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Carbon prices for the next hundred years

Reyer Gerlagh and Matti Liski⇤

July 8, 2016

Abstract

This paper examines the socially optimal pricing of carbon emissions over time

when climate-change impacts are unknown, potentially high-consequence events.

The carbon price tends to increase with income. But learning about impacts, or

their absence, decouples the carbon price from income growth. The price should

grow faster than the economy if the past warming is not substantial enough for

learning the true long-run social cost. It grows slower than the economy as soon as

the warming generates information about events that could have arrived but have

not done so. A quantitative assessment shows that the price grows roughly at the

rate of the economy for the next 100 years.

(JEL classification: H43; H41; D61; D91; Q54; E21. Keywords: carbon price,

climate change, learning, tipping points)
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1 Introduction

A price for carbon is a monetary measure of the social cost that follows from releasing

a unit of carbon dioxide to the atmosphere, based on expected climate-change impacts.

However, there is little or no quantitative information on how climate change impacts

our economies, although there is extensive research on what such impacts might be.1

Rather, the social cost measures build on beliefs about impacts that will be updated

when the “climate experiment” generates actual, potentially catastrophic, impacts. But

this can take a long period of time; the past century of carbon emissions has not yet led

to precise estimates, and another 50-100 years may pass without additional hard evidence

on the ultimate consequences of current emissions.2 Over such long horizons, policies on

global warming have to deal with fundamental changes in the economy as much as with

forthcoming information on how seriously the economy will be impacted.

Economic growth stands out as a major driver of global change when considering a

period such as the next 50-100 years. For the coming century, global income is expected

to grow by multiple factors, in part due to the rise of the middle class in major emerging

economies.3 The US government has recently developed estimates for the carbon price,

for regulatory purposes, assuming that the global GDP increases by a factor that varies

between five and seven in this time-span (see Greenstone et al., 2013).4 The future

economy grown five to seven times bigger, and with almost a century of extra climate-

change experience, prices emissions differently — but how exactly?

Increasing incomes can lead to larger stakes, that is, bigger economic losses per tem-

perature increase; thereby, income growth drives a gradual tightening of policies over

time, the “climate policy ramp” (Nordhaus 2007; Golosov et al. 2014).5 Further support

1See IPCC (2014) for a survey on methods and results. There is a growing empirical literature on how

climate impacts various sectors of the economy (e.g., Deschenes and Greenstone, 2007, and Schlenker

and Roberts, 2009, Dell, Jones, and Olken, 2012).
2Among climate researchers, the delays in learning the impacts are widely accepted. For example,

Roe and Baker (2007) establish that, because of positive feedback mechanisms of the climate system, it

is unlikely that we will better understand the temperature sensitivity to emissions in the near future.
3See, for example, the IPCC Special Report on Emissions Scenarios (2000), U.S. Climate Change

Science Program (2007), Stanford Energy Modeling Forum (for example, in Weyant et al. 2006).
4More recently, Cai et al. (2015b) evaluate the social cost of carbon under stochastic growth, with

stochastic total factor productive calibrated to match empirical data. See also Jenssen and Traeger

(2014).
5There are other arguments such as green technological change for not following gradualism but rather

a jump-start in emissions pricing (van der Zwaan et al. 2002; Gerlagh, Kverndokk and Rosendahl 2009;

and Acemoglu, Aghion, Bursztyn, and Hemous, 2012).
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for the policy ramp is given by expectations that mitigation options become cheaper,

and that climate-change losses are increasing more than proportionally with tempera-

ture change (Wigley et al., 1996). Additionally, when economic growth levels off, capital

returns will diminish (Piketty and Zucman, 2014), and thus the relative returns of the

climate investments increase.

But the policy ramp, as such, does not describe carbon prices for the situation where

climate impacts are fundamentally unknown, including the possibility of a climate tipping

point with large or catastrophic economic impacts. In fact, the critics of the climate-

economy models,6 used for evaluating the policy ramp, are concerned that the models do

not incorporate the main reason for having a carbon price, that is, the climate change

“unknowns” (Pindyck 2013).7

The carbon price development is a necessary input in practical policy making; for

example, plans for phasing out a fleet of polluting vehicles, power generating plants, or

energy inefficient buildings depend on the assumed time path for the carbon price over

the decades to come. Taking the possibility of tipping points as the main reason for

the carbon price, the question arises if the policy makers should still assume that the

carbon price grows roughly at the same rate as the economy? An emerging literature uses

numerical stochastic climate economy models, rather than versions of the deterministic

models criticised by Pindyck (2013), to systematically evaluate if and how the policy

ramp is affected by tipping points. One recent study finds that the initial carbon price is

relatively insensitive to the possibility of a tipping point but it should grow faster than in

the deterministic case (Lemoine and Traeger 2014); others find an opposite result, that

the carbon price starts considerably higher and grows slower over time (Lontzek et al.

2015).

Our contribution is an analytical climate-economy model with closed-form policy

rules for pricing uncertain high-consequence events. The model is detailed enough for

a quantitative assessment of the optimal carbon price path and thus comparable with

6Most evaluations of the social cost of carbon build on a set of middle-of-the-road assumptions on

climate change impacts, commonly expressed in terms of GDP losses, and then use climate-economy

models such as DICE, FUND, or PAGE (see Greenstone, Kopits, and Wolverton (2013) for a succinct

description and references) that combine the impact assumptions with background scenarios to obtain

a monetised value for the social cost.
7For many economists, such climate uncertainties and the implied low-probability but high-

consequence events, which cannot be ruled out by new information any time soon, have become the

prime argument for having a price for carbon (Weitzman, 2009, 2011, 2013). See also Lange and Treich

(2008), and Heal and Millner (2014) for surveys on uncertainties in climate-change economics.
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the computational approaches; yet, the model is explicit about the key drivers of the

policy ramp. Similarly as Golosov, Hassler, Krusell, and Tsyvinski (2014) develop the

analytical foundations of climate policies building on a workhorse model in analytical

macroeconomics (Brock and Mirman, 1972), we develop a tractable pricing rule for the

tipping points.

The optimal pricing of tipping points is sensitive to past experience, with the following

dichotomy. First, we find that the carbon price grows faster than the economy, if the past

experience cannot generate information that is substantial enough for learning the true

long-run cost of the emissions. For example, 1 degree Celsius warming above the prein-

dustrial levels may be taken as a safe limit, but this also implies that temperatures below

this limit generate no information about the future events. As the economy approaches

such higher temperatures, the potential regime shift damage becomes increasingly more

relevant to the policy maker and the optimal carbon tax grows faster than implied by

a model with smooth annual economic damages from climate change. Second, as soon

as warming is sufficient to generate information about events that could have arrived

but have not done so, the carbon price grows slower than the economy and may even

decline. Thus, conditional on the possibility of a regime shift but no occurrence, the

event becomes less likely over time and the optimal carbon tax falls relative to a smooth

model. This learning effect captures the idea that if the economy grows over periods such

as the next 50-100 years without verifiable economic climate-change impacts, there can

be increasing optimism. There is thus a downward pressure in the carbon price from this

source that coexists with the upward pressured from the growing economic stakes. The

question is then which pressure dominates?

In a quantitative assessment, we address the question if there can, in principle, be a

case for increasing optimism that reverses the ramp implied by growing economic stakes.

We calibrate the beliefs regarding the impacts, learning rates, and the potential economic

losses to the choices made in the numerical stochastic climate economy models (Lemoine

and Traeger, 2014; Lontzek et al., 2015). It turns out that there is a fairly representative

set of choices for the “triple” (beliefs, learning rates, impacts). To overturn the ramp

where the carbon price grows roughly at the rate of the economy for the next 100 years,

one would have to dramatically deviate from the typical values for the triple; in particular,

the planner would have to rule out severe climate impacts by orders of magnitude faster

than what is implied by the scenario in our explorative calibration.

The implications of this observation are not minor: as we show, the extreme per-

sistence of beliefs about ultimate impacts can lead to policies that fully decarbonise
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the economy, even without actual experience of such climate-change impacts. Take,

for example, the 2015 United Nations Climate Change Conference outcome that calls

for decarbonisation by the end of the century. We assess how big the unknown event

would have to be to justify this target as an optimal policy. The potential impact on

the economy should be by a factor 10 larger than the central impact assessments in the

literature.

Methodologically, the results provide a bridge between the climate-economy models

(Integrated Assessment Models, IAMs) based on middle-of-the-road impact estimates,

and their critics expressing concerns that these models do not cover “unknowns” that

should be the main reason for having a carbon price (Pindyck 2013).8 We reconcile

the views in a model supporting a carbon price ramp, not based on moderate climate

change damages that arise smoothly over time, but through a description of uncertain

high-consequence events and belief updating. Effectively, the setting developed here be-

comes a macroeconomic experimentation model with learning of unknown arrival rates

as in Keller, Rady and Cripps (2005). The description of the macroeconomy builds on

the Brock-Mirman model (1972), following Golosov et al. (2014); however, we introduce

climate change differently through a hidden state that determines whether a negative

productivity shock can hit the economy in the future. Also, we adopt a rich emissions-

temperature response, including the delays between emissions and potential impacts.9

Such delays are necessary for a quantitative assessment that has some hope to be com-

parable to those in the comprehensive climate-economy models.

Our results complement those in the literature that introduces uncertainties and an-

ticipated learning into the integrated assessment models. For example, Kelly and Kolstad

(1999) and Leach (2007) analyse the speed of learning under smooth climate change and

find that learning is very slow. Jensen and Traeger (2013) quantify the impact of such

slow learning on the social cost of carbon; they find that the impact on the current

policies is not significant. Kelly and Tan (2015) find that some aspects of learning are

faster under fat-tailed climate risk. Thus, while our approach is analytical and the focus

is on regime shifts, the substantial lessons are consistent with the literature on smooth

8By the nature of our quantitative exercise, we rule out “tail events”. The supporting potential

high-damage climate event that justifies the estimated initial carbon price is equivalent to a GDP-loss

of about 10 per cent at temperatures that are 3 degrees Celsius above the pre-industrial level. Such an

event is economically significant but not a “tail event” in the sense of Weitzman (2009) where policies

become undefined since, effectively, it is not possible to transfer wealth to the high consequence events;

see, for example, Nordhaus (2010) and Millner (2013) for discussion.
9This extension builds on Gerlagh and Liski (2016).
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learning.

The paper is structured as follows. In Section 2, we first explain the basic planning

problem, and introduce the learning and climate dynamics. In Section 3, we characterise

the optimal policies. In Section 4, we calibrate the model and perform the quantitative

assessment. Section 5 concludes. The online supplementary file contains a program for

reproducing the quantitative assessment and the graphs in the text.10

2 The climate-economy model

2.1 The basic setting

We consider a climate-economy planning problem where production possibilities at time

t depend on capital kt inherited, and potentially also on the full history of carbon input

use,

st = (z0, ..., zt�1).

Given kt and history st at time period t, consumption, ct, and carbon inputs, zt, are

chosen to maximise the expected discounted utility

maxEt

X1

τ=0
δτut+τ (1)

where 0 < δ < 1 is the discount factor and ut+τ is the periodic utility, specified below.

The chosen allocations must satisfy

ct + kt+1 = yt, (2)

with yt = ft(kt, st, zt) denoting the output at time t. Losses due to climate change

depend on the history of emissions st through variable Dt that is a measure of the global

mean temperature increase above the pre-industrial levels at time t. We assume that this

measure is a function of history st,

Dt =
Xt

τ=1
R(τ)zt�τ (3)

where the weights R(τ) define the “emissions-temperature response”. That is, current

emissions zt affect temperatures at some later time t+ τ according to a known response

function R(τ):

dDt+τ

dzt
= R(τ) > 0. (4)

10Follow the link https://www.dropbox.com/sh/7meos655j14jh5p/_dlr8X_FHI
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Below, in equation (9), we provide a parametric form for the response function, connect-

ing to the fundamentals of the climate problem. The key characteristic of R(τ) is the

considerable delay of the response following an impulse of emissions; it has a non-linear

shape peaking several decades after the date of the emissions, and a fat tail of almost

permanent impacts. Simplistically, there is no uncertainty about R(τ); the response

serves the purpose of introducing delays to the potential impacts on the economy that,

in turn, will be uncertain.

Output is given by production function

yt = kα
t At(zt) exp(�∆y,tDt), (5)

where 0 < α < 1, and the contribution of carbon inputs zt enter through function At(zt)

that captures the energy sector of the economy as well as the total factor productivity.

Formally, we treat carbon inputs zt as reproducible, and thereby do not impose an upper

limit for the total cumulative use. The assumption is motivated by the size of carbon

deposits in the form of coal that exceeds the absorptive capacity of the atmosphere.11 The

analytical results do not require a specific form At; we postpone the detailed discussion

of At to Section 4.3. Here, we merely assume that carbon input zt has a positive but

diminishing marginal product.

Losses from the temperature increase arise potentially from two sources. First, they

can lead to reduced output, through the negative productivity impact in (5), as in most

applied climate-economy models (e.g., Nordhaus, 2008). This impact depends on the

full history of emissions, determining current temperature Dt through (4), and damage

coefficient ∆y,t > 0 that is a stochastic variable. For illustration, assuming constant

∆y,t = ∆y > 0, the output loss per unit of emissions equals [1 � exp(�∆yR(τ))], τ

periods after the date of emissions. For the life-path of the impact, see Fig. 1, discussed

in detail below.

Second, we allow a direct impact on periodic utility that we define as

ut = u(ct)�∆u,tDt, (6)

where u (ct) = ln(ct), ∆u,t > 0.12 While the current and past impacts are known, the

11See Gerlagh (2011) and van der Ploeg and Withagen (2012) for detailed analysis. Golosov et al.

(2014) consider the effect of resource scarcity on climate policies for a parametric class of preferences

and technologies coming close to the ones used in this paper.
12The impact of climate change on output can be equivalently represented as direct utility losses in our

framework, a result that we want to illustrate by this formation. Our main interest is in the productivity
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sequence of future impacts

{∆y,t+τ ,∆u,t+τ}τ>0 (7)

is not known to the policy maker.

The next Section specifies how the policy maker learns the future impacts in (7).

But first we stop to discuss the critical assumptions of the main model structure that

originates back to Brock-Mirman (1972) who first introduced the core of this analytical

consumption choice model. There are four main critical assumptions: (i) logarithmic

consumption utility; (ii) full one period depreciation of capital, see eq. (2); (iii) emissions-

temperature response that we have denoted by R(τ); and (iv) exponential impact of

climate on output. Barrage (2014), in a supplement to Golosov et al. (2014), has

numerically assessed the loss of generality implied by assumptions (i) and (ii) in a context

similar to ours. In the end, the question is how well this set of assumptions, that leads

to analytical policy rules, approximates a more general case that requires numerical

approaches. Log utility implies a relatively low preference for consumption smoothing

over time, thereby making the decision maker “patient”, increasing the initial carbon

price level when compared to a case where the utility function has more curvature. As

long as we stay in the expected utility framework, this overshooting effect vanishes if we

adjust the time discount rate. We make such an adjustment when calibrating the model

in Section 4.1.13

In contrast, the one period depreciation assumption tends to decrease the carbon

price level and its growth, since it implies a lower growth of the economy than in the

case where some capital survives to the next period. In our analysis, one period has a

length of a decade, which partly offsets the assumption.14 But, again, it is possible to

make adjustments in the calibration procedure to almost exactly offset the full 100 per

cent depreciation, closing the gap between the predictions of the numerical models with

partial depreciation and analytical models with full depreciation.15

impact; a comprehensive analysis of the directly utility impact would need to take a stand on how the

relative value of market and non-market goods depends on climate change, in the spirit of Hoel and

Sterner (2007).
13See Fig. 6 in the Appendix and the related discussion in the main text of Section 4.1. How-

ever, deviations from the expected utility setting, for example, separation of attitudes towards risk and

consumption smoothing, cannot be handled with small adjustments but require a different modelling

approach. See Jenssen and Traeger (2014) and Traeger (2014,2015) for analysis of this issue in the

climate and economy context.
14Arguably, from a business cycle perspective, 10-year periods are rather long for TFP shocks. In

climate change, the relevant time horizon for planning is long enough to justify decadal time steps.
15In the Appendix, we use Fig. 6, cited in the footnote above, to illustrate numerically that the desired
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Assumption (iii), the emissions-temperature response, has a simplistic form in Golosov

et al. (2014). This analytical approximation can perform very poorly, when compared

to the mainstream (numerical) climate-economy models, a result that we demonstrate in

Gerlagh and Liski (2016). We follow the formulation in Gerlagh and Liski (2016), and

introduce it in Section 2.3.

Deviations from assumption (iv), the exponential loss of output, is extensively anal-

ysed in Van den Bijgaart et al. (2016). Combined with the other assumptions, the

exponential loss implies unitary elasticity of output losses with respect to income, from

a given temperature increase, as will be seen as we derive the policy rules. Clearly, the

property is central to the feature of the model that the carbon price increases in lock-step

with income.16 Van den Bijgaart et al. (2016) show that the analytical policies remain

close to those obtained from numerical models, but can deviate considerably under ex-

tremely convex or concave representations of losses. The assumption made in the current

paper can be seen to represent the central case.

2.2 Learning dynamics

There are several conceivable approaches to the process that generates the future climate-

change impacts in (7), specifying how the decision maker forms expectations Et{∆y,t+τ |Ωt}

and Et{∆u,t+τ |Ωt}, where Ωt is the current information set. In one approach, the climate

generates “experience” and thus evidence on a continual basis through events such as

hurricanes, hot-summer spells, or perhaps a long-period of stable climatic conditions;

whether experienced events are due to climate change or within the normal variation is

initially a matter of beliefs. We are not interested in gradual learning but in tipping

points that are hard to learn before they arrive. We assume the economy starts with

no experienced losses but may irreversibly enter a climate-economy state where poten-

tially catastrophic damages occur. Thus, the decision-maker learns by (not) observing

damages, which allows updating the beliefs on the ultimate arrival of such damages.

Specifically, there are two climate-economy states, It 2 {0, 1}. If It = 0, no damages

have been experienced by t. If It = 1, damages have appeared, and once It = 1, then

It+τ = 1 for all τ � 0. The damage coefficient at time t for output, affecting production

in (5), is ∆y,t = ∆yIt, where ∆y > 0 is a constant, independent of time. Similarly, the

adjustment involves recalibrating the capital factor share and the size of the initial capital stock; the

analysis detailing the analytics of the adjustments is provided in the online Appendix.
16More precisely, in this paper, the property holds when learning of climate-change impacts is slow or

if the impacts are known for sure.
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direct utility loss, entering (6), is ∆u,t = ∆uIt.
17

How does the economy make the transit from It = 0 to It+1 = 1? We can think

of an explicit statistical model where the tipping point temperature is unknown but

with known prior distribution; as soon as the critical temperature is exceeded, the event

occurs. This approach has been recently used in Lemoine and Traeger (2014); it originates

back to Tsur and Zemel (1995, 1996). In this approach, experimentation is extremely

informative: the planner is 100% certain that the critical threshold has not been exceeded

at time t if the event has not occurred by time t. Another common approach assumes

event hazard rates that depend on the relevant state of the system, temperature in

our case, without explicitly invoking a threshold. Thus, stabilising the state leads to a

stabilised but positive hazard rate for the event.18 This latter assumption features in

recent papers by Cai et. al. (2013) and Lontzek et al. (2015); see also Clarke and Reed

(1996), Polasky et al. (2011), and Sakamoto (2014).

One may argue that the appropriate statistical model lies between these two ap-

proaches. The planner might have triggered the event in the past, even though it has

not revealed itself yet. This implies delays in learning the event. In models with ex-

ogenous (state-dependent) hazards, this feature is (implicitly) captured since the event

arrival probability remains positive in the long run; it might still happen, even after the

stabilisation of the relevant state. Yet, the current beliefs should explicitly depend on

the past experiments such as the thresholds tried in the past; in this approach, the state

dependent hazard cannot be an exogenous function but depends on the history of past

experiments. We seek to make progress towards modelling such delays in information

arrival, by allowing a role for temperature levels in the hazard rate determination.

The hazard rate for damages, denoted as p, is the probability that damages start and

It = 0 moves to It+1 = 1. The hazard rate is unknown to the policy maker. For the main

part of the analysis, we assume that p has a discrete prior distribution: it can either

take value p = 0 or p = λ > 0, where constant λ can be interpreted as the intensity

of experimentation. Later, we allow λ to change over time, and also depend on critical

temperature levels.

17The model describes the delay between emissions and temperatures through the response function

R(τ), but it does not explicate that tipping points can have their own very slow dynamics. Some tipping

point, once triggered, might unfold their impacts only gradually over time. If the Greenland icesheet

becomes unstable, it may still take centuries for the sea level to rise. For rich tipping-point dynamics,

see Cai et al. (2015a).
18The property of a persistent hazard rate marks an important distinction between this approach and

the threshold model, where such persistent hazard rate is impossible.
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We assume a subjective prior probability µ0 > 0 for a positive hazard rate, p = λ.

The probability for eventual climate impacts satisfies:

1� µ0 = Pr( lim
t!1

It = 0) = Pr(p = 0)

µ0 = Pr( lim
t!1

It = 1) = Pr(p = λ > 0).

Thus, µ0 > 0 can be interpreted as the decision maker’s initial belief that there will be

long-run climate impacts. To illustrate, the assumptions in Lemoine and Traeger (2014)

imply that µ0 ⇡ .8, if the temperature is expected to increase to about 3.3 degrees

Celsius.19 In our quantitative analysis, we use this number as our benchmark.

Let µt denote the posterior probability that p = λ at time t, conditional on no impacts

having yet occurred by time t, It = 0. Each period where no damages have appeared

so far, It = 0, climate change runs an experiment. If the outcome is It+1 = 1, which

happens with probability µtλ > 0, we have learned that p = λ, so µt+1 = 1. If the

outcome is It+1 = 0, we have not learned the state of nature with certainty, but the

beliefs are updated to µt+1. We can write the Bayesian updating rule as20

µt = Pr(p = λ |It = 0) (8)

=
µ0(1� λ)t

µ0(1� λ)t + 1� µ0

which is the probability that climate change impacts will ultimately arrive even though

such damages have not been experienced by time t. Note that µt declines over time:

“no news is good news”; the assessment of the distribution for damages becomes more

optimistic over time.21 The choices in triple (µt,λ,∆) describe the current beliefs, the

underlying stochastic process for damages, and the size of damages, respectively.22 The

triple thus describes the subjective part of carbon pricing, the informativeness of the

experiment, and the economic stakes involved.

19See their fn. 11.
20Note that Pr(p = λ |It = 0)⇥ Pr(It = 0) = Pr(p = λ \ It = 0). The probability that there has been

no news by time t is Pr(It = 0) = µ
0
(1� λ)t + 1� µ

0
. The probability that there has been no news by

time t and that p = λ is Pr(p = λ \ It = 0) = µ
0
(1� λ)t. Combining gives the equation.

21One could argue that impacts must ultimately arrive for a sufficiently severe climate change. While

the model can be extended to include temperature brackets where impacts arrive almost surely, it is

also reasonable to think that, for example, a long period of 2-degrees warming without major impacts

is evidence for not having major impacts at such temperatures. Even if one considers “no news is good

news” learning to be biased, this bias is consistent with the idea of having a conservative test against

the climate policy ramp, as explained in the Introduction.
22We define ∆ in Remark 2
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Variants of the learning dynamics considered here are common in other fields of eco-

nomics but some features of the setting deserve attention. Malueg and Tsutsui (1997)

were among the first to consider learning of unknown Poisson rates in an R&D race; see

also, for example, Keller, Rady, and Cripps (2005), and Bonatti and Hörner (2011). In

this literature, new information is generated by periodic effort; no current effort means

no new information. In our setting, one could also introduce effort for information ac-

quisition so that news about impacts could arrive separately from experiencing them.

However, in climate change it seems less natural to assume that pure research could

produce robust information about how the physical reality interacts with the economy,

without actual experienced impacts. The basic model introduced here connects the ex-

perience and learning in a stark way.23

2.3 Climate dynamics

Learning is delayed but there is also a mechanical delay in how the economic stakes

depend on emissions, due to climate-system inertia. The delay between the current

emissions and future temperatures, denoted by R(τ) in Section 2.1, is captured by a

somewhat detailed analytical representation; nevertheless, it is a necessary input to the

quantitative assessment if one is interested in results comparable to those in the literature

using numerical climate-economy models. We build on a closed-form for R(τ) that is

derived in Gerlagh and Liski (2016), Theorem 1.

Remark 1 Consider a carbon diffusion process, described by a set of impulse-responses

I, with fraction 0 < ai < 0 of emissions having decay rate 0 6 ηi < 1, i 2 I. For

temperature sensitivity π and adjustment speed ε, the impact of emissions at time t on

temperatures at time t+ τ is

dDt+τ

dzt
= R(τ) =

X
i2I

aiπε
(1� ηi)

τ � (1� ε)τ

ε� ηi
> 0. (9)

To explain this result, we outline first the two main determinants of the response: the

carbon cycle and the relationship between carbon concentrations and temperatures. The

carbon cycle refers to a diffusion process of carbon between reservoirs of carbon, such as

23 It should be noted that an explicit model of learning that combines the threshold model with

learning delays should keep track of the experiments performed in the past: each past temperature

increase is a new experiment whose outcome becomes known only with a delay. For tractability, we

ignore such history dependence; Proposition 2 below approximates this feature. This question is the

topic of ongoing research by Liski and Salanié (2015).
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those in the atmosphere, oceans and biosphere. Obviously, the atmospheric reservoir is

the one relevant for climate warming but the other reservoirs are relevant for the delays

and persistencies of changes in the atmospheric stock. Assuming a linear diffusion, the

system can be de-coupled by eliminating interactions between the reservoirs, leading to an

isomorphic system of separable impulse-responses for carbon stocks (Maier-Reimer and

Hasselman 1987). The shares and decay rates have intuitive meanings, discussed just

below, and they follow from the physical description of the system of carbon reservoirs.24

The carbon cycle is relatively well understood in natural sciences but the relation-

ship between temperatures and carbon concentrations is fundamentally uncertain (see,

for example, Roe and Baker, 2007). Acknowledging these complications, we note that

economic impacts introduce yet another layer of fundamental uncertainty; we focus on

this uncertainty and make the following simplistic assumptions on the determinants of

the climate equilibrium. Emissions zt increase the atmospheric CO2 stock, through the

carbon cycle, and there is a linear relationship between the steady state atmospheric CO2

stock and the steady state level of Dt. This relationship is captured by parameter π: a

one-unit increase in the steady-state atmospheric CO2 stock leads to a π-unit increase

in the steady-state level of Dt. Outside steady state, there is a delay in the effect from

concentrations to temperatures, and this delay is captured by parameter 0 < ε < 1: a

one-unit increase in emissions increases the next period CO2 stocks one-to-one but the

direct temperature increase is only επ -units

Parameter ηi captures, for example, the carbon uptake from the atmosphere by forests

and other biomass, and oceans. The term (1 � ηi)
τ measures how much of carbon

zt under decay i still lives after τ periods, and the term �(1 � ε)τ captures the slow

temperature adjustment. The limiting cases can be helpful. Consider one CO2 reservoir.

If atmospheric carbon-dioxide does not depreciate at all, η = 0, then the temperature

slowly converges at speed ε to the long-run equilibrium climate sensitivity π, giving

R(τ) = π[1 � (1 � ε)τ ]. If atmospheric carbon-dioxide depreciates fully, η = 1, the

temperature immediately adjusts to πε, and then slowly converges to zero, R(τ) =

πε(1 � ε)τ�1. If temperature adjustment is immediate, ε = 1, then the temperature

response function directly follows the carbon-dioxide depreciation R(τ) = π(1 � η)τ�1.

If temperature adjustment is absent, ε = 0, there is no response, R(τ) = 0.

When multiplying temperature measure Dt by given output-loss coefficient ∆y > 0,

we can interpret the emissions-temperature response as an emissions-damage response.

24The true diffusion process is non-linear (Joos et al. 2013); the linear representation should be seen

as an approximation.
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Figure 1: Emissions-damage response. The path depicts the output loss associated with

1TtCO2 impulse of carbon at time t = 0 for ∆y = 1 and π = .0156.

Fig. 1 shows the life path of damages (percentage of total output) caused by an impulse

of one Teraton of Carbon [TtCO2] in the first period.25 The output loss is thus measured

per TtCO2, and it equals 1 � exp(�∆yR(τ)), τ periods after the impulse. The non-

monotonicity of the response, as depicted in Fig. 1, captures well the climate impact

dynamics, for example, in DICE-2007 (Nordhaus, 2008).

The physical data on carbon emissions, stocks in various reservoirs, and the observed

concentration developments can be used to calibrate a three-reservoir carbon cycle repre-

sentation; we choose the following emission shares and depreciation factors per decade:26

a = (.163, .184, .449)

η = (0, .074, .470).

Thus, about 16 per cent of carbon emissions does not depreciate while about 45 per cent

has a half-time of one decade. We assume ε = .183 per decade, implying a global tem-

perature adjustment speed of 2 per cent per year. Normalizing the output loss parameter

at unity, ∆y = 1, and setting π = .0156 [per TtC02, see Gerlagh and Liski (2016)] is con-

sistent with the Nordhaus (2008) baseline where a temperature rise of 3 degrees Celsius

25One TtCO2 equals about 25 years of global CO2 emissions at current levels (40 GtCO2/yr.)
26Some fraction of emissions depreciates within one decade from the atmosphere, and therefore the

shares ai do not sum to unity. The choices here are based on Gerlagh and Liski (2016) but similar

representative numbers can be found in the scientific literature; see, e.g., Maier-Reimer and Hasselman

(1987).
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leads to about 2.7 per cent loss of output.27 These quantitative choices parametrise the

emissions-temperature response that is depicted in Figure 1. In the calibration below,

we choose ∆y to match previous studies on tipping points; throughout, ∆y = 1 refers to

Nordhaus’ baseline.

3 Optimal policies

The economic problem defined through (1)-(6), together with learning and dynamics in

Sections 2.2 and 2.3, is essentially the same as in Brock-Mirman (1972) consumption-

choice model. The dynamic programming arguments leading to the optimal saving poli-

cies are well known in analytical macro-economics (Sargent, 1987).28 The state vector is

(kt, st,Ωt), where information set Ωt includes It and the current belief µt. Because of the

log-utility for consumption, full capital depreciation in one period, and Cobb-Douglas

capital contribution, the optimal savings can be expressed as a share of the gross output

that is left as capital for the next period:

g = αδ. (10)

Anticipating the quantitative analysis, we will match capital share α and savings g with

the representative values, leaving time preference δ as the adjusting parameter. Thus,

in this parametric class, savings can be evaluated without paying attention to climate

policies; formally, welfare (i.e., value function) will be separable in the contributions of

kt and st. Therefore, the climate policy analysis can be conducted by taking savings

g as given and by tracking the direct utility impacts of the potential loss from climate

change.29 It proves useful to aggregate both the potential output and direct utility losses

into one measure:

Remark 2 For It = 1, the present-value loss of utils from marginal climate change at

time t is

∆ ⌘ �
X1

τ=0
δτ

dut+τ

dDt

= ∆u +
∆y

1� g
. (11)

27To clarify the units, the damages are measured per Teraton of CO2 [TtonCO2], and the 3 degrees

Celsius rise follows from doubling the CO2 stock. We have chosen the value of π such that the normal-

isation ∆y = 1 gives the Nordhaus case. For this reason, the interpretation of π is “climate damage

sensitivity” rather than “climate sensitivity”.
28These, and the derivation of the optimal climate policy rule, are provided in the Appendix using

dynamic programming. Yet, the analysis in the main text is self-contained.
29See also Golosov et al. (2014) or Gerlagh and Liski (2016).
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Thus, output and direct utility losses are comparable in terms of their effect on

utility; for convenience, we will use ∆ as an aggregate measure of both losses. For the

proof of the remark, consider the effect of temperature Dt+τ on utility in period t + τ

when It = 1 (climate impacts have arrived). Recall that the consumption utility is

ln(ct+τ ) = ln((1� g)yt+τ ) = ln(1� g) + ln(yt+τ ) so that, through the exponential output

loss, the consumption utility loss is given by ∂ln(ct+τ )/∂Dt+τ = �∆y. As there is also

the direct utility loss, captured by ∆u in (6), the full loss in utils at t+ τ is

�
dut+τ

dDt+τ

= ∆y +∆u.

But, part g of the output loss at t+ τ also propagates through savings to period t+ τ +1

and further to periods t + τ + n with n > 0, so that the full loss of utils, discounted to

time t and denoted by ∆, is given by (11). In our calibration, we quantify ∆y and set

∆u = 0, for ease of comparison with the literature.

3.1 Climate policies if impacts arrive

Saving rule g is not affected by the potential climate shock, but the climate policy rule

depends on state It. We solve the climate policy by working “backwards”; we find the

optimal policy in contingency It = 1, and then in It = 0. Thus, first set It = 1,

and consider the social cost of current carbon emissions zt, obtained from the effect

of emissions at t on a stream of future utilities. The full loss of utils per increase of

temperatures as measured by Dt+τ , caused by zt at time t, when discounted to t with

factor 0 < δ < 1, is denoted by h. It follows with the aid of (9) and (11):

h ⌘ �
P1

τ=1 δ
τ dut+τ

dzt

= ∆
P1

τ=1 δ
τ dDt+τ

dzt
= ∆

P1

τ=1 δ
τR(τ) (12)

= ∆

X
i2I

aiπε

ε� ηi

P1

τ=1 δ
τ (1� ηi)

τ � δτ (1� εj)
τ

= δ∆π
ε

1� δ(1� ε)

X
i2I

ai
1� δ(1� ηi)

. (13)

The present-value utility costs of current emissions can thus be compressed to a

number, h, that will be an input to the determination of the currently optimal carbon

price. The first term on the right-hand side, δ∆π, describes the utility loss associated

with one emission unit when steady state damages would happen immediately at the next

period. The second term discounts damages because of the time-delay associated with
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temperature adjustment. The third term with the summation describes the persistence

of damages as the atmospheric CO2 stock decays slowly.30

Remark 3 Conditional on It = 1, the optimal carbon price is

τ t =
∂yt
∂zt

= (1� g)ytδ∆π
ε

1� δ(1� ε)

X
i2I

ai
1� δ(1� ηi)

. (14)

Thus, if impacts arrive, the optimal carbon price in (14) develops in lock-step with

income, with the degree of proportionality depending on δ, ∆, and the climate-system

parameters. This rule differs from that in Golosov et al. (2014) mainly because of

the carbon cycle and loss parameter ∆ that includes both utility and output losses. In

particular, the same tax is optimal for any division between utility and production losses

satisfying (11).

For the proof, as noted above, the payoff implications of temperature changes are sep-

arable from the payoff implications of changes in capital. Then, the climate policy can

be found by looking at the present-value of future utility costs of current emissions, hold-

ing savings fixed, and balancing these future impacts with the current utility-weighted

marginal product of carbon: ∂yt
∂zt

∂u
∂c

= h. Since ∂ut

∂ct
= 1/ct = 1/(1 � g)yt, we can express

the optimal carbon price as

τ t =
∂yt
∂zt

= h(1� g)yt (15)

which, after using the previously derived h, gives the result.

This parametric class for preferences and technologies effectively implies a unit elas-

ticity of losses with respect to economic stakes. There is an emerging set of papers that

focus on relaxing this assumption, among other issues, in numerical evaluations of car-

bon taxes (Barrage, 2014; Van den Bijgaart, 2016; Rezai and Van der Ploeg, 2015). The

assumption represents an intermediate position in the following sense. Some economic

climate-change losses, such as decreased agricultural yields in tropical areas, are likely to

increase less than one-to-one with income, as the share of the agricultural sector tends

to decrease when income grows. At the same time, as these agricultural impacts are

expected to be more severe in the currently warm-climate and less-developed countries,

the share of damages in world-wide income will increase when those economies grow at

30The last term shows that the effective discounting of the utility impacts interacts with the decay

of the carbon. In particular, if all carbon reservoirs have a positive decay, the present value of impacts

remains bounded even when δ ! 1. But, some fraction of carbon is persistent (Section 2.3), so that the

present value becomes unbounded for sufficiently low discounting. See Gerlagh and Liski (2016).
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rates larger than the world-wide average growth rate. Also, the monetary evaluation of

economically intangible impacts such as ecological losses are expected to increase more

than proportionally with income (Mendelsohn et al., 2006; Mendelsohn et al., 2012).

3.2 Climate policies before impacts

Once damages appear, the policies can be determined exactly as in Proposition 3. Prior

to their appearance, the model generates a parametric distribution for the time when

damages occur. Let Z be the stochastic variable, measuring the full future utility cost

from increasing current emissions zt marginally. Let ht = EtZ be the expected present

value of future utility losses associated with one unit of current emissions. Z can take the

values Z1, Z2, ...., where Zτ is the current social cost of carbon if damages appear for the

first time, precisely at period t + τ . Thus, Zτ characterises the present-value marginal

utility losses from current emissions zt, assuming that the damage indicator It remains

at zero for all periods prior to t + τ but then turns positive. Proceeding as in Section

3.1, and using the emissions-temperature response from Section 2.3, we can obtain the

present-value of such delayed utility losses in closed-form:

Zτ = ∆

X1

s=τ
δsR(s)

= ∆

X
i2I

πaiε

ε� ηi
δτ
✓

(1� ηi)
τ

[1� δ(1� ηi)]
�

(1� ε)τ

[1� δ(1� ε)]

◆
.

Given our model of learning, we find for the distribution of Z that

Pr(Z = Zτ |It = 0) = Pr(Iτ = 1 \ Iτ�1 = 0|It = 0)

which gives the probability that damages turn positive exactly after τ periods when the

current time t subjective belief for the climate problem is µt. To find the corresponding

cumulative distribution function for the utility losses, denoted by Ft(Z), we first establish

the probability that the damage has revealed itself at period t, irrespective of whether t

is the first time:

Pr(It = 1) = (1� µ0) Pr(It = 1|p = 0) + µ0 Pr(It = 1|p = λ)

= µ0[1� Pr(It = 0|p = λ)]

= µ0[1� Pr(I1 = ... = It = 0|p = λ)]

= µ0[1� (1� λ)t].

We can generalise this to expectations at period t,

Pr(It+τ = 1|It = 0) = µt[1� (1� λ)τ ]
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so that the distribution for Z is then given by

Ft(Zτ ) = Pr(Z  Zτ |It = 0) = Pr(It+τ�1 = 0|It = 0) (16)

= 1� µt + µt(1� λ)τ�1.

We can use this distribution to determine the social cost of carbon at time t as

dependent on beliefs µt.

Theorem 1 Conditional on no experience of impacts by time t (It = 0), the previous-

period distribution of the social cost of carbon Ft�1(Z) stochastically dominates the cur-

rent distribution Ft(Z). The social cost of carbon as measured by ht = EtZ declines over

time conditional on It = 0. Moreover,

ht ⌘ EtZ =
P1

τ=1 δ
τ
Et

dut+τ

dzt
= µth

l

hl ⌘ δ∆π
ε

1� δ(1� ε)

X
i2I

ai
1� δ(1� ηi)

�δ(1� λ)∆π
ε

1� δ(1� λ)(1� ε)

X
i2I

ai
1� δ(1� λ)(1� ηi)

.

Proof. The expected utility losses from current emissions are equal to

ht = Et∆
P1

τ=1 δ
τIt+τ

dDt+τ

dzt
= ∆

P1

τ=1 δ
τ Pr(It+τ = 1|It = 0)R(τ)

= µt∆[
P1

τ=1 δ
τR(τ)�

P1

τ=1(1� λ)τδτR(τ)].

Using our temperature-response function leads to the expression for ht. Decreasing car-

bon prices measured in utils and stochastic dominance follow from (16) and µt decreasing

over time.

The result gives the social cost of carbon in closed form; in particular, the cost depends

on (µ0,λ,∆) that are the three critical parameters in our calibration and quantitative

assessment. The first term on the right in the definition of hl equals h that is the full

information policy variable, defined in (13). Intuitively, the second term subtracts from h

the present value of damages that in expectations do not occur, substituting δ(1�λ) for

the discount factor. Now, the optimal carbon price translates the utility losses to money,

and equals the income-weighted future utility-cost of current actions, analogous to (14).

More formally, the current utility-weighted gain from increasing emissions (∂yt
∂zt

u0
t) should

be equated with the current perception of the future marginal loss in utils (µth
l):
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Proposition 1 The optimal learning-adjusted carbon price is

τ t = µth
l(1� g)yt. (17)

This form for carbon pricing is the key to the main result of this paper: the tax is no

longer developing in lock-step with income, as was the case with full information. Below,

in the next Section, we allow the belief dependent part of the rule develop more generally

so that the intensity of learning, as measured by λ, can be a function of temperature, or

perhaps a function of time. But constant λ, assumed so far, is useful for understanding

the mechanisms at work.31

Limiting cases reveal the mechanisms at work. Consider time t = 0, where the

subjective belief of damages is given by µ0 < 1. If damages are almost surely observable,

λ % 1, the optimal initial policy prior to experimentation is the full information policy,

weighted with the subjective probability for damages, hl ! h. However, if damages do

not appear the next period, I1 = 0, then the subjective assessment µ1 drops to zero by

the updating rule (8) as beliefs become very optimist, and the carbon price drops to zero,

µ1 & 0, h1 = µ1h
l & 0. In this case, “no news” reveals the true climate-economy state

precisely. On the other hand, if climate change damages are not easily observable, λ & 0,

climate change is a problem with a non-significant rate of appearances in all cases and

carbon prices are low, hl & 0. But this case also implies that climate experiments are

not very informative; there will be no learning, and the subjective assessment µt in (8)

remains almost unchanged over time.

The experience-sensitive “climate policy ramp” thus depends on the intensity of learn-

ing. Our calibration matches this intensity with the representative values used in the

recent climate science and economics literature to evaluate how quickly the tax path can

be expected to depart from the income path.

3.3 Carbon price growth rate

Above, learning led to carbon prices growing slower than the economy. This is consis-

tent with the recent numerical findings presented in Lontzek et al. (2015), but not with

Lemoine and Traeger (2014). As explained in Section 2.2, these two contributions illus-

trate two distinct views on how information about extreme events is expected to arrive.

31Equation (17), while simple, makes the current tax to depend on the full state of the economy

through yt. Moreover, τ t looks only at the cost side of current emissions by giving the money-metric

social cost per ton of emissions; the deepness of the cuts in emissions induced depends on further details

of the energy sector (provided in Section 4.3).
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Now, we generalise our specification so that the same model can cover both cases; that

is, carbon prices can also grow faster than the economy.

For the idea of the generalisation, note that if the model with constant hazard rate had

already been running for centuries, then the existence of damages would most likely have

become known by now. So, why cannot we ignore the possibility of high impacts? The

puzzle comes from the constant experimentation intensity, which we relax below. Suppose

now that a climate system that varies within the natural boundaries does not lead to

catastrophes. Catastrophes — and learning — take place only above a temperature

threshold, Dt � D, corresponding, for example, to 1 or 2 degrees Celsius above the pre-

industrial temperature levels.32 When learning requires exceeding such thresholds, the

carbon price should grow faster than the economy, as follows:

Proposition 2 Assume that temperatures generate information on impacts only if Dt �

D > 0. Let D0 < D and t0 < 1 be the first period such that Dt0 > D. Then, prior to t0,

the expected current-value utility impact of emissions increases over time: ht < ht+1 for

0 < t < t0.

Proof. Let T be the set of periods τ such that Dτ > D. The expected utility losses

for 0 < t < t0 satisfy

ht = Et∆
P1

s=1 δ
sIt+s

dDt+s

dzt

= ∆
P
τ2T

⇢
Pr(Iτ = 1 \ Iτ�1 = 0|It = 0)

P1

s=τ�t δ
sdDt+s

dzt

�

= ∆
P
τ2T

�
Pr(Iτ = 1 \ Iτ�1 = 0|It = 0)

P1

s=τ�t δ
sR(s)

 

< ∆
P
τ2T

�
Pr(Iτ = 1 \ Iτ�1 = 0|It = 0)

P1

s=τ�t�1 δ
sR(s)

 

= ∆
P
τ2T

n
Pr(Iτ = 1 \ Iτ�1 = 0|It+1 = 0)

P1

s=τ�(t+1) δ
sR(s)

o

= ∆
P
τ2T

⇢
Pr(Iτ = 1 \ Iτ�1 = 0|It+1 = 0)

P1

s=τ�(t+1) δ
sdDt+1+s

dzt+1

�

= Et+1∆
P1

s=1 δ
sIt+1+s

dDt+1+s

dzt+1

= ht+1

32Records show that over the last million years global temperatures have a cycle of glacials and inter-

glacials, spanning a temperature range of about 10 degrees Celsius. The current Holocene interglacial

is at the upper end of the range. Global warming is expected to bring temperatures out of the range

observed over a million years.
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The second line follows because It = 0 with certainty for 0 < t < t0. The inequality

follows as we subtract one period to take one period of delay away. The fifth line follows

as beliefs do not change between t and t+ 1.

As long as no information can be obtained, no damages will occur but policy ht

becomes more strict over time as the expected first appearance of damages comes closer.

In spirit, while formally different, this mechanism captures the source of policy tightening

in Lemoine and Traeger (2014).33

Proposition 3 For 0 < t < t0, defined in Proposition 2, the optimal carbon tax grows

faster than the economy.

Mechanically, since the actual carbon tax is a multiple of income, the tax implied by

ht for Dt < D will be growing over time at a rate exceeding the growth of the economy,

by Proposition 2. The tightening of policies continues until the temperatures start gener-

ating information; thereafter, the optimal carbon tax grows slower than the economy as

in the previous Section. Further, recall that our emissions-temperature response implies

that the temperature peak for a given emissions impulse lags 60-70 years behind the date

of emissions: the learning of effects from temperatures can start several decades after the

emissions that caused climate change to break through the threshold. Thus, the shape

of the emissions-temperature response, R(τ) is thus not only important as a measure of

the development over time for the potential shock on the economy; it also dictates how

quickly the climate experiment can become informative. This is not unheard of in climate

science (Roe and Baker, 2007); the instrumental value of current emissions to generate

sharper estimates before 2050 on the possibility of severe climate change impacts is, by

the nature of climate change, very limited.34

We can generalise our formula to describe the basic learning model and the threshold

model at one go. Consider that the learning intensity increases over time, along with

global temperature rise; that is, λt becomes time-dependent.35 We now rewrite the

33In that paper, the support for the tipping point temperature is uniform so that the hazard rate for

the event increases with a longer emissions history.
34But, to be conservative in the quantitative analysis, we eliminate this delay in learning and allow

better information to work against the climate policy ramp from the start.
35For tractability, we do not write λt as explicitly dependent on the temperature change. A fully

specified temperature-dependent experimentation intensity requires further conceptual steps; see the

discussion in Section 2.2 and fn. 23.
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Bayesian updating of the beliefs, in equation (8), through

µt = Pr(λt > 0 |It = 0)

=
(1� λt)µt�1

1� λtµt�1

so that the full utility impact described in Theorem 1 becomes

ht = µt∆[
P1

τ=1 δ
τR(τ)�

P1

τ=1 δ
τR(τ)

Qτ

s=1(1� λt+s)].

The equation describes both the basic learning model and the learning threshold

model. For λt increasing over time, there are two opposing effects. First, µt declines

over time as long as λt > 0, pressing down variable ht. Second, the most-right variable

within the product increases with t, and as it enters negatively, this will increase ht. The

above propositions inform us that for λt almost constant, the first effect dominates so

that carbon policy ht becomes less stringent over time, while for sharply increasing λt the

policy will tend to become more demanding over time, with carbon prices rising faster

than income.

3.4 The effect of discounting

Theorem 1 decomposes the utility impacts of emissions into a post-learning carbon price

and the net present value of impacts in the early periods, in which a catastrophe is

relatively unlikely to happen. In this sense, there is a delay in the time structure of

expected damages. The economic consequence of this feature is that carbon prices based

on uncertain catastrophes will be more sensitive to discounting, compared to carbon

prices based on a certain damage profile. In technical terms, the carbon price is log-convex

in the discount factor. We state this result in Proposition 4 below. The proposition is

conditional on a discount factor that is not too low. If δ is less than a half, then the

planner values the entire future less than twice the immediate next period, and the delay

structure of climate damages, which extends to multiple periods, is less important.

We write hl
λ for hl defined in Theorem 1, adding subscript λ to differentiate between

the uncertain social cost, 0 < λ < 1, and the deterministic cost, which can equivalently

be labeled as λ = 1.

Proposition 4 The uncertain social cost is more sensitive to discounting than the de-

terministic carbon price:
1

hl
λ

∂hl
λ

∂δ
>

1

hl
λ=1

∂hl
λ=1

∂δ

if δ > 1
2
.
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The proposition is intuitively clear, but the proof requires some tedious algebra (see

the Appendix). Our model captures the caution due to delayed discrete events, and such

caution increases with lower time discounting. To the best of our knowledge, this result

has not been noted in the literature. The result is different from but in spirit similar to

that in Traeger (2015) who finds for a continuous-state model that the belief updates act

as persistent shocks, making the policies sensitive to pure time discounting.

4 Quantitative assessment

4.1 Calibration

We assess quantitatively if the carbon tax path, the climate policy ramp, is sensitive to

the assumption that climate-change impacts are unknown, potentially extreme events.

We calibrate the model so that it remains comparable to the mainstream quantitative

models that assume immediate and moderate damages, if we assume such damages in our

model. Setting (µ0,λ,∆) = (1, 1, 1), losses are immediate and moderate. In particular,

∆ = 1 refers to Nordhaus (2008) baseline where a temperature rise of 3 degrees Celsius

leads to about 2.7 per cent loss of output (Section 2.3). Let us first hold on to the idea

of immediate and moderate damages, (µ0,λ,∆) = (1, 1, 1), to facilitate the introduction

of other than learning-related parameters.

Reasonable savings are in the range 20-30 per cent of output (.2 < g 6 .3); the capital

share of output should be close to 30 per cent, α = .3. We work with 10-year periods.

Then, by the optimal savings rule g = αδ, the annual pure rate of time preference

ranges between one and three percent, that is, δ per decade ranges between .74 and .9,

respectively, to keep savings in the range above. To compensate for the fact that log

utility implies low preferences for consumption smoothing and thus tends to make the

decision maker “patient” under income growth, we do not want to choose the lowest time

discount rate as our main case. We set the annual discount rate to .02 so that δ = .82

and g = .25. By the Ramsey rule, this comes close to the Nordhaus DICE (2008) choices

where the elasticity of marginal utility is two and the time discount rate equals one per

cent.36

We can now immediately calculate the optimal initial tax for moderate damages

(µ0,λ,∆) = (1, 1, 1), and compare the tax with Nordhaus’ number. If we take the Gross

36We demonstrate in the Appendix, in Fig. 6, that the properties of the DICE policy path are

preserved under the utility function transformation. See also fn. 42.
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Global Product as 600 Trillion Euro [Teuro] for the decade, 2006-2015 (World Bank, using

PPP), we obtain that the tax should be 10 EUR/tCO2, close to the number appearing in

Nordhaus (2007), that is 35USD/tC.37 This gives confidence that the benchmark output

of the model is in the ballpark.38

The main analysis is about contrasting the policy outcomes under two scenarios, one

with smooth certain damages, the other with uncertain but large damages. We obtain

the policy outcome for high-consequence damages through an explorative calibration of

(µt,λ,∆), based on the recent quantitative literature on the effect of tipping points on

climate policies. Then, this outcome is compared with the benchmark where damages

are immediate and moderate. The parametric representation of the economy remains in

all other aspects the same.

In recent years, several studies have presented quantitative estimates for the effect of

catastrophic irreversible events in the climate system on the social costs of carbon.39 We

seek to find representative values for (µ0,λ,∆), based on this literate.

The most critical parameter is the learning intensity, λ. In the literature, the decadal

learning rate, as captured by our λ, ranges between .02 and .1.40 We are interested in a

conservative test that allows learning to work against the upward pressure from income

37Note that 1 tCO2 = 3.67 tC.
38In the Appendix, Fig. 7, we confirm that the entire tax time paths of the model and the DICE are

within 10 per cent of each other for the next century.
39Candidates for such events are changes in the Atlantic Gulf Stream, melting of the Greenland Ice

Sheet, the collapse of the West Antarctic Ice Sheet, the dieback of the Amazon rainforest; or an increase

in the amplitude of the El Niño Southern Oscillation (Kriegler et al. 2009).
40Lemoine and Traeger (2014) model tipping points as irreversible shifts in the system that occur

upon crossing an unknown temperature threshold. The tipping points are uniformly distributed over a

range of potential temperature increases, so that the hazard rate at which the tipping point is crossed

becomes proportional to the speed of temperature increase. The current global temperature increase

of about 0.2 Kelvin per decade (in their model) leads to about a 5 per cent per decade probability of

passing the threshold. This would suggest that λ = .05 per decade. Lontzek et al. (2015), describe the

appearances of climate catastrophes through a state-dependent process, without invoking a threshold

explicitly. In their model, the expected global warming path leads to a hazard rate that increases over

time, from about 0.25 to 1 per cent per year, and a cumulative probability of about 50 per cent for such

major event by 2200. Cai et al. (2013) and Cai et al. (2015a) also deploy a state-dependent process, but

they also assume a 1 Kelvin global warming threshold, below which the climate system is stable. Above

1 Kelvin, the climate system can shift into a bad state, with the hazard rate increasing proportionally

with the global temperature anomaly. In a world with 2 Kelvin global warming, the decadal probability

for tipping into the bad state is about 1.5 to 2 per cent. Translated to decadal rates, this literature

suggest arrival rates between .02 and .1.
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growth in the climate policy ramp; therefore, we a assume relatively high learning rate

from the set of values in the literature but yet not extreme. We set λ = .08 per decade

in our main case. A geometric distribution with this arrival rate per decade means that

the expected arrival time for a severe climate change damage event is about 130 years.

As to the initial belief if the event ultimately occurs, µ0, the literature provides

only indirect guidance. As explained in Section 2.2, we can impute from Lemoine and

Traeger (2014) that µ0 = .8 roughly consistent with their assumptions.41 We thus assume

that there is an initial assessment of 80 per cent chance for the event to finally arrive.

Although the other studies, such Lontzek et al. (2015), do not allow us to recover µ0

directly, choices λ = .08, µ0 = .8 mean that the prior decadal hazard rate, µ0λ is 6.4

per cent, in the middle of the assumed range in Lotzek et al. (2015). With 80 per cent

initial assessment and 8 per cent arrival probability per decade, after 100 years without

damages, the posterior for the eventual impact arrival µt is still 64 per cent. Thus, the

parameter choices imply that the beliefs are relatively persistent.

Finally, we must specify the economic stakes if the event takes place. Looking at

the literature cited above, climate change damages associated with major climate regime

changes are up to 10 times as large as estimates for damages associated with immediate

and moderate impacts, so that ∆ falls in the range 1 to 10. We set ∆y = 4. The max-

imum damages are by factor four higher than the middle-of-the-road damages assumed

in Nordhaus (2008) — the implied output loss is then about 10.7 per cent from doubling

the CO2 stock. The choice of ∆ is important; for example, it determines if the economy

moves towards clean technologies before learning the climate impacts (see Section 4.3).

The choice with ∆y = 4 is a useful starting point, as the initial level of the carbon price

almost coincides with the one under immediate damages and ∆y = 1. Then, as analysed

in the next Section, we can see for how long the uncertain tipping-point carbon price

stays close to the policy ramp under moderate but certain damages; the conclusions for

the shape of the policy path do not depend on the precise value of ∆y.

4.2 The climate-policy ramp

Consider now the development of the optimal carbon price over time, with the parameter

choices above. Given the closed-form formula for the carbon price in (17), one approach is

to conjecture future output or income levels, say, in 2050 and, conditional on no observed

41The overall tipping probability in Lemoine and Traeger depends on the starting level of the temper-

atures; we can justify µ
0
between .7 and .8.
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impacts by that time, obtain the future carbon price for that state of the world. However,

future states of the world result partly from past policy decisions; carbon pricing decisions

have an effect on the current output, and through investments, also on future incomes.

For consistent policy scenarios, in Section 4.3 just below, we specify and calibrate a

structure for the energy sector and total productivities through At(zt) in the production

function. The scenarios presented here are based on this specification.

The benchmark for our assessment is the “Climate policy ramp” (dotted line in Fig.

2), based on Nordhaus’ DICE (2007) middle-of-the-road damage estimate, corresponding

to ∆y = 1; that is, damages are known and smooth. For the first period 2020, capturing

decade 2015-2025, the benchmark sure-loss policy path gives ca. 14 EUR/tCO2 as the

optimal price which is almost identical to what DICE produces for this period under this

choice for discounting and preferences.42 This middle-of-the-road sure-loss path involves

a tightening of the policies over the coming century, typical for most no-uncertainty

climate-policy assessments.

We now look at the optimal time path for the carbon price for high potential damages,

but conditional on not observing these damages ; that is, we consider the evolution of

the policy when future impacts are potentially severe, ∆y = 4, as determined by the

calibration procedure above, but when no news on climate impacts arrive. Without

impacts, the economy is unaffected by climate change.43 The optimal carbon price is

depicted as a solid line in Fig. 2 over the coming century and beyond. The two climate

policies — one with immediate damages based on the central estimate, and the other with

high but only potential damages and gradual updating of beliefs to the no-news situation

— have the same shape for the first century. The difference between the two is only 13 per

cent by the end of the century. Strikingly, for this particular learning scenario, it takes

close to 200 years without observed climate damages for beliefs to become optimistic

enough for the carbon price to decline. The social cost of carbon declines very slowly.44

42 We demonstrate this in detail in the online Appendix. First, in Fig. 6 we show that the DICE

utility function can be changed to log-utility, while adjusting suitably the discount rate, without much

affecting the baseline climate policy ramp. Second, after the first step, we can trust that the properties

of DICE are preserved under the utility function transformation, and thus we produce the climate policy

ramp with DICE for our specification (log utility and 2 per cent time discounting). In Fig. 7, we show

that our model matches with DICE policy ramp very well, with the same parameters. The striking

similarity of the two paths follows since our carbon cycle and temperature delay dynamics come close

to those in DICE.
43But, since the carbon policies are in place, emissions and output will be reduced below the business-

as-usual path.
44In the Appendix, we report the bad news carbon price for the same time horizon: for time t, the bad
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Figure 2: The carbon price for a sure income loss of 2.7 per cent from doubling the carbon

concentration (µ = 1;∆y = 1), and for uncertain damages, conditional on no news on

damages (µ0 = 0.8;λ = 0.08,∆y = 4).

To assess the shape of the carbon price path, we decompose its level into its two

main components. Recall that the optimal carbon price is proportional to ht capturing

the expected utility losses from current emissions, and to income yt; τ t = ht(1 � g)yt,

ht = µth
l. See Table 1, for the contribution of income (yt) and learning (µt) to the

carbon price.45 Expected income growth is prodigious; in our evaluation, based on the

IPCC scenarios (see Section 4.3 below), income rises five-fold during the coming century.

Such an estimate is not unheard of, and is driven by an increasing population and the

rise of the middle class in emerging economies. The development of beliefs is captured

through µt in the Table. Observing no major climate damages over the coming century,

leads to substantial increase in optimism, but, as is evident from the Table, it is the

changing scale of the global economy that matters for the development of carbon pricing.

Stabilising carbon prices at the initial level — thus ruling out a climate policy ramp

completely — would require that the climate experiment is by orders of magnitude more

informative than considered here. The assessment of the probability of major utility

news price is the optimal price conditional on observing the damage in period t. For the first century,

it is about four times the pre-learning optimal price; by the end of the second century, the gap between

the two prices is 50 per cent larger. The bad news price measures how severely the economy is hit if the

bad news arrive.
45It is illuminating to consider the units of measurement for the utility loss measure ht = µth

l, which

has the same unit as the constant in the legend of the table: years per emissions. The variable ht

measures the life-time equivalent of welfare that is lost per unit of emissions. For the year 2010, annual

emissions are about .04 TtonCO2, implying .75⇥ .04 = .03 years of expected life-time destroyed by these

emissions.
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losses, as captured by µt, would need to decline by 50 per cent by 2050. For the belief

updating to achieve this, the calibrated λ we would need to be by factor four larger; it

would require a large deviation from the parameter choices used in the literature, and

probably also a very different climate-system description.

income beliefs, µt carbon price

[Te/yr] [.] [e/tCO2]

2020 78 .79 14

2050 146 .74 25

2100 304 .65 46

2150 510 .55 67

2200 703 .45 76

Table 1: Decomposing the contribution of income and learning to the carbon price.

Multiplying the first column and the second column, with a constant hl(1 � g) = 0.68

[yr/T tCO2], gives the last column.

4.3 Decarbonisation

We come to the end of the quantitative assessment by looking into the specific structure

for the economy’s production function (5), used for the quantitative conclusions above.

The structure of production allows us to address one final and important question: will

the perception of the social cost, as quantified above, lead to the decarbonisation of

the economy, that is, will emissions ultimately decline to zero, if the carbon price is

implemented as a carbon tax?46 We also perform sensitivity analysis on how severe

the potential impact on the economy, as captured by ∆y, would have to be for the

decarbonisation to take place.

The specification is set up for a transparent calibration of the total and energy sector

46We will not explicitly consider a decentralised economy with tax policies in place; however, it follows

from the first principles that the planning problem considered in this paper can be decentralised.
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productivities. We assume

yt = kα
t [At(ly,t, et)]

1�α exp(�∆y,tDt) (18)

At(ly,t, et) = min {Ay,tly,t, Ae,tet} (19)

et = ef,t + en,t (20)

ef,t = min{Af,tlf,t, Btzt} (21)

en,t =
ϕ+ 1

ϕ
(An,tln,t)

ϕ

ϕ+1 (22)

lt = lf,t + ln,t + ly,t. (23)

There are time-trends for total labor lt, and for labor productivities (Ay, Ae, Af , An) in

output, total energy, fossil-fuel energy, and non-carbon energy production, respectively.

Total energy, et, depends effectively only on labor allocation at time t: the core allocation

problem in the energy sector is how to allocate a given total labor lt at time t between

final output ly,t, fossil-fuel energy, lf,t, and non-carbon energy, ln,t. Thus, the climate

policy steers the labor allocation (ly,t, lf,t, ln,t)t�0 and thereby the quantities of fossil-fuel,

ef,t, and non-carbon energy, en,t. Both energy sources are intermediates, summing up

to the total energy input, et = ef,t + en,t. The allocation outcome depends only on

time and carbon inputs; labor-energy composite [At(ly,t, et)] then defines the total factor

productivity term At(zt) in the economy’s production function (5).

Labor-energy composite At(ly,t, et) takes a Leontief form capturing an extremely low

elasticity of substitution between labor in the final-good sector ly,t and energy et. By

this assumption, we avoid unrealistically deep early reductions of emissions through sub-

stitution of labor inputs, and thereby approximate the energy sector capital adjustment

delays; see also Hassler, Krusell and Olovsson (2012).47

In (21), we assume that ef,t can be produced with a constant-returns to scale tech-

nology using labor lf,t and the fossil-fuel zt, where Af,t and Bt describe productivities.

The fuel resource is not a fixed factor and commands no resource rent; as in Golosov et

al. (2014), the fossil-fuel resource is in principle unlimited. In contrast, in equation (22),

where ϕ > 0 describes the elasticity of supply from the non-carbon sector; the non-fossil

fuel energy production is land-intensive and subject to diminishing returns and land rents

(as in Fischer and Newell, 2008).

Without carbon policy, τ = 0, the labor market allocation can be solved in closed

47A cost of the assumption is that the output-energy intensity remains fixed so that energy savings

cannot arise as a source of emissions reductions; the reduction path for emissions in Fig. 3 is achieved

through decarbonisation, that is, substitution away from carbon energy.
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form; thus, we can invert the model to map from quantities (l, y, ef , en)t�0 to productiv-

ities (Ay, Ae, Af , An)t�0 (see Appendix for the solution, and the supplementary material

for the quantitative values). To express all energy in carbon units, we set Bt = 1, leav-

ing us three distinct energy productivities (Ae, Af , An). We match the business-as-usual

(BAU) quantities (y, ef , en)t�0 with the A1F1 SRES scenario from the IPCC (2007).

Population follows a logistic growth curve based on World Bank forecasts. Population

in 2010 is set at 6.9 [billion], while the maximum population growth rate is chosen such

that in 2010 the effective population growth rate per decade equals 0.12 [/decade]. The

maximum expected population (reached at about 2200) is set at 11 [billion]. Using these

calibrated productivity trends, we produce the adjustment path of the economy for the

optimal policies in Figs 2-5.

In Fig. 3 we depict the development of the energy sector when the economy does not

experience climate-change impacts but faces the optimal no news tax as shown in Fig.

2. All energy is measured in CO2-equivalents; then, “carbon energy” gives directly the

carbon dioxide emissions per decade. The economy, when optimally planned, does not

achieve full decarbonisation targets: the share of non-carbon energy of the total increases

over time, reaching 37 per cent by 2100 and 60 percent by 2200. Such a persistent share

for carbon energy leads to carbon concentrations about 600 ppmv by the end of the

current century, well beyond safe targets recommended by the IPCC.48 Stated differently,

output loss ∆y = 4, that is, 10.7 per cent from doubling the CO2 stock, together with

increasing optimism about the absence of final damages, is too low to justify optimal full

decarbonisation.

For comparison, Fig. 4 provides the same evaluation of the energy sector development

but now for the middle-of-the-road sure-loss climate impact, following Nordhaus’ (2007)

with the carbon price depicted in Fig. 2 (µ = 1;∆y = 1). Not surprisingly, because

the carbon prices for known and unknown damages are almost equivalent in Fig. 2, the

decarbonisation path with smooth damages is not considerably different from that under

known damages for the first century. However, with smooth damages, the carbon price

keeps on growing with the economy and therefore the decarbonisation finally takes place

by the end of the second century.

The 2015 United Nations Climate Change Conference negotiated an agreement that

calls for zero carbon emissions by the end of the current century. We can now quantify

the economic losses that justify the decarbonisation target. We return to the model

48The supplementary material, under the link https://www.dropbox.com/sh/7meos655j14jh5p/

_dlr8X_FHI, reports the climate-related implications of the scenarios.
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Figure 3: Partial decarbonisation without observed climate impacts, ∆y = 4. Energy per

decade measured in Teratons of CO2 equivalents.

where losses are unknown and ask how large should the losses be for the decarbonisation

to take place by the end of the century? In Fig. 5 shows the case with ∆y = 10, holding

all else equal for the economy. We observe that the non-carbon energy increases its share

to 100 per cent by the end of the century. Clearly, the precise timing is sensitive to

the assumed substitution possibilities between carbon and non-carbon energy. Yet, on

reflection, the decarbonisation without impacts is not unreasonable; the optimal carbon

price levels imply substantial value providing incentives for the transition. Current CO2

emissions exceed 30 Gigatons annually, while the annual world output is about 60 trillion

euro. A worldwide carbon price of 100 EUR/tCO2 then represents about 5% of the value

of the output, giving a ballpark idea of the decarbonisation incentives. Most climate-

economy models, including Nordhaus DICE-2007, produce decarbonisation at such price

levels that we, in our model with ∆y = 10, reach by 2080, explaining the decarbonisation

in Fig. 5. Under smooth damages benchmark (∆y = 1), similar price levels are reached

a century later, consistent with the decarbonisation in Fig. 4.49

49Recall that our energy sector model assumes a low factor substitutability to approximate an explicit

capital structure adjustments. The approximation entails the following feature: carbon energy would

make a come-back if the future social cost of carbon sufficiently declines. Such come-backs happen after

the time horizon of our main interest, and they are best analysed with an explicit capital structure in

the energy sector.
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Figure 4: Decarbonisation with observed climate impacts for a sure income loss of 2.7

per cent from doubling the carbon concentration (µ = 1;∆y = 1). Energy per decade

measured in Teratons of CO2 equivalents.

5 Concluding Remarks

We have developed a tractable climate-economy model that allows a stylised but trans-

parent and self-contained quantitative assessment of the optimal carbon price when the

impacts of climate change are unknown and can be learned only gradually over time.

Such climate change unknowns are often used to motivate a price for carbon, but some

argue that they also render mainstream climate-economy modelling useless (Pindyck,

2013) because the mainstream models assume moderate and known damages from cli-

mate change. We believe that thoughtful climate-economy models can provide a very

useful structure for quantifying what kind of events are unknown enough to justify an

immediate action, and, in contrast, when it is better to adopt a wait-and-see strategy.

There are two forces that distinguish the temporal evolution of the carbon price

in a regime shift model from that in a smooth damage model. First, the potential

regime shift becomes increasingly more relevant to the policy maker when the economy

approaches temperature levels at which the regime shift can potentially occur, provided

current temperatures cannot yet trigger such events. This effect makes the carbon tax to

increase faster than under smooth damages. Second, at temperatures levels that are high

enough for experimentation, the event becomes less likely over time (conditional on no

occurrence) and the optimal carbon tax falls relative to a smooth damage model. This

is the learning effect.
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Figure 5: Decarbonisation without observed climate impacts, ∆y = 10. Energy per

decade measured in Teratons of CO2 equivalents.

In our quantitative assessment, we allowed the regime shift to occur at all temper-

ature levels: the learning effect works against the climate policy ramp from the start.

Yet, we found that the high-risk carbon price path need not be that different from the

mainstream policy ramp. Both the shape and level of the carbon tax very much follows

Nordhaus (2008), when the information-related parameters are matched with those used

in the recent numerical studies, and the size of the potential impact on the economy is

intermediate. The learning effect is relatively slow in reducing the optimal carbon tax.

This, then, leaves the economic development as the main driver of the policy ramp; the

carbon price is developing in almost lock-step with the size of the economy in the coming

decades.

The result that the level of the carbon price equals that obtained by the smooth-

damages models is, however, not robust. The size of the potential impact on the economy

is pure speculation. It is here where the model can become a useful tool for translating

the economic meaning of the climate policy targets: how big should the economic loss

from the potential event be to justify the full decarbonisation of the economy? We found

that high-consequence damages that are by factor four larger than typical middle-of-the-

road impacts cannot justify full decarbonisation. The impacts must be by a factor 10

larger than the middle-of-the-road estimates for the optimal greening of the economy to

take place by the end of the century.

For wider implications for future research, it could be interesting to explore how

countries’ climate policies are shaped by own and other countries’ experiences of climate

impacts through their effect on beliefs regarding the country-specific ultimate impacts.
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In general, it is well-received that past experiences affect current policy-decisions through

beliefs. There are long traditions for beliefs and learning in the strand of literature on

the design of optimal monetary policy; however, the issue of incorporating beliefs as

determinants of the key macroeconomic choices together with a quantitative assessment

has been recently developing (see, e.g. Buera et al. 2011). The topic seems relevant in

the context of climate change: policy makers are domestically motivated but are certainly

learning from experiences elsewhere.
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Solution to the detailed energy-sector model

The online supplementary file contains a program for reproducing the graphs in the text,

https://www.dropbox.com/sh/7meos655j14jh5p/_dlr8X_FHI. The labor allocation is

numerically obtained as follows. The allocation can be solved period-by-period taking

the (i) productivity parameters, (ii) total labor, (iii) savings g, and (iv) carbon policies

ht as given. We drop the time subscript in the variables:

1. We normalise prices for the final good to equalise marginal utility, so that factor

prices can be interpreted as marginal welfare per factor endowment:

p =
1

c
=

1

(1� g)y
.

2. Final-good producers of y take capital k, wages w, and prices of energy q and output

p as given. Since y = kα[min {Ayly, Aee}]
1�α exp(�∆y,tDt), factor compensation for

labour and energy together receives a share (1� α) of the value of output py:

wly + qe = (1� α)py

where e = ef + en.

3. Fossil-fuel energy production combines labor and fuels, with technology ef,t =

min{Af,tlf,t, Btzt}. Fossil fuel use and labour employed, z, lf � 0, are strictly

positive if q covers the factor payments, including the carbon price τ

q �

✓
w

Af

+
τ

B

◆�
⇥ lf  0.

The zero profit condition for fossil fuel energy allocates the value of fossil fuel energy

to labour and emission payments; using the production identity we can express it

in terms of labour employed,

qef = wlf + τz = (w +
τAf

B
)lf .

4. Carbon-free energy inverse supply is given by the first-order condition

q = w
∂ln
∂en

=
wt

(An)
ϕ

ϕ+1

(ln)
1

ϕ+1 .

The value share of labour employed in the carbon-free energy sector equals ϕ/(1 +

ϕ), so that the rent value is expressed in labour employed:

qen = (1 +
1

ϕ
)wln
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We obtain four equations in four unknowns ly, lf , ln, w:

Ayly = Ae(Af lf +
ϕ+ 1

ϕ
(Anln)

ϕ

ϕ+1 ) (24)

wl +
τAf

B
lf +

1

ϕ
wln =

1� α

1� g
(25)

w

Af

+
τ

B
�

w

(An)
ϕ

ϕ+1

(ln)
1

ϕ+1 ? lf � 0 (26)

ly + lf + ln = l (27)

For (24) note that, for strictly positive input prices, At(·) = min {Ayly, Aee} ) Ayly =

Aee. In equation (25) we allocate the value of output that is not attributed to capital (the

right-hand side) to the labour, carbon emissions, and land rent for the non-carbon energy

(where we latter two terms are expressed in labour units). Equation (26) compares the

production costs for fossil fuel energy with non-carbon energy, and the last equation is

the labor market clearing equation. Note that the solution depends on the state of the

economy only through total labor l and productivities Ay, Ae, Af , An.

In the absence of a carbon policy, τ = 0, we can solve the allocation in closed-form:

ln,t =
Aϕ

n,t

Aϕ+1
f,t

(28)

wt =
1� α

1� g

ϕ

ϕlt + ln,t
(29)

ly,t =
Ae,t

Ay,t + Ae,tAf,t

[Af,t(lt � ln,t) +
ϕ+ 1

ϕ
(An,tln,t)

ϕ

ϕ+1 ] (30)

lf,t = lt � ly,t � ln,t (31)

Here we include the time subscripts to emphasise the drivers of the solution. This

business-as-usual allocation is used to calibrate the productivities. When τ > 0, the

solution is numerical, and available in the supplementary file.
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Impact of utility function transformation and 100 %

depreciation on the DICE outcome
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Figure 6: We consider the numbers presented in Nordhaus (2008), Table 5.4. These are

the optimal carbon prices in the central DICE run. We take the DICE model, reproduce

these numbers, with the elasticity of marginal utility=2 (“DICE: base”). Then, we

change the utility function to logarithmic and adjust the discount rate using the Ramsey

rule to keep the effective discounting as in “DICE: base”.This gives the DICE run with

elasticity of marginal utility=1 (“DICE: log utility”). Finally, we change DICE capital

depreciation to 100 per cent (“DICE: log utility & full cap. dep.”). In the last case,

DICE remains observationally equivalent with respect to savings and output, which is

achieved by adjustments in capital share (from 30 per cent to 27 per cent), initial capital

stock, and productivity growth. Together, the three lines show that the elasticity of

marginal utility and capital depreciation have limited effect on the carbon price, if such

choices are embedded in a broader calibration exercise. See also Appendix ”Adjustments

in the calibration: approximating less than 100 per cent capital depreciation” for detailed

analysis of the adjustments to the calibration in the full capital depreciation case.
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Comparison of DICE and the current paper policy-

ramp predictions, smooth damages
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DICE: preferences as in this paper

GL: damages as in DICE

Figure 7: This Figure continues from Figure 6. The DICE path depicted is obtained

for log-utility (elasticity of marginal utility=1) and 2 % discount rate, as is assumed

throughout this paper. Our model produces the GL path, using the sure-loss damages

corresponding to those in DICE (∆y = 1). We find that our numbers are ca. 10 per

cent lower over period 2010-2100. The gap can be closed by adjusting the carbon cycle

parameters (taken from the climate-science literature).
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Bad news carbon price

We define next the bad news carbon price as the socially optimal price at time t if bad

news arrives at time t. That is, It = 1 holds for the first time at t so that the carbon

price at that moment is the one determined in Section 3.1. Fig. 8 depicts both the no

news and bad news carbon price paths for the near and longer terms, for ∆y = 4 which

was the main case in the text. Note that the bad news price path is “virtual” because

it is drawn for an economy in which the output is not dynamically adjusted due to past

damages to obtain the bad news price for any given t; otherwise, time t would not be

the first arrival date of damages.50 The starting level is given by our calibration at 53

EUR/tCO2, 3.7 times larger than the no news price; the bad news price is about factor

six larger by the end of time horizon in the Figure. The increase in the virtual price

over time reflects purely the effect of income growth on carbon pricing: the marginal

utility loss from current emissions reductions, ∂yt
∂zt

u0
t, weigh less and less over time while

the future marginal utility loss of current emissions, h, remains the same.
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Figure 8: “Bad news carbon price” is the optimal price at time t if impacts arrive at t.

“No news carbon price” is the optimal price at t conditional on not observing impacts

by t (µ0 = 0.8;λ = 0.08,∆y = 4).

50The immediate loss of output at time t is accounted for in the calculation of the tax but then again

ignored when moving to t+ 1 to obtain a consistent bad news price for t+ 1.
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Recursive formulation

Here we formally derive value functions recursively and the policy functions.51 For nota-

tional convenience, in contrast with the main text, we use superscript 0 in state It = 0,

while superscript 1 refers to the state after observing a high damage. Thus, we connect

notation here with that in the main text, as h1 = hl
λ=1 = h, and h0 = hl

λ<1 = hl.

Formally, the full state vector is St = (kt, st, It, µt) where st collects the vector of

climate state variables through the series of past emissions, and (It, µt) is the information

state. The climate affects the continuations payoffs only through the weighted sum of

past emissions, as expressed in the emissions-temperature (9).

Policies take the form kt+1 = Gt(kt, st, It, µt), zt = Ht(kt, st, It, µt). For given policies

Gt(.) and Ht(.), we can write welfare recursively as

W 0
t (kt, st, µt) = ut + (1� µtλ)δW

0
t+1(kt+1, st+1, µt+1) + µtλδW

1
t+1(kt+1, st+1) (32)

W 1
t (kt, st) = ut + δW 1

t+1(kt+1, st+1) (33)

where W 1
t+1(kt, st) is the value function after observing impacts, and W 0

t+1(kt, st, µt) is

the value function before learning. We note that It = 1 is an absorbing state; the optimal

policy after observing a catastrophe is relatively straightforwardly determined, and by

backwards induction, welfare and policies before learning are determined.

More specifically, we guess and verify that optimal policies can be described through

constants (g, h0, h1) where 0 < g < 1 is the share of the gross output invested,

kt+1 = gyt, (34)

and h1 (in main text: h, as in (13)) is the climate policy variable after observing high

damage, that is, a constant that measures the current utility-weighted marginal product

of carbon, ∂yt
∂zt

∂u
∂c

= h1, and µth
0 (in main text: µth

l, as in Theorem 1) is the climate

policy variable before learning.

The policies, through the functional assumptions, define the marginal product of the

fossil fuel use, the carbon price, as

∂yt
∂zt

= µth
0(1� g)yt if It = 0, (35)

∂yt
∂zt

= h1(1� g)yt if It = 1, (36)

51The proof builds on Gerlagh and Liski (2016) but is not the same since in that paper we do not

consider beliefs and uncertainty.
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Similarly as g measures the stringency of the savings policy, h0 and h1 measure the

stringency of the climate policy. In particular, the carbon price, ∂yt
∂zt

, is monotonic in

policy hI , which allows an interchangeable use of these two concepts. Now, for any

constants (g, h0, h1) such that (34), (35) and (36) are satisfied, we have in Lemma 1, just

below, that the energy sector choices do not depend on the current state of the economy

(kt, st) but only on the policies as affected through the information set (It, µt).

Lemma 1 For all t:

(i) Given policy (g, µth
0) for It = 0 and (g, h1) for It = 1 at time t, emissions zt = z⇤t at

t implied by the policy are independent of the current state (kt, st), but depend only

on the current technology at t as captured by At(.);

(ii) Emissions z⇤t decrease monotonically in policy stringency µth
0 and h1.

Proof. Substituting (5) into the first-order conditions for emissions (35) and (36),

determines z⇤t as independent of kt and st:

A0
t(z

⇤
t ) = µth

0(1� g)A(z⇤t ) if It = 0

A0
t(z

⇤
t ) = h1(1� g)A(z⇤t ) if It = 1

As A0
t(z

⇤
t ) (LHS) is decreasing and At(z

⇤
t ) (RHS) is increasing in z⇤t , it is immediate

that z⇤t is unique, independent of (kt, st), and decreasing in the policy stringency. Q.E.D

The independence lemma helps to establish a separable representation of welfare:

Lemma 2 It holds for every policy (g, h0, h1) that

W 0
t (kt, st, µt) = V (kt)� µtΩ

0(st) + Ã0
t (µt)

W 1
t (kt, st) = V (kt)� Ω

1(st) + Ã1
t

with parametric form

V (kt) = ξ ln(kt)

Ω
0(st) =

t�1P
τ=1

ζ0τzt�τ ,

Ω
1(st) =

t�1P
τ=1

ζ1τzt�τ ,

where ξ = α
1�αδ

, ζ01 = ζ11�∆(1�λ)
P

i2I
aiπε

[1�(1�λ)δ(1�η
i
)][1�(1�λ)δ(1�ε)]

, ζ11 = ∆
P

i2I
aiπε

[1�δ(1�η
i
)][1�δ(1�ε)]

,

∆ = 1
1�αδ

and Ã0
t (µt) and Ã1

t are independent of kt and st.
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Proof. Induction hypothesis: assume (i) that future policies are given by a sequence

of constants (g, h0, h1) such that (34), (35) and (36) are satisfied for all future τ � t,

and (ii) that Lemma 2 holds for t+ 1. We can thus construct the value function for the

current period, through (32) and (33) and check the validity of the Lemma.

Consider policies at t. From (35), kt+1 = gtyt. Emissions zt = zI,⇤t can be determined

independently of the state variables kt and st as shown in Lemma 1. Substituting the

policies at t gives:

W 0
t (kt, st, µt) = [ln(1� gt) + ln(At) + α ln(kt)� λµtDt]

+δξ[ln(gt) + ln(At) + α ln(kt)� λµtDt]

�δ[(1� λµt)µt+1Ω
0(st+1)� µtλΩ

1(st+1)]

+δ[(1� λµt) eA0
t+1 + λµt

eA1
t+1]

W 1
t (kt, st) = [ln(1� gt) + ln(At) + α ln(kt)�Dt]

+δξ[ln(gt) + ln(At) + α ln(kt)�Dt]

�δΩ1(st+1)

+δ eAt+1

Collecting the coefficients that only depend on future policies gτ and zτ for τ > t, and

that do not depend on the next-period state variables kt and st, we get the constant part

of W I
t (.):

eA0
t = ln(1� gt) + δξ ln(gt) + (1 + δξ) ln(At) (37)

�δ[(1� λµt)µt+1ζ
0
1 � λµtζ

1
1]zt (38)

+δ[(1� λµt) eA0
t+1 + λµt

eA1
t+1)] (39)

eAI
t = ln(1� gt) + δξ ln(gt) + (1 + δξ) ln(At)� δζ1zt + δ eA1

t+1. (40)

Collecting the coefficients in front of ln(kt) yields the part of V (kt) depending kt with

the recursive determination of ξ,

ξ = α(1 + δξ).

so that ξ = α
1�αδ

follows.

Collecting the terms with st yields Ω
I(st) through

µtΩ
0(st) = �λµt(1 + δξ)Dt + δ(1� λ)µtΩ

0(st+1) + δλµtΩ
1(st+1)

Ω
1(st) = �(1 + δξ)Dt + δΩ1(st+1),
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where we used Bayesian updating of beliefs (8): (1 � λµt)µt+1 = (1 � λ)µt, and where

zt = z⇤t appearing in st+1 = (z1, ...zt�1, zt) is independent of kt and st so that we only

need to consider the values for z1, ..., zt when evaluating Ω(st). The values for ζIτ can be

calculated by collecting the terms in which zt�τ appear. Recall dDt+τ

dzt
= R(τ) from (9):

ζ0τ = (1 + δξ)λ
X

i2I
aiπε

(1� ηi)
τ � (1� ε)τ

ε� ηi
+ δ(1� λ)ζ0τ+1 + δλζ1τ+1

ζ1τ = (1 + δξ)
X

i2I
aiπε

(1� ηi)
τ � (1� ε)τ

ε� ηi
+ δζ1τ+1

We rewrite the first equation as

ζ0τ � ζ1t = �(1 + δξ)(1� λ)
X

i2I
aiπε

(1� ηi)
τ � (1� ε)τ

ε� ηi
+ δ(1� λ)[ζ0τ+1 � ζ1τ+1]

Substitution of the recursive formula, for all subsequent τ , gives

ζ0τ = ζ1τ �
1

1� αδ

X
i2I

X1

t=τ
aiπε(1� λ)t�τδt�τ (1� ηi)

t � (1� ε)t

ε� ηi

ζ1τ =
1

1� αδ

X
i2I

X1

t=τ
aiπεδ

t�τ (1� ηi)
t � (1� ε)t

ε� ηi
.

To derive the value of ζI1 as expressed in the lemma, we consider

X1

t=1
δt�1 (1� ηi)

t � (1� ε)t

ε� ηi
=

P1

t=1[δ(1� ηi)]
t �

P1

t=1[δ(1� ε)]t

δ(ε� ηi)

=

δ(1�η
i
)

1�δ(1�η
i
)
�

δ(1�ε)
1�δ(1�ε)

δ(ε� ηi)

=
1

[1� δ(1� ηi)][1� δ(1� ε)]

The formulation for ζ1τ � ζ0τ follows by symmetry with (1 � λ)δ substituted for δ. This

proves the value function representation lemma.

The expected future cost of the emission history is thus given by µtΩ
0(st) and Ω

1(st),

giving also the marginal cost of the current emissions as
∂µ

t+1Ω
0(st+1)

∂zt
= µt+1ζ

0
1, and

∂Ω1(st+1)
∂zt

= ζ11. It is then easily seen that policies (g, h0, h1) as defined in text are optimal,

so that, indeed, the welfare function plus policies are consistent.

Proof of Proposition 4

Proof. The proof proceeds in two steps. First, we show that the carbon price, conditional

on the event arrival, is log-convex in the discount factor δ. Second, we show that this

property leads to the proposition.
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Let us rewrite the marginal utility impact of emissions as

hl
λ = eh(δ)� eh((1� λ)δ) (41)

eh(x) = x∆π
ε

1� x(1� ε)

X
i2I

ai
1� x(1� ηi)

That is, the post-event carbon price in utility terms is given by eh(δ). We now show

log-convexity for the separate terms.

∂

∂x

∂ ln
⇣

x
1�x(1�ε)

⌘

∂x
=

∂

∂x

1� x(1� ε)

x

✓
1

1� x(1� ε)
+

(1� ε)x

(1� x(1� ε))2

◆

=
∂

∂x

1� x(1� ε)

x

1

(1� x(1� ε))2

=
∂

∂x

1

x(1� x(1� ε))

so that

∂

∂x

∂ ln
⇣

x
1�x(1�ε)

⌘

∂x
> 0 , x >

1

2

1

1� ε
>

1

2
.

We then consider the second part of eh(δ):

∂

∂x

∂ ln
⇣P

i2I
ai

1�x(1�η
i
)

⌘

∂x
=

∂

∂x

P
i2I

ai(1�η
i
)

(1�x(1�η
i
))2P

i2I
ai

1�x(1�η
i
)

=

P
i2I

∂
∂x

ai(1�η
i
)

(1�x(1�η
i
))2P

i2I
ai

1�x(1�η
i
)

�

P
i2I

ai(1�η
i
)

(1�x(1�η
i
))2

P
i2I

∂
∂x

ai
1�x(1�η

i
)⇣P

i2I
ai

1�x(1�η
i
)

⌘2

=

P
i2I 2

ai(1�η
i
)2

(1�x(1�η
i
))3P

i2I
ai

1�x(1�η
i
)

�

⇣P
i2I

ai(1�η
i
)

(1�x(1�η
i
))2

⌘2

⇣P
i2I

ai
1�x(1�η

i
)

⌘2 .
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We multiply both terms by the quadratic denominator, and get

∂

∂x

∂ ln
⇣P

i2I
ai

1�x(1�η
i
)

⌘

∂x
> 0 ()

X
i2I

2
ai(1� ηi)

2

(1� x(1� ηi))
3

X
i2I

ai
1� x(1� ηi)

�

✓X
i2I

ai(1� ηi)

(1� x(1� ηi))
2

◆2

> 0 ()

X
i,j2I

2
ai(1� ηi)

2

(1� x(1� ηi))
3

aj
1� x(1� ηj)

�
X

i,j2I

ai(1� ηi)

(1� x(1� ηi))
2

aj(1� ηj)

(1� x(1� ηj))
2
> 0 ()

X
i,j2I

ωij

✓
2

(1� ηi)
2

(1� x(1� ηi))
2
�

(1� ηi)

(1� x(1� ηi))

(1� ηj)

(1� x(1� ηj))

◆
> 0 ()

X
i,j2I

ωij

✓
(1� ηi)

2

(1� x(1� ηi))
2
+

(1� ηj)
2

(1� x(1� ηj))
2
�

(1� ηi)

(1� x(1� ηi))

(1� ηj)

(1� x(1� ηj))

◆
> 0 ()

X
i,j2I

1

2
ωij

"
(1� ηi)

2

(1� x(1� ηi))
2
+

(1� ηj)
2

(1� x(1� ηj))
2
+

✓
(1� ηi)

(1� x(1� ηi))
�

(1� ηj)

(1� x(1� ηj))

◆2
#
> 0

where we moved from the second to the third line, recognizing that
P

i2I

P
i2I =

P
i2I

P
j2I =

P
i,j2I , and in the fourth and subsequent lines, we substituted ωij for

aiaj
(1� x(1� ηi))(1� x(1� ηj))

.

The last inequality is always satisfied. Thus, we conclude that eh(x) is log-convex for

x > 0.5. We rewrite this as
∂

∂x

eh0(x)

eh(x)
> 0

and then compare x = δ with x = (1� λ)δ:

(1� λ)eh0((1� λ)δ)

eh((1� λ)δ)
<

eh0(δ)

eh(δ)
,

�(1� λ)eh(δ)eh0((1� λ)δ) > �eh((1� λ)δ)eh0(δ) ,

eh(δ)eh0(δ)� (1� λ)eh(δ)eh0((1� λ)δ) > eh(δ)eh0(δ)� eh((1� λ)δ)eh0(δ) ,

eh(δ)(eh0(δ)� (1� λ)eh0((1� λ)δ)) > e(h(δ)� eh((1� λ)δ))eh0(δ) ,

eh0(δ)� (1� λ)eh0((1� λ)δ)

eh(δ)� eh((1� λ)δ)
>

eh0(δ)

eh(δ)
.

The last line, is equivalent to the inequality stated in the proposition, when substituting

the definition (41) for hl
λ:

1

hl
λ

∂hl
λ

∂δ
>

1

hl
λ=1

∂hl
λ=1

∂δ

Q.E.D.
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Adjustments in the calibration: approximating less

than 100 per cent capital depreciation

Our analytical model assumes 100 per cent capital depreciation per period. Here we

demonstrate the adjustments needed in the calibration if one is interested in accommo-

dating a lower depreciation factor. Since the capital policy is separable from the climate

policy in our setting, we can demonstrate the adjustments using the standard consump-

tion choice model:

Wt = lt ln
ct
lt
+ δWt+1 (42)

yt = Atk
α
t l

1�α
t (43)

kt+1 = (1� β)kt + it (44)

yt = ct + it (45)

where Wt denotes the value function, lt is labor, ct, it, kt are consumption, investments

and capital, At is total factor productivity, α is the capital share in output, β is the

capital depreciation factor, and δ is the time discount factor. In balanced growth, we

write the growth factors for x = y, k, c, l, A, as bx = xt+1/xt, and we note that in balanced

growth we have bc = bi = bk = by. We define the net rate of return on transferring goods

between period t and t+ 1 as r = bp�1 � 1 = pt/pt+1 � 1, where pt = ∂W0/∂ct.

Consider the set of balanced growth variables {y0, k0, i0, c0, by, r}, where the subscript
0 refers to an observation in the year of reference. The true capital stock is unobservable

and in macro-economic accounts, it is typically estimated based on observed historic

investments and an assumed depreciation. We thus partition the set of variables in

observed and unobserved variables and define vector spaces: Vobs = {(y0, i0, c0, by, r)};
Vunobs = {(k0)}. Further, consider the set of parameters {α, β, δ, l0,bl, A0, bA}, which we

partition into parameters that we choose based on exogenous scenarios or rules-of-thumb,

Pexo = {(β, l0,bl)}, and calibrated parameters, Pcal = {(α, δ, A0, bA)}
The calibration is a mapping from observed variables to the calibrated parameters:

C : Vobs ! Pcal

Below we present the calibration, and we specifically are interested in the calculation

of A0 (or At which is sometimes a more convenient notation) and α as dependent on the

observed variables and exogenous parameters. Specifically, we want to see how a change
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in β affects the calibrated value for α. The production function and capital dynamics

identity (43)-(44) fix the output growth rate and the investment-capital ratio. Output

growth comes from labour and productivity growth, and investments need to balance

depreciation plus the build up of a growing capital stock:

by = bA 1

1�αbl (46)

it
kt

= by � 1 + β (47)

The above first equation is used to calibrate productivity growth bA. The first-order

condition for the consumption-savings tradeoff gives the Ramsey rule:

1 + r =
by
δbl
, (48)

which we use to calibrate δ, and where finite welfare requires δbl < 1 (that is, the

net present value of output needs to be finite: by < 1 + r). The first-order condition for

capital gives

α
yt
kt

= r + β (49)

which results in

α = (r + β)
kt
it

it
yt

=

by

δbl
� 1 + β

by � 1 + β

it
yt

(50)

Note that the ratio in front of it/yt on the far RHS exceeds one, the numerator exceeds

the denominator, so that the RHS decreases in β. The equations inform us about the

calibration adjustments that follow from β < 1. To keep the same observable output,

consumption and investment levels, y0, c0, i0, growth rates, by, and returns on savings, r,

a smaller capital depreciation (β < 1) must be balanced by a larger (unobserved) capital

stock k0 in (47), a larger capital-income share α in (50), and an adjusted productivity At

in (43). The time preference parameter δ and productivity growth bA are not affected.
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