conduction bands. Second, the higher bands move toward the
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Figure 5.10: Ab initio band struc-
ture of two chiral nanotubes. a) (9,3)
quasimetallic nanotube (a = 15.44 Å)
The inset (vertical scale ±35meV)
shows the secondary gap at the Fermi
level evolving because of the curvature
of the nanotube wall. b) (8,4) semicon-
ducting nanotube (a = 11.30 Å). The
open dots in a) and b) indicate the en-
ergy of the non-degenerate states at the
Γ point, see Table 5.2
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Fermi level because of the curvature. For example, in the (8,4) tube the third singularities

below and above EF are within zone-folding at −1.59 and 1.45eV. In the ab initio calculation

of the tube the valence energy is approximately the same as in zone-folding, whereas the

conduction band is further lowered and has an energy of 1.22 eV in Fig. 5.10b). A very

similar shift is observed for the first singularity in the (9,3) tube; again the valence band

energies are the same, while I find a difference of 0.20eV between the zone-folded and ab

initio calculated conduction band. Note that these singularities are usually probed by optical

experiments; they are responsible for the resonant Raman scattering in the red (metallic

resonance) and the blue energy range.

5.2.3. Diameter dependence

Up to now, I considered only nanotubes with small diameters. In this section I discuss the

band structure of a (19,0) nanotube which has a diameter more typical for real nanotube

samples (d = 14.9Å). I selected a zig-zag tube, because, as I showed in the last section, the

hybridization effects are largest for these tubes. The (19,0) nanotube, in this sense, serves

as a worst case scenario for judging how strongly curvature influences the band structure of

real nanotubes.

Although the curvature of the (19,0) nanotube is considerably smaller than that of the (10,0)

or any other nanotube discussed so far, I still find a downshift of the π ∗ band at the Γ point of

3.8 eV and an upshift of one of the σ ∗ states by 2 eV (see Table 5.2). These two values are not
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Figure 5.11: Band structure in the op-
tical energy range of a (19,0) nanotube
by first principles calculation. a) Con-
duction bands within 2 eV of the Fermi
level. The labels indicate the m quan-
tum numbers of the conduction bands;
m = 11 refers to the second lowest
band in energy in the group of bands at
1.34 eV (Γ point). b) Same as a) but for
the valence bands. The gray dots show
the zone-folding electronic energies at
the Γ point.
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so much different from the small diameter nanotubes as might be expected. As I discussed

in Section 5.2.1. this can be understood by the lower symmetry in a curved sheet. The

difference in energy between the zone-folding approximation and the ab initio calculation

for the non-degenerate band originating from the M point of graphene, however, is much

reduced in the (19,0) tube (0.3 eV) when compared to the (10,0) nanotube (1.1 eV).

In Fig. 5.11 I present the band structure within 2 eV around the Fermi level, i.e., in the optical

energy range where many experiments have been performed. Figure 5.11a) shows the con-

duction bands labeled by their m quantum numbers; in part b) the valence bands are displayed

[the y scale is negative in b)]. The gray dots indicate the position of the electronic states at

the Γ point obtained within the zone-folding approximation from the ab initio calculation

of graphene. Below the Fermi level zone-folding very nicely describes the first principles

results. For the conduction bands with m = 14 and 15 clear deviations are seen. This is

easily understood, since in a zig-zag tube the bands with m ≥ q/3 have a kkk⊥ which is on the

line between the K and the M point in graphene, see Eq. (5.1). The energy of the M point is

most strongly changed by the hybridization in the (19,0) nanotube and, hence, the closer the

confinement wave vector is to M the larger the expected energy shift. In the present example,

k⊥ ≈ 0.2KM and 0.4KM for the band with m = 14 and 15, respectively. The bands with an

m quantum number between 16 and 19 form the group of bands at 1.34 eV in Fig. 5.11a).

An interesting point arises when I fit the electronic energies Em at the Γ point by the tight-

binding approximation to test its validity. For zig-zag tubes at kz = 0 the energies are given

by45

|Em| = γ0 (1+2cosmπ/n) . (5.6)

The γ0 I obtain increase monotonically from 2.4 to 2.6eV between m = 13 and 11 (the

m = 15 band shown in Fig. 5.11 has again a lower value). STM studies often concentrate

on the lowest singularities in the density of states, while optical experiments are sensitive
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Figure 5.12: Dispersion along the kz

axis for a) a bundle of (6,6) arm-
chair tubes and b) the isolated armchair
tube. Nondegenerate bands are indi-
cated by the closed dots. The Fermi
level which is at −5.79eV in the bun-
dle, but −5.12eV in the single tube was
set to zero. Note that the crossing of
the valence and conduction bands oc-
curs slightly (70meV) above the Fermi
level.
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to the bands higher in energy. This increase in γ0 is probably one reason for the smaller

carbon-carbon interaction energies found in STM compared to Raman experiments.44, 148

5.3. Bundled nanotubes

Bundling of the nanotubes to ropes induces further changes in the electronic dispersion along

the tubes axis. The most prominent example is the opening of a pseudogap in armchair

nanotubes.149, 150 I also discuss the differences for the higher valence and conduction bands

before turning to the dispersion perpendicular to the z axis.

5.3.1. Dispersion along kz

In Fig. 5.12a) I show the band structure of a bundle of (6,6) armchair tubes and of the isolated

tube in b). The non-degenerate states in both figures are indicated by small dots. When

comparing bundled and isolated nanotubes a number of differences are apparent: (i) the first

valence and conduction band cross slightly above the Fermi level (70meV) in the bundles

of tubes, (ii) a further shift of the valence bands is observed, which is most pronounced for

the non-degenerate bands, and (iii) one of the doubly degenerate states in the isolated tubes

splits in the bundle.

On first sight it might seem surprising that I do not obtain a secondary band gap in the

nanotube bundles, but – as was pointed out by Delaney et al.150, 151 – this is simply due

to the high symmetry configuration I used for the bundles. I arranged the (6,6) tubes in a

hexagonal lattice which fully preserves the D6h symmetry of the hexagonal packing, i.e., half

of the original mirror symmetries perpendicular to the z axis are also symmetry operations

of the bundles (see Appendix I. for the arrangement of the bundled tubes in the calculations).

The electronic wave functions can still be classified as even or odd with respect to these
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reflections allowing a crossing of the two bands at high symmetry lines in the Brillouin

zone.150, 151 Another example for such a crossing is seen at 7 eV roughly in the middle of the

Brillouin zone in Fig. 5.12a). The π∗ derived band which has odd parity under σv crosses

with one of the σ ∗ bands; the latter is downshifted by the interactions between the tubes. The

two newly obtained non-degenerate bands in the bundles of armchair tubes (Γ point energy

5.60 and 6.46 eV) originate from the doubly-degenerate bands with the quantum number

m = 3 (6.10eV). In the new point group they are correlated with the B1 and B2 representations

(kEAn
and kEBn

in the line group notation).45 Likewise, m and (6−m) now belong to the

same representation, which opens up the small gaps at the zone boundary. The compatibility

between the nanotube symmetry group and the hexagonal packing is, however, a special case,

because D6h is a subgroup of the (6,6) tube. In general, the symmetry is at least reduced to

D2h for achiral and D2 for chiral tubes even in the highest symmetry configuration. These

groups have only non-degenerate representations and hence the degeneracy will be lifted for

all bands in a general tube, when it is bundled. An interesting question is how strongly the

bundle band structure, in particular perpendicular to kz, depends on the relative orientation

of the tubes. The calculations by Delaney et al.150, 151 showed only a weak dependence of

the density of states in armchair bundles on tube rotation for energies within 0.2 eV around

the Fermi level. A systematic study of the band structure and its orientation dependence in

bundles of different chirality might be the subject of a future work.

The bundling moves the Γ point energies of the lowest valence and conduction bands in the

(6,6) nanotubes closer to the Fermi level. In contrast to isolated tubes, the bundling shifts the

two bands by the same order of magnitude (−0.62eV for the conduction and 0.48eV for the

valence band). In Section 5.2.3. I saw that the change in the M point energy is indicative for

the Γ point energies of the other bands and the densities of electronic states. I therefore might

expect a similar change in the electronic dispersion for other bundles as well. In Table 5.3

I summarize the energies at critical points in the Brillouin zone which I obtained by the

different calculations. I included only the first three bands around the Fermi level within

the tight-binding approximation using the π orbitals of graphene. The intertube coupling

induces a shift of the valence and conduction band singularities, which might be as high as

0.25eV in the (6,6) and (8,4) nanotube. The (10,0) nanotube is somewhat peculiar because of

the strong splitting of its bands. Note that the valence and conduction band originating from

the m = 7 band in the isolated tube are only separated by 0.2 eV in the bundle compared to

0.75 eV for the single tube. Moreover, the highest valence band is 0.02 eV above the Fermi

level at the Γ point (see next section).
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Table 5.3: Critical point energies around the Fermi level. The table compares results of the zone-
folding approximation including only the π orbitals of graphene (π orbitals, γ0 = 2.7eV), zone-
folding of the graphene band structure calculated with SIESTA (folding), the ab initio result of an
isolated tube [ai (single)], and the ab initio calculation of bundles of tubes [ai (bundle)]. For the bun-
dle the mean value for split bands was given; when the splitting was > 0.1eV I included the splitting
in parenthesis. For each tube the rows are ordered by the energies of the tight-binding approximation
for the graphene π orbitals.

tube |m| Electronic energies at critical points (eV)
π orbitals folding ai (single) ai (bundle)

Conduction bands
(6,6) 5 1.35 1.13 1.05 0.89

6 2.34 1.58 1.34 1.27
(10,0) 7 0.47 0.43 0.38 0.43(0.21)

6 1.03 1.00 1.12 0.84(0.14)
8 1.67 1.28 0.80 0.47(0.21)

(8,4) 19 0.45 0.42 0.43 0.40
18 0.95 0.90 0.90 0.64
20 1.70 1.45 1.22 0.96

Valence bands
(6,6) 5 −1.35 −1.24 −1.23 −1.16

6 −2.34 −2.06 −2.07 −2.13
(10,0) 7 −0.47 −0.44 −0.37 −0.35(0.37)

6 −1.03 −1.01 −0.87 −0.99(0.45)
8 −1.67 −1.49 −1.48 −1.87

(8,4) 19 −0.45 −0.42 −0.43 −0.38
18 −0.95 −0.92 −0.92 −0.92
20 −1.70 −1.59 −1.53 −1.77

Rao et al.89 recently reported a parameterized calculation of isolated and bundled armchair

nanotubes using the method of Kwon et al.149 They observed differences of similar mag-

nitude in the density of states in isolated and bundled tubes, but – in contrast to us – an

increase in the separation of the valence and conduction band singularities. This discrep-

ancy is partly due to my assumption that the points of vanishing slopes in the band structure

reflect the density of states in the bundled tube (the van Hove singularities are broadened

in the bundle). On the other hand, the band structures calculated by Kwon et al.149 with

the parameterized technique underestimate the differences between single tubes and bundles

compared to ab initio calculations. Rao et al.89 used the separation between the singularities

in the valence and conduction bands to analyze the optical absorption in bundles of carbon

nanotubes. For armchair nanotube bundles, however, this analysis includes indirect optical

transitions, which are unlikely to occur (see the points of vanishing slopes in Fig. 5.12a).
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A more detailed study should consider at least the joint density of states if not the optical

transition matrix elements. STM measurements revealed no shift in the first singularity of

the density of electronic states between an isolated armchair tube and the same nanotube on

top of a bundle, while the second singularity below EF is slightly at lower energies in the

‘bundled’ tubes.148 Nevertheless, it would be interesting to repeat these measurements for

small semiconducting zig-zag tubes, which I found to be much more sensitive to the intertube

interaction.

5.3.2. Intratube dispersion

The interaction between nanotubes in a bundle does not only alter the kz band structure, but

causes a dispersion in the perpendicular plane as well. In graphite the intralayer dispersion

for the π bands is ≈ 1eV and below; the strongest dispersion is found for the σ ∗ states along

the ΓA direction (3-4 eV),133 see Fig. 5.2. The band structure of bulk C60 was investigated

by Troullier and Martins,132 who reported band widths around 0.5 eV.

I show in Fig. 5.13 the band structure of a bundle of (6,6) armchair tubes along several

high-symmetry lines in the hexagonal Brillouin zone. The panel to the right shows the per-

pendicular dispersion at the Fermi wave vector along the z axis ∆F . The secondary gap in the

bundled tube is very nicely seen. I obtain the largest separation at the P point of the Brillouin

zone ∆E = 1.2eV. Note also the crossing of the two bands with m = 3 quantum numbers

in the isolated tube (see the dotted lines in Fig. 5.12a and the discussion in the text) around
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Figure 5.13: Band structure of a bundle of (6,6) nanotubes along several high-symmetry lines in the
hexagonal Brillouin zone. The right panel shows the intratube dispersions at the Fermi wave vector
kzF = 0.73Å−1 in this calculation.
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Figure 5.14: Band structure of a bundle of (10,0) nanotubes. The two valence bands next to the Fermi
energy are strongly split by the tube intertube interaction. Note that the first conduction band is below
the Fermi level at the K point of the hexagonal Brillouin zone.

±4eV. The band widths I obtained perpendicular to the z direction are typically between 400

and 600 meV, but might be as high as 900 meV for the two first valence bands at the ΓKM

line. The perpendicular dispersion leads to a broadening of the density of states in bundled

tubes. Similarly, the broad and unstructured features found in absorption experiments88, 144

on bundled nanotubes might already be expected from the band structure of a bundle com-

posed of a single nanotube species with one important exception: The first optical transition

E11 coming from the accidental singularities along the ΓA direction of the Brillouin zone

falls into a gap of all other vertical excitations. Optical transitions at k points with kz = 0 are

forbidden in isolated armchair nanotubes and will be weak or absent in the bundled tubes

as well;45 all other transition energies are clearly different in energy from E11. I can take

the armchair tubes as representative for the metallic tubes with R = 3, which refers to al-

most all metallic tubes for large enough diameters (d ' 1.2nm). Chiral tubes with R = 3

have a band structure very similar to armchair tubes; in particular, they possess the same

accidental critical point.21, 55 In Raman scattering experiments, the resonances for the first

transition in metallic nanotubes are, therefore, expected to be much more pronounced than

the semiconducting resonances, where a similar optical gap is not present (see below). This

is in very good agreement with Raman experiments on bundled tubes.41, 43, 44 Rafailov et

al.44 normalized their measurements to a reference crystal. Indeed, the scattering by metal-

lic nanotubes is very weak outside a well defined resonance window (1.6-2.0 eV), whereas

a comparatively strong signal from the semiconducting nanotubes is found even in the red

energy range where they are not expected to be resonant.
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Figure 5.15: Band structure of a bundle of (8,4) chiral nanotubes. The x axis between the Γ and the
A point was expanded by a factor of three.

In Fig. 5.14 I show the band structure of a bundle composed of (10,0) nanotubes. The

dispersion of the electronic bands perpendicular to kz is less than in armchair nanotubes;

most of the bands have a width well below 400 meV. The large splitting of the first two

valence states at the Γ point and of both conduction and valence bands at the A point of the

Brillouin zone results in a stronger dispersion of the corresponding states perpendicular to

kz as well (0.4 - 0.9 eV). The most interesting point in Fig. 5.14 is, however, the dispersion

of the lowest conduction and the highest valence band in the ΓKM plane. The conduction

band – bending down when going away from the Γ point within the plane – crosses the

Fermi level close to the K point of the Brillouin zone. Its minimum at K has an energy of

−0.02eV. The highest valence band has an hole pocket at the Γ point (0.02 eV). I thus find

in my calculation the (10,0) nanotube bundle to be metallic. A reduction of the band gap by

intratube interaction is observed in the (8,4) nanotube bundle as well (see Fig. 5.15). Again

the lowest valence band bends down along the ΓKM line with a minimum at K (0.27 eV).

The minimum is still above the Fermi level, because the energy at the Γ point in the (8,4)

nanotube is considerably higher than in the (10,0) tube and the intratube dispersion narrower

(0.13 eV instead of 0.23 eV). In general, the band gap of nanotubes scales as the inverse of

the diameter. If the intratube dispersion is on the same order in larger diameter tubes, the

spanning of the gap by the interaction between the tubes is expected to occur as well.

The dispersion I find in the chiral (8,4) nanotube bundle in Fig. 5.15 is again reduced when

compared to the zig-zag tube bundle in Fig. 5.14. Only rarely I found a band width larger than

200 meV. I also stress that in the energy range corresponding to excitations in the visible the
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Figure 5.16: Density of states
measured by scanning tunneling
microscopy (top) and calculated with
SIESTA. The calculations reproduce
the main features of the experimental
density of states, in particular, the
relative heights of the peaks as is
discussed in the text. The energy
gap is underestimated by the LDA
calculation. The STM data are from
Ref. 129.
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(8,4) bundles show a rich band structure in the AHL plane. This might considerably broaden

the absorption bands as discussed above.

5.4. Comparison to experiments

In this section I compare my calculation to an STM and a Raman experiment. I show that in-

deed the discrepancies observed between STM measurement and the density of states above

EF within the tight-binding picture are due to the rehybridization as suggested by Odom et

al.129 A reliable energy for optical transitions cannot be obtained from the π orbitals tight-

binding Hamiltonian.

5.4.1. Scanning tunneling microscopy

STM experiments provide the unique possibility of measuring the density of states on a

nanotube of known chirality. Thus they allow a direct comparison between first principles

calculation and experiments. A variety of STM measurements on atomically resolved single

walled nanotubes have been reported.127–129, 152, 153 Odom et al.129 measured the density of

states on a (10,0) nanotube, one of the tubes calculated in this work.

I compare the experimentally obtained density of states of a (10,0) nanotube to my calcula-

tion in Fig. 5.16. The shape and the relative height of the peaks are in very good agreement

between experiment and theory. In particular, the low energy shoulder of the second peak

above the Fermi level and the much lower height of the third peak below EF are very nicely

reproduced. The absolute energies of the peaks, on the other hand, are considerably smaller

in the ab initio calculation than in the experimental spectrum. Li et al.93 recently reported

similar discrepancies between experiment and theory for very small nanotubes (d = 4 Å).
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Their LDA calculations underestimated the optical transition energies by 10-15 %. Note also

that the relative energies of the σ and π valence bands in graphite are incorrectly predicted

by ab initio methods (see Table 5.1 and Ref. 133). However, when comparing the absolute

peak positions in the upper and lower trace in Fig. 5.16 the differences are too large to be

attributable to the local density approximation. On the other hand, the calculations still show

a very sharp onset of the singularities, whereas the experimental curve is much smoother.

When I compare the onsets of the flanks rather than the maxima of the peaks the calculated

energies are only 10-20 % too small, which is a typical value for an LDA calculation and was

also found by Li et al.93

5.4.2. Raman scattering

Raman scattering is widely used to study the electronic structure of carbon nanotubes by res-

onant transitions. For bulk samples the approximation of Mintmire and White34 in Eq. (5.4)

was successfully used to model the absorption of an ensemble of tubes with a homogeneous

chirality distribution.43, 44 The resonant enhancement of the radial breathing mode was also

measured on a single tube using a variable excitation energy.130 The width of the resonance

window was reported to be ≈ 10meV, much smaller than found in tunneling experiments.

The disadvantage of Raman scattering, however, is the unknown chirality of the scattering

nanotube. Recently, attempts were made to determine not only the diameter, but also the

chirality of a nanotube by Raman scattering.16, 154 To identify possible tubes resonant with

the incoming or outgoing photons both groups used the tight-binding approximation of the

graphene π orbitals with γ0 = 2.9eV as found on nanotube bundles. Within this model the

dependence of the electronic energies on chirality arises mainly from the trigonal shape of

the energy contours around the graphene K point.36, 37 By comparing the intensities of the ra-

dial breathing modes coming from a number of different tubes they adjusted the dependence

of the breathing mode on diameter until they found good agreement between the expected

and observed intensities. The chirality assignment thus relied heavily on the assumed tran-

sition energies. The question arises whether this is indeed a reliable procedure to identify a

particular (n1,n2) nanotube.

To study this question I selected the semiconducting (10,5) nanotube, which Jorio et al.16

assigned on the basis of Raman data. I calculated the electronic density of states with the

tight-binding approximation of the graphene π orbitals, zone-folding of a graphene sheet,

and by a first principles calculation. The optical transition investigated in the Raman study

corresponds to the m = ±24 quantum number in the (10,5) nanotube.45 In Fig. 5.17 I com-

pare the density of states obtained by the three models for this particular band. The energetic



108 Chapter 5. Band Structure of Isolated and Bundled Nanotubes

-1.2 -0.8 -0.4 0.4 0.8 1.2

-1.2 -0.8 -0.4 0.4 0.8 1.2

tb π orbitals

zone folding

ab initio

 

D
en

si
ty

 o
f 

st
at

es

Energy as calculated (eV)

Energy corresponding to γ
0
=2.9 eV (eV)

Figure 5.17: Density of states in a (10,5) nanotube for the band with quantum number m = ±24.
From bottom to top I show the singularities obtained with the tight-binding approximation (π orbitals
only), the zone-folding of the graphene bands structure, and an ab initio calculation. The bottom x

scale is for energies obtained from the first principles calculations for a (10,5) nanotube and graphene;
within the tight-binding calculation the overlap parameter was adjusted to yield the same energetic
position for the singularity below EF as in the first principles calculation (γ0 = 2.54eV). The top scale
corresponds to γ0 = 2.9eV; it might be considered a correction for a too small band gap in the LDA
approximation.

position of the valence band singularity within zone folding I found to be the same as in the

full calculation of the (10,5) nanotube. I therefore adjusted the tight-binding approximation

to yield the same energy (γ0 = 2.54eV). The upper scale corresponds to a tight-binding pa-

rameter γ0 = 2.9eV, which was found on bundles of nanotubes. Using the upper scale to

directly compare my calculations to the work by Jorio et al.16 I find a transition energy of

1.54 eV in the tight-binding approximation. This energy was within the resonance window in

Ref. 16 between 1.48 and 1.68 eV. Already the zone-folding calculation shows a smaller sep-

aration of the valence and conduction band singularity. From the ab initio calculation of the

(10,5) nanotube I obtain a transition energy 1.44eV; clearly outside the resonant range. Note

that the difference between the ab initio and tight-binding calculation is twice as much as the

trigonal shape corrections (50 meV). The error made when using the tight-binding approach

thus makes it impossible to use resonances for the assignment of chiralities to particular

nanotubes.

5.5. Summary

The general features of the electronic band structure of carbon nanotubes can be described by

zone-folding of the graphene bands. The confinement around the nanotube’s circumference

restricts the allowed k vectors to parallel lines in the graphene Brillouin zone. The zone-
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folding picture provides an intuitive feeling for what is happening when graphene is cut and

rolled up. On the other hand, this approximation is not suited for a precise study of the

electronic properties of nanotubes. The rolling of the carbon sheet allows a mixing of the

π and σ electronic wave function, which is forbidden in a flat sheet. The rehybridization

is best studied by first principles methods as I did in this chapter for a series of nanotubes.

Whereas the valence bands and the low energy conduction bands (E < 1.0eV) are very well

reproduced by a zone-folding approximation, deviations on the order of 200 meV were found

for the conduction bands involved in optical transitions. Zig-zag nanotubes are particularly

sensitive to hybridization effects; even in a (19,0) nanotube the energy band derived from the

π conduction band at the graphene M point is downshifted by 0.3 eV.

Bundling of the tubes to nanoropes further shifts the Γ point energies towards the Fermi level.

I found a shift on the order of 100 meV for both the valence and conduction bands compared

to the isolated tubes. In the semiconducting bundles the intramolecular dispersion of the

lowest conduction band is bending down when going away from the Γ point. In the chiral

(8,4) tubes the band gap was thereby reduced by 20 % compared to the isolated case, whereas

the (10,0) nanotube bundle turned out to be metallic. The electronic dispersion perpendicular

to the tubes I found to range from ≈ 200meV in chiral tubes to 1 eV in armchair nanotubes,

which is expected to broaden the density of states as well as optical absorption bands in

nanotube bundles.

Lastly, I investigated the validity of the tight-binding approximation of the graphene π or-

bitals by comparing its results to first principles calculations. In general, the agreement be-

tween the two calculations was found to be satisfactory. However, the simple tight-binding

model is certainly not suited to predict electronic energies with an accuracy of 100 meV as

assumed recently in Raman scattering experiments.
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Chapter 6
Double Resonant Raman Scattering in
Graphite and Nanotubes

One of the fundamental concepts in Raman scattering is that the observed frequency shift

is independent of excitation energy. In 1981, however, Vidano et al.18 reported that several

Raman lines in graphite shifted linearly with excitation energy. The affected modes did not

correspond to Γ point vibrations; the one receiving most attention in the following years

was the so-called D mode with a frequency close to the K point LO phonon energy. The

puzzle of the origin and the strange behavior of these lines was resolved only 20 years later

when we showed it to be caused by double resonant Raman scattering.19 Thinking back to

carbon nanotubes we realized that the two strange aspects of the graphite D mode in fact

applied to the entire Raman spectra of carbon nanotubes: Despite many attempts none of the

experimentally observed Raman peaks of higher energy could be convincingly assigned to a

Γ point vibration, and secondly, we had seen in an experiment the peculiar frequency shift

with excitation energy as well. Hence I believe that we are now finally able to explain the

entire Raman spectrum of single-walled nanotubes. As this work is still in progress I will

concentrate in this chapter on graphite and the idea of double resonant Raman scattering.

In Section 6.1. I discuss the measurements on graphite, which established the peculiar fea-

tures in its Raman spectrum. I then explain the mechanism for double resonant scattering on

a textbook example and apply it to the graphite D mode in Section 6.2. In Section 6.3. and

6.4. I present measurements and first calculations for the D and the high-energy modes of

carbon nanotubes.

111
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c)b)a)

Figure 6.1: The key experiments on the D mode in graphite a) Linear relationship between the
crystalline size of graphite and the intensity of the D band (labeled I1355). The crystalline size was
determined by x-ray spectroscopy; the D intensity was normalized to the intensity of the Γ point
vibration (I1575). From Tuinstra et al.17 b) Graphite Raman spectra at different excitation wavelengths
(given next to the curves). While the Γ mode (1582 cm−1) is independent of excitation energy, the
other peaks are shifting with increasing laser energy to higher frequencies. The D and D∗ mode are
labeled D and G′ in the figure. From Vidano et al.18 c) Stokes (upper panel) and anti-Stokes (lower)
spectra of graphite. The D mode frequency differs by 7cm−1 in Stokes and anti-Stokes scattering.
From Tan et al.155

6.1. The D mode in graphite

Single crystals of graphite show only one Raman peak at 1575 cm−1 in the high energy

region.17 It originates from the high-energy E2g Γ point vibration, where the two carbon

atoms in the graphene unit cell vibrate out of phase within the layer plane. The second E2g

mode of graphite is at low frequency (44 cm−1), a rigid displacement of the graphene sheets

against each other. No other Γ point phonons belong to a Raman active representation. In

polycrystalline material – even in highly oriented pyrolytic graphite – other peaks appear

in the spectrum, which are induced by disorder and the finite crystal size. Most prominent

are the D mode around 1350 cm−1 and the D∗ mode at twice its frequency.∗ Figure 6.1

shows the three key experiments establishing the unusual properties of these modes. In the

first report of the D mode Tuinstra et al.17 showed that its intensity increases linearly with

decreasing size of the scattering graphite crystals, see Fig. 6.1a). They proposed the mode

to be associated with a high phonon density of states around the K point of the Brillouin

zone, i.e., a classical example of a density of states feature seen in Raman scattering because

∗The D∗ mode is often also called G′ in the literature, see, e.g., the figure by Vidano et al.18 reproduced in
Fig. 6.1b). I prefer the term D∗ to emphasize that it is the overtone of the D peak.
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of relaxed k conservation.67 This obvious interpretation was only questioned ten years later

when Vidano et al.18 published Raman spectra on graphite excited with different lines of

an Ar/Kr laser. Their spectra, which are reproduced in Fig. 6.1b), showed the D and D∗

mode frequencies to increase with increasing excitation energy. They reported a shift of

56 cm−1 for 1 eV change in laser energy, similar values were published by many groups for

a wide range of excitation energy.156–159 No explanation was found for this frequency shift.

An empirical “k = q selection rule” that the wave vector of the resonantly excited electron

is somehow transferred to the phonon gave agreement with the experimentally found shift,

but lacked any physical grounding. Moreover, it failed to explain the last peculiarity in the

disorder induced Raman spectrum, the difference in Stokes and anti-Stokes frequency. Tan et

al.155 found that the Stokes and anti-Stokes spectra of the D mode excited with the same laser

wave length differed by 7 cm−1, see Fig. 6.1c), whereas the Γ mode frequencies agreed to

within 1 cm−1 as expected in Raman scattering.

The first suggesting double resonances at the origin of the D peak in the graphite Raman

spectrum were Sood et al.160 They used the model of Martin and Falicov69 for double

resonance in parabolic bands. The model yields a square root dependence of the D mode

frequency on excitation energy in contrast to the linear shift observed experimentally. To get

a better overall agreement between theory and experiment they recently incorporated a third

order Raman process involving two phonons and elastic scattering.159 This process seems

rather unlikely to result in a measurable intensity.

6.2. Double resonant scattering

The term resonant Raman scattering usually refers to incoming or outgoing resonances, i.e.,

the absorption or emission of the photon takes place between two real electronic states,

see Chapter 3. Double resonant scattering means that additionally the excited or annihilated

phonon makes a real transition. In a first order Raman process double resonances can only

be achieved by tuning the energetic separation of two electronic states to match the phonon

energy, e.g., by uniaxial stress, magnetic fields, or a proper choice of the thickness and

constituent in semiconductor quantum wells.84, 161, 162 In higher order Raman processes,

however, double resonances are more easily realized and can occur for a wide range of

excitation energies. The frequency of the doubly resonant phonon will dominate the Raman

spectrum, which as I will show in the following naturally explains all peculiarities found in

the graphite Raman spectrum.
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6.2.1. Linear bands: An example

As an example for defect induced resonant Raman scattering in graphite I study a one-

dimensional problem as depicted in Fig. 6.2.19 An incoming photon resonantly excites an

electron-hole pair (i → a). The electron is then scattered across the k origin to another real

state (a → b). It is scattered back elastically by a defect conserving k in the process (b → c).

Finally, the electron-hole pair recombines (c → i). The process described is one of the pos-

sible double resonances (e.g., other time ordering, outoing instead of incoming resonance,

and hole scattering); additionally, singly or non-resonant transitions are possible as well, but

with a much smaller cross section. The important point of the double resonance is that the

transition a → b is real only for a unique combination of phonon energy ¯hωph and momen-

tum q. The (ωph,q) pair fulfilling the double resonant condition depends on the energy of the

incoming photon as well as the phonon dispersion. For a higher electronic energy the incom-

ing resonance occurs at larger k and a larger q is needed for the second resonant transition.

If the phonon branch is dispersive the phonon energy is different.

After having explained the general idea of double resonances I calculate the Raman spectrum

for the process shown in Fig. 6.2. The Raman cross section K2 f ,10 is given by the usual

expression67, 69

K2 f ,10 = ∑
a,b,c

M f Mba Mcb Mo

(E1−Ee
ai − i¯hγ)(E1 − ¯hωph −Ee

bi
− i¯hγ)(E1 − ¯hωph −Ee

ci − i¯hγ)
, (6.1)

where Ee
ai is the energy difference between the electronic state i and a (correspondingly for

the other electronic states), E1 and E2 = E1 − ¯hωph are the energies of the incoming and

outgoing photon. Mo, f are the (constant) transition matrix elements for the incoming and

outgoing photon, Mba, Mcb represents the phonon or impurity which scatters the electron-

hole pair from state a to b and from b to c, and γ , the broadening parameter, has been taken

to be the same for all transitions. For linear bands with the Fermi velocities v1 < 0 and v2 > 0

Figure 6.2: Schematic double resonance for elec-
tronic bands with linear dispersion. v1 and v2 are
the Fermi velocities of the electronic bands. In the
example, the first electronic transitions is real (first
resonance) and the scattering of an electron by a
phonon (second resonance). The elastic scattering
in contrast ends in the virtual electronic state c. At
most one phonon wave vector q and energy ωph

yields a second resonant transition across the origin
of k.

c b
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Figure 6.3: Raman matrix element of Eq. (6.4) as
a function of the phonon momentum q for two inci-
dent photon energies E1. The strong enhancement of
the Raman cross section is caused by the double res-
onances. For the calculation I used the Fermi veloc-
ities v1 =−7eVÅ−1 and v2 = 6eVÅ−1 and a broad-
ening parameter γ = 0.2eV. The phonon dispersion
was taken to be linear varying from 1560 cm−1 at
k = 0 and 1270 cm−1 at π/a.
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(see Fig. 6.2) the differences in electronic energies are

Ee
ai = |k|(v2 − v1), Ee

bi

ki<0
= −qv1 or

ki>0
= qv2, and Eci = |k|(v2− v1). (6.2)

The sum in Eq. (6.1) can be converted into an integral in one dimension. Inserting the

energies in Eq. (6.2) into the expression for the Raman cross section I obtain19, 69

K2 f ,10 =
M f Mba Mcb Mo (2κ2 −q)

(v2 − v1)3 (κ2−q v2
v2−v1

)(κ2 +q v2
v2−v1

)

∫ ∞

0

dk

(κ1 − k)(κ2− k)
, (6.3)

with κ1 = (E1 − i¯hγ)/(v2 − v1) and κ2 = (E1 − ¯hωph − i¯hγ)/(v2 − v1). The integral is

straightforwardly evaluated yielding

K2 f ,10 =
M f aMba Mcb Mo

(κ2 −q v2
v2−v1

)(κ2 +q v1
v2−v1

)
. (6.4)

Terms varying slowly with q were contracted into the factor

a = ln(κ2/κ1)(2κ2 −q)/[(v2− v1)
2 ¯hωph].

The singularities in Eq. (6.4) occur at q where two of the denominators in the sum of Eq. (6.1)

go to zero simultaneously. Physically, this means that we have a double resonance at

q =
E1 − ¯hωph

v2
or

E1 − ¯hωph

−v1
. (6.5)

Both q are larger than the wave vector ki at which the electron-hole pair was resonantly

excited, i.e., the free carrier is scattered across k = 0. Looking at Fig. 6.2 it seems that

another possibility for the second resonant transition exist with a q which is smaller than the

electron-hole pair k vector (roughly at the point were the arrow indicating the backscattering

by the impurity crosses the conduction band). These contributions, however, always interfere

destructively when the summation in Eq. (6.1) is performed.69

The Raman cross section for double resonant scattering is much larger than for single res-

onances, which occur for all q, or non-resonant contributions. In Fig. 6.3 I plot the Raman
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matrix element for two incoming photon energies E1. I assumed a linear dependence of ωph

on q, the Fermi velocities v1 = −7eVÅ−1 and v2 = 6eVÅ−1 I adapted from graphite. For

each photon energy there are two maxima in Fig. 6.3. Note that the pronounced dip between

the maxima is a consequence of the factor a in Eq. (6.4). a has its minimum – zero for

γ = 0 – at q = 2κ2, i.e., between the two doubly resonant q [Eq. (6.5)]. For different E1 the

maxima in K2 f ,10 are at different phonon wave vector. Nevertheless, as long as the photon

energy is large compared to the phonon energy the double resonances occur at wave vectors

which are away from the Γ point. Within the present example q varies from 0.13 to 0.6 Å−1

for photon energies between 1 and 4 eV as compared to (1−4) ·10−3 Å−1 for non-defect in-

duced scattering. Additionally, the doubly resonant q’s are of similar order as the extension

of the graphite Brillouin zone (1.5 Å−1). Defect induced double resonant Raman scattering

thus allows to study the phonon dispersion in the interior of the Brillouin zone – normally

reserved for inelastic neutron or x-ray scattering.

6.2.2. Application to graphite

The example of the last section – linear bands crossing at the Fermi energy – resembles

very much the electronic band structure of graphene and graphite as introduced in Chapter 5.

We can thus expect qualitatively and even quantitatively a similar behavior as found in the

textbook example. Before calculating the defect induced Raman spectra I take a closer look

at the graphene Brillouin zone and the possible wave vectors for doubly resonant transitions.

Figure 6.4 shows the contour plot of the graphene π orbitals within the nearest neighbor

approximation discussed in Section 5.1.2. Near the K point an electron (black circle) was

resonantly excited to the conduction band by the incoming photon. A second resonant tran-

Figure 6.4: Double resonant scattering in graphite:
The contour plot shows the electronic band structure
of graphite in the nearest neighbor tight-binding ap-
proximation of the π orbitals. Scattering from the
K to a K ′ point of the Brillouin zone (white ar-
row) yields a phonon wave vector which is close to
ΓK and thus has the D mode frequency. Scatter-
ing between to K points gives a phonon wave vec-
tor around the Γ point (but still large compared to
k = 0).
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sition is obtained by scattering the electron to one of the K or K ′ points in the hexagonal

Brillouin zone (white arrows and gray circles), because only there the electronic bands are

close enough to the Fermi level. K and K ′ are connected by a vector pointing from Γ to

K, see Fig. 6.4. Hence a phonon which scatters the electron from the neighborhood of K

to K ′ has a phonon energy close to the K point frequency. In contrast scattering from K to

the same or another K point in the Brillouin zone yields a phonon wave vector and energy

close to the Γ point. In the following I will only consider the first double resonant transition.

The second resonant transition results in the Raman peak slightly above the Γ point vibra-

tion which is seen in highly disordered graphite. This peak was observed, e.g., by Vidano et

al.;18 in Fig. 6.1b) it is labeled D ′. The excitation energy dependence is much weaker for

this peak than for the D mode, because of the flat phonon dispersion and the overbending in

the vicinity of the Γ point.

To calculate the frequency and the excitation energy dependence of the graphite D mode

I used the tight-binding nearest neighbor approximation with a carbon-carbon interaction

energy γ0 = 3.03eV and s = 0.129 [see Eq. (5.3) and (5.5) Section 5.1.2.]. To evaluate

Eq. (6.1) for graphite the calculation was restricted to the irreducible domain of the graphene

Brillouin zone, i.e., the triangle formed by the ΓM, MK, and KΓ lines. Three simplifications

were introduced to reduce the necessary computer power: Only the scattering from the K

to the K ′ point of the Brillouin zone was considered as explained in the previous paragraph

(the K and K ′ point coincide in the reduced zone scheme). As the phonon dispersion I

used the LO optical branch of graphene, which I modeled by simple functions (linear and

sin functions) such that they represent closely those obtained from force constants and ab

initio calculations.106, 163, 164 The Γ point frequency was 1580 cm−1, the ones at the M and

K point 1480 and 1270 cm−1, respectively. The typical overbending of the optical branch

to 1620 cm−1 was included as well.96 Lastly, instead of performing the full summation in

Eq. (6.1) I searched the Brillouin zone for incoming resonances and, when I found one at kkko,

summed

∑kkk f

∣
∣
∣

1

{E1 − [Ec(kkk
o)−Ev(kkk

f )]− ¯hωph(kkk
f − kkko)− i¯hγ}{¯hωph(kkk

f − kkko)− i¯hγ}

∣
∣
∣

2
(6.6)

over kkk f in the irreducible Brillouin zone. The subscripts v and c refer to the valence and

conduction band in the tight-binding approximation. Note that the singularities of Eq. (6.6)

which cancel by destructive interference in the full summation need to be excluded explic-

itly from the calculation. The last approximation – fixed incoming resonances – must be

treated with care when comparing the calculated results with experiments. First, it slightly

shifts the calculated maximum of the Raman peak (≈ 10cm−1). Second, information on

the relative intensities is lost completely, because “nearly resonant” electronic transitions are
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Figure 6.5: Calculated Stokes Raman spectrum
of the D mode in graphite for three different ex-
citation energies. The frequency shift with laser
energy is clearly seen in the calculations. Note
that the relative intensities calculated at different
E1 cannot be compared to each other (see text for
details). A reciprocal life time γ = 0.1eV was
used for the calculations.
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not considered. For the D mode in nanotubes, a nice study of the dependence of the calcu-

lated Raman spectra on the mentioned approximations and the used parameters was done by

Janina Maultzsch in her Diploma thesis.165

In Fig. 6.5 I show |K2 f ,10|2 as a function of the phonon frequency ωph for three different

laser energies. Clearly the D mode Raman spectrum is obtained by considering double res-

onances in graphite. The peak shifts with increasing excitation energy to higher frequencies

as found experimentally; also the spectral shape is nicely reproduced. The calculated peak

width (≈ 20cm−1) is smaller than the experimental one (≈ 40cm−1), which is partly due to

having fixed the incoming resonance in the calculations and partly to a too small reciprocal

life time. In Fig. 6.6 I plotted the maxima of the calculated peaks as a function of excita-

tion energy. Also shown in the Figure are experimental results for the D mode frequencies

obtained by various groups. The agreement is found to be excellent, in particular, since all

parameters were fixed during the calculation and no fitting to experimental data was per-

formed. The calculated slope of the D mode’s excitation energy dependence is 60 cm−1/eV,

slightly larger than the experimental values ranging from 44 to 56 cm−1/eV.18, 156–158 The

absolute frequency of the doubly resonant peak agrees excellently as well.

Figure 6.6: Measured and calculated frequency
of the D band as a function of excitation energy.
The filled squares are the frequencies calculated
from the double resonant condition; the full line
is a fit to the calculated data with a slope of
66cm−1/eV. Open symbols represent measure-
ments by Pócsik et al.156 (open circles), Wang et

al.157 (open diamonds), and Matthews et al.158

(open triangles). The experimental slopes are
given in the figure 1.5 2.0 2.5 3.0 3.5
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When I discussed the experimental findings for the D band in graphite I mentioned three

peculiarities of this mode: It appears only for disordered graphite and its intensity increases

with the degree of disorder, the D mode frequency depends on excitation energy, and the

Stokes and anti-Stokes frequencies are different. Obviously the first two characteristics are

explained by defect-induced double-resonant Raman scattering. The difference in Stokes

and anti-Stokes frequency also follows from the model. In the textbook example of double

resonant scattering with two linear bands I depicted a Stokes process in Fig. 6.2. For anti-

Stokes scattering – creation of a phonon – at the same incoming resonance a slightly larger

phonon wave vector is required to meet the double resonance condition. Consequently, a

larger phonon energy is expected for anti-Stokes scattering in graphite, since the phonon

dispersion bends up when going away from the K point.106, 164 At a photon energy E1 =

2eV I obtained a difference of ≈ 15cm−1 in Stokes and anti-Stokes frequency compared to

7 cm−1 as found by Tan et al.155

The double resonant process also occurs for two phonons, i.e., instead of scattering the elec-

tron back by an impurity it is scattered back under the emission of a second phonon. This

overtone of the D mode, the D∗ band, is expected to have twice the frequency shift with

varying excitation energy, which is indeed what is observed experimentally.18 In contrast to

the D mode the second order D∗ mode is not defect induced and should also be found in the

Raman spectra of graphite single crystals. Single crystal measurements are not available at

present, but Nemanich and Solin96 reported a strong D∗ peak in highly-oriented pyrolytic

graphite where the D mode is very weak. Moreover, the D∗ band in their measurements

was only half as large as the first order Γ point Raman signal. The large intensity of the

second order signal as compared to first order Raman scattering independently confirms the

interpretation of the D and D∗ Raman peaks as due to double resonances.

6.3. The D mode in nanotubes

Scattering in the energy range of the D mode was reported in the very first papers on Ra-

man scattering in nanotubes.25, 27 Similar phonon frequency shifts with excitation energy

and differences in the Stokes and anti-Stokes spectra as in graphite were found in carbon

nanotubes.39, 40, 166, 167 For some time it was thought that the D mode scattering came from

graphite particles in the nanotubes samples, but measurements on isolated tubes proved it

an intrinsic feature of carbon nanotubes. In Fig. 6.7 I reproduce the spectra measured by

Düsberg et al.15 on an individual single-walled nanotube residing on a glass substrate.

Surprisingly, the Raman intensity of this single molecule is strong enough to be observed
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experimentally. The spectrum shows the radial breathing mode, the high-energy modes,

and – with similar intensity – the D mode of a single nanotube. The Raman spectra taken

on isolated nanotubes are remarkably different in the D mode region. While some spectra

show an intense D band as in Fig. 6.7, the mode is very weak or absent in other measure-

ments.15, 16, 154, 168 As I will show in the following these differences arise from the confined

electronic bands in carbon nanotubes.21

The electronic structure of carbon nanotubes to first approximation was obtained from the

one of graphene by cutting parallel lines out of the graphene Brillouin zone, see Chapter 5.

The graphite double resonance condition is thereby modified such that all electronic and

phononic states are restricted to the lines of allowed wave vectors of the particular tube.

Rolling up the cut rectangle introduces m as quasi-conserved or m̃ as a fully conserved quan-

tum number. This is equivalent to requiring that, additionally, defect scattering occurs only

for bands of the same m and bands associated to m by the Umklapp rules (i.e., bands of

the same m̃).∗ To obtain the D band systematically, points in the neighborhood of K and

K ′ should, therefore, lie on the same or associated m lines. This seemingly complicated

condition translates into a simple rule for the n1 and n2 indices of the tube if I consider sym-

metry, in particular, the symmetry-adapted tight-binding model of Section 2.5.2. instead of

plain zone-folding. Before considering general tubes, however, I discuss the special case of

armchair nanotubes.

Armchair tubes always fulfill the condition that the K and K ′ points of graphene are among

their allowed states and belong the a line with the same m = n quantum number (see Fig. 5.3

on page 89).45 The π orbital tight-binding band structure of a (10,10) tubes is shown in the

upper panel of Fig. 6.8. Resonant excitations in the visible energy range (1) occur close to the

Fermi wave vector kF = 2π/3a. The electron is scattered across the Γ point (2) to another

∗Kürti et al.169 calculated double resonances in nanotubes assuming that a change in m can be introduced
by defect scattering, i.e., using only the boundary conditions of the cut graphene sheet. They gave, however,
no justification for not treating m as a conserved quantum number.

Figure 6.7: Raman spectrum of a single walled nan-
otube isolated on a substrate. The D mode appears
with a similar intensity as the high-energy nanotube
modes (labeled G1 and G2) and the radial breath-
ing mode (RBM). The measurement shows that the
D mode is an intrinsic feature of carbon nanotubes
and does not originate from impurities like graphitic
particles. From Ref. 15.
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Figure 6.8: Double resonant scattering in a
(10,10) armchair tube. In contrast to graphene
the wave vectors are now confined to a single
line. Upper panel: Close to the Fermi wave
vector kF an electron-hole pair is resonantly ex-
cited by the incoming photon (1). The electron
is scattered to another real state with approxi-
mately opposite k (2). Step (3) and (4) show the
backscattering by the impurity and the recombi-
nation. The two Fermi vectors correspond to the
K and K ′ point of the graphene Brillouin zone.
Lower panel: Model phonon dispersion of the
(10,10) tube of the fully symmetric phonon mode
(m = 0,n). The double resonance condition is
fulfilled by phonons close to q0.
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real states followed by impurity induced backscattering (3) and recombination (4). The q

vector required for the double resonance in step (2) is |q| ≈ 2kF = 4π/3a =: q0 = |kF −G|,
i.e., approximately the same as electronic wave vector were the incoming transition took

place. This is in fact to be expected, since in graphene both the electronic and phononic

wave vector for doubly resonance D mode scattering corresponded to a ΓK vector. Similar

kz vectors are then also obtained for the tube by zone-folding. The lower panel of Fig. 6.8

displays the m = 0 and m = n (dashed line) phonon dispersion in the extended zone scheme.

The double resonant phonons around q = 0 indeed give frequencies in the range of the D

mode.

To calculate the Raman spectrum I proceed as described for graphite in Section 6.2.2. The full

expression for the Raman cross section in Eq. (6.1) was used in the numerical evaluation. The

electronic dispersion was described by the symmetry adapted tight-binding Hamiltonian (see

Section 2.5.2.) with γ0 = 2.9eV; the phonon dispersion was obtained within zone-folding. As

Figure 6.9: Calculated Raman spectra for an
(11,11) tube at three different excitation energies
E1. In the frequency range of the D mode I obtain
a double peak structure shifting with excitation
energy. The two dashed lines show a fit to the
calculated spectrum by two Lorentzians. Note
the increasing intensity with decreasing E1. The
inset shows the complete first order spectrum re-
sulting from the double resonance condition. The
mode at 1600 cm−1 is discussed in the next sec-
tion.
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Figure 6.10: Calculated and measured frequency
shift of the D mode in single walled carbon nan-
otubes. Upper panel: Calculated frequencies for
a (10,10) (open symbols) and an (8,8) (closed
symbols) nanotubes. In the (11,11) tube of
Fig. 6.9 I obtained slopes of 35 and 65 cm−1/eV.
Lower panel: Measured D mode frequencies in
a nanotube sample with a mean diameter d =
1.3nm as a function of laser energy. The inset
shows the spectrum excited with E1 = 2.66eV;
clearly the Raman spectrum shows the double
peak structure with a main peak and a shoulder
on the low frequency side.
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a model phonon dispersion which fully reflects the hexagonal symmetry of graphene I took

the tight-binding expression for the electronic bands in Eq. (5.3) (page 90), added a constant

term B = 1310cm−1, and used a scaling parameter A = 102cm−1 (instead of γ0). This elec-

tronic and phononic dispersion satisfactory describe graphene in the neighborhood of the

K point, which is the part of the Brillouin zone I am currently focused on. The calculated

Raman spectrum of an (11,11) tube I show in Fig. 6.9 for three excitation energies E1. The

D mode of nanotubes obviously has the same origin as in graphite and depends on E1 as

well.21 Some interesting differences result from the one-dimensionality of the tubes, which

were also found experimentally. The D mode consists of two peaks shifting with a different

slope with laser energy. The double peak structure is due to (i) the slight shift of the elec-

tronic minima away from kF , (ii) the asymmetry of the electronic and phononic dispersion

around their minima as can be seen in Fig. 6.8, and (iii) different double resonant phonon

wave vectors for incoming and outgoing electronic resonances. While all three points, in

general, hold similarly for graphite, the double peak structure is smeared out by the 2D

integration and becomes only visible at small laser energies.156 In nanotubes – where the

relevant part of the Brillouin zone is confined to a line – they are still visible after the inte-

gration. The second difference is the pronounced intensity increase in the calculated spectra

for decreasing E1. It reflects the high electronic density of states when approaching the min-

ima and maxima of the confined subbands with the energy of the incoming or scattered light.

Measurements of the absolute scattering efficiency of the D mode as a function of excitation

energy were not performed so far, but it would be interesting to do so in the future. Never-

theless, in isolated tubes Pimenta et al.168 reported the D mode to be in general stronger in

intensity when excited in the red. I compare the calculated D mode frequency as a function

of excitation energy to the experimental results in Fig. 6.10. The inset shows the Raman

spectrum recorded with a laser wavelength λ = 466nm on bulk samples. The Raman mode
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Figure 6.11: The D mode of a chiral (8,2) nan-
otube. The main peak shifts by 40 cm−1/eV in
this tube with a diameter of 0.72 nm (the smaller
peak by 27 cm−1/eV). In this R = 3 nanotube the
D mode and its excitation energy dependence are
systematically obtained for a wide range of laser
energies.
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consists of a main peak at 1353 cm−1 with a low-energy shoulder at 1328 cm−1 as I found in

the calculations. The calculated slopes of the main D mode peak for the three armchair tubes

range from 35 cm−1/eV in the (11,11) tube to 56 cm−1 in the (8,8) tube. The experimental

shift which was obtained on a bulk sample with a mean diameter d = 1.3nm is 47 cm−1. In

view of the homogeneous chirality distribution in the sample and the number of unknown

parameters in the calculation the agreement is excellent. The other characteristics of the D

mode, i.e., its D∗ overtone and the difference in Stokes and anti-Stokes frequency, follow for

armchair nanotubes in essentially the same way as in graphite.21 I will not consider them

here in any detail; instead I turn to general chiral tubes.

The important point for systematically obtaining a D mode in a wide range of excitation

energies in nanotubes is that both the neighborhood of the K and the K ′ point is touched

by a line of the same m̃ (all m connected by Umklapp processes). The K and K ′ point of

graphene are connected by the U axis symmetry. Let us assume that the allowed state in

a nanotube approaching closest the K point is given by the eigenstate | k̃, m̃〉.45 By the U

operation this state is mapped to |−k̃,−m̃〉. For the two m̃ to be the same, obviously, m̃ must

be equal to zero or q/2, which is only fulfilled for tubes with (n1 − n2)/3n = integer, the

R = 3 nanotubes.55 Zig-zag tubes never belong to this category and I do not expect a strong

D mode for any excitation energy. In the Brillouin zone picture in Fig. 5.3b) (page 89) it is

seen that following one allowed line near a graphene K point one will only arrive at another K

but never at K ′. Interestingly, tubes with R are always metallic and, moreover, they are those

tubes where the crossing of the valence and conduction band is at k̃F ≈ 2π/3a as in armchair

tubes.21, 55 An example for double resonant scattering in an R = 3 tube is shown in Fig. 6.11.

I find a double peak structure as in armchair nanotubes and a shift with excitation energy.

The slope of the main peak 40 cm−1/eV is lower than in armchair tubes, where the smallest

diameter (8,8) tube has a shift of 56 cm−1/eV. In zig-zag tubes and in chiral tubes with R = 1
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an evaluation of the double resonant Raman cross section either yields no D mode at all

or no systematic excitation energy dependence. A lower intensity, though, is usually found

for phonon modes originating from the K and M points of graphene, because of the high

density of states at these critical points. Nevertheless, a single tube spectrum as I showed

in Fig. 6.7 with a strong D mode intensity can be interpreted as coming from a metallic

nanotube (more precisely, from an R = 3 tube). On the other hand, the R = 3 selection rule

requires that some tubes do not show D mode scattering at all, which could be confirmed

by measurements on individual tubes. Such Raman spectra are still rare in the literature,

in particular, in the high-energy range.15, 154, 168 The spectra by Yu and Burns154 indeed

show on some tubes a D band intensity comparable to the measurements by Düsberg et al.,15

whereas the mode is completely absent in other tubes. Pimenta et al.168 also mention that

“the D mode intensity appears to be random from one tube to another”,168 which supports

our predictions. Another experiment – much easier to perform – are measurements of the

absolute intensity of the D mode on bulk nanotube samples normalized to a reference crystal

since the singularities in the optical absorption for metallic tubes are separated in energy

from those of semiconducting nanotubes.34, 43, 44

One point I did not question up to now is that the D mode of a single nanotube is observable at

all. The spectrum shown in Fig. 6.7 was taken on a single nanotube which was approximately

1.5 µm in length.15 The finite length of the tube per se is thus not the mechanism relaxing k

conservation in this experiment. Other possible sources are defects like pentagon-heptagon

pairs or vacancies,10, 125, 153 bending induced effects,170 and a high optical absorption.69 It is

a little hard to judge how common defects are in carbon nanotubes since up to now most of

the experimental work has concentrated on perfect tubes with only a few exceptions.170–172

The optical penetration depths, on the other hand, is on the order of 10 nm. Optical absorp-

tion is treated slightly differently in the calculation of the Raman cross section, but leads to

double resonances as well. The true mechanism for breaking k conservation still needs to be

investigated. Nevertheless, the observation of the D mode on individual tubes confirms that

double resonances are indeed involved in the Raman spectra of nanotubes. Other proposed

explanations, e.g., a break-down of Raman selection rules, were not able to reproduce the

subtle characteristics of the experimental spectra. Also other modes are expected to become

Raman active for relaxed selection rules like the m = q/2 phonons originating from the M

point of graphene in sharp contrast to the experimental observations.

The double resonance process I described in this section always required a scattering across

the nanotubes Γ point to mimic the D mode double resonance in graphene. In Fig. 6.8, how-

ever, a second doubly resonant transition is easily identified, scattering across the conduction
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band minimum with a comparatively small q. In fact, I already showed a Raman peak orig-

inating from this doubly resonant transition in the calculated spectrum of the (11,11) tube

in Fig. 6.9. The inset of the figure showed the complete first order spectrum with a peak at

≈ 1600cm−1, in the energy range of the high-energy nanotube modes. After realizing this

second double resonance we started to think about the whole Raman spectrum in terms of

double resonant scattering.13

6.4. The Raman spectrum of carbon nanotubes

In attempts to assign the high-energy Raman modes of single walled carbon nanotubes to Γ
point vibrations two points have not been resolved so far: The peak of strongest intensity

(1595cm−1) is above the frequency of the graphite Γ point vibration (1582cm−1). First ex-

planations therefore assigned this peak to E1 and E2 phonon modes, which predicted them

to be upshifted within zone-folding by ≈ 5cm−1, but clearly violates the experimentally ob-

tained selection rules, see Chapter 3. The peaks were then suggested to be LO and TO like

vibrations split by the curvature of the graphene sheet. In chiral nanotubes, however, the

eigenvectors are of mixed LO-TO character as I showed by pressure experiments and ab ini-

tio calculations. Moreover, the curvature of the graphene sheet was found to soften the force

constants and is thus not able to explain the higher Raman frequency in the tubes.40, 106 The

splitting of the high-energy Raman modes was also calculated to be much smaller (5 cm−1)

than the experimental difference of 20 cm−1 between the two most intense Raman peaks. The

second difficulty in interpreting the Raman spectra was the intensity ratio of 2−4 between

the strongest and the second strongest peak. No suggestions were made for the origin of the

different intensities except for the work by Saito et al.,173 which started from the incorrect

LO and TO eigenvectors for chiral nanotubes.

I propose that the high-energy mode originate from double resonant Raman scattering, which

resolves the difficulties in the understanding of the modes. The scattering process giving rise

to the high-energy modes is explicitly shown in Fig. 6.12a). The free carrier instead of being

scattered across the Γ point to a state of approximately opposite wave vector [(2B), D mode]

is scattered across the band extremum to another real state (2A). Since two optical modes

belong to the fully symmetric representation and can thus scatter within the band I expect

two phonon peaks two follow from this process. To calculate the Raman cross section for

(2A) I used a model phonon dispersion for the LO and TO graphite optical modes, fitted

to reproduce ab initio calculations.13, 106 The Γ point frequency was 1588 cm−1, the modes

were degenerate at k = 0. All other parameters were chosen as described for the D mode
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Figure 6.12: High-energy Raman spectra of single walled carbon nanotubes. a) Schematic double
resonant scattering process. After the resonant absorption (1) the electron is scattered to another real
electronic state. While scattering across the Γ point (2B) yields the D mode (dashed arrow), scattering
across the conduction band minimum (2A) is the origin of the high-energy modes. For large enough
laser energies two incoming resonances occur giving sligtly different doubly resonant wave vectors
and frequencies. Backscattering and recombination are not shown for simplicity. b) Calculated and
measured Raman spectrum for a (15,6) nanotube at an excitation energy E1 = 2.18eV (only one
incoming resonance). The two optical modes belonging to the fully symmetric representation at the
Γ points give rise to two double resonantly scattered phonon peaks.

in graphite and nanotubes. The calculated spectrum for double resonant Raman scattering

perfectly describes the experimental spectra in the high-energy region: I find the main peak

above the Γ point frequency at 1597 cm−1 and a second, less intense peak at 1575 cm−1.

The magnitude of the splitting as well as the absolute peak positions are in excellent agree-

ment with experiments. The relative amplitude of the two peaks is also similar to the ratio

found experimentally. The frequency shift compared to the Γ point frequency is due to the

overbending of one of the phonon branches. The overbending and the flat dispersion in the

vicinity also makes the 1597 cm−1 peak narrower and larger in height than the 1575 cm−1

peak coming from the stronger dispersive lower optical branch. For the (15,6) tube shown

in Fig. 6.12b) and E1 = 2.18eV only two almost degenerate incoming (or outgoing) elec-

tronic resonance are possible. In semiconducting nanotubes of similar diameter up to three

incoming resonances contribute for this laser energy. Each electronic resonance also results

in double resonant scattering as depicted schematically in Fig. 6.12a). Instead of only two

up to six peaks are then calculated from the Raman cross section, although the processes

where the electronic resonance occurs further away from the singularities in the electronic

density of states are lower in intensity. For the weakly dispersive higher optical branch the

three peaks are at similar frequency, whereas the lower energy peak develops small satellites
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Figure 6.13: Excitation energy dependence of the
high-energy modes in single walled nanotubes. The
open symbols are experimental Raman frequencies
excited with various Ar and Kr laser lines. The
sample were bulk nanotubes with a mean diameter
d = 1.45nm. The full lines are linear fits to the mea-
sured frequencies between 2.1 and 2.6 eV excitation.
The broken lines show the extrapolation to the near
UV energy range. The frequencies calculated for a
(15,6) tube are shown by closed symbols.
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at even lower frequency explaining the contributions below 1560 cm−1 in the experimental

spectra.

The main characteristic of double resonant scattering is the dependence of the Raman spec-

tra on excitation energy. In contrast to the D mode, where the Raman frequency always in-

creased with increasing laser energy, the high-energy modes should show an energy increase

for the 1595 cm−1 mode (overbending), but a decrease for the 1575 cm−1 peak (downbend-

ing phonon dispersion). For excitation energies between 2.1 and 2.6 eV the 1595 cm−1 peak

frequency indeed increases with laser energy, whereas the two other modes have a negative

slope, see Fig. 6.13. The shifts, however, are no longer linear when going to higher excitation

in the UV energy range: All three modes come back to the positions they had around 2 eV.

When we recorded the spectra almost two years ago I did not expect a frequency shift of the

first order Raman modes nor did I understand this jumping above 3 eV. Curvature effects –

the first obvious idea then – were not able to explain the effect consistently even if I assumed

a much larger diameter distribution than the σ = 0.1nm uncertainty present in the sample.

Within the double resonant picture the shifting and jumping are a natural consequence of the

model as the calculations for the (15,6) nanotube demonstrate in Fig. 6.13 (full dots). For

increasing excitation energy the Raman peaks shift to higher or lower frequency according to

the dispersion of the A1 vibrations. At ≈ 3eV the laser approaches the next optical transition

energy. The double resonant transition with dominant intensity then has a smaller q and,

consequently, the observed frequencies are closer to the Γ point vibrations. The agreement

between theory and experiment in Fig. 6.13 is surprisingly good for the 1595 cm−1 peak even

so the experiments were done on bundles and the calculations only for a single tube. This

is again caused by the flat dispersion for the higher optical branch in contrast to the lower

branch where the comparison is less satisfactory. Further calculations for different nanotubes

most likely will resolve the remaining discrepancies. Additionally, the relative intensities for

varying the excitation energy and the (n1,n2) indices and thus the electronic band structure
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should be studied in the future. Since the intensity is further enlarged when the double res-

onance occurs for a high electronic density of states, the Raman spectra obtained on bulk

samples reflect a convolution of these effects.

6.5. Summary

The Raman spectra of disordered graphite and carbon nanotubes share uncommon features,

the most remarkably being their Raman frequencies depending on excitation energy. In

graphite the D mode frequency dispersion was known for almost 20 years experimentally. In

this chapter I showed that this Raman puzzle is resolved by defect induced double-resonant

scattering. The double resonance condition picks out a unique combination of phonon fre-

quency and wave vector at a given excitation energy, which dominates the experimental

Raman spectrum. I calculated Stokes and anti-Stokes spectra for varying excitation energy

and found excellent agreement with experiments. The D mode of carbon nanotubes has es-

sentially the same origin, although the spectra are altered by the one-dimensionality of the

tubes. In particular, only metallic tubes with (n1 − n2)/3n = integer are expected to show

strong D mode scattering.

The observation of the D mode on isolated nanotubes with similar intensity as the other

parts of the Raman spectrum lead me to the idea that the entire nanotube Raman spectrum

is explained by double resonant scattering. I presented first calculations of the high-energy

Raman spectrum based on this idea. For the first time, an attempt to model the high-energy

Raman modes correctly predicted the double peak structure so well known from experiment.

An intrinsic characteristic of double resonant scattering is the dependence of the Raman

modes on excitation energy. Therefore, I performed measurements on bulk samples with a

variety of excitation energies, which confirmed my theoretical predictions. The most intense

Raman peak shifted to higher frequencies with increasing laser energy, because of the over-

bending of the higher optical A1 phonon branch. In contrast the peaks originating from the

lower phonon branch showed a negative slope as expected from the phonon dispersion.
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Summary

In this work I studied the vibrational and electronic properties of carbon nanotubes. My mo-

tivation was to explain the Raman spectra of this material, in particular, the group of broad

high-energy modes around 1600 cm−1. From the first reports on Raman scattering in nan-

otubes it was obvious that these modes are related to the graphite optical mode, which is at

similar frequency. A first assignment as suggested by Rao et al.27 explained the high-energy

peaks as modes of different symmetry (A1, E1, and E2) arising from the confinement around

the nanotube’s circumference. They also presented force constants calculations of achiral

armchair tubes where they found the A1 and E2 high-energy phonon to have a circumferen-

tial and the E1 mode an axial displacement. The model by Rao at al.27 successfully predicted

Raman active phonons in the frequency range of the high-energy modes, but soon it turned

out that it was not able explain the shape and overall frequency range of the Raman spectrum.

At first I thought that a refined approach, for example to include additional nanotubes, will

lift the discrepancies between theory and experiment. During my work, however, I found

that small corrections are not sufficient to understand the origin of the experimental spectra.

We recently proposed an entirely different model of the Raman process in carbon nanotubes

based on double resonant scattering.

My first difficulties with the then accepted interpretation of the Raman spectra arose from

high-pressure Raman experiments. With an elastic continuum model I showed that the defor-

mation of a nanotube under hydrostatic pressure is by a factor of 2 larger in the radial or cir-

cumferential than in the axial direction. A similar anisotropy is then expected for the pressure

shifts of the Raman modes originating from axial and circumferential phonon eigenvectors.

My prediction of a 15 % difference in pressure slopes was in sharp contrast with the exper-

imental observations, where the logarithmic pressure derivatives of the high-energy Raman

modes agreed to within 3 %. To learn more about phonon eigenvectors, in particular, about

129
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the atomic displacement directions, I studied group theory and the symmetry properties of

single-walled carbon nanotubes. I worked out a graphical group projector technique to find

a symmetry adapted phonon eigenvector for a particular representation. In achiral armchair

and zig-zag nanotubes the phonon eigenvectors are given by the nanotube symmetry alone.

I found that a circumferential Raman active mode in an armchair tube corresponds to an

axial mode in a zig-zag tube and vice versa. In chiral nanotubes, however, the displacement

direction of the eigenvectors cannot be deduced from the nanotube symmetry. An arbitrary

direction of the atomic displacement with respect to the nanotubes axis explains the apparent

discrepancies between theory and experiment in the high-pressure Raman studies. The shear

strain splitting introduced by the anisotropic elastic properties of carbon nanotubes washes

out and only an average frequency shift is observed experimentally. This average frequency

shift is given by the hydrostatic component of the strain tensor and the phonon deformation

potentials. With the strain tensor I found from elasticity theory and the Grüneisen parameter

of graphite I obtained a hydrostatic pressure slope of 3.9 TPa−1 in excellent agreement with

the experimental value (3.7 TPa−1). To finally prove my suggestion for the phonon eigen-

vectors in chiral nanotubes I calculated the eigenvectors of an (8,4) and a (9,3) nanotube

with first principles methods. Indeed the atomic displacement pointed in arbitrary directions

for the non-degenerate A and B phonon eigenvectors. Moreover, the displacement direction

was varying for the degenerate E modes when going around the circumference of the tube.

I called this unexpected behavior a wobbling of the eigenvector or the displacement direc-

tion and introduced the displacement ellipses to uniquely specify the eigenvectors in general

chiral nanotubes. The mixed circumferential and axial character of the vibrations in chiral

tubes thus nicely explains the high-pressure experiments, in particular, the observed uniform

pressure slope of all Raman frequencies around 1600 cm−1.

Looking back to the original proposal by Rao at al.27 for the interpretation of the nanotube

Raman spectra the picture is now more complicated, since I have to take into account the

chiral tubes and their vibrations explicitly. The basic idea – the Raman peaks originate from

A and E symmetry phonons – may still be correct. My next step therefore was to determine

the symmetry of the Raman scattered light and to decompose the spectrum into modes of

different symmetry. On unoriented samples this can be done with the help of linearly and

circularly polarized light to find the invariants of the Raman tensor. Experimentally, all Ra-

man modes of single-walled nanotubes, i.e., from the low-energy radial breathing mode to

the high-energy vibrations, showed exactly the same tensor invariants. Only totally symmet-

ric A1 phonons contribute to the Raman spectra. Moreover, the signal comes entirely from z

polarized incoming and outgoing light. This observation immediately raises two questions:

What is the origin of the different Raman peaks if only A1 and not E1 and E2 phonons scatter?
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What is the reason for the dominant zz contribution in the experiment? I started by pursuing

the second question.

Raman scattering in carbon nanotubes was known to be strongly resonant throughout the

visible energy range. Therefore, it was probably more important to consider the selection

rules for the optical absorption than for the non-resonant Raman process. From the sym-

metry imposed selection rules in achiral nanotubes I found that z polarized transitions are

always allowed in the visible between valence and conduction bands with the same m quan-

tum number, whereas x or y polarized absorption was severely restricted in zig-zag tubes.

In these tubes perpendicular polarized transitions below ≈ 4eV were forbidden except for

the combination of valence and conduction bands lying next to the Fermi level. The repre-

sentations of the electronic states per se were, however, not sufficient to allow me to draw

general conclusions for armchair or chiral nanotubes. Although by hand-waving arguments I

expected the optical absorption to be low for perpendicularly polarized light in all nanotubes,

the absolute transition matrix elements were necessary to fully judge on this question. By

ab initio calculations of the dielectric function in chiral and achiral nanotubes I found the

absorption strength to be by a factor of 4 smaller for x or y than for z polarized transitions

in the visible energy range. Moreover, in contrast to the parallel polarization the perpendic-

ular absorption spectrum was unstructured above ≈ 1.5eV without the typical square root

singularities expected for one-dimensional systems.

During my ab initio calculations of the optical properties in carbon nanotubes I realized

a number of differences between the first-principles band structure and the one calculated

from the tight-binding approximation of the graphene π orbitals, which I had been using

before for simple band structure calculations. Since the tight-binding model is very popular

for carbon nanotubes, e.g., for finding transition energies in absorption or Raman spectra

or for the density of states in STM measurements, I started wondering how reliable the

approximation was for the electronic energies in isolated and also bundled nanotubes. I

calculated the electronic band structure for achiral and chiral nanotubes, both isolated and

arranged in a hexagonal lattice. The curvature of the nanotube wall mixes the σ and π
derived nanotube wave functions, which, in general, shifts the π electronic bands towards

the Fermi level. The effect reduces with increasing diameter, but even for typical diameter

tubes (d = 1−1.5nm) I found the optical transitions energies to differ by 5−10% between

the zone-folding (neglecting curvature) and the ab initio result. Bundling of the tubes to

ropes further reduces the band gap in semiconducting nanotubes and may even close the gap

as I found for the (10,0) nanotube bundle. Additionally, the optical transition singularities are

smeared out in the bundled tube because of the interaction between the tubes. Experiments

performed on bulk samples can thus not simply be compared to an isolated tube theoretical
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model. During my band structure studies I found the π orbital tight-binding approximation to

yield an overall satisfactory description of the first principles band structure; the error in the

absolute electronic energies, however, is as high as 20 % for tubes with diameters between 1

and 1.5 nm.

The band structure calculations in some sense were a side step from my original focus on

the high-energy Raman spectra, although an understanding of the electronic dispersion is

essential for the resonant Raman process. The second topic I was working on at this time –

the disorder induced D mode in graphite – I first thought to be even further away, but there

we finally found the key for the nanotube Raman spectra. Experimentally the frequency of

the D mode was known to shift with the energy of the exciting laser by 50 cm−1/eV since

the measurements by Vidano et al.18 The origin of this peculiar behavior remained puz-

zling for almost two decades. As I showed in this work it is caused by a double-resonant

Raman process, which selectively enhances a unique combination of phonon wave vector

and frequency. The double resonantly enhanced wave vector and frequency depend on the

energy of the incoming light and thus the Raman mode is dispersive with laser energy. The

calculation of the matrix element yielded excellent agreement both in absolute frequencies

of the D band as well as the rate of the frequency shift with laser energy (60 cm−1/eV).

Essentially the same process gives rise to the entire Raman spectrum of single-walled car-

bon nanotubes. Compared to the D mode, which is also present in nanotubes, the phonon

wave vectors involved in the double resonant transitions of the high-energy modes are much

smaller, but they are still large compared to the photon momentum. A calculation of the

double resonant Raman cross section within a simple model showed that our suggestion cor-

rectly predicts the shape of the high-energy Raman spectrum. An intrinsic property of double

resonant Raman scattering is the frequency change with laser excitation energy. I presented

Raman measurements excited with a variety of laser energies, where the expected depen-

dence was in excellent agreement with the theoretical expectations. In particular, the most

intense high-energy Raman peak shifted to higher phonon frequencies with increasing laser

energy, whereas for the other modes (in this frequency range) the frequency decreased. The

different behavior follows from the overbending in the higher optical and the downbending

dispersion in the lower optical phonon branch. Also a number of more subtle experimental

findings like, e.g., the scattering symmetry or a difference in the Stokes and anti-Stokes spec-

tra follow naturally from our new interpretation for the Raman spectra in carbon nanotubes.

The interesting point in the double resonant process is that the involved phonon wave vectors

are large compared to the Brillouin zone. The Raman spectra of nanotubes thus reflect the

vibrational and electronic dispersion for a wide range of wave vectors. Both can be studied

by varying excitation energies or selecting different tubes in a Raman experiment.
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Ab Initio Calculations with SIESTA

Ab initio or first principles methods calculate the physical properties of a material without

any experimental input. Among them total energy calculations by density functional the-

ory became extremely successful over the last decades in predicting and understanding solid

state systems. This development is only partly due to the rapid increase in computer power,

more important is the continuing progress in the theory itself, e.g., a better description of the

exchange-correlation energy or the development of OrderN algorithms.174–176 In nanotube

research first principles and also semi-empirical methods are particularly powerful, because

the dependence of the nanotube’s properties on chirality, diameter, or bundling can be ad-

dressed systematically.106, 123–125, 131, 149, 151, 177 Experimentally, only STM experiments cur-

rently allow to study an individual tube of known chirality.127, 128 All other methods either

rely on bulk samples or are not able to determine the (n1,n2) structural indices precisely

enough. When I started with SIESTA calculations of carbon nanotubes I was as an exper-

imentalist frustrated by the lack of first principles information for chiral nanotubes. My

major focus were therefore small diameter nanotubes, for which ab initio calculations of

chiral tubes are possible on present day computers.

The SIESTA∗ project was started in 1995 by E. Artacho, P. Ordejón, D. Sánchez-Portal, and

J. M. Soler with the goal to develop an ab initio code, where the computer time and mem-

ory requirements scale only linearly with the number of atoms. It is able to handle systems

with more than 100 atoms in the unit cell on Pentium PC’s and modest workstations. My

∗SIESTA is an acronym for Spanish Initiative for Electronic Simulations with Thousands of Atoms. The
current SIESTA version is 1.1. and its authors and developer are E. Artacho, J. Gale, A. Garcı́a, J. Junquera,
R. M. Martin, P. Ordejón, D. Sánchez-Portal, and J. M. Soler. The most recent descriptions of the code were
done by Soler et al.47 and Sánchez-Portal et al.;46 older versions of the program and the implemented linear
scaling methods are discussed in Ref. 178 and 179. For a detailed account on the numerical orbitals used as
the basis functions see Artacho et al.180 and Junquera at al.181 Further information on SIESTA is available at
http://www.uam.es/siesta.
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results obtained with SIESTA on a variety of carbon nanotubes are scattered throughout this

work (Chapter 3. to 5.) and I give in this appendix a brief introduction into the SIESTA

method as well as an overview over my calculations. Section I.1. and I.1.1. introduce density

functional theory and the SIESTA project. I proceed by describing the equilibrium structure

of the calculated nanotubes in Section I.2.1. and comment on the pressure, phonon eigen-

vectors, electronic band structure, and optical calculations in Sections I.2.2. to I.2.4. I also

present some additional, preliminary results, which should be interesting to further study in

the future.

I.1. Density functional theory

The problem faced in an ab initio calculation of solids is the large number of interacting elec-

trons and nuclei. The Born-Oppenheimer approximation – so fundamental that it is some-

times not explicitly mentioned – essentially treats the nuclei as classical particles producing

an external potential in which the electrons move. But still, we need to find the ground state

energy of the interacting electrons. A general theory of the interacting electron gas was de-

veloped by Hohenberg, Kohn, and Sham,182, 183 the density functional theory.184–186 As the

name says the central role in this formalism is played by the electron density, since Hohen-

berg and Kohn182 proved that the ground-state energy of the electron gas EG[n] is a unique

functional of the charge density n(rrr)

EG[n] = F[n]+

∫
n(rrr)VIon(rrr)d rrr, (I.1)

where VIon is the ionic potential and F[n] includes the kinetic and interaction energies of

the electrons. The minimum of EG is the ground-state energy of the system and the density

yielding the minimum is the correct ground state density. To find the minimum of EG[n] by

a variational principle Sham and Kohn183 first separated the functional F[n] into the kinetic

energy of the electrons, the averaged Coulomb energy (Hartree term), and the exchange and

correlation energy involving the many-body effects. They then noted that the problem of

finding the ground state density n(rrr) of the interacting electrons can be replaced exactly by

a set of single-particle equations. The Kohn-Sham equations can be formally interpreted as

a Hamiltonian for a single non-interacting electron moving in the potential produced by the

ions and all other electrons.

HLDAΨi =

[

− ¯h

2m
∇2 +VIon(rrr)+VH(rrr)+VXC(((n(rrr))))

]

Ψi = εiΨi, (I.2)

where VIon is the Coulomb potential of the nuclei, VH is the Hartree potential of the electrons

VH(rrr) = e2
∫

n(rrr′)
|rrr− rrr′|d rrr, (I.3)
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and VXC is the exchange-correlation potential which is formally given as the variational of

the exchange-correlation energy with respect to the density. From the Ψi fulfilling Eq. (I.3)

the ground state density is found n(rrr) = 2∑N
i=1 |Ψi| and the total energy

EG = 2
N

∑
i=1

εi −
e2

2

∫
n(rrr)d rrr

∫
n(rrr′)
|rrr− rrr′|d rrr−EXC[n(rrr)]+

∫
n(rrr)VXC(n)d rrr. (I.4)

The electronic part of the effective potential in Eq. (I.3) depends on n(rrr) and thus the wave

functions Ψi. The Kohn-Sham equation must be solved self-consistently, i.e., the occupied

electronic states must produce the potential which was used to construct the Hamiltonian.

Up to now, the treatment was exact, besides the Born-Oppenheimer approximation in the be-

ginning. The exchange-correlation term in the Kohn-Sham equations, however, is not known.

The most requently used approximation for EXC (also the one I used) is the local density ap-

proximation (LDA) where the electron gas at each point rrr is regarded as homogeneous with

the density n(rrr)

EXC[n] =

∫
εhomo

XC (((n(rrr))))n(rrr)d rrr. (I.5)

Several parameterizations exists for εhomo
XC ; I used the one due to Perdew and Zunger.187

Although it might seem that we made much progress in solving the ab initio problem (we

got rid of the many-body problem and have an approximation for the exchange energy), still

the number of electronic states is infinite in a solid. The obvious solution is Bloch’s theorem,

which allows us to separate the wave functions Ψi into a wave like part and a cell periodic

part. If, for example, I am only interested in the Γ point I can restrict the calculations to the

electrons in the unit cell. In general, the total energy is now given by a sum of infinite k

points, but usually it is sufficient to consider only a small number of points. To optimize the

necessary numbers and the convergence of the total energy with respect to the k point a set of

“special” points is selected. SIESTA uses the scheme proposed by Monkhorst and Pack188

to find an optimized set.

An additional standard simplification is to replace the nuclei potentials and the core electrons

by a pseudopotential for the valence electrons.189–191 Since the core electrons are essentially

unchanged in different environment, this is physically justified. Only the valence electrons

are then included in the self-consistent calculation. The benefit is not only the smaller num-

ber of wave functions, but also that the rapidly varying part of the wave functions within the

core is replaced by a smooth function (the valence and core wave functions are orthogonal,

which produces nodes inside the core region).189, 190 Ab initio pseudopotentials are obtained

by first solving the all-electron problem for the isolated atoms. An pseudopotential is then
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constructed by imposing the following conditions on its pseudo-wave functions: The pseudo-

wave must be equal to the all-electron wave function outside a cutoff radius rc and yield the

same charge inside the core as found by the all-electron calculation. If these conditions are

met (and, of course, the potentials give the correct eigenvalues) the pseudopotentials are

called “norm-conserving”. A general pseudopotential depends on the angular-momentum

quantum number l and the position rrr. On the other hand, outside the core radius rc all pseu-

dopotentials of an atom must rapidly converge to the same value regardless of their angular

momentum, since the electron away from the core feels only the attractive potential of the

nucleus partly screened by the other electrons. It is possible to divide a pseudopotential into

a local only r dependent part and a non-local angular momentum dependent part, which is

non-vanishing only inside the core. An efficient way to do so are the Kleinmann-Bylander

projectors.192

I.1.1. The SIESTA method

As already mentioned SIESTA is an ab initio code where the computer time and memory us-

age scales linearly with the number of atoms, also called OrderN or O(N) scaling. It is thus

perfectly suited for systems with many atoms in the unit cell. Full linear scaling requires both

the construction of the Hamiltonian and the minimization of the energy functional to be done

in O(N) steps.176 In my calculations I used only the former; the Hamiltonian was directly

diagonalized to find the eigenvalues and eigenfunctions. The basic idea for linear scaling is

that the properties at a given point rrr of a system are independent from another, sufficiently

far away region.193, 194 To make use of this concept the basis functions are confined to fi-

nite space in SIESTA; outside they are exactly zero. Such functions – pseudo-atomic orbitals

(PAO) – are obtained from the solution of the isolated pseudo atom, i.e., the atom constructed

from the pseudopotentials.180, 181 The PAO’s are confined by an infinite spherical potential.

The confinement radii are controlled by the energy gain of the wave function due to the local-

ization; this energy shift is one of the parameters entering the calculation.180, 181 The exact

choice of the basis is flexible in SIESTA. Multiple functions may be used to represent an

pseudoatomic orbital, which is called a multiple-ζ basis. Additionally, polarization orbitals

can be added to give more angular freedom to the valence electrons.180, 181 The second point

for using locality in the Kohn-Sham equations is to eliminate any long-range potentials in

the LDA Hamiltonian.46, 47 With the Kleinmann-Bylander form of the pseudopotentials the

Hamiltonian in Eq. (I.3) is given by

H = − ¯h

2m
∇2 +∑

I

V local
I (rrr)+∑

I

V nl
I +VH(rrr)+VXC(rrr). (I.6)
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To avoid the long range ionic potential V local
I is screened by the charge of the valence elec-

trons in their atomic configuration, i.e., the collective charge produced by the wave functions

of the isolated pseudoatoms. Since the resulting neutral atom potential V na
I (zero outside

the atom) partly contains the Coulomb interaction, the Hartree term is reduced by the same

amount. The modified δVH is obtained from the charge density δn(rrr) = n(rrr)−nna(rrr), i.e.,

the difference between the self consistent charge density including, in particular, the changes

introduced by the solid environment, and the charge density produced by the isolated or

chemically inert atoms. Thus the final Hamiltonian SIESTA works with is46, 47

H = − ¯h

2m
∇2 +∑

I

V na
I (rrr)+∑

I

V nl
I +δVH(rrr)+VXC(rrr). (I.7)

The first three terms, the kinetic energy, the non-local part of the pseudopotentials, and the

neutral atom potential, are independent of the charge density n(rrr). The matrix elements of

the kinetic energy and the nonlocal part of the pseudopotential are calculated in reciprocal

space at the beginning of the self-consistent cycle and stored in tables.46, 47, 195 The remaining

terms are evaluated on a real space grid. The short ranged and charge independent neutral

atom potential V na
I like the first two terms needs to be found only once and is stored for

reference during the self-consistent cycles. The electron density is directly calculated from

the wave functions on the real space grid and VXC and δVH are found (the latter by solving

Poisson’s equation). The matrix elements of V na
I , VXC, and δVH are computed by direct

integration on the grid. Note that all matrix elements are zero for distant enough atoms,

since the wave functions are zero beyond the cutoff radius. As a consequence the integration

can be performed in O(N) operations.46, 47, 176, 195

Once the Hamiltonian is obtained it is diagonalized (cube-scaling) and the next charge den-

sity and Hamiltonian is found. SIESTA also includes linear scaling algorithm for minimizing

the total energy functional, which I did not use. Setting up a new Hamiltonian and finding

its eigenvalues and eigenfunctions is repeated until the relative differences between the old

and the new charge density are below a specific cutoff value (usually on the order of 10−4).

For the converged density matrix, finally, the total energy is calculated – the explicit formula

is given in Ref. 46 and 47 – and the forces and stresses are found from the derivatives of the

total energy with respect to the atomic positions.47, 196, 197 SIESTA also routinely provides

other information, e.g., the Hamiltonian eigenvalues or the population of the orbitals, and

additional calculations can be specified in the input file like a force constant calculation or a

relaxation of the atomic positions (see next section).
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Figure I.1: Carbon pseudopotentials. a) Pseudopotentials for the s and p orbital of carbon. The cutoff
radius rc = 1.50Bohr for both orbitals. b) Fourier space representation of the two pseudopotentials.
A rapid decrease with increasing q as seen in the figure is required for a low real space grid cutoff
(mesh cutoff). c) Logarithmic derivative of the all-electron (full lines) and the pseudo wave function
(broken lines). The two dots mark the eigenvalues of the s and p orbital. The agreement between the
all-electron and the pseudo wave function is indicative for the transferability of a pseudopotential.

I.2. SIESTA calculations of carbon nanotubes

The ab initio calculations require a number of input parameters which are specified by the

user. Besides obviously necessary things like the atomic species or positions I mentioned in

the previous sections some parameters – k points, atomic basis, pseudopotential cutoff radii,

real space grid, etc. – which control the quality of a calculation. All these parameters must

be sufficiently large (or small) to get valid results. The optimal values depend on the systems

and the problem under study; they are found by comparing the total energies calculated

with different parameter sets. When the total energy is converged for all parameters the real

calculations can be performed. In the following I first describe the equilibrium structure I

found for the different nanotubes. I then comment on the force constants, pressure, and band

structure calculations, which I presented in Chapter 3. to 5.

I.2.1. Equilibrium structure

When I started the ab initio calculations of nanotubes SIESTA had already been applied to

a number of carbon systems including nanotubes.106, 198–200 Thus for many of the necessary

parameters converged values were known quite accurately and represent a standard choice

for SIESTA calculations in this system. In Fig. I.1 I show the pseudopotentials for the s and

p orbital of carbon. They were generated according to the scheme proposed by Troullier and

Martin191 with Perdew and Zunger’s187 parameterization of the local density approximation

and a cutoff radius of rc = 1.50Bohr. Figure I.1a) shows the pseudopotential in real space,
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while b) is the reciprocal space representation. A rapid decrease of the amplitude in b) with

increasing q guarantees a good convergence of the ab initio calculation with respect to the

cutoff of the real space grid. The indicator for the transferability of the pseudopotentials,

i.e., that it is able to closely reproduce all-electron calculations for other environments, is

the logarithmic derivative of the pseudo wave function, see Fig. I.1c).191 The agreement is

very good around the eigenenergy. Further testing of a pseudopotential is done by comparing

all-electron and pseudopotential calculations for different excited atomic configurations.191

I calculated a number of chiral and achiral nanotubes; most profoundly I studied a (6,6) arm-

chair, a (10,0) zig-zag, an (8,4) chiral, and partly also a (9,3) chiral nanotube. In Chapter 5.

I also presented band structure calculations for a (19,0) zig-zag tube with a larger diameter

and a (10,5) nanotube for comparison to Raman experiments. The starting configuration for

the atomic positions in the various tubes I found from the idealized cylindrical geometry as

given in Eq. (2.9). The valence electrons were described by a double-ζ basis set plus an ad-

ditional polarizing orbital with cutoff radii of 5.12 and 6.25 Bohr for the s and the p orbital,

respectively.180, 181 These cutoff radii correspond to a PAO energy shift of 50 meV by the

localization. The quality or fineness of the real space grid for the integrations is controlled

by the so-called mesh cutoff. It is defined as the highest plane-wave energy, which can be

reproduced by the grid spacing. The mesh cutoff I used varied between 240 and 300 Ry

depending on the specific nanotube and problem under study. For all other parameters (ex-

cept the k sampling, which I give below) I took the default values; they can be found in the

SIESTA Users guide together with a description of the input and output data format.∗

For isolated nanotubes I placed the cylindrical nanotube into an orthonormal unit cell. In

the plane perpendicular to the z axis I chose a square length such that the tube-tube distance

was around 5− 7Å. To verify that the intertube coupling produced by the periodic bound-

ary conditions was sufficiently small I compared the total energy calculated with a k point

sampling including the Γ point of this unit cell with one shifted in the kx direction. The

absolute differences were below 10 meV, on the order of 10−6 −10−7 compared to the total

energy, which was generally the range were I considered the calculations converged. The k

sampling along the z direction varied from tube to tube. For the (6,6) armchair tube I used

30 special k points (the highest value) since armchair tubes both have the shortest periodicity

along z and are metallic. In zig-zag tubes – (10,0) and (19,0) – I found 10 kz points sufficient,

while for the chiral (8,4), (9,3), and (10,5) nanotubes only the Γ point was included because

of their larger translational periodicity. For comparison, in particular, in the band structure

study, I also calculated graphite and graphene with a k point sampling of 10× 10× 5 and

∗The Users Guide is available at http://www.uam.es/siesta/
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Figure I.2: Achiral nanotube bundles calculated with SIESTA. Left: Armchair (6,6) bundle which
was arranged with the highest possible symmetry with respect to z rotation. Note the vertical and
diagonal mirror planes in the figure. Right: Zig-zag (10,0) bundle with the lowest symmetry packing.
In particular the bundle has no mirror planes besides the horizontal plane which is always present in
achiral bundles. There seems to be a diagonal mirror plane in in the picture, but inspection of the
atomic positions shows that this is not the case.

40×40×1, respectively. After obtaining converged input parameters for the SIESTA calcu-

lations I relaxed the atomic positions of the nanotubes by a conjugate gradient minimization

until the forces on the atoms were below 0.04eV/Å. The z axis translational periodicity I

determined for the three most profoundly studied tubes, the (6,6), the (10,0), and the (8,4),

by hand, i.e., performing total energy calculations for different unit cell vectors along z and

finding the minimum of a cubic fit to the energy versus unit length curve. For the other tubes

I did a conjugate gradient minimization with a variable unit cell, which was terminated when

both the atomic forces and the stress tensor components were converged (< 0.04 eV/Å and

< 0.02GPa).

The four small diameter nanotubes [(6,6), (10,0), (8,4), and (9,3)] I then placed into an

hexagonal unit cell to perform bundle calculations. The bundle unit cell fully preserves the

horizontal mirror plane in the achiral tubes. Additionally, the tubes might be rotated around

their z axis to yield arrangements of particular high or low symmetry. In Fig. I.2 I show

a top view of the (6,6) (left) and the (10,0) (right) nanotube bundle. The (6,6) bundle has

the highest possible symmetry configuration (D6h); the vertical mirror planes are nicely seen

in the figure. In contrast the (10,0) bundle is maximally disordered (C2h); it does not have

vertical mirror planes or horizontal rotation axes. An example for a chiral bundle is given in

Fig. I.3 by the (8,4) nanotubes. The left side again shows the top view were the order of the

principal rotation axes is reduced from C56 for the isolated tube to C2 in the bundle. The right
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(n1,n2) 2q r (Å) rc (Å) a (Å) ac (Å) b (Å) Θ (◦) (Cw
q |an

q
)

(6,6) 24 4.11 4.07 2.466 2.461 11.36 30 (C12|a
2)

(8,4) 112 4.18 4.14 11.30 11.28 11.43 19.1 (C9
56| a

14)

(9,3) 156 4.27 4.24 15.44 15.39 11.49 13.9 (C19
78 | a

26)

(10,0) 40 3.92 3.92 4.27 4.263 11.00 0 (C20|a
2)

(10,5) 140 5.20 5.18 11.29 11.28 − 19.1 (C9
70| a

14)

(19,0) 76 7.45 7.44 4.27 4.263 − 0 (C38|a
2)

Table I.1: Radius r, translational period a, bundle lattice constant b obtained in the ab initio calcu-
lations. The expected radius rc and translational period ac of an ideal cylindrical tube are given for
comparison. Θ is the chiral angle and 2q the number of carbon atoms in the unit cell; the screw axis
is denoted in the last column.

side of Fig.I.3 is a side view of the (8,4) bundle and points out the horizontal U axis, which is

preserved by the packing. The nanotube bundles were again relaxed by a conjugate gradient

minimization (forces < 0.04eV/Å and stresses < 0.02GPa) to finally yield the equilibrium

structure in the bundled nanotubes. For the (6,6) nanotube bundle the k point sampling was

increased to 2×2×30; for the other bundles the same sampling as for the isolated tubes was

used.∗

Table I.1 lists the equilibrium structure of the six nanotubes under investigation. The radius r

and the translational period a are compared to the radius rc and the periodicity ac for an ideal

cylinder, see Table 2.1 on page 17. The agreement between the expected and calculated

∗Later on I found in the band structure calculations the (10,0) bundle to be in fact metallic, see Chapter 5.
I therefore recalculated the bundle with a finer k grid 10×10×30 whereby the forces on the atoms increased
to < 0.07eV/Å. The relaxation of the (10,0) bundle thus probably suffers from an incomplete set of k points.
In particular, in the high-pressure calculations the (10,0) showed a larger scattering of the structural parameters
with pressure.

Figure I.3: Chiral (8,4) nanotube bundle calculated with SIESTA. Left: Top view of the bundle,
which only has a two-fold principal rotation axis. Right: Side view of the (8,4) bundle for two
translational periodicities along z. Nicely seen is the U horizontal rotation axis pointing to the reader.
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Figure I.4: Flattening of the (6,6) tubes in a nanotube bundle at high pressure. a) Relaxed structure
at 9.5 GPa. This structure might be preferred at high pressures, because the empty volume inside the
tubes is largely reduced when compared to the circular cross section, but it requires a strong bending
of the nanotube’s wall. b) Total energy versus volume under increasing pressure. The full line is a
cubic fit to the low pressure points with a unit cell volume above 240 Å3. The two points calculated for
the flattened tubes (9.5 and 10 GPa) have a smaller total energy than expected from the extrapolation
of the low pressure curve.

values is excellent, in particular, in view of the fact that true experimental values are not

available for carbon nanotubes. The carbon-carbon distance I obtained for graphite (1.242 Å)

is in very good agreement with experiment (1.421 Å). In graphite the equilibrium interplane

distance I found as 3.3 Å compared to 3.41 Å experimentally. In the tube bundles the wall-

to-wall distance is systematically a little lower ≈ 3.1 Å, see Table I.1.

I.2.2. Pressure calculations

The pressure calculations I did by relaxing the unit cell structure and the atomic positions

under the constraint of a hydrostatic stress tensor. They were done for the (6,6), the (8,4),

and the (10,0) nanotube bundles between zero and ≈ 10GPa by a conjugate gradient min-

imization. I tolerated atomic forces below 0.04eV/Å and stress tensor components within

10 % at low pressure points (0.02 GPa tolerance at 0.25 GPa) and around 5 % at higher pres-

sure (0.45 at 8 GPa). Particular attention I paid to the off-diagonal stress components, which

I required to be below 0.03 GPa even for the highest pressure points. When comparing my

ab initio calculations to experiment and the continuum mechanical model in Chapter 4. I

was interested in the volume deformation of the single tubes within the bundle. Since the

interwall distance changes strongest under pressure, the total volume of the unit cell is not

suitable for the comparison. I obtained the volume of the single tubes by assuming them

to be cylindrical, i.e., Vtube = π r(p)2 a(p)2. The translational periodicity a is given by the

relaxation; for the radius r of the tubes I used the mean distance to the tube center of all

the atoms in the unit cell. All three nanotubes were slightly hexagonally distorted within
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the bundle. The deviations of the radii from their mean value increased from < 1% at zero

pressure to ≈ 5% at high pressure, which is still sufficiently small to neglect it in the volume

determination.

An interesting point I did not mention in Chapter 4. is a sudden flattening of the tubes I

obtained at 9.5 GPa in the armchair bundle. Figure I.4 shows the relaxed (6,6) structure at

9.5 GPa. This flattening might be related to the widely discussed phase transition under pres-

sure, which was sometimes claimed to be found experimentally around 2 GPa and sometimes

above 10 GPa.98, 102, 201 In part b) of Fig. I.4 I present the total energy of the (6,6) bundle

as a function of the unit cell volume (or pressure). It is clearly seen that the 9.5 GPa point

and the even higher at 10 GPa have a smaller total energy than the extrapolation of the low

pressure curve. A more detailed study, i.e., under decreasing pressure for the flat structure to

complete the total energy curves, will be done in the future. Nevertheless, I did not find such

a behavior in the (8,4) tube up to now, where my highest calculated pressure was 11 GPa.

I.2.3. Phonon calculations

Two approaches for calculating the vibrational properties by ab initio methods are currently

widely used in the literature. In the frozen-phonon approximation the phonon frequency is

found from the difference in total energy for the undistorted structure and a structure where

the atoms were displaced according to a particular phonon eigenvector, see, e.g., Kürti et

al.202 for an application to carbon nanotubes. For this method, however, the phonon eigen-

vector must be known a priori. I therefore used the finite difference approach which directly

calculates the force constants matrix from first principles.106, 178, 203 In this method a sin-

gle atom is displaced successively in the x, y, and z direction and the forces on all atoms

in the unit cell are calculated from the Hellmann-Feynman theorem.196 To account for an-

harmonic effects a negative and a positive displacement is done for all three direction (the

force constants are averaged for positive and negative displacement), which means a total of

6 self-consistent cycles per atom. Then the next atom is displaced until the force constant

matrix is complete. A full calculation according to this scheme was only possible for the

(6,6) nanotube with 24 atoms in the unit cell where it took 9 days running on 4 nodes of a

Linux cluster. For the other tubes I calculated only the forces for two displaced atoms which

were connected by the U rotational axis. I generated the other forces with the screw axis

symmetry, see Chapter 2. Since I was only interested in the Γ point vibrations the fractional

translations do not change the force constants. The angle between two atoms I found from

their positions and then simply used the vector transformation properties under rotation as

given, e.g., in Eq. (2.28) on page 38 for the screw and rotation axes. The force constant
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matrix is read by the Vibra package, which is part of SIESTA. The dynamical matrix is set

up and diagonalized yielding all phonon frequencies and eigenvectors.57, 106, 203

In Section 2.2. I showed that all nanotubes are single orbit systems. In general, it would

therefore be sufficient to calculate the forces only for one displaced atom. Including the

U axis symmetry in the force constants transformation I obtained the whole force constant

matrix by the same approach. I decided not to use the U axis in chiral tubes or the horizontal

mirror plane in achiral tubes to have a measure for the accuracy of my calculations. As I

discussed in Section 4.4. these additional symmetry operations were very well reproduced

by the ab initio calculations. To further verify the symmetry based approach I also did a full

calculation – displacing all the atoms – for the (6,6) nanotube and used different sets of atoms

for the (10,0), the (8,4), and the (9,3) nanotube. The agreement in phonon frequency was

excellent, within 3 cm−1 in the achiral and 15 cm−1 in the chiral tubes for the high-energy

modes and the radial breathing mode. The eigenvectors were not affected in a fundamental

manner during the test calculations.

I.2.4. Band structure and optical absorption calculations

The electronic energies of the k points used in the total energy calculations are routinely in-

cluded in the SIESTA output. A band structure or an optical absorption calculation, however,

usually requires more special k points than the total energy calculation per se. Additional

points may be specified in the input file, which are only used to find the eigenvalues for the

band structure and the eigenvectors for the optical matrix elements from the self-consistent,

converged Hamiltonian.

In the band structure calculations I included 10−30 k points along the z axis for the isolated

(8,4), (9,3), and (10,5) nanotube, 45 for the isolated (10,0) and (19,0) zig-zag tubes, and 60

for the isolated (6,6) armchair tube. The different numbers reflect the different length of the

nanotube unit cell. For example, the same absolute sampling for a zig-zag and an armchair

tube requires
√

3 less k points in the former. In the perpendicular direction I included a total

of 45 points for the ΓM, MK, and KΓ triangle (kz = 0), the same number at kz = π/a (AL,

LH, and HA), and at the Fermi wave vector kz = kF (∆FU , UP, and P∆F ). Note that the

Brillouin zones of graphite and bundled carbon nanotubes are the same. The highly disper-

sive direction in nanotubes is, however, the ΓA direction in contrast to the mostly in-plane

electronic dispersion in graphite. In my calculations I always treated the (10,0) nanotube

and the (10,0) bundle as semiconducting as expected from the nanotubes indices (10 is not

a multiple of 3). In the first principles bundle band structure calculations, however, I found
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Figure I.5: Effect of bundling on the op-
tical absorption spectra of an (10,0) nan-
otube. a) Absorption of the isolated nan-
otube, compare Fig. 3.9 on page 60 b)
absorption spectrum of the (10,0) nan-
otube bundle. The lower singularities
in the spectrum shift to smaller energies
and broaden strongly. In particular, in
the visible energy range (gray area) the
singularities are completely smeared out
by the bundling.
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this tube to be metallic because of its intertube dispersion, see Chapter 5. In a recalculation

of the (10,0) bundle with a finer 10×10×30 k grid I obtained differences in the total energy

and the forces (900 meV corresponding to 10−4 of the total energy and 0.03 eV/Å), but the

band structure was exactly the same except for a shift in the Fermi energy by 20meV.

In the description of the equilibrium structure I discussed the arrangement of the tubes within

a bundle. It would be interesting to study how strongly the electronic band structure is af-

fected by the exact arrangement. For example, a higher symmetry configuration for the

(10,0) bundle is obtained by a small rotation of the tubes in Fig. I.2 or the bundle unit cell

could be doubled to include two tubes and the vertical mirror symmetry be broken by a small

shift of one of the tubes along the z axis. A first principles calculation of a bundle composed

of two tubes of different chirality is rather difficult, because most combinations are incom-

mensurable or have a very large translational periodicity, e.g., none of the combinations of

the (6,6), (10,0), (8,4), and (9,3) nanotubes have a finite unit cell along the z axis.

The output of an optical calculation with SIESTA is the imaginary part of the dielectric

function ε2; the real part ε1 is obtained by a Kramers-Kronig transformation. ε1 and ε2 yield

all the optical properties of a material like the absorption, the reflectivity, or the electron

energy loss spectra.57 I calculated ε2 between 0 and 8 eV with a Lorentzian broadening

of 50 meV per energy point. The small linewidth was necessary to reproduce the square

root singularities in the absorption spectrum. It required a particularly fine k sampling for

convergence. The dielectric function in isolated (6,6) tubes was found from 240 special

points along z, 120 in the (10,0), and 50 in the (8,4) nanotube.

In the discussion of the bundle band structure in Chapter 5. I mentioned that I expect the

optical absorption singularities to broaden in the bundle because of the electronic dispersion

perpendicular to kz. In Fig. I.5b) I present preliminary results for the absorption spectrum

in a (10,0) bundle. Figure I.5a) shows again the isolated tube spectrum of Fig. 3.9. The

bundling of the tubes shifts the singularities below 3 eV to smaller energy, a trend I already
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found from the band structure calculations. Moreover, the singularities are smeared out,

in particular, in the visible energy range, as I expected. Further calculations will reveal

whether this is a general finding in nanotube bundles that was responsible for the broad and

unstructured features in the experimental absorption and reflection spectra.88, 144



Appendix 2
Raman Intensities on Unoriented Systems

The appendix shows how to obtain the Raman intensities for any polarization on randomly

oriented systems. I demonstrated the basic approach in Chapter 3., where I calculated the

matrix element for a particular Raman tensor and configuration and then averaged over Eu-

ler’s angles. To generalize the result I use the transformation properties of the Raman tensor,

i.e., any tensor of rank two. The transformations of tensors under rotation are best described

by irreducible spherical tensors, which is a decomposition with respect to the rotation group.

Moreover, irreducible spherical tensors T
( j)

m have sharp j and m quantum numbers; under

rotation they transform according to59, 80, 81

T
( j)

m = ∑
p

T
( j)
p D

( j)
pm(ψ,θ ,ϕ), (II.1)

where D( j) is the matrix representation of the rotation group (rotation matrices). The de-

composition of a tensor with rank k into irreducible tensors of rank 0,1, . . . ,k is done with

the help of the Clebsch-Gordan coefficients. The procedure is described in a number of

textbooks.59, 80, 81 A normalized set of irreducible tensors for the Raman tensor ℜ = T (0) +

T (1) +T (2) is70

T
(0)

0 =− 1
3(αxx +αyy +αzz) T

(1)
±1 =1

2 [(αzx −αxz)± (αzy −αyz)] (II.2)

T
(1)

0 = i√
2
(αxy −αyx) T

(2)
±2 =1

2 [(αxx −αyy)± i(αxy +αyx)] (II.3)

T
(2)
±1 =∓ 1

2 [(αzx +αxz)± (αzy +αyz)] T
(2)

0 = 1√
6
(2αzz −αxx −αyy). (II.4)

To obtain the intensity IIS in a fixed scattering configuration (eI,eS) I calculate the matrix

element with the help of the Wigner-Eckart theorem for a fixed configuration and then use

147
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J 0 1 2

∑p[T
(J)
p ]2 3ᾱ2 2

3γ 2
as

2
3γ 2

s

Table II.1: Reduced matrix elements in terms
of the Raman tensor invariants. For ᾱ, γ 2

as,
and γ 2

s see Chapter 3.

Eq. (II.1) to average over the randomly oriented molecules.70, 80, 81, 204

IIS ∝|eI ℜeS|2 =

∫

Ω

|∑
J

eI T (J) eS|2 dω =

∫

Ω

{

∑
J,M

〈Jimi|T (J)
M |Jsms 〉

}2
dω (II.5)

=

∫

Ω

{

∑
J,M

〈(−1)Ji+J+ms(JiJs −mims |J −M)T
(J)

M 〉
}2

dω (II.6)

where (JiJs −mims |J −M) are the Clebsch-Gordan coefficients; using Eq. (II.1) and the
selection rule M = mi −ms I find

=

∫

Ω

{

∑
J

(JiJs −mims |J [ms −mi])〈∑
p

T
(J)
p D

(J)
p(ms−mi)

〉
}2

dω. (II.7)

The rotation matrices are orthonormal

∫

Ω

D
( j1)
k1µ1

∗
D

( j2)
k2µ2

dω =
Ω√

2 j1 +1
δ j1 j2δk1k2

δµ1µ2. (II.8)

I can therefore treat the contributions from irreducible tensors of different rank J separately.

With the orthonormality of the rotation matrices Eq. (II.7) reduces to

IJ
IS ∝ (JiJs −mims |J [ms −mi])

2 · 1

2J +1
·∑

p

[T
(J)
p ]2. (II.9)

The sum over p is independent on the angular momentum quantum numbers m. It has to

be calculated only once for every J under consideration. Note that in deriving Eq. (II.9) I

implicitly assumed that eI and eS have only one sharp angular momentum quantum number

and are not a coherent superposition as, e.g., eX = 1
2(e1−1 + e11). The extension to this case

is straightforward. Care must be taken when summing over p by using the orthogonality

of the rotation matrices of Eq. (II.8), since the mixed elements in the squared sum are not

necessarily canceled. However, this is only dangerous when ms −mi are the same for the

two coherent contributions as for (eX eX) configuration. In all other cases the result for the

coherent is the same as for the incoherent superposition. This can be verified by writing out

Eq. (II.5).

The next step in finding IIS is to calculate ∑p[T
(J)
p ]2 for J = 0,1,2 with the irreducible tensors

in Eq. (II.4). The results are summarized in Table II.1 in terms of the traditional invariants

used in Raman scattering (see Chapter 3. page 50 and Ref. 82). Finally, I use the values for
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IS ‖ ⊥ 		 	�

45 IIS 45ᾱ2 +4γ 2
s 5γ 2

as +3γ 2
s 6γ 2

s 45ᾱ2 +5γ 2
as + γ 2

s

Table II.2: Intensities in the four backscattering configurations on three dimensionally unoriented
crystals. The intensities in arbitrary configuration can be found in the papers by Chiu.70, 204, 205

the Clebsch-Gordan coefficients in Ref. 80 and Eq. (II.9) to obtain the Raman intensities for

a desired scattering configuration. For example, for IZZ = I‖ I find (Ji = Js = 1;mi = ms = 0)

IZZ =
2

∑
J=0

IJ
ZZ ∝

1

3
·1 ·3ᾱ2 +0 · 1

3
· 2

3
γ 2

as +
2

3
· 1

5
· 2

3
γ 2

s =
45ᾱ2 +4γ 2

s

45
.

This is the same result as I obtained in Eq. (3.4) on page 49 by a direct integration over

Euler’s angles. Nevertheless, in the derivation presented in this Appendix I did not use any

special form of the Raman tensor as in Chapter 3. The intensities IIS for the other scattering

configurations on unoriented crystals are given in Table II.2 for Raman backscattering.
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[8] F. Léonard and J. Tersoff, “Novel length scales in nanotube devices”, Phys. Rev. Lett.
83, 5174 (1999).

[9] S. J. Tans, A. Verschueren, and C. Dekker, “Room-temperature transistor based on a
single carbon nanotube”, Nature (London) 393, 6680 (1998).

[10] V. H. Crespi, M. L. Cohen, and A. Rubio, “In situ band gap engineering of carbon
nanotubes”, Phys. Rev. Lett. 79, 2093 (1997).

[11] C. Thomsen, S. Reich, H. Jantoljak, I. Loa, K. Syassen, et al., “Raman spectroscopy
on single and multi-walled nanotubes under pressure”, Appl. Phys. A 69, 309 (1999).

[12] S. Reich, C. Thomsen, and P. Ordejón, “Eigenvectors of chiral nanotubes”, Phys. Rev.
B 64, 195416 (2001).

151



152 BIBLIOGRAPHY

[13] J. Maultzsch, S. Reich, and C. Thomsen, “Raman scattering in carbon nanotubes re-
visited”, Phys. Rev. Lett. (submitted (10/2001)).

[14] S. Reich, C. Thomsen, and P. Ordejón, “Structural and vibrational properties of sin-
gle walled nanotubes under hydrostatic pressure”, in Electronic Properties of Novel

Materials-Progress in Molecular Nanostructures, edited by H. Kuzmany, J. Fink,
M. Mehring, and S. Roth, AIP 591 (2001), p. 388.

[15] G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, “Polarized Raman
spectroscopy of individual single-wall carbon nanotubes”, Phys. Rev. Lett. 85, 5436
(2000).

[16] A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, et al., “Structural (n,m) de-
termination of isolated single-wall carbon nanotubes by resonant Raman scattering”,
Phys. Rev. Lett. 86, 1118 (2001).

[17] F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite”, J. Chem. Phys. 53, 1126
(1970).

[18] R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, “Observation of Ra-
man band shifting with excitation wavelength for carbons and graphites”, Solid State
Commun. 39, 341 (1981).

[19] C. Thomsen and S. Reich, “Double-resonant Raman scattering in graphite”, Phys.
Rev. Lett. 85, 5214 (2000).

[20] C. Thomsen, S. Reich, and J. Maultzsch, “The dependence on excitation energy of
the D-mode in graphite and carbon nanotubes”, in Electronic Properties of Novel

Materials-Progress in Molecular Nanostructures, edited by H. Kuzmany, J. Fink,
M. Mehring, and S. Roth, AIP 591 (2001), p. 376.

[21] J. Maultzsch, S. Reich, and C. Thomsen, “Chirality selective Raman scattering of the
D-mode in carbon nanotubes”, Phys. Rev. B 64, 121407(R) (2001).
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port. Sabine Morgner I would like to thank once again for the help in preparing the
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