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Carbon precipitation from heavy hydrocarbon
fluid in deep planetary interiors
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Ho-Kwang Mao1,5 & Alexander F. Goncharov1,4

The phase diagram of the carbon–hydrogen system is of great importance to planetary

sciences, as hydrocarbons comprise a significant part of icy giant planets and are involved

in reduced carbon-oxygen-hydrogen fluid in the deep Earth. Here we use resistively- and

laser-heated diamond anvil cells to measure methane melting and chemical reactivity up to

80 GPa and 2,000 K. We show that methane melts congruently below 40 GPa. Hydrogen and

elementary carbon appear at temperatures of 41,200 K, whereas heavier alkanes and

unsaturated hydrocarbons (424 GPa) form in melts of 41,500 K. The phase composition of

carbon-hydrogen fluid evolves towards heavy hydrocarbons at pressures and temperatures

representative of Earth’s lower mantle. We argue that reduced mantle fluids precipitate

diamond upon re-equilibration to lighter species in the upwelling mantle. Likewise, our

findings suggest that geophysical models of Uranus and Neptune require reassessment

because chemical reactivity of planetary ices is underestimated.
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M
ethane is one of the most abundant hydrocarbon
molecules in the universe, and along with water and
ammonia comprises a significant part of the icy giant

planets (Uranus and Neptune) and their satellites1,2. The
chemical composition of planetary ices and possible chemical
reactions within deep interiors of these planets are critical for
understanding their thermal, magnetic and electrical properties3,
and represent necessary input information for theoretical
modelling4. Also, the behaviour of hydrocarbons as a part of
reduced carbon-oxygen-hydrogen fluid within the deep Earth is
of particular interest as oxygen fugacity below the wustite–
magnetite buffer is likely to shift fluid phase composition from
CO2–H2O to CH4–H2O in the simplest modelling5–8. However,
phase relations in the C–H system are poorly understood even at
relatively low pressures. For example, the results of methane
melting curve measurements are contradictory and report only up
to 4.8 (ref. 9) and 6.8 GPa (ref. 10). Moreover, theoretical and
experimental studies of chemical reactivity of liquid CH4 differ by
several thousand Kelvin11–14. Whether there is a formation of
hydrocarbons other than methane, what are the limits of their
stability under extreme conditions, and what their role is in deep
carbon reservoirs and fluxes of the Earth or icy giant planets
remain unanswered questions.

Thermodynamic modelling of C–H systems7,15, as well as
ab initio molecular dynamic (MD) computations12,14, show the
rise of stability of heavier hydrocarbons with increasing pressure
and temperature. According to MD, methane dissociates to
molecular hydrogen and diamond at pressures of 4300 GPa and
at temperatures of 44,000 K (ref. 12). Likewise, such chemical
reactions were observed in experiments with laser-heated (LH)
diamond anvil cells (DAC), where methane produces carbon,
hydrogen and heavier hydrocarbons at temperatures of 2,000–
4,000 K and under pressures up to 80 GPa (refs 11,13,16,17). On
the other hand, shock experiments suggest no chemical reactivity
up to 26 GPa and 3,200 K (ref. 18). The discrepancy between
the results obtained by LH DAC, shockwave, MD and thermo-
dynamics may arise from various assumptions in modelling as
well as from kinetic, catalytic and analytical problems in the
experiments. Recent advances in resistively heated (RH) and LH
techniques allow for better control of P–T conditions in DAC
cavity19,20, as well as for more accurate characterization of the
physico-chemical processes than previously possible.

Here we report our measurements of the methane melting
curve and chemical reactivity of the C–H system up to 80 GPa
and 2,000 K using RH and LH DACs. We partly reconcile
contradictions between previously reported results, and relate our
observations to the processes in planetary interiors.

Results
Methane melting. Several criteria were employed to recognize
melting in the RH DAC experiments. Simultaneous measurements
of temperature and pressure revealed discontinuities in P–T paths
during the RH, which were followed by abrupt changes in Raman
spectra of n1–n3 modes (Supplementary Fig. S1). Also, we were
able to observe convection motion of small particles (gasket pieces
or rubies) imbedded in the sample, as well as a phase boundary
marked by different refractive indices of coexisting fluid and solid
once the melting temperature was reached.

The most accurate measurements of CH4 melting in LH
experiments were found to be through the observations of small
vesicles (2–4 mm) of molten material in contact with solid
phases. Rounded vesicles reproducibly appear near the rim of
an Ir heat absorber foil (coupler) heated with the infrared (IR)
laser (Fig. 1 insert). To verify visual observations of methane
liquid state inside the vesicles, several synchrotron-based X-ray

diffraction and in situ Raman spectroscopy experiments have
been performed (see Methods). Moreover, at temperatures above
CH4 dissociation one can see small graphite particles moving in
the vesicle, demonstrating signs of convection.

The results of melting curve measurements are summarized in
Fig. 1 and Supplementary Table S1. RH and LH DAC melting
measurements are in agreement if the correction for temperature
difference between the coupler temperature (measured using
spectroradiometry) and the melt–solid interface temperature is
introduced (see Methods). The uncertainties in radiometric
temperature measurements are quite large (up to ±200 K),
especially at low pressures, where the melting temperatures are
lower, which warrants our presentation of the melting line
determined in LH experiments as a band rather than a single line.

Chemical transformations in C–H fluid. Confocal Raman
systems (457, 488 nm excitations for LH experiments, and 532 nm
for RH) were used to probe the onset of chemical transformations
in C–H fluid at high temperatures, as well as to map the samples
near the heating spot after quenching, with the assumption that
these features could be quenched for ambient temperature studies.
This assumption seems reasonable as equilibrium experiments5,
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even with slower quenching rates, are reported to agree with
thermodynamic calculations. Our RH experiments show no signs
of chemical reactions in solid or liquid methane at pressures up to
24 GPa and temperatures up to 900 K.

Methane molecular dissociation was detected at temperatures as
low as 1,200–1,500 K. The onset of this reaction is documented by
hydrogen formation (Fig. 2c). Single, double or triple H–H stretch
modes (vibrons) of B4,200–4,700 cm� 1 are observed both in
quenched samples and at high temperatures (Supplementary
Fig. S2). These vibrations are characteristic of CH4–H2 van der
Waals compounds21, which are formed upon hydrogen escape
from the reactor to solid methane surrounding the melt vesicle.

Application of temperatures above 1,500 K results in further
CH4 dissociation and formation of substantial amounts of solid
carbon, hydrogen and higher hydrocarbons (Fig. 2; red curve).
Increased intensity of H–H stretching is accompanied by the
development of molecular H2 rotational bands at low frequencies
with the strongest band near 650 cm� 1 (ref. 22). The rise in the
intensity of the graphite Raman bands correlates with an increase
in the proportion of black particles precipitating from the hot
convecting fluid as temperature is increased (Fig. 2a; red curve).
These particles can be observed in situ overgrowing the coupler
(Fig. 1; inset). We extracted and documented Raman spectra of
these black particles outside DAC (Fig. 3) using a Raman
microscope with a very high spatial resolution (see Methods).
These spectra provide unambiguous evidence23,24 for carbon
precipitation from hydrocarbon fluid.

We investigated the effect of possible hydrogen loss in LH
DAC experiments on the observed chemical transformations. Our
LH DAC experiments do not suffer from continuous hydrogen
depletion as revealed by time-stability experiments (Supplementary
Fig. S2). The loss of hydrogen from the hot fluid is mainly
temperature-dependent and follows the chemical reactivity. How-
ever, we have to admit that C–H systems at high temperature tend
to lose hydrogen that is not bound in the C–H fluid; thus, in
principle, we cannot rule out that chemical bonding in the C–H
system under the studied P–T conditions may be somewhat
different if no hydrogen escape had occurred.

New Raman peaks (Fig. 2a; red curve), which appear at high
temperatures at B1,000–1,300 cm� 1 and 1,500 cm� 1, corre-
spond to the C–C stretch and C–H bend modes of aliphatic
hydrocarbons25, respectively. These vibrations are evidences for
new hydrocarbons being formed from CH4, which is consistent
with the previous experimental results by Kolesnikov et al.16, who
have studied chemical reactivity in the C–H system at pressures
of o5 GPa. The sequence of newly formed hydrocarbons starts
with ethane and continues further above 1,500 K. Complex
changes in C–C stretching and C–H bending spectral regions
suggest elongation of the C–C skeleton. LH DAC experiments
with nonmetal absorbers (amorphous boron) yielded methane
dissociation onset at 2,000 K (P¼ 11 GPa), with subsequent
formation of higher alkanes, which is at least 500 K higher than
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Figure 2 | Raman spectra of CH4 and its reaction products. Synthesis in LH DAC at 48 GPa. Black line shows CH4 Raman spectrum before heating.
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in cases where Ir couplers were used. Indeed, recent ab initio MD
calculations also showed that transition metal couplers catalyze
chemical transformations in the C–H system as kinetic barriers
are decreased if Ir4 clusters are introduced in the simulation
cell14. Following high-temperature experiments (B2,000 K) at
pressures of 424 GPa, Raman spectra of quenched products
show very distinct bands in the 1,700–1,800 cm� 1 region (Fig. 2a;
red curve). Based on the system composition, we assign these
bands to the formation of unsaturated double-bonded hydro-
carbons25. As no spectroscopic data are available for carbon-to-
carbon double bonds under high pressure, we have collected
Raman data of ethylene under pressures up to 16 GPa. Raman
frequency shift of presumably double-bonded hydrocarbons upon
compression/decompression (1–2 cm� 1 GPa� 1) is in general
agreement with our data for ethylene (1.2 cm� 1 GPa� 1). Also,
pressure shift of these bands is somewhat lower than that for the
C–C stretch mode of single-bonded aliphatic hydrocarbons
(B3 cm� 1 GPa� 1), which is consistent as the former are
stronger. Multiple Raman scans across the quenched samples
did not reveal any other chemical reactions.

In addition, we have performed LH experiments with C6H14

(n-hexane) at pressures of 5, 16 and 40 GPa and at temperatures
of 1,200–2,000 K. At 5 GPa and 1,200 K, n-hexane decomposed to
graphite and methane. In contrast, at 40 GPa and 2,000 K,
complex changes occurred in C–C stretching and C–H bending
spectral regions, accompanied by the appearance of strong bands
in the 1,750–2,250 cm� 1 spectral range (Fig. 4a). These spectro-
scopic data strongly suggest formation of complex heavy aliphatic
hydrocarbons containing double- and triple-bonded carbons25,
although their composition and concentration cannot be
currently quantitatively determined. Raman spectra of quenched
products after LH to 2,000 K at 40 GPa also show very distinct
bands in the 4,250–4,500 cm� 1 spectral range (Fig. 4c), similar to
vibrations observed in quenched samples after heating of CH4.
These bands show that at pressures of 40 GPa, laser heating of
n-hexane produced free hydrogen coexisting with heavy hydro-
carbons. Therefore, bulk composition of hydrocarbons found
after LH are characterized by H/Co2.33 (H/C for n-hexane).

Discussion
Figure 1 summarizes experimental data on the CH4 melting curve
and chemical reactivity of the C–H fluid as revealed by Raman
spectroscopy of quenched samples synthesized in LH DAC.
Methane melts at rather low temperatures compared with other
molecular ices such as water26,27 and ammonia28. The methane
melting curve is significantly lower than the Earth’s average
geotherm up to 80 GPa, suggesting that CH4 is fluid down to at
least the middle part of the lower mantle, provided that C–H fluid
is present at this depth. Chemical reactions in fluid CH4 were not
observed at low temperatures (o900 K in RH and o1,200 K in
LH experiment) and at pressures o40 GPa, suggesting congruent
methane melting behaviour. However, one should consider that
our Raman technique may not be sufficiently sensitive to detect
species at such low concentration levels (o5% mol). This might
be the reason for the disagreement between our results and
piston-cylinder experimental results5 as well as thermodynamic
prediction7, which suggest that a minor admixture of ethane
(o2–3 mol%) and hydrogen (o5 mol%) may be present in C–H
fluid at o1,200–1,300 K. Despite that, our data strongly suggest
that under lithospheric temperatures and pressures (To1,200 K,
Po6 GPa) methane is the major constituent of the C–H fluid. In
contrast, the abruptly increased chemical reactivity above 1,200 K
provides insight into the behaviour of C-H fluids under deep
mantle temperatures and pressures. Observation of the
substantial methane dissociation to elemental carbon and
molecular hydrogen and/or formation of a mixture of heavier
hydrocarbons imply that under the deep mantle pressure–
temperature conditions (46 GPa, 41,500 K) the role of CH4

in C–H fluid continuously decreases, and at P424 GPa and
T41,500 K the fluid is likely to be methane-poor, but rich in
heavier hydrocarbons. Further experiments are needed to shed
light on the respective roles of hydrocarbon phases in fluid under
planetary conditions.

Our results show a general trend of hydrocarbon reactivity
under high pressure and temperature with applications to the
Earth’s and icy giant planets’ geochemistry. Generation of
oxidized C–O–H fluid (H2O–CO2) in the deep Earth is possible
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through slab devolatilization29. Redox interaction of the oxidized
C–O–H fluid with reduced ambient mantle6 can result in the
formation of hydrocarbon species in the transition zone or in
lower mantle. We argue that reduced C–O–H fluids containing
heavy hydrocarbons ascending through the deep mantle (in a
plume or convection cell) become carbon-saturated as fluids shift
phase composition upon thermodynamic equilibration to lighter
hydrocarbons, possessing a higher H/C ratio (Fig. 5). The excess
of carbon may be responsible for the formation of ultradeep
diamonds, carbides and other carbon-bearing solid phases in the
deep Earth.

The observed chemical reactivity of the C–H system and
speciation of the reaction products at extreme conditions
provides a new insight for the interiors of giant planets such as
Uranus and Neptune. These planets are postulated to have
mantles consisting of mixture of fluid methane, water and
ammonia, where these compounds have a role similar to that of
minerals in the Earth’s mantle1. The effects of possible formation
of mixtures between methane, water and ammonia30,31 and
ionization3 were shown to occur at higher temperatures than
those studied in this work. Notwithstanding this, our study offers
evidence for chemical reactivity of C–H component of planetary
ices, which may also affect positions of planetary isentropes.
Therefore, equations of state employed for planetary models
should consider chemical reactivity reported in this study.

In summary, DAC experiments on CH4 melting and chemical
reactivity in the C–H system show that, at low P–T conditions
relevant for the Earth’s crust and uppermost mantle, C–H fluid is
represented mainly by methane. In contrast, at T41,200 K,
heavier hydrocarbons, elemental carbon and molecular hydrogen
are formed in the C–H system. Thermodynamic equilibration of
C–H fluid or hydrocarbons as a part of C–O–H fluid can result in
the formation of carbon-bearing solid phases upon a decrease in
pressure and temperature in natural environments. This newly
documented chemical reactivity of hydrocarbons should also be
taken into account in modelling of icy giant planets. Further
constrains may be needed to elucidate the role of H2O and other
potentially important fluid species in the deep Earth or icy giants

on methane dissociation, high-pressure equilibria in fluids and
ultradeep diamond precipitation.

Methods
Materials. Symmetric DACs equipped with flat (300 mm) and beveled (100 mm)
anvils were used to generate pressures up to 80 GPa. Rhenium gaskets (with an
initial thickness of 200 mm) were preindented to 40–50 mm, and then the sample
cavity was drilled in the centre with a recess to position the couplers apart from the
diamond tips. Methane (99.9995%) was loaded into the sample cavity under high
pressure (0.2 GPa) using a gas-loading system. A total of 28 methane loadings
allowed 41 LH and 13 RH DAC experiments designed either for melting curve
measurements, chemical reactivity studies, or both.

Resistive heating experiments. RH DAC experiments were carried out using a
modified high-temperature piston-cylinder Mao-Bell DAC32. Two miniature
platinum–iridium alloy external resistance heaters were symmetrically mounted
around the anvils and their seats, and used to control the temperature up to
1,000 K. A distinct feature of our setup is that the heaters were relatively distant
from the pressure-loading mechanism of the DAC, and sapphire discs positioned
underneath each anvil seat provided sufficient heat isolation between the hot anvils
and the DAC’s body. Our setup enables us to keep the pressure-loading mechanism
of the DAC at much lower temperatures than reached in the sample chamber,
thus significant pressure stability during RH DAC experiments was achieved.
Temperature-corrected ruby barometer19 was employed to determine pressure in
RH experiments; temperature was measured using a S-type thermocouple attached
to a diamond anvil near the tip (o±1 K).

LH experiments. LH experiments were performed by coupling the IR radiation of
a fibre laser to Ir and amorphous B absorbers (couplers) positioned in the high-
pressure sample cavity and isolated from diamond anvils using the recessed gasket
technique16 (Supplementary Fig. S3). Ir couplers of a different kind were used in
experiments designed for melt detection or for chemical reactivity observations.
Typically, we used rounded Ir couplers containing three or four holes (being
5–10 mm in diameter). These holes served as sample containers with reduced
temperature gradients for in situ Raman spectroscopy during the LH. Pressure was
calculated as a mean value between those determined at room temperature
before and after LH using a conventional ruby gauge technique33. No thermal
corrections for pressure were applied.

An IR (1,075 nm) Yt-doped fibre laser with improved beam quality34 was
introduced into the optical system using polarizing beam-splitter cubes and focused
into a flat top focal spots from two sides of the DAC using the Mitutoyo near-IR
� 20 and � 10 long-working distance objective lenses. The focal laser spots were
B10–15 mm in diameter, making it possible to heat the coupler around the hole
containing the sample. Controlled attenuation of the fibre laser beam was achieved
using a combination of the polarizing beam-splitter cube and l/2 wave plate.
Double-sided heating helped to reduce axial temperature gradients.

Raman spectroscopy. We used custom Raman spectrometers35 combined with
our RH and LH optical systems to collect Raman spectra in the backscattered
geometry. The spectra were analyzed with the 460-mm focal length f/5.3 imaging
spectrograph equipped with two 1,500 and 300 grooves per mm gratings on the
same turret. This feature allows one to combine quick exploratory spectra
measurements over a wide spectral range in situ at high temperatures (� 4,000–
4,000 cm� 1 in one spectral window) and accurate measurements with a high
spectral resolution (2–4 cm� 1), which was normally employed on quenched to
300 K samples.

In order to reveal a general behaviour of intramolecular hydrocarbon bonds
under high pressure, as well as to support identification of newly formed
hydrocarbons, we carried out separate pressure runs for ethane, n-hexane and
n-docosane up to 40–50 GPa at 300 K. This allowed for the qualitative
interpretation of the Raman spectra after quenching. The results of high–pressure
Raman studies on short and medium chain alkanes will be published elsewhere.

A Witec a-scanning near-field optical microscope was employed for confocal
Raman imaging and spot Raman microscopy of synthesized samples studied ex situ
outside DAC. A solid-state YAG laser (532 nm) was used to excite Raman
scattering. The lateral spatial resolution was as low as 360 nm. Fluid part of the
samples was flushed out from DAC upon decompression and only solid reaction
products that remained in the sample chamber were examined (Fig. 3).

CH4 characterization and melting in LH experiments. Raman microprobe and
synchrotron X-ray diffraction were used to verify visual observations and to
confirm the liquid state of the vesicles. Methane crystallizes into phase I at 1.7 GPa,
into phase A at 5.2 GPa and into phase B at 12–18 GPa36. Raman spectra of liquid
methane and phase I are very similar and exhibit fundamentals corresponding to
symmetric stretching (n1), symmetric bending (n2) and asymmetric stretching (n3)
of the C–H bond. The similarity is due to the orientational disorder of CH4

molecules in the crystal structure of phase I. However, at pressures of 412 GPa, n1

and n3 fundamentals split as was observed in the Raman spectra36,37. This splitting
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is believed to be due to the proton ordering in the crystal lattice38. The splitting
disappears upon melting, making it possible to use the behaviour of n1 and n3

modes as a probe for CH4 melting at pressures of 412 GPa. Synchrotron
X-ray diffraction measurements of the vesicle physical state were based both on
the appearance of diffuse peak of fluid (structural factor) and disappearance
of diffraction spots on two-dimensional (2D) images. Both Raman and
synchrotron X-ray data on the physical state of the vesicles additionally confirm
them to be fluid.

Temperature measurements in LH experiments. Characteristic temperatures in
LH experiments were measured using the spectroradiometry of the coupler
collected from one side of the DAC. The major source of errors in temperature
measurements is introduced by approximations for sample emissivity. Namely, the
greybody approximation used in this work is known to be a potential source of
substantial errors that are on the order of ±100–150 K (refs 39,40), as sample
emissivity is wavelength-dependent and was not characterized as a function of
pressure and temperature.

Also, there are some minor sources that contributed to the measured melting
temperatures. Temperature uncertainties related to the solution of Planck’s
equation are relatively small (o1% relative), which is consistent with the results of
thorough reports on accuracy of temperature measurements in LH DACs39–41.
Errors introduced by the optical system were compensated by calibrating the
response to tungsten lamp light source. The effects of chromatic aberrations on
temperature measurements42 were minimized by the use of achromatic optics
collecting spectroradiometry signals and by a careful selection of a wavelength
range for the Planck fitting procedure. Spectral effects induced by the diamond
anvil are also minor, as at o2,000 K their contribution to temperature
measurement is o1% (ref. 43). The total role of minor uncertainties is on the order
of ±50 K. In summary, the total uncertainty in temperature measurements can be
estimated as ±150–200 K, which is typical for LH DAC studies20,34,41. The
temperature measurements are rather accurate above B1,000 K (±150–200 K),
whereas below 1,000 K, thermal emission becomes weaker and moves to the IR
spectral range, where our radiometry system has a low sensitivity. In some cases,
Stokes-to-anti-Stokes intensity ratio was used to compare the temperature of hot
methane with the one gained radiometrically. The difference was about 200–300 K
and could be due to the contribution of cold methane surrounding the hot spot,
which results in lower temperature yields for Stokes-to-anti-Stokes technique.

Temperature gradients are large in the LH DAC, but our technique of
sequential temperature measurements allows detection of the appearance of small
melt vesicles around the heating area, with the melt–solid border only in 2–4 mm
away from the hot coupler. The results of finite element calculations of the
temperature map in the LH DAC high-pressure cavity show that the coupler is
350 K (±50 K) hotter than the solid–melt border (Supplementary Fig. S4). For
simplicity, the cavity has been chosen to have axial symmetry. The coupler has a
maximum temperature near 1,150 K at its upper surface. The vesicle of molten
material becomes visible if its boundary is at least 2 mm away from the coupler
boundary in the radial direction. This corresponds to a melting temperature of
B800 K, thus making the temperature difference between that measured radio-
metrically and of the molten vesicle surface B350 K. We have performed a number
of calculations using different values and temperature dependence of the thermal
conductivity of methane, which are unknown. Moreover, we took into account the
latent heat of melting and the possible large increase of the thermal conductivity of
melt. However, this result is quite robust and essentially pressure-independent as
this value is mainly determined by experimental geometry and only weakly
dependent on the thermochemical parameters of the DAC materials. We used this
result to correct the melting temperatures determined in LH DAC experiments:
Tm¼Tc� 350 K for all pressures.
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