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Abstract: As the scaling technology in the silicon-based semiconductor industry is approaching
physical limits, it is necessary to search for proper materials to be utilized as alternatives for nanoscale
devices and technologies. On the other hand, carbon-related nanomaterials have attracted so much
attention from a vast variety of research and industry groups due to the outstanding electrical,
optical, mechanical and thermal characteristics. Such materials have been used in a variety of devices
in microelectronics. In particular, graphene and carbon nanotubes are extraordinarily favorable
substances in the literature. Hence, investigation of carbon-related nanomaterials and nanostructures
in different ranges of applications in science, technology and engineering is mandatory. This paper
reviews the basics, advantages, drawbacks and investigates the recent progress and advances of such
materials in micro and nanoelectronics, optoelectronics and biotechnology.

Keywords: graphene; CNTs; nano biosensors; photodetectors; CNTFET; graphene FET

1. Introduction

The carbon nanotube history simply extends back to the time when the carbon fibers
were investigated and prepared by Thomas A. Edison. He used an early model of carbon
fibers as a light bulb’s conductive filament [1]. Further studies on carbon fibers took
a long time while finally the research led to applying the vapor growth technique for
manufacturing the carbon filament [2,3]. Later, intensive effort resulted in the synthesis
of high-quality carbon filaments. Roger Baken utilized a DC arc discharge to grow a
“graphite whisker” in a chamber at 92 atm of argon at a temperature of 3900 K. The final
whisker product had diameters in the range of 1–5 µm and lengths up to 3 cm. The
distinct characteristics of whiskers such as flexibility, tensile strength, Young’s modulus
and conductivity at room temperature were investigated [4]. In a parallel study, Bollmann
and Sprendborougli investigated the lubricating properties of rolled graphite [5].

Research on carbon crystal growth proceeded and led to the growth of thin car-
bon tubes [6,7]. Reports of these carbon tubes inspired Kroto and Smalley to discover
fullerenes [8]. Afterward, Huffman improved the synthesis method of fullerenes [9]. These
carbon assemblies consist of 60 atoms in which each carbon atom has sp2 bonds. Smalley
and Kroto were awarded a Nobel Prize in 1985 for their discovery.

Later, Sumio Ijima introduced a real breakthrough in carbon nanotube study in 1991
when he presented carbon nanotubes as a member of the fullerene family. This material
is a rolled graphene sheet into an unsealed tube on both ends [10]. Initially, in these
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investigations, multi-walled carbon nanotubes (MWCNTs) were grown by using a simple
arc-discharge method. In these experiments, single-walled carbon nanotubes (SWCNTs)
were synthesized as byproducts and were not really under control until 1997 [11]. SWCNT
synthesis was then found to be more controllable by using a similar process of producing
MWCNT but in the presence of transition metal particles [12,13].

Later, graphene was experimentally obtained by Geim and Novoselov in 2004 [14].
The idea was based primarily on isolating 2D crystals of carbon, sp2 bonds, and provided a
new view to the phenomena in quantum physics. In other respects, carbon crystals without
sp3 bonds could be formed with stable sp2 bonding. Their work was awarded the physics
Nobel Prize in 2010.

Carbon, as the most versatile element with diverse forms of bonding, can produce
many structures, such as 0D, 1D, 2D and 3D. Carbon with sp2 hybridization can form a
hexagonal-shaped lattice typical of a sheet of graphite, while carbon with sp3 hybridization
can construct the most complex 3D crystalline structure in diamond [15]. Fullerene, carbon
nanotubes and graphene are examples of 0D, 1D and 2D structures, respectively. They are
generally known as carbon nanomaterials.

For a long time, they have been used in a variety of devices in microelectronics [16–18].
A small quantity of carbon has been used in bipolar transistors to impede the out-diffusion
of boron in the SiGe base [19]. The other applications relate to the increase in the thermal
budget in silicide formation [20–23] or to the decrease in the intermixing of Si into the
Ge or SiGe interface [24]. For photonic application, carbon has been widely used for
bandgap engineering in SiGe for IR detection [24–28]. Meanwhile as an individual element,
carbon may be considered in a 3D crystal as diamond and as 2D crystals or nanotubes for
devices [29].

Graphitic materials are often used in the description of characteristics of carbon-based
materials such as graphite, nanotubes, large fullerenes, etc. [30]. Graphene is a 0.34 nm-
thick monolayer graphite. A 2D film of sp2-bond carbon atoms is arranged into a hexagonal
lattice [31–34]. Graphene is also regarded as either unrolled SWCNTs or a large atomic
plane taken from graphite [35]. Thus, it is important to understand the structures and
characteristics of graphene.

Figure 1a demonstrates sp2 hybrids of each carbon atom in graphene. These hybrids
form σ bonds with a length of 1.42 Å, which connect the neighboring carbon atoms [36].
These σ bonds result in excellent mechanical features. A pi bond (π bond) is a bond
formed by the overlap of orbitals in a side-by-side fashion. The π orbitals orthogonal to
the hexagonal plane of graphene are responsible for the graphene’s electronic features and
energy bands [37,38]. Figure 1b illustrates how sp2 hybrids of each carbon atom connect
with its neighboring atoms.
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Carbon nanotubes are graphene layers rolled around a cylinder with a very high
ratio of length to diameter. CNT has multiple helicities and chirality types compared
to a rolled graphene film. CNTs with their unique properties are potentially useful in
various applications. The main research of CNTs involves the improvement of synthesis
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techniques and the study of their properties for novel applications [39–42]. CNTs can be
utilized in many fields such as energy conversion electrode structures, sensor and biosensor
design, gas discharge tubes for telecommunication, screening of electromagnetic waves,
batteries, hydrogen storage and composite materials [43–45]. One of the most critical
issues in CNTs is the high surface-to-volume ratio. This feature refers to concentrating
the whole weight in its surface layer and makes it a proper candidate for electrochemical
and adsorption applications [46–48]. In other words, high sensitive surface structure for
adsorption and great electronic properties make CNTs advantageous for miniaturized
sensors and biosensors [49,50]. Furthermore, significant works have been undertaken
which revealed many structural, mechanical, electrical, electrochemical and chemical
properties of CNTs which inspired scientists to employ these unique cylindrical molecules
in an extensive variety of applications.

CNTs are categorized depending on the number of graphene layers. There are two
types of carbon nanotubes: single-walled CNTs (SWCNTs) and multi-walled CNTs (MWC-
NTs). In order to simplify the concept of physical structure, SWCNTs are cylindrical tubes
of 0.5–1 nm diameter capped by hemispherical ends. They can be assumed to be a rolled or
folded graphene sheet [51]. MWCNTs comprise several concentric cylinders of typically
2–100 nm in diameter with a layer spacing of 0.3–0.4 nm. The interlayer interval between
graphene sheets in graphite is approximately equal to the distance between the MWCNT
interlayer; hence, the MWCNT can be considered as a folded graphite sheet [52,53].

2. Physical Structures

Carbon nanotubes are fullerene-related molecules composed of graphene sheets rolled
into a cylindrical tube [54,55]. Hence, the surface-to-volume proportion is very large and in
many applications, this high ratio is the advantage of nanotubes [56]. The aspect ratio is
based on the synthesis method.

Graphene is an carbon allotrope which has two dimensions with hexagonal lattices [57].
In the graphene lattice plane, three outer-shell electrons of each atom occupy three hybrid
sp2 orbitals. These orbitals form σ bonds with the nearest atoms. The remaining outer-shell
electron occupies the pz orbital which is perpendicular to the lattice plane. The pz orbitals
hybridize together to form two half-filled bonds of free-moving electrons, π and π*, which
are responsible for the electrical and transport properties of graphene [58–60]. In the case
of small CNTs, the overlap of inner π bonds is much greater, contributing to the structural
properties, whereas in planar graphene there is much less overlap between orbitals.

As mentioned before, a CNT can be treated as a rolled graphene sheet. Any CNT can be
specified using three geometrical specifications called chiral vector (Ch), the chiral angel (θ)
and translation vector (T) [53], as illustrated in Figure 2. Ch is represented by a pair of indices
(n1, n2) which defines the way the graphene sheet is wrapped. It can be calculated as:

Ch = n1a1 + n2a2 or Ch = (n1, n2) (1)

where
a1 =

(√
3

a
2

.
a
2

)
, a2 =

(√
3

a
2

.− a
2

)
, a = 2sin

π

3
ac−c = 2.461

.
A (2)

T is the smallest vector that is perpendicular to Ch. One could say that T indicates the
periodicity of the CNT lattice along the tube axis. Equation (3) defines this property.

T·Ch = 0 (3)

θ specifies the direction of Ch. In other words, θ is the angle between a1 and Ch
(Equation (4)) [61].

cosθ =
a1·Ch

|a1|·|Ch|
=

2n1 + n2

2
√

n1
2 + n1n2 + n22

(4)
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CNTs have three possible structures depending on the way they are wrapped from
graphene sheets: armchair, zigzag and chiral. The armchair and zigzag nanotubes have a
chiral vector of (n, n) and (n, 0), respectively [61,62]. While chiral CNTs have a chiral angle
between 0 and π⁄6 [63].

The length of the chiral vector, |Ch|, is patently equal to the nanotube circumference.
Hence, one could acquire the radius of the nanotube using Equation (5).

rnanotube =

∣∣∣Ch|

2π
= a

√
n1

2 + n1n2 + n22

2π
(5)

2.1. Tight-Binding Approximation

The potential problems of a solid system with an enormous number of particles can be
solved using the linear summation of atomic orbitals or tight-binding approximation [64].
It is known from Bloch’s theory that electron wave function is described through the linear
combination of isolated atom Hamiltonian eigenstates. The variational principle is utilized
to minimize the error in this method. In order to acquire a better level of accuracy, the
orbital overlap integrals (orbital overlap integral indicates the correlation of the two wave
function orbitals) can be considered for the nearest neighbor orbitals, second neighbor
orbitals, third neighbor orbitals, etc. [64,65].

The accuracy of the tight-binding approximation is between empirical methods and ab
initio methods. Hence LCAO (Linear Combination of Atomic Orbitals) can be considered
as a semi-empirical technique.

2.2. Graphene Band Structure

Graphene σ bonds are confined near the nuclei; hence, the only considered bonds in
the graphene band structure are π and π* bonds. The following equation specifies the
NNTB (nearest neighbor tight bonding) model of graphene [60,66,67].

E(k) = ±
γ0

√
1 + 4cos

(
a
√

3kx
2

)
cos
(

aky
2

)
+ 4cos2

(
aky
2

)
1± s

√
1 + 4cos

(
a
√

3kx
2

)
cos
(

aky
2

)
+ 4cos2

(
aky
2

) (6)

where γ0 is the orbital overlap integral (
∫

Ĥϕ∗ i(r− T)ϕj(r)dr) and s can be determined
using s =

∫
ϕ∗ i(r− T)ϕj(r)dr. In most cases, s is minor enough to be neglected, especially

in the band structure calculation of nanotubes [66]. Figure 3a illustrates the nearest neighbor
tight-binding calculation for graphene.
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In the proximity of the Dirac points, the energy dispersion of graphene is linear. In
some cases, such as the electron transport, graphene band structure can be treated as double
cones connecting at the zero bandgap points [58]. The comparison between ab initio study
(which is expensive and accurate) of graphene and its NNTB approximation is depicted in
Figure 3b.

2.3. From Graphene to Nanotubes

A simple but effective technique to describe the single-walled nanotube band structure
is the zone folding approximation. When graphene sheet is folded into a nanotube, the
boundary condition is:

ψn(R) = ψn(R + Ch) (7)

From Bloch’s theorem, we can conclude:

K·Ch = 2πm (8)

In this method, by applying Born-von Karman boundary conditions along the circum-
ferential direction, the allowed electron states are limited. The electronic band structure of
nanotubes can be derived by substituting permissible K lines from Equation (8) into the
graphene energy dispersion equation [12,68–72].

2.4. Bandgap

SWCNTs are completely metallic if n1 − 2n2 = 0 or n1 = n2. This is while SWCNTs
could be a narrow gap semiconductor if n1 − 2n2 = 3k, where k is an integer, and are
semiconducting in other cases. The results of bandgap calculations for zigzag nanotubes
using different methods are collected in Table 1.

Table 1. Bandgap calculations for zigzag nanotubes with different methods.

(n1, n2) (6,0) (7,0) (8,0) (9,0) (10,0) (11,0) (12,0) (13,0) (14,0) (15,0)

Reference [70] (Eg eV) 0.243 0.643 0.093 0.764 0.939 0.078 0.625 0.736 0.028

Reference [70] (Eg eV) 0.21 1.0 1.22 0.045 0.86 0.89 0.008 0.679 0.7 0.0

Reference [73] (Eg eV) 0.79 1.12 0.65 0.80

Reference [73] (Eg eV) 1.11 1.33 0.87 0.96

Reference [74] (TB) (Eg eV) 0.05 1.04 1.19 0.07

Reference [74] (LDA) (Eg eV) Metal(−0.83) 0.09 0.62 0.17
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Table 1. Cont.

(n1, n2) (6,0) (7,0) (8,0) (9,0) (10,0) (11,0) (12,0) (13,0) (14,0) (15,0)

Reference [75] B3LYP (Eg eV) 0.00 0.079 0.041 0.036

Reference [75] experimental (Eg eV) 0.80 0.042 0.029

Reference [75] LDA (Eg eV) 0.024 0.002 0.00

3. Electrical and Material Properties
3.1. Semi-Metal Characteristics

Zero bandgap is one of the most impressive characteristics of graphene, resulting
from its valence band meeting the empty conduction band at six points (see Figure 4a).
Specifically, two carbon atoms in each graphene unit cell will lead to two conical points
(K and K’) for each Brillouin zone during the bands crossing (Figure 4b). As the bandgap
determines transistors’ on and off region, a small bandgap leads to a low on–off ratio. As
a result, graphene’s zero band gap hinders its applications in devices such as field-effect
transistors (FETs) [76]. Another disadvantage of a zero bandgap is that bi- and multilayer
graphene are non-luminescent unless a bandgap was introduced [77]. Accordingly, it
should be noted that graphene FETs are not suitable for digital applications and logic
circuits [30,78].
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Many approaches have been applied to tune the graphene’s bandgap, such as adding
an external electric field, slicing the graphene sheets into thin ribbons and chemical dop-
ing [31,79,80]. Generally, introducing various atoms/molecules to the graphene’s surface
can substantially alter its properties. It is worth noting that the modification of graphene’s
surface is now creating a wide portfolio of newly synthesized graphene derivatives with
tunable optical, chemical and mechanical properties. Two of the most studied graphene
derivatives are graphene oxide and fluorographene [81]. Bilayer graphene also has zero
bandgap [82]. By adding an external electric field, a charge density would appear at its
surface. It leads to a shift of the Fermi level, which in turn creates a bandgap [29,83]. This
bandgap is tunable between 0 and 0.3 eV, which lies in the mid-wave infrared range [82].
However, no Fermi level shift would happen when applying an electric field to a monolayer
graphene, since the monolayer graphene’s band structure and bandgap differs from that of
bilayer graphene [84].

A finite gap can be created by implementing narrow ribbons of graphene. The bandgap
is affected by the ribbon’s width and orientation [31]. These ultranarrow graphene nano-
ribbons (GNRs) have properties similar to those of semiconductors. The origins of the
band gaps for GNR with armchair or zigzag shaped edges vary. The former originates
from quantum confinement, and edge effects play a crucial role. For the latter, the band
gaps arise from a staggered sublattice potential due to spin ordered states at the edges.
First-principles calculations confirmed that the GNR’s bandgap is inversely proportional to
the width of the ribbon, due to the quantum confinement and edge effects [85]. For instance,
Barone et al. predicted that the ribbon’s width should be lowered to 2–3 nm to obtain
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a bandgap like that of Ge or InN [86]. Correspondingly, to obtain larger bandgaps like
those of InP, Si or GaAs, the ribbon’s width should be reduced to approximately 1–2 nm.
Reaching such dimensions has yet been impossible [86–88]. GNR FETs at room temperature
have a bandgap of 100 meV [89]. The chemical doping approach shifts the Fermi level
of graphene. This charge doping varies the symmetric potential [90]. Other methods, for
example, interaction with gases and defect generation are also used to tune the bandgap.
It is even reported that water molecules adsorbed on graphene’s surface can introduce a
bandgap of 0.206 eV [76].

Linear dispersion is one of the characteristics of graphene materials, as illustrated
in Figure 4a. The holes and electrons at the Dirac point are in linear relations of energy-
momentum dispersion. The Dirac point is located close to the charge-neutrality point.
Graphene behaves similar to a massless Dirac fermion, because of the two similar carbon
sub-lattices in the graphene’s crystal structure [91]. Thus, graphene’s electrical features can
be described using the Dirac’s equation [91–95].

Graphene also has strong ambipolar electric field effect characteristic. Different from
ordinary metals, its charge carriers can be tuned from electrons to holes by applying an
external electric field. It can be either p-type or n-type depending on the electric field [31].
In other words, the carrier type is not pre-defined. This is because when graphene’s energy
is above 0, its current states are electron-like and have negative charges [91].

3.2. Electrical Conductivity and Ballistic Transport

Graphene’s mobility is extremely high. Three macroscopic forces, namely drift, diffu-
sion and drag force, can affect its mobility. Drift force is caused by the electrostatic field.
Diffusion force is caused by carriers’ random motion, and drag force is because of the
carriers scattering in the lattice [78]. There are four scattering mechanisms which impact
graphene’s mobility. They are caused by charged impurities, surface roughness, optical
phonons and acoustic phonons. It has been experimentally confirmed that the charged
impurities have the dominant effect on the mobility. Thus, mobility at room temperature
can be increased by reducing the charged impurity concentration. This can be obtained by
annealing or using high-κ dielectric materials [96].

It is reported that graphene’s carrier mobility is between 1 and 20 × 103 cm2/V·s.
It should be noted that higher mobilities have been reported for clean graphene that
is suspended or placed on boron nitride [15]. The charge density has to be lower for
gaining higher mobilities. The best obtained mobility at room temperature was 15,000
cm2/V·s [20,97,98].

Compared to silicon and III-V semiconductors, graphene has much higher intrinsic
carrier mobility [34,37,91,99]. Therefore, graphene has a rapid electronic transport which
benefits high-frequency applications for transistors [79,100].

Graphene has high electrical conductivity due to its high mobility [101]. The conduc-
tivity can be changed when adsorbing different atoms and molecules such as K and NH3.
If the absorbed species are weakly attached, graphene’s high conductivity remains because
the absorptions may act as acceptors or donors. While other absorbed species, for example
H+ or OH−, create a mid-gap state close to the graphene’s neutrality point, which decreases
the conductivity of graphene. Therefore, graphene can be transformed into an insulator by
exposing to other materials such as H2 [102,103]. Scattering mechanisms, such as extrinsic,
intrinsic and impurity scattering, can also be used to change graphene’s conductivity [99].

Graphene has higher resistivity than that of Cu wires, as demonstrated in Figure 5a.
Accordingly, GNRs have lower conductivity. It is published that the mean resistivity of
a GNR with a line-width of 18–52 nm is three times larger than that of a Cu wire with a
similar width [99,104].

Like any other semiconductors, graphene’s resistivity is affected by temperature
variations. Graphene has a mobility of 170,000 cm2/V·s near 5 K, because the carriers
have a large mean free path at low temperature and a near-ballistic transport. Figure 5b
illustrated that the resistivity behaves in two different ways according to the carrier density
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as temperature increases. When the carrier densities are higher than 0.1 × 1011 cm−2, the
graphene displays a metallic conductivity feature. Specifically, the increased temperature
results in a larger resistivity. The mobility reaches about 120,000 cm2/V·s at about 240 K,
which is higher than any discovered semiconductors. While it displays a non-metallic
feature at low densities (|n| < 0.1 × 1011 cm−2), indicating that the resistivity increases
with the temperature decreasing. Low density occurs close to the charge neutrality point [3].
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Ballistic transport is another remarkable characteristic of graphene [28]. Diffusive and
ballistic phonon transport are two particular kinds of thermal transport. If the channel
length is longer than the carrier mean-free path length, the phonons may be scattered
during the transport process. Thermal transport is diffusive. Otherwise, the thermal
transport is ballistic [105]. Thus, graphene is a choice for applications when both ballistic
and diffusive transport regimes are required [106].

3.3. Melting Point and Stability

Non-electrical features of graphene are still not fully discovered. As an example, the
melting temperature of graphene has not been found yet, even though we know that the
melting temperature of ultra-thin films decreases as the thickness decreases [101]. It is even
reported that graphene would not melt because the atomic vibration amplitudes close to
the equilibrium position are smaller than interatomic distances [91].

Young’s modulus, flexibility and thermodynamic stability are a few extraordinary prop-
erties of graphene. Graphene exhibits remarkable elastic stiffness with a Young’s modulus
up to 1.0 TPa, which occurs near a strength number of 120 GPa (100 times higher than that
of steel) [97,103,107]. Graphene could be stretched about 20% more than any known crystals.
Such high flexibility makes graphene suitable for flexible electronics [104,108–110].

Thermodynamical stability is another unique feature of graphene. It is known that
ultra-thin films are thermodynamically unstable as the thickness decreases. As for graphene
film, experimental research showed that it is thermodynamically stable and conductive
even at nanometer ranges [28]. Thus, the thermodynamical stability benefits the scaling of
graphene devices and makes it an alternative material for the applications of integrated
circuits (IC) [34,111].

3.4. High Transparency

Graphene can absorb a notable fraction of incident light, although it has one atomic
layer [112]. The optical absorption is in proportion to the number of layers. Lower than
1% of the visible light is reflected, which in the case that the quantity of layers rises to 10,
it grows to 2%. Approximately 2.3% white light is absorbed by each layer. Additionally,
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graphene has high transparency and its transmittance gets lowered when the number of
layers gets higher [94,97,112–114], see Figure 6. It can be concluded that the more layers
the graphene has, the less transparent it exhibits [112]. Optical absorption is a function of
wavelength in graphene. In the near-IR region at around 1 eV (1240 nm), 2.3% absorption
is observed. Accordingly, the absorption will be larger when at energies larger than 1.5 eV
(corresponding to 825 nm wavelength) [105,112].
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3.5. Thermal Conductivity

The material’s structure affects the thermal conductivity, and it becomes crucial when
electronic devices are scaled down to nanometers. It is reported that carbon allotropes possess
a wide range of thermal conductivity [115]. Amorphous carbon material has the lowest value
of about 0.01 W/mK, whereas diamond possesses a high value of around 2000 W/mK [105].
It has been theoretically proven that thermal conductivity can be extremely large in 2D and
1D crystals. It is reported that graphene has a thermal conductivity of around 5300 W/mK at
room temperature [30,37,101,104,106,116,117].

The high κ parameter is also an extraordinary feature of graphene. It determines
how well the graphene conducts heat. By using edge roughness, this parameter can be
altered [105].

4. Growth and Transfer of Graphene

The most crucial step in the fabrication of microelectronic devices is material growth.
However, if the aim is to obtain a monolayer, this step gets more crucial. In this part,
several methods of graphene growth on different substrates are reviewed. Additionally,
the advantages and disadvantages are given. Graphene growth methods are divided into
two categories, top-down method and bottom-up method (see Figure 7).

Micromachines 2022, 13, x FOR PEER REVIEW 10 of 64 
 

 

 
Figure 7. Schematic of graphene growth classifications. 

4.1. Top-Down Method 
Pre-deposited or synthesized carbon-based materials, such as graphite or graphite 

oxide, are used to grow graphene. Many studies have demonstrated various processes 
either physical or chemical to produce graphene. Exfoliation and reduction will be dis-
cussed here as the prime approach to achieve the high-quality graphene for electronic 
applications [118]. 

4.1.1. Exfoliation 
Exfoliation is a simple and high-yielding approach to obtain mass production of gra-

phene, although not fully purified [119,120]. Graphene is obtained by decreasing graph-
ite’s number of monolayers [121–123]. A few achievable options of exfoliation, such as 
Scotch tape, drawing method and graphite sonication, will be discussed in the following 
paragraphs. 

The Scotch-tape and drawing method [124] is known as a mechanical exfoliation to 
produce graphene. It was firstly developed by Novoselov and Geim. With an adhesive 
tape, the graphene layers are recurrently peeled off from graphite crystals. The optically 
transparent flakes stuck to the tape are dissolved in acetone for detachment. After a few 
more steps, the flakes, containing monolayers of graphene, are then sediment on a silicon 
wafer. By using a dry deposition method in the drawing procedure, the floating stage 
could be avoided. However, the drawback of this method is that the obtained graphene 
cannot be scaled further and the size is limited to a few micrometers [125]. It should be 
mentioned that the Scotch-tape and drawing method is not limited to producing graphene 
but can also be used to produce some other thin layer materials such as freestanding 
atomic planes of boron nitride, mica, dichalcogenides and complex oxides. Figure 8 shows 
the morphology of some thin layer materials obtained with such method. 

 
Figure 8. Monolayer 2D crystallites. (a) NbSe2 by atomic force microscopy (AFM), (b) graphite by 
AFM, (c) Bi2Sr2CaCu2Ox by SEM and (d) MoS2 seen by optical microscope [124]. 

Graphite sonication [126] is another method used to obtain high-quality graphene. It 
starts with a dispersion of sieved graphite powder, see Figure 9a. A grey liquid containing 
many macroscopic aggregates and a homogeneous phase would be obtained after soni-
cation, see Figure 9b. Using mild centrifugation, the aggregates would be removed. Mod-
erate levels of sedimentation and aggregation take place after three weeks of centrifuga-
tion. However, high-quality dispersions would remain for at least five months. The graph-
ite dispersion is then passed across polyvinylidene fluoride filters (PVDF) to find its con-
centration. After this process, a few five-layer graphene flakes and large amounts of mon-
olayers will be obtained in a g-butyrolactone (GBL) solvent, as shown in Figure 9c. 

Figure 7. Schematic of graphene growth classifications.

4.1. Top-Down Method

Pre-deposited or synthesized carbon-based materials, such as graphite or graphite
oxide, are used to grow graphene. Many studies have demonstrated various processes
either physical or chemical to produce graphene. Exfoliation and reduction will be dis-
cussed here as the prime approach to achieve the high-quality graphene for electronic
applications [118].
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4.1.1. Exfoliation

Exfoliation is a simple and high-yielding approach to obtain mass production of graphene,
although not fully purified [119,120]. Graphene is obtained by decreasing graphite’s number
of monolayers [121–123]. A few achievable options of exfoliation, such as Scotch tape, drawing
method and graphite sonication, will be discussed in the following paragraphs.

The Scotch-tape and drawing method [124] is known as a mechanical exfoliation to
produce graphene. It was firstly developed by Novoselov and Geim. With an adhesive
tape, the graphene layers are recurrently peeled off from graphite crystals. The optically
transparent flakes stuck to the tape are dissolved in acetone for detachment. After a few
more steps, the flakes, containing monolayers of graphene, are then sediment on a silicon
wafer. By using a dry deposition method in the drawing procedure, the floating stage could
be avoided. However, the drawback of this method is that the obtained graphene cannot
be scaled further and the size is limited to a few micrometers [125]. It should be mentioned
that the Scotch-tape and drawing method is not limited to producing graphene but can also
be used to produce some other thin layer materials such as freestanding atomic planes of
boron nitride, mica, dichalcogenides and complex oxides. Figure 8 shows the morphology
of some thin layer materials obtained with such method.
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Graphite sonication [126] is another method used to obtain high-quality graphene.
It starts with a dispersion of sieved graphite powder, see Figure 9a. A grey liquid con-
taining many macroscopic aggregates and a homogeneous phase would be obtained after
sonication, see Figure 9b. Using mild centrifugation, the aggregates would be removed.
Moderate levels of sedimentation and aggregation take place after three weeks of centrifu-
gation. However, high-quality dispersions would remain for at least five months. The
graphite dispersion is then passed across polyvinylidene fluoride filters (PVDF) to find its
concentration. After this process, a few five-layer graphene flakes and large amounts of
monolayers will be obtained in a g-butyrolactone (GBL) solvent, as shown in Figure 9c.
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(c) Bright-field TEM images of single-layer graphene flakes with a deposition from GBL [126].

Graphite flakes can also be used as raw materials to produce graphene with the
sonication method [127,128]. Firstly, various amounts of graphite flakes would be mixed
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with 5 g 1-hexyl-3-methyl-imidazolium hexafluorophosphate (HMIH) by grounding in
a mortar for 10 min. Secondly, the mixture would be placed in a tubular plastic reactor
and set in an ultrasonic bath at room temperature for 0.5, 6.5, 14.5 and 24 h, respectively.
Figure 10a shows the Raman spectra of the obtained graphene sheets, which were collected
from different wt% of dispersed graphite in HMIH. At last, the mixtures were centrifuged
at 4000× gRPM (revolutions per minute) for 30 min and the grey to black liquid phase
containing graphene would be obtained. A concentration of 5.33 mg/mL was obtained by
sonicating 3.5 mL of dispersed graphite for 24 h [128].
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Figure 10. (a) Raman spectra of the obtained graphene using the sonication method with 0.1, 0.5, 1.0
and 2.0-wt% graphite in HMIH [128]. (b) SEM result of exfoliated graphite oxide [129].

Another promising sonication method was proposed by Wang et al. In their method,
the primary material was firstly dispersed in water under ultrasonication for 30 min,
followed with the centrifugation process at 4000 rpm for another 30 min. Then, the
obtained product was dried under a vacuum. The obtained product was then suspended in
water again using ultrasonication for 2 h. The final step was to further remove aggregates
by centrifuging at 10,000 rpm for 15 min. Figure 10b shows the SEM result of the final
products [129]. The products have a high conductivity of about 550 S/cm. Moreover, the
obtained films have high transparency up to 70% with a thickness of 1000–3000 nm.

“Defect-free” graphene has been recently synthesized by employing a unique flow-
aided sonication exfoliation method [130]. Mitlin et al. discovered a critical and unexpected
relationship between the graphene’s chemical/structural defectiveness and the ability to
suppress the growth of dendrites, branch-like filament deposits on the electrodes, which
may penetrate the barrier between the two halves of the battery.

4.1.2. Reduction
Pyrolysis

Another method to synthesize graphene is pyrolyzing sodium ethoxide. The main
idea is reducing ethanol via sodium metal, thermal decomposition of ethoxide material
and finally rinsing off the sodium salts with water. To do this, 2 g of sodium and 5 mL of
ethanol (the molar ratio is 1:1) would be sealed in a reactor vessel and heated at 220 ◦C
for 72 h. The obtained product, namely graphene precursor, was then rapidly thermal
decomposed and washed with 100 mL deionized water. The mixture was then filtered and
dried in a vacuum at 100 ◦C for 24 h. The yield graphene concentration is about 0.1 g/mL.
The obtained products are displayed in Figure 11a,b. The SEM images of the products are
shown in Figure 11c,d [131].
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Reduction with Graphite Oxide

Another reduction method to produce graphene is by rapid heating graphite oxide
(GO) [132,133]. A small amount of graphene flakes could be obtained with the reduc-
tion of GO films. The reduction could be done either by hydrazine or by annealing in
an argon/hydrogen atmosphere, which is thermal reducing [134]. The former is called
chemically reduced graphene oxide (CRGO) and the latter is called thermally reduced
graphene oxide (TRGO). Nevertheless, graphene obtained with these methods has a lower
quality compared to that of the mentioned Scotch-tape method. There are many ways to get
reduced graphene [135]. For example, converging the solar radiation is one of the ways to
obtain a fast temperature increase at a rate of more than 100 ◦C/s. The Van Der Waals force
within GO layers can be overcame with the introduction of pressure during the radiation
process. Thus, the layers can be reduced. Figure 12 displays the Raman spectra comparison
of graphite, GO and solar graphene. Compared to graphite, the GO has a high and wide
D band at 1368 cm−1 and a wide and right-shifted G band at 1604 cm−1. Such features
might be caused by graphite oxidation, which would lead to a reduction in the in-plane
sp2 domains. After the reduction process, the G band of the obtained solar graphene was
shifted back and was matched with that of graphite. By analyzing the intensity ratio
between the D band and G band (ID/IG), the GO had a ratio of 1.16, indicating a large
number of defects. As for solar graphene, the lowest ratio of 0.20 indicates a high quality
of the obtained product [27]. For the chemical reduction method, the first step would be
exfoliating the GO in water ultrasonically to obtain ~1 nm-thick GO films, followed by a
chemical reduction treatment by hydrazine. Due to the hydrophobic features, the products
would aggregate and precipitate [136]. The obtained graphene would not be monolayers,
but with a thickness of approximately 30–100 nm.
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Graphite dioxide can also be used in the chemical reduction method. In this method,
magnesium is oxidized in a reaction with CO2: 2 Mg(s)+CO2(g) → 2 MgO(s) + C(s).
Chakrabarti obtained several graphene layers with a length of 50–300 nm. In this approach,
Mg was put in a bowl with dry ice and covered with a dry ice slab. The Mg burned and
yielded black products. The products were then soaked into HCl acid, where the Mg and
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MgO reacted with HCl and the byproduct was MgCl2 which would dissolve in water. At
last, the cleaning and drying process is completed to achieve several graphene layers [137].

4.1.3. Others

Other top-down methods have also been reported to produce graphene, such as
unzipping nanotubes [138–140], super acid de-solvation [141], arc-discharge [142], and
reduction of sugars, such as glucose, fructose and sucrose [143].

4.2. Bottom-Up Method

The above-mentioned methods are mostly used in laboratories other than industry.
To obtain high-quality graphene industrially, the products should be controllable and
reproducible in both layer thickness and size. While the bottom-up method is introduced
for massive production of high-quality graphene. In the method, carbon sources are
decomposed and stored in the catalyst layer. This continues until the solved carbon reaches
its saturation degree. Then, precipitation of carbon atoms occurs either from catalyst’s top
or bottom side depending on the catalyst, and then graphene layers begin to grow. In this
part, the procedures of growing graphene on various substrates will be reviewed.

4.2.1. Epitaxial Method

High conductivity, high transparency and controllability over the number of the final
layer are crucial for producing high-quality graphene. Epitaxy is considered to be one of the
most promising methods to obtain high-quality graphene with a layer thickness of less than
10 nm. Many conditions and approaches can be used in graphene epitaxial growth. Some of
them will be reviewed below for a better understanding of the essential procedures.

Graphene can be epitaxially grown on substrates such as 6H-SiC (0001) or 4H-SiC
(0001) [144]. A two-step method was proposed by Huang et al. to grow graphene on an
n-type Si-terminated 6H-SiC (0001) substrate. In this method, the SiC is firstly decomposed
with high-temperature annealing, which leads to the desorption of Si from the surface
and accumulation of carbon atoms. By annealing at a temperature of 1200 ◦C or higher
(Figure 13), monolayers, bilayers, trilayers and even thicker graphene films could be grown
on top of the substrate. It should be noted that the pressure should be at 5 × 10−9 mbar in
the chamber [145].
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Figure 13. (a) STM result of the single-layer graphene (dark region) and double-layer graphene
(the bright regions); (b) HRSTM image. Hexagon with red dots stands for the lattice of the single
layer, and hexagon with red and blue dots stands for two non-identical triangular sublattices of the
double-layer graphene [145].

High-quality graphene sheets a few hundred nanometers in size were achieved with the
method. The graphene has a mobility of 2000 cm2 V−1 S−1 at 27 K. There is no need to transfer
the graphene layers to another insulating material, since the underneath SiC substrate is an
insulator. Nevertheless, the quality of the grown films is poor due to the lack of uniformity
and continuity. It is reported that small graphene domains (30~100 nm in diameter) could
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be obtained on the Si (0001) substrate, whilst extended domains of 200 nm in diameter are
achieved on the C-faced (0001) substrate during the ultrahigh vacuum (UHV) annealing
process. To remove defects of the surface, the substrates were firstly etched with hydrogen.
Then, the growth process was undertaken in a cold-walled reactor vertically. The rate of
heating and cooling was restricted to 2~3 ◦C/s and the growth time was 15 min. Because of the
wide range of temperature (1500~2000 ◦C) and pressure (10~900 mbar), a small Ar flow during
growth was proved to have much better results compared to UHV. Figure 14a illustrates the
Raman spectra of graphene obtained by epitaxy in both UHV and Ar flow conditions. The
lower amplitude of the D-band peak in the figure in Ar flow condition indicates a larger
domain size of graphene [135]. Figure 14b,c shows the surface morphology of the epitaxial
graphene obtained in the Ar flow circumstances taken by AFM and low energy electron
microscopy (LEEM). The LEEM image reveals the macro-terraces covered with graphene up
to 50 µm long and at least 1 µm wide [146].
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Amini et al. reported a different method using molten metal–carbon solutions [147].
Single-layer or multilayer graphene could be achieved with this method from the molten
solutions. The first step of this procedure would be dissolving carbon in the molten metal.
Subsequently, graphene growth would start in the decreased temperatures at the surface of
the molten metal. A schematic diagram of this procedure is illustrated in Figure 15. Metal
such as nickel melts with a carbon source. The carbon source could be graphite powder,
a piece of carbon or graphite crucible which holds the metal solution, see Figure 15a.
The interaction between molten nickel and graphite crucible would dissolve carbon and
saturates it in the molten nickel, see Figure 15b. Afterward, with temperature decreasing,
carbon solubility reduces and excess carbon atoms would precipitate on the solution surface,
as illustrated in Figure 15c. Arc melting inside a resistance furnace was chosen for the
dissolution procedure. During the process, the chamber was firstly vacuumed to 10−6

Torr and then backfilled with purified argon twice. The melting process was completed
at a current of 75 amps for 20 s. When the temperature reached 1500 ◦C, the samples
were held at the temperature for 16 h and then cooled down to room temperature. The
temperature changing rate was kept at 10 ◦C/min. When using Cu as the molten metal, the
melting process was carried out in a graphite crucible as a carbon resource. A hypereutectic
composition of Ni + 2.35 wt% C was chosen, and a certain quantity of chunk carbon
was added to the molten metal. The possible morphologies of the obtained graphene are
schematically illustrated in Figure 16a.
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Figure 16. (a) Schematic of wrinkle, monolayer graphene and multilayer graphene [147]. (b) STM
result of monolayer graphene [148].

Although many studies were proposed by employing single crystalline SiC as the
substrate, Hofrichter et al. reported that amorphous SiC is also an alternative substrate
to gr graphene. They successfully controlled the carbon concentration of the solution by
using a 50 nm SiC layer together with a 500 nm Ni layer. Rapid annealing at 1100 ◦C was
undertaken to dissolve SiC in Ni. The advantage is that vacuum is not mandatory during
the annealing process. When the temperature decreases, carbon atoms accumulate and
precipitate at the Ni surface, forming graphene layers. To transfer the obtained graphene
film to the desired substrates, nitric acid and hydrogen peroxide were used for etching
Ni and dissolving Si. Afterward, the floating graphene was transferred to an insulating
substrate, for example, SiO2. STM results demonstrate that the graphene obtained by
Hofrichter et al. is of high quality [148], as shown in Figure 16b.

4.2.2. Chemical Vapor Deposition Method

With the above-discussed methods, it is still challenging to obtain high-quality large-
size graphene. Chemical vapor deposition (CVD) [149,150] is a possible approach which can
be used for massive production of graphene. The idea behind it is chemically decomposing
carbon-related materials such as ethanol, acetylene, methane or methanol on catalysts
surfaces such as nickel [151–154] or copper [155–159].

Ni is the most commonly used catalyst substrate in the CVD growth procedure of
graphene. CVD growth of graphene is a four-step procedure which is similar to the growth
method of CNTs. Figure 17 demonstrates a typical CVD growth procedure. To start, carbon-
related materials were transferred to the Ni surface. Then, the materials decomposed
into carbon ad-atoms which dissolved into the Ni substrate. By lowering the substrate
temperature, the saturation occurred and carbon atoms precipitation onto the Ni surface
forming a graphene layer [160].
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Ni has proven to be an excellent substrate to grow CNTs, though it has drawbacks
when used to growth graphene. It would create grains in multilayer graphene at the Ni
grain boundaries. Additionally, the more the carbon atoms dissolved, the more layers the
graphene precipitates on the Ni surface [155].

To get high-quality graphene films with Ni substrate, the grain sizes of Ni film must
be increased. Thiele et al. reported that the grains of the Ni film would prefer to orientate
in the (111) direction by reducing the internal stress. Additionally, this procedure also
enlarges the grain size. Figure 18 displays the grain size of Ni films annealed at 1000 ◦C at
different times [161].
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In order to get rid of those drawbacks, Cu was selected as an alternative substrate dur-
ing the CVD growth process. Carbon has a lower solubility in Cu even at high temperatures
up to 1000 ◦C in Ar or H2 atmosphere. Therefore, the low concentration of dissolved carbon
has little effect on the graphene thickness. The graphene film forms directly on the Cu
substrate. Thus, it is easier to control the growth process compared to that of Ni [160,162].
Heat treatment could also enlarge the Cu grains, therefore, cause better coverage. Li et al.
reported that more than 95% coverage of single-layer graphene was obtained on a 25 µm Cu
substrate at 1000 ◦C by using a mixture of methane and hydrogen. The obtained graphene
film has a size of 1 by 1 cm. Additionally, they discovered that bi- and trilayer flakes grown
on the remaining 5% surface would not grow larger with time [155].

Reducing the thermal budget is one of the challenges in the CVD growth method.
Nandamuri et al. reported that graphene films can be grown at low temperatures between
650 and 700 ◦C using nickel as the catalyst substrate when the methane was changed to
acetylene [163]. An alternative method to grow graphene at low temperatures was using
plasma-enhanced chemical vapor deposition (PECVD) [164]. Malesevic et al. reported
that four to six atomic layer graphene sheets were grown at 700 ◦C by controlling the
recombination of carbon radicals in a microwave plasma without using catalysts on the
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surface [165]. However, one of the disadvantages of the PECVD method is that it is difficult
to grow large-area graphene, because the large electrical field is perpendicular to the surface
which prevents the graphene’s planar growth. It leads to the vertically grown graphene
sheets [158,166,167].

It is reported that less-layer with large-area graphene films were grown on Ni substrate
by direct-current (DC) PECVD method. By applying a DC voltage, the density of defects
in the obtained graphene films could be minimized. High-volume hydrogen was used to
enhance the graphene uniformity and present the formation of CNTs during the process.
In this method, Ni film was first exposed to hydrogen at a flow rate of 100 sccm (standard
cubic centimeters per minute) under 1 Torr of pressure for 30 min. Then, the temperature
was increased to 1000 ◦C, and simultaneously plasma was added at 500–800 V. Next, the
film was exposed to C2H2 gas at 2 sccm under the same pressure for 10–20 min. At last, the
samples were cooled down to room temperature [168].

A similar study using radiofrequency PECVD also was carried out to grow large-area
graphene at 650 ◦C on Ni films deposited on SiO2/Si substrates [169]. Firstly, a 150 nm Ni
film was deposited on SiO2/Si surface using direct-current magnetron sputtering. Then, the
Ni films were placed inside the PECVD chamber and the pressure was lowered to 37.5 mTorr.
The films were heated at 650 ◦C for 40 min with H2 at a pressure of 1.5 Torr. Later, plasma was
applied at 13.56 MHz and 650 ◦C. A mixture gas of CH4, Ar and H2 was applied at the same
time with a flow rate of 2, 80 and 40 sccm, respectively. The chamber pressure was maintained
at 7.5 Torr for 30 s. At last, the samples temperature was cooled down at 10 ◦C/s in an Argon
ambient. Graphene was achieved as a result of carbon segregation. The residual Ni film was
then etched away using a 1 M FeCl3 aqueous solution.

As a summary, Table 2 gives a comparison of those aforementioned graphene prepa-
ration methods. CVD can produce good-quality graphene for electronic applications.
However, the practical application of graphene is still hindered by the high price and
insufficient supply.

Table 2. Summary of current methods used to produce graphene.

Method Sources Advantages Disadvantages References

Exfoliation Graphite Simple and high yielding Not fully purified [120–123]
Scotch-tape and drawing

method Graphite Simple and high quality Cannot be scaled further,
limit in size [119,124,125]

Sanitation Graphite powder and flakes High quality Low production,
time consumption [126–130]

Reduction Different carbon sourcesOther
activated carbons

Large-area monolayer
graphene films onto a variety

of substrates
Limited in yield. [131–137]

Epitaxy Metal–carbon solutions
or 6H-SiC

High quality,
mono-/bi-/trilayer graphene

Requires expensive
equipment, throughput

issue and scaling requires
significant effort

[144–148]

Chemical vapor
deposition (CVD) CH4 and C2H2 gases High quality, large size,

monolayer or bilayer graphene

Requires expensive
equipment, throughput

issue and scaling requires
significant effortSome of

the gaseous raw materials
are hazardous, the use is

limited in some
applications and a concern
for large-scale production

[149–169]

4.3. Graphene Film Transfer

During the fabrication process of electronic devices, it is crucial to transfer the grown
graphene film onto the desired position. Graphene transfer methods have been reviewed in
recent articles [153,170–174]. Those methods could be classified into dry and wet categories.
The chosen type is based on graphene’s state after etching. If the graphene adheres to the
substrate, the dry transfer method is preferred. Alternatively, if at a floating state, it is
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better to choose a wet transfer method. In general, it would cause fewer contamination and
damage to the graphene if the transfer has fewer steps using liquids. Figure 19 demonstrates
a dry transfer procedure schematically.
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Figure 19. Illustration of a dry transfer procedure on shallow substrates. (a) The copper is etched
with the PDMS/PMMA/graphene floating over the etchant. (b) The sample is rinsed and dried with
the PDMS “handle”. (c) The PDMS/PMMA/graphene is placed onto the target substrate and heated.
(d) Peel off the PDMS block. (e) The PMMA is thermally removed in a furnace at 350 °C with Ar and
H2 for 2 h. The heat treatment in c makes the rough PMMA/graphene film fully contact with the
substrate, as shown in the magnified views of figure (c,d) [170].

Many epitaxial approaches are used to grow multilayers graphene on flat substrates,
such as using thermal release tape, a bilayer gold film and polyimide. The obtained
graphene can be peeled off with the dry transfer method. It is reported that a polydimethyl-
siloxane (PDMS) frame can be used to transfer graphene/PMMA film from the copper
etchant [170]. Followed with a PMMA heat treatment, the adhesion between the graphene
and the substrate layer can be enhanced. The heating process softens the PMMA layer.
Hence, the gap between the substrate and the graphene is reduced.

Figure 20 illustrates an alternative dry transfer method utilizing a PDMS stamp. The
initial step is spin coating hydrazine suspensions on a substrate of oxygen plasma-treated
glass. It has to be noted that the mixture of hydrazine suspensions and the speed of spin-
coating influence the density of the deposited films. The second step is contacting the
glass substrates and PDMS. The third step is contacting the inked stamps with the Si/SiO2
substrates. The contacts take a few days at room temperature to get a complete transfer.
The final step is removing the stamp from the Si/SiO2 [171].
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Figure 20. Transfer printing method. (a) Material deposition on a glass surface, (b) inking of the
PDMS stamp, (c) contacting the inked stamp and a heated Si/SiO2 substrate and (d) the stamp is
peeled off to achieve the deposited material [171].

Gold is also usable in the dry method for removing graphene which is strongly adhered
to a silicon substrate [172]. That is to say, the gold film can be used as a transfer stamp
to peel off graphene from the HOPG surface. Initially, graphene patterns are fabricated
on the HOPG surface with photolithography and an O2 plasma etching process, followed
with gold deposition. Next, the gold film is peeled off with thermal release tape. Next,
the graphene patterns are transferred and pressed onto the desired preheated substrate.
Finally, the tape is removed and the gold film is etched away with a gold etchant solution.
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Figure 21 displays a wet transfer procedure. A thin PMMA film is spin-coated on the
graphene surface. The ferric chloride etchant is used to etch Ni and Cu foil, and then the
graphene/PMMA film is rinsed with deionized water. An annealing process will enlarge
the caliber of wet transfer onto the substrates [170]. The heating process can decrease
the graphene sheet’s resistance. It is reported that the resistance of the graphene sheet
grown with the CVD method can be decreased by a factor of 2 with annealing treatment.
Accordingly, the graphene films produced by CVD and transferred with the wet method
are more suitable for the fabrication of electronic devices such as transparent conductive
films [175,176].
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Figure 21. Illustration of a wet transferring procedure on perforated substrates: (a1–a5) and flat
substrates (b1–b5). (a1,b1), the copper foil is etched away. (a2), multiple substrates with spacers
were diped in Hexamethyldisilazane (HMDS) to fully support the graphene/PMMA membrane.
(b2), substrate is placed in the water at an inclined angle. (a3), HMDS was removed. (b3), the
PMMA/graphene film is lowered onto the substrate by removing water with a syringe. (a4), the
critical point drying was used. (b4), the dried PMMA/graphene/substrate is heated to remove the
PMMA. (a5,b5), the PMMA is removed with acetone [170].

5. Growth and Mechanisms of CNTs
5.1. Growth

Controlling nanotubes’ properties has been facilitated by investigation on new synthe-
sis methods over the years. Many aspects of fundamental research and practical applica-
tions have been motivating the synthesizing approaches to improve quality. The primary
synthesis method of CNTs was based on carbon arc discharging, but other procedures such
as carbon laser ablation and chemical vapor deposition (CVD) were also used for making
CNTs [177].

Early studies on producing CNTs were based on carbon arc-discharge, but in this
section, various synthesis techniques for both CNTs are presented. In 1991, Ijima produced
CNTs using an arc discharging evaporation method like fullerene production. In this
procedure, CNTs were grown on a negative carbon electrode cathode in an Ar chamber by
passing direct current and making the arc discharge between the electrodes. In order to
have high quality of produced CNTs, it needs to eliminate any defects over a significant
length scale (such as 1–10 µm) along the tube axes. There are many challenges in producing
high-quality CNTs, such as having a large scale and low cost synthesis method that provides
controllable design conditions to have the desired electrical properties, orientation and
length of tubes [10].
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Various techniques have been used for producing CNTs with different structures
and properties [12]. The first massive production of CNTs was reported by Ebbesn and
Ajayan [178,179]. They used the same method that Ijima applied for CNT synthesis and
their studies opened new doors to the subsequent efforts on massive production of CNTs.
There are three main approaches to produce CNTs: arc-discharge method, laser ablation
and thermal synthesis.

5.1.1. Arc-Discharge

Arc-discharge was the first approach for obtaining single-walled and multi-walled
carbon nanotubes [4]. The arc-discharge procedure happens in a low voltage (~12–25 V) and
high current (50–120 A) arc welder. The arc is produced between two graphite electrodes.
The distance between them is about 1 mm. The electrodes are placed in inert gas (helium
or argon) at a range of 100–1000 Torrs of pressure. Carbon nanotubes are formed on the
cathode along with other byproducts. This method was used for the first time for producing
MWCNTs. Literally, Ijima and Bethune found that utilizing catalysts can lead to forming only
SWCNTs [11]. They used iron or cobalt metals on the anode as catalysts [180].

The high-temperature discharge is provided by applying a current up to 200 A. The
carbon on the surface of the electrodes is vaporized and forms CNTs on the other electrode
surface. The multi-component arc discharge condition was reported as a critical point for
the synthesis of the CNTs. Several researchers have reported the production of CNTs based
on arc discharging methods [181–183].

5.1.2. Laser Ablation

Laser ablation provides an efficient synthesis of narrow diameters of SWCNTs. The
first report of this method was based on high yield (>70–90%) conversion of graphite to
nanotubes [184]. Two laser pulses from a Co/Ni graphite composite laser were employed to
evaporate the carbon/transition metal target (Figure 22) in the presence of Ar atmosphere and
high temperature. The tubes which were produced in this study are 10–20 nm in diameter
and up to 10 µm in length. In the same year, the Smalley group published an article about
large-scale production of SWCNTs with the laser ablation method. In their method, the
resulting CNTs and other byproducts were collected on the other front of the inlet in the tube
furnace. The arc-discharge and the laser ablation approaches are similar in principle but differ
from each other based on the metal used to impregnate the graphite for producing CNTs.
Powder samples and twisted tubes can be synthesized with these two methods. As these
methods require a vacuum and high temperature and continuous target replacement, they are
considered as complex methods for producing a large number of CNTs.
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5.1.3. CVD

Another efficient technique to produce CNTs in a solid-state is CVD. The main idea
behind is a gaseous hydrocarbon decomposition with metallic nanoparticles with nucleation
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roles in the growth of CNTs. This method has been used as a preferred procedure for the
scaled production of CNTs [45,185]. CNTs have been profitable nanostructures for more than
20 years in producing various carbon structures such as fibers, filaments and tubes [186,187].
In the CVD method, high temperature is applied to a catalyst (50–1000 ◦C). Hydrocarbon
flows in the tube and the catalyst forms nanoparticles on the surfaces of alumina substrates.
This mechanism of growing involves hydrocarbon decomposition when metallic catalysts are
present. Carbons dissolve in the metal nanoparticles and subsequent deposition of carbon
occurs in the tubular sp2 form.

Ethylene or acetylene are usually used as gaseous hydrocarbon and iron, nickel or
cobalt play the metal transition catalyst role during the process. The CVD method is
generally considered when producing large-scale CNTs with the controllable direction
of tubes is required [188]. The main advantage of this method is that the tubes with
well-organized structures can be obtained at lower temperatures.

With the CVD method, high density and quality of SWNT arrays can be produced,
which is vital to realize the SWNT-based IC applications. The catalyst is a key factor
in this method. How to maintain the activity of catalysts, give catalyst nanoparticles
more opportunities to nucleate SWNTs and provide new catalysts during growth are key
issues for obtaining SWNT arrays with ultra-high density on substrates. Hu proposed
an approach to grow SWNT arrays with ultra-high density using Trojan catalysts [189].
Figure 23a schematically illustrates the procedure of this method. The idea behind this
method is firstly storing the catalysts by dissolving into the substrate and then gradually
releasing under hydrogen atmosphere during the growing process. This gradual release
mode helps reduce the interaction between active catalysts. The SEM and AFM images in
Figure 23b,c prove the high density of at least 130 SWNTs µm−1. Figure 23d,e indicates the
high quality of the obtained SWNT arrays.
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Figure 23. Schematic illustration of the growth mechanism and characterization of high-density
SWNT arrays. (a) Schematic illustration of the growing process. (b,c) SEM and AFM images under
different magnification. (d) Raman spectra with 514.5 nm excitation. (e) Diameter distribution. The
red solid lines are Gaussian fitting peaks. Scale bar, 50 mm (b) (scale bar, 3 mm for the insets in b).
Scale bar, 300 nm (c) (scale bar, 50 nm for the insets in c). Scale bar, 10 nm (e) [189].
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A proper catalyst can also be used to realize the chirality-selective synthesis of SWNTs
in the CVD growth method. Zhang demonstrated the chirality-selective synthesis of
SWNTs with the monometallic AD-Ru/MgO catalyst at 850 ◦C in CVD [190]. Figure 24a
illustrates the catalyst activation mechanisms. During the growth process, highly dispersed
Ru atoms in AD-Ru/MgO aggregate and form Ru clusters suitable for the nucleation and
growth of sub-nanometer SWNTs with dominant (6, 5) tubes. The activation of Ru catalysts
supported on MgO is attributed to the charge transfer from substrate to metal clusters,
promoting the carbon source decomposition and SWNT cap stabilization. PL spectroscopy
characterization results in Figure 24b show that the preferential synthesis of (6, 5) SWNTs
was obtained.
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5.1.4. Other Methods

Recently, other methods, such as vapor phase growth (VPG), flame synthesis, and
nebulized spray pyrolysis, have been studied to produce CNTs [191,192]. VPG is similar to
CVD, but carbonous gas and catalyst are placed in the chamber without a substrate in the
VPG method. In the flame synthesis method, a flame consisting of hydrocarbon is used to
grow CNTs, assisting the catalyst particles. The growth occurs in the same manner as in
CVD [193,194].

Another method is nebulized spray pyrolysis, in which a unique ultrasonic atomizer
has been employed. The catalyst is required here, and ethanol is sprayed into the furnace
at a high temperature of 800 ◦C. This method with lots of benefits has been considered by
many researchers [195,196].

Table 3 provides a summary and comparison of the primary synthesis methods of CNTs.

Table 3. The primary synthesis methods on production of CNTs.

Synthesis
Methods Advantages Disadvantages References

Arc discharge Mass production,
SWCNTs and MWCNTs Multi morphology [4,11,180–183]

Laser ablation
SWCNTs yield with

a controlling
diameter distribution

Not suitable for
mass production [184]

Chemical va-
pordeposition

(CVD)
Mass production

Modification process
parameters needed to

control SWCNTs diameter
distribution and yield

[186–190]
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5.2. Growth Mechanisms

This is an appropriate point to mention that all the excellent properties quoted for
CNTs describe an atomically ideal CNT structure. However, depending on the synthesis
method used for the production process of the CNT, the result could be very different
from theoretical expectations. Although many studies have been undertaken to build
high-quality CNT structures, because of a lack of complete understanding of mechanisms
and a well-established model [197], researchers have not been able to construct an effective
method to produce CNTs with near-ideal properties for large-scale production.

When hydrocarbon vapor encounters hot metal nanoparticles, it will decompose into
carbon and other hydrogen species. After the scattering of the hydrogen, carbon would
be dissolved into metal. After reaching saturation, the dissolved carbon will precipitate
and cause an energetically stable cylindrical crystallization with no dangling bonds. A
thermal gradient will cause the process to continue, which will be outlined as follows. The
decomposition of the hydrocarbon delivers some heat to the exposed area of the metal.
On the other hand, the crystallization of the carbon as the endothermic procedure absorbs
some heat from the precipitation regions of the metal.

As depicted in Figure 25, two well-accepted models for growth mechanisms are the
tip-growth model and the base-growth model. Each of these mechanisms will form depending
on the strength of the interactions between the substrate and the catalyst, which is actually the
contact angle between the metal and the substrate (acute or obtuse, respectively) [197–199].
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5.2.1. Tip-Growth Model

In this model, the substrate–catalyst interactions are weak, see Figure 25a. The contact
angle between metal and substrate is acute. First, hydrocarbons are decomposed on the
metal surface. After carbon diffusion through the metal, CNT would precipitate on the
bottom of the metal and push the metal particle off the substrate. The concentration
gradient keeps permitting the carbon to diffuse, and the CNT keeps growing in length. The
process will happen because the top of the metal can receive hydrocarbon decomposition.
The CNT growth is stopped when the activity of the catalytic is done, and the metal is
completely covered with carbon.

5.2.2. Base-Growth Model

In the base-growth model, as depicted in Figure 25b, the metal–substrate contact
angle is obtuse, and substrate–catalyst interaction is strong. This model also involves
hydrocarbon decomposition and carbon diffusion, similar to the tip-growth model. Still,



Micromachines 2022, 13, 1257 24 of 64

the catalyst particle is rooted in the base on the substrate, and the CNT is growing up upon
it. However, the interaction with the substrate is minimum, and the precipitation will come
out from the apex of the metal. Furthermore, carbon crystallizes in the semispherical shape
and is extended towards a graphitic and ideal cylindrical form. The upcoming hydrocarbon
decompositions occur in the lower outlying layer of the metal surface, and the dissolved
carbon diffuses upward.

Although these are the general models for the growth mechanism, one cannot state the
physical state of the catalyst and if the metal is in a solid or liquid phase during the growth
mechanism. Furthermore, one cannot know if carbon diffuses in the surface diffusion mode
or the volume diffusion mode. Additionally, whether the catalyst should be metal carbide
or pure metal is yet to be determined. Several experiments reported such aspects of the
growth mechanism [183,200–210]. Figure 26 shows an in situ sequence of TEM images
on the growth mechanism for SWCNT. In this experiment, a small Ni cluster led to the
formation of an SWCNT via the base-growth mechanism at the temperature of 888 K.
Researchers reported that the carbon cap appeared and had a smaller diameter than the Ni
cluster. Moreover, the cluster’s peak took the form of a cylinder and eliminated the carbon
cap from the cluster and caused the formation of an SWCNT [183].
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6. Characterizations

Many techniques have been used to identify graphene materials. The most commonly
used methods are AFM, transmission electron microscopy (TEM), X-ray diffraction (XRD),
Rayleigh spectroscopy and Raman spectroscopy. Moreover, energy-efficient electronic
systems have been proposed by combining machine learning to those traditional tools,
which help to meet the requirement in the field of nanoelectronics’ research, development
and manufacturing.

6.1. AFM

The AFM technique is widely used in testing graphene layer thickness. This is often
done in the tapping mode. It should be noted that the thicknesses of 2D films may be
raised by a few angstroms because of the water absorption between layers. Hence, the
overlaid layers deserve detailed investigation when testing one layer thickness. However,
this method’s efficiency is low. To make it worse, the measured results by different groups
sometimes are even controversial [124]. Both Novoselov and Gupta tested the thickness of
single-layer graphene using the AFM method but got quite different results. The former
measured a thickness of 0.4 nm, while the latter got 0.7 nm. Figure 27 displays graphene’s
AFM image [124].
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Figure 27. AFM image of graphene with different thicknesses. The dark brown region is SiO2

substrate. The brownish red, yellowish brown and orange regions are graphene layers with a
thickness of 0.8, 1.2 and 2.5 nm, respectively [124].

The inconsistency might be due to the selection of cantilevers with different free
amplitude in their experiments. Although the AFM method has been widely used in
graphene thickness measurements, the inconsistent results show that it may be not reliable
and deserves further investigations [211].

6.2. TEM

TEM is the most accurate approach to characterize graphene layers. It can be used to
detect both single- and multilayer graphene. Especially, this technique has been frequently
used in detecting folded graphene sheets, which are parallel to the electron beam. As
illustrated in Figure 28a,b, the folded edge of single-layer graphene is visualized by one
dark line, which would be two dark lines in the case of bilayer graphene [212]. However,
caution must be taken when analyzing TEM results because the scrolls, the multiple
overlayers and even single-layer graphene would be visualized as several dark lines.
Figure 28c demonstrates an HRTEM image of single-layer graphene [170].

Micromachines 2022, 13, x FOR PEER REVIEW 26 of 64 
 

 

 
Figure 27. AFM image of graphene with different thicknesses. The dark brown region is SiO2 sub-
strate. The brownish red, yellowish brown and orange regions are graphene layers with a thickness 
of 0.8, 1.2 and 2.5 nm, respectively [124]. 

The inconsistency might be due to the selection of cantilevers with different free am-
plitude in their experiments. Although the AFM method has been widely used in gra-
phene thickness measurements, the inconsistent results show that it may be not reliable 
and deserves further investigations [211]. 

6.2. TEM 
TEM is the most accurate approach to characterize graphene layers. It can be used to 

detect both single- and multilayer graphene. Especially, this technique has been fre-
quently used in detecting folded graphene sheets, which are parallel to the electron beam. 
As illustrated in Figure 28a,b, the folded edge of single-layer graphene is visualized by 
one dark line, which would be two dark lines in the case of bilayer graphene [212]. How-
ever, caution must be taken when analyzing TEM results because the scrolls, the multiple 
overlayers and even single-layer graphene would be visualized as several dark lines. Fig-
ure 28c demonstrates an HRTEM image of single-layer graphene [170]. 

 
Figure 28. TEM images of folded graphene edge, (a) single layer and (b) bilayer [212]. (c) HRTEM 
result of single-layer graphene [170]. 

The TEM technique is of high accuracy, but it is time-consuming. Moreover, addi-
tional techniques are needed to prepare the samples. Therefore, it is a good option when 
undertaking fundamental research on graphene [213]. 

6.3. Raman Spectroscopy 
Raman spectroscopy is an analytical technique where information of inelastically 

scattered photons is collected to characterize graphene. It is thought to be the most suita-
ble method for graphene characterization due to its accuracy and the ability in identifying 
the layer numbers, the doping level and the quality of the flakes. Figure 29a demonstrates 
the Raman results of graphene with different layer thicknesses [213]. 

Figure 28. TEM images of folded graphene edge, (a) single layer and (b) bilayer [212]. (c) HRTEM
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The TEM technique is of high accuracy, but it is time-consuming. Moreover, addi-
tional techniques are needed to prepare the samples. Therefore, it is a good option when
undertaking fundamental research on graphene [213].

6.3. Raman Spectroscopy

Raman spectroscopy is an analytical technique where information of inelastically
scattered photons is collected to characterize graphene. It is thought to be the most suitable
method for graphene characterization due to its accuracy and the ability in identifying the
layer numbers, the doping level and the quality of the flakes. Figure 29a demonstrates the
Raman results of graphene with different layer thicknesses [213].



Micromachines 2022, 13, 1257 26 of 64Micromachines 2022, 13, x FOR PEER REVIEW 27 of 64 
 

 

 
Figure 29. (a) Raman results of graphene with different layer thicknesses [213]. (b) Bilayer graphene 
2D band transformation at 514 and 633 nm [214]. (c) The G band is due to the different layer numbers 
[215]. 

It should be noted that three bands, namely the D band, the G band and the 2D band, 
have to be considered when analyzing the graphene layers’ Raman data. The Raman spec-
tra of suspended and on-substrate graphene are usually similar. The main difference 
could be a small D peak in the TEM samples [214]. This difference could be the result of a 
coincidence between the Raman bands of the substrate with bands of graphene making 
subtraction of the substrate bands necessary. 

The G band location shows the graphene layer numbers. As shown in Figure 29c, the 
G band peak of the single-layer graphene is at about 1587 cm−1, and shifts left with increas-
ing layer numbers. The G bands of graphene with various amounts of thickness are dis-
played in [215]. 

The D band is recognized as a defects band, which illustrates defects and carbon sp3 
bonds in graphene layers. High-quality graphene may have a low-intensity D band. This 
peak can be detected at the graphene flake edges [216]. 

The 2D band is the second order of the D band being always very strong in graphene. 
The peak shape gives the information of layer numbers. A single layer graphene has a 
symmetrical 2D band peak with a narrow full width half maximum (FWHM). As for mul-
tilayers, the peak changes into a waveform containing multiple peaks. Figure 29b demon-
strates a waveform of double-layer graphene [215,216]. 

Figure 30 schematically illustrates the suspended CNT characterization using deep 
learning-based Raman spectra analysis. By using a Raman spectroscopy line-scan method 
and deep learning classification method, the Raman scanning rates were significantly in-
creased. Moreover, laser-induced sample damage was minimized by reducing the expo-
sure time to only a few milliseconds. This method permits the quantitative identification 
of CNTs on the growth substrate, providing information about their number, position and 
physical properties [217]. 

Figure 29. (a) Raman results of graphene with different layer thicknesses [213]. (b) Bilayer graphene
2D band transformation at 514 and 633 nm [214]. (c) The G band is due to the different layer
numbers [215].

It should be noted that three bands, namely the D band, the G band and the 2D band,
have to be considered when analyzing the graphene layers’ Raman data. The Raman
spectra of suspended and on-substrate graphene are usually similar. The main difference
could be a small D peak in the TEM samples [214]. This difference could be the result of a
coincidence between the Raman bands of the substrate with bands of graphene making
subtraction of the substrate bands necessary.

The G band location shows the graphene layer numbers. As shown in Figure 29c,
the G band peak of the single-layer graphene is at about 1587 cm−1, and shifts left with
increasing layer numbers. The G bands of graphene with various amounts of thickness are
displayed in [215].

The D band is recognized as a defects band, which illustrates defects and carbon sp3

bonds in graphene layers. High-quality graphene may have a low-intensity D band. This
peak can be detected at the graphene flake edges [216].

The 2D band is the second order of the D band being always very strong in graphene.
The peak shape gives the information of layer numbers. A single layer graphene has
a symmetrical 2D band peak with a narrow full width half maximum (FWHM). As for
multilayers, the peak changes into a waveform containing multiple peaks. Figure 29b
demonstrates a waveform of double-layer graphene [215,216].

Figure 30 schematically illustrates the suspended CNT characterization using deep
learning-based Raman spectra analysis. By using a Raman spectroscopy line-scan method
and deep learning classification method, the Raman scanning rates were significantly in-
creased. Moreover, laser-induced sample damage was minimized by reducing the exposure
time to only a few milliseconds. This method permits the quantitative identification of
CNTs on the growth substrate, providing information about their number, position and
physical properties [217].

6.4. Rayleigh Spectroscopy

Rayleigh spectroscopy is also used for the characterization of graphene. Compared
to Raman spectroscopy, the Rayleigh method is also a fast, non-destructive and accurate
method, though it is based on elastic scattering. It has been used for identifying mono-
layer and multilayer samples. In this method, the difference in intensity between the
substrate and sample can be identified by an image contrast, when the substrate intensity
is normalized.



Micromachines 2022, 13, 1257 27 of 64Micromachines 2022, 13, x FOR PEER REVIEW 28 of 64 
 

 

 
Figure 30. Schematic illustration of CNT characterization using deep-learning-based Raman spectra 
analysis. (a) Implementation of high-speed Raman imaging on a fork-like growth substrate. (b) Gen-
eration of unlabeled Raman spectra. (c) Large labeled datasets organized into three classes: S-CNTs, 
MCNTs and empty. (d) Deep learning model. (e) Classification of individual spectra using the 
model. (f) CNT identification [217]. 

6.4. Rayleigh Spectroscopy 
Rayleigh spectroscopy is also used for the characterization of graphene. Compared 

to Raman spectroscopy, the Rayleigh method is also a fast, non-destructive and accurate 
method, though it is based on elastic scattering. It has been used for identifying monolayer 
and multilayer samples. In this method, the difference in intensity between the substrate 
and sample can be identified by an image contrast, when the substrate intensity is nor-
malized. 

An interferometrically detected signal of graphene films was obtained using Ray-
leigh scattering by Casiraghi et al. In his research, the background intensity was treated 
as a reference beam for the better detection. The result is shown in Figure 31a [213]. 

 
Figure 31. (a) Confocal Rayleigh result of monolayer graphene obtained by raster scanning the test 
subject; (b) the differences between results gained by calculation and empirically with regard to 
wavelength for a distinct amount of layers [213]. 

About 0.08 contrast at 633 nm wavelength was detected for monolayer graphene. 
Other wavelengths were also used for characterization and the contrast for different gra-
phene layers was found. Figure 31b demonstrates the Rayleigh contrast for different gra-
phene layers measured at different wavelengths [213]. 

Figure 30. Schematic illustration of CNT characterization using deep-learning-based Raman spec-
tra analysis. (a) Implementation of high-speed Raman imaging on a fork-like growth substrate.
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S-CNTs, MCNTs and empty. (d) Deep learning model. (e) Classification of individual spectra using
the model. (f) CNT identification [217].

An interferometrically detected signal of graphene films was obtained using Rayleigh
scattering by Casiraghi et al. In his research, the background intensity was treated as a
reference beam for the better detection. The result is shown in Figure 31a [213].
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Figure 31. (a) Confocal Rayleigh result of monolayer graphene obtained by raster scanning the test
subject; (b) the differences between results gained by calculation and empirically with regard to
wavelength for a distinct amount of layers [213].

About 0.08 contrast at 633 nm wavelength was detected for monolayer graphene. Other
wavelengths were also used for characterization and the contrast for different graphene
layers was found. Figure 31b demonstrates the Rayleigh contrast for different graphene
layers measured at different wavelengths [213].

6.5. XRD

Another technique for graphene characterization is XRD. Three peaks could be de-
tected when testing the graphene materials using XRD. A strong peak at 26.3◦ stands for
the 002 plane. The peaks at 43.2◦ and 44.6◦ represent 100 and 101 planes, respectively, as
shown in Figure 32 [218]. The 002 peak indicates the thickness of the graphene film.
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Figure 32. XRD pattern of graphene nanosheets [218].

Figure 33 schematically displays several characterization approaches for graphene
materials. For graphene’s morphology characterization, electromagnetic spectroscopy,
nuclear magnetic resonance (NMR), XRD, AFM, electron microscopy and light scattering
methods are most commonly used. As for the confirmation of graphene’s functional groups
on graphene, the Raman spectroscopy, NMR and IR spectroscopy are utilized [219].
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7. Graphene Applications

In this section, applications of graphene in micro- and nanoelectronics, optoelectronics
and biotechnology will be introduced.

7.1. Graphene FET

MOSFETs’ down-scaling may be the most effective way to achieve high-performance
low-power targets in CMOS technology. However, further down-scaling may cause a
few behaviors, such as velocity saturation, current leakage, mobility degradation, velocity
saturation, narrow width and short channel effects [220]. Hence, researchers are seeking
new materials to substitute silicon-based devices. Graphene is considered to be one of the
options due to its extraordinary electronic features, such as high current density, ballistic
transport and long electron mean-free-path. The International Technology Roadmap for
Semiconductors (ITRS) considers graphene as one of the candidate materials for post-silicon
devices [221]. It should be noted that graphene was initially applied in the FETs [28]. FETs
are utilized in two important applications, which are logics similar to CMOS and radio
frequencies (RF). For logic applications, an FET should be able to turn on and off with large
on/off current ratios in the range of 104–107, corresponding to the channel’s bandgap of
approximately 0.4 eV [221]. Moreover, symmetric threshold voltages are needed for both
the n-type and p-type FETs. However, for RF applications, on-state is always needed and
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no switch-off operation is required. Graphene is usually utilized in this field, as will be
discussed later.

Many studies have been undertaken on graphene FETs (GFETs), which use graphene
as the channel [28,90,222–226]. Figure 34 displays different kinds of GFETs. We can see a
device’s evolution trend if looking back from the very first GFET. Back-gate devices were
first introduced. The back-gate electrode and dielectric were made using doped Si and
SiO2, respectively, as shown in Figure 34a. However, this design is not suitable as GFETs.
The second generation was fabricated with top-gate electrodes, see Figure 34b [227]. It is
also reported that a hot-electron transistor using a base contact graphene demonstrated
remarkable DC and RF performance [228]. However, the mobility of the expected graphene
channel would be degraded during the deposition of the dielectric and gate material
deposition on the graphene layer [229]. The third generation, called suspended graphene,
was recommended in 2007 to solve the challenges, see Figure 34c. Double gate GFETs are
also introduced with back-gate and top-gate. Despite the structure of such devices, another
challenge is the large contact resistance caused by the non-optimum alignment of the gate,
source and drain. This may result in device malfunctions.

Micromachines 2022, 13, x FOR PEER REVIEW 30 of 64 
 

 

options due to its extraordinary electronic features, such as high current density, ballistic 
transport and long electron mean-free-path. The International Technology Roadmap for 
Semiconductors (ITRS) considers graphene as one of the candidate materials for post-sil-
icon devices [221]. It should be noted that graphene was initially applied in the FETs [28]. 
FETs are utilized in two important applications, which are logics similar to CMOS and 
radio frequencies (RF). For logic applications, an FET should be able to turn on and off 
with large on/off current ratios in the range of 104–107, corresponding to the channel’s 
bandgap of approximately 0.4 eV [221]. Moreover, symmetric threshold voltages are 
needed for both the n-type and p-type FETs. However, for RF applications, on-state is 
always needed and no switch-off operation is required. Graphene is usually utilized in 
this field, as will be discussed later. 

Many studies have been undertaken on graphene FETs (GFETs), which use graphene 
as the channel [28,90,222–226]. Figure 34 displays different kinds of GFETs. We can see a 
device’s evolution trend if looking back from the very first GFET. Back-gate devices were 
first introduced. The back-gate electrode and dielectric were made using doped Si and 
SiO2, respectively, as shown in Figure 34a. However, this design is not suitable as GFETs. 
The second generation was fabricated with top-gate electrodes, see Figure 34b [227]. It is 
also reported that a hot-electron transistor using a base contact graphene demonstrated 
remarkable DC and RF performance [228]. However, the mobility of the expected gra-
phene channel would be degraded during the deposition of the dielectric and gate mate-
rial deposition on the graphene layer [229]. The third generation, called suspended gra-
phene, was recommended in 2007 to solve the challenges, see Figure 34c. Double gate 
GFETs are also introduced with back-gate and top-gate. Despite the structure of such de-
vices, another challenge is the large contact resistance caused by the non-optimum align-
ment of the gate, source and drain. This may result in device malfunctions. 

 
Figure 34. Three types of graphene FETs: (a) back-gated, (b) top-gated and (c) suspended. 

Because the single-layer graphene is a semi-metal with zero bandgap at room tem-
perature, GFETs cannot be turned off and have low on/off current ratios. To overcome this 
issue, many methods were proposed to introduce a bandgap into graphene, such as pro-
ducing graphene nanoribbons (GNRs) [88], biasing double-layer graphene [90], strain ap-
plication [230] and doping [231]. The outcomes of these approaches on FETs are discussed 
below. 

GNRs have large on/off current ratios above 105, which are suitable for logic applica-
tions [225,232]. If a CNT can be treated as rolled-up graphene flakes, then a GNR is simply 
an unrolled CNT. GNRs and CNTs have similar electronic properties. The properties of 
SWCNT depend on the tube chirality and diameters, while the GNR’s properties depend 
on the ribbon widths and directions. Nevertheless, the sub-10 nm GNRs have an all-sem-
iconducting feature, which could solve the issues in CNTs whose metal/semiconductor 
feature extremely depends on the chirality [128]. Smooth edges and narrow widths are 
mandatory to make a semiconducting GNR. Thus, it is challenging to produce massive 
GNRs with controllable edges and widths. Nevertheless, a tiny disorder at the GNR edge 
would introduce a bandgap [233]. 

Figure 34. Three types of graphene FETs: (a) back-gated, (b) top-gated and (c) suspended.

Because the single-layer graphene is a semi-metal with zero bandgap at room temperature,
GFETs cannot be turned off and have low on/off current ratios. To overcome this issue, many
methods were proposed to introduce a bandgap into graphene, such as producing graphene
nanoribbons (GNRs) [88], biasing double-layer graphene [90], strain application [230] and
doping [231]. The outcomes of these approaches on FETs are discussed below.

GNRs have large on/off current ratios above 105, which are suitable for logic applica-
tions [225,232]. If a CNT can be treated as rolled-up graphene flakes, then a GNR is simply
an unrolled CNT. GNRs and CNTs have similar electronic properties. The properties of
SWCNT depend on the tube chirality and diameters, while the GNR’s properties depend
on the ribbon widths and directions. Nevertheless, the sub-10 nm GNRs have an all-
semiconducting feature, which could solve the issues in CNTs whose metal/semiconductor
feature extremely depends on the chirality [128]. Smooth edges and narrow widths are
mandatory to make a semiconducting GNR. Thus, it is challenging to produce massive
GNRs with controllable edges and widths. Nevertheless, a tiny disorder at the GNR edge
would introduce a bandgap [233].

Since the properties are greatly structure dependent, it is essential to synthesize atom-
ically precise GNRs to fulfill the targeted function. A number of top-down approaches
have been developed for the fabrication of GNRs, such as lithographic [88,234,235], chem-
ical [236], sonochemical [232] and plasma etching [139]. However, these approaches can
hardly control the GNRs’ width and edge structure at the atomic level. Thus, the obtained
chemically less defined GNRs lack accurate control over the properties. On the other
hand, beginning with the tailor-made organic precursors, atomically precise GNRs can be
synthesized based on bottom-up chemical synthesis approaches.

The bottom-up approach mainly consists of two main pathways: solution-mediated
synthesis and surface-assisted synthesis [237]. The former corresponding polyphenylene
precursors are constructed such that the desired GNRs can be obtained by C-C bond for-
mation between the benzene rings. This solution synthesis can be scaled up to the gram
scale [238] and allows various edge functionalization. It should be mentioned that the
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introduction of long alkyl chains and other bulky functional groups render the resulting
GNRs dispersible in organic solvents, which allow for the liquid-phase processing for
further characterizations and device fabrication. In the case of surface-assisted synthe-
sis, homolytic carbonhalogen cleavage is thermally induced, and the obtained diradicals
undergo polymerization to form linear polymers on a metal surface, such as Au (111).
Subsequent annealing at higher temperatures results in the formation of GNRs through
surface-assisted intramolecular cyclodehydrogenation. It was initially carried out under
ultrahigh vacuum (UHV) conditions with pressures lower than 10−9 mbar. Recent progress
moved to use an industry-viable CVD setup under less-demanding high vacuum (HV),
lower vacuum and even ambient pressure conditions. GNRs of same structures have been
obtained comparing to those obtained under UHV. Although the length of the GNRs and
the defect density might be compromised, the CVD method can increase GNR production
and reduce costs, which are critical requirements for wider application.

It is reported that transistors with double-layer graphene have on/off current ratios of
about 100 and 2000 at room temperature and 20 K, respectively [90]. It is good for the high
mobility application. However, it is still not enough for logic applications.

Monolayer graphene appears to be better in RF applications compared to logic ap-
plications because the transistors are not required to be turned off. Because the cut-off
frequency increases with mobility, large area graphene layer could be used directly as the
transistor’s channel [239]. These RF devices have high cut-off frequencies, owing to the
graphene channel’s high mobility. However, low current saturation may degrade the power
gains, cut-off frequencies and fmax.

RF devices are usually utilized in military applications. In these devices, one of the most
important parameters is the cut-off frequency (the maximum frequency where the device
works properly). It has been reported that RF GFETs can operate at about 100 [222] and
155 GHz [240] cut-off frequencies. As yet, the fastest RF GFETs (144 nm gate length) with
a cut-off frequency of 300 GHz have been reported [241]. It is two times faster than the
best silicon FETs with similar sizes and comparable to the fastest III-V HEMTs with similar
gate lengths. As shown in Figure 35a,b, the top-gate of the transistor is a self-aligned Co2Si-
Al2O3 core-shell nanowire, below which the graphene layer is located on a Pt substrate. The
nanowire’s diameter is defined as the transistor’s gate length. The insulate Al2O3 shell works
as the dielectric, the metallic Co2Si core works as the top gate, and the thin-Pt-film pads work
as the transistor’s drain and source. Figure 35c demonstrates the Ids-Vds characteristics of the
FET at different top-gate voltages (VTG). Figure 35d displays that the device has a maximum
scaled 3.32 mA/µm on-current at Vds = −1 V and VTG = −1 V.
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It was discovered that the increasing charged impurities can decrease graphene mo-
bility. Additionally, surface functionalization may break the chemical bonds in graphene
lattice or introduce unwanted impurities. Consequently, SiO2 was substituted with high-
κ materials, such as HfO2, to decrease the density of the unwanted impurities [242]. The
high-κ dielectrics can reduce the impurity scatterings due to the increased screening ef-
fect [243].

7.2. Light-Emitting Device

Organic light-emitting diodes (OLEDs) have many advantages over traditional LEDs,
such as high luminous efficiency, cost-effective fabrication and compatibility with different
substrates. The invention of OLEDs is considered to be a big scientific success because
not everyone expected carbon-based organic materials to emit light. The typical structure
of an OLED is schematically illustrated in Figure 36a. It contains a cathode, an anode
and an organic layer. The layer is often made of polymer materials such as phenyl or
naphthalene-1-yl and can emit light in response to an electric current. When an electric
current passes the diode, electrons from the cathode are injected into the layer’s LUMO,
and holes from the anode are injected into the layer’s HOMO. The electrons and holes
recombine in the layer, creating excitons, which would decay and emit light.
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The electrode materials of the OLEDs shall meet some requirements. The cathode is
required to have a low resistance and low work function (WF). Nevertheless, the anode
is required to have a low resistance but high WF [245,246]. Anode transparency is vital to
the performance of the OLEDs [247]. Indium tin oxide (ITO) (4.4 ≤WF ≤ 4.5 eV, resistivity
of 2–4 × 10−4 Ωcm−1) is often used as transparent anode materials [248,249]. However, it
has drawbacks. First, the price could be high because of the diminishing of In resources
on earth [245]. Second, the In element would defuse in the polymer layer, which may
degrade the device performance [250]. To solve that issue, graphene was selected as an
alternative material for ITO. The graphene sheet has a high WF (4.2–4.6 eV). Moreover,
it has a low resistance of <10 Ωcm−1 when the thickness is below 10 nm, whereas the
minimum thickness of ITO is 100 nm to obtain a similar resistance [251]. As previously
described, the graphene sheet resistance and transmission decrease with the increasing
thickness. Consequently, a trade-off exists between the transmission and the resistance.
The graphene sheet resistance follows:

Rsh =
1

eµNi N
=

62.4Ω
N

(9)

where N is the number of single-layer graphene.
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Figure 36b displays the sheet resistance ( Ω
sq. ) as a function of the thickness (nm).

Figure 36c shows the solar transmission (%) as a function of sheet resistance ( Ω
sq. ) [244].

These two diagrams illustrate the tradeoff effect.
An OLED fabricated using a 7 nm-thick graphene film as the transparent anode has

been reported by Wu et al. [244]. The graphene was made by a thermally reduced method
and has a sheet resistance of ~800 ( Ω

sq.) and a transparency of 82%. In another group, Kim

et al. achieved a sheet resistance of about 280 ( Ω
sq.) and a transparency of 80% [153]. Figure 37

displays the current density and the luminance of ITO and graphene as a function of applied
voltage. Graphene device has a comparable luminance below 10 cd/m2 and a comparable
current density below 10 mA/cm2 with the ITO device. For a 300 cd/m2 luminance, the Vt of
the graphene OLED and the ITO OLED are 11.7 and 9.9 V, respectively [244].
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Since graphene has relatively high WF, it is unreasonable to consider graphene as
a good cathode. However, many groups use it as the cathode in a new type of device
called a light-emitting electrochemical cell (LEC) [246]. The structure is similar between
LEC and OLED. The only difference is that the luminous layer in LEC is an electrolyte.
Therefore, there is no need to match the WFs. The ions in the electrolyte will redistribute
and form a p-i-n junction when an electric field is applied between the cathode and the
anode [252]. Figure 38 schematically demonstrates an organic LEC structure [246]. The
cathode was made of chemically derived graphene (CDG) and the anode was made of the
poly 3, 4-ethylene dioxythiophene-poly styrene sulfonate (PEDOT-PSS). The active layer
was a mixture of poly paraphenylene vinylene copolymer (or “Super Yellow” (SY)) and a
dissolution of KCF3SO3 salt in poly ethylene oxide (PEO).
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Lights could couple out of both sides in this device, because the electrodes were transpar-
ent in this research. Figure 39 demonstrates the brightness and current density as functions
of applied voltage measured with a graphene cathode and PEDOT-PSS anode, respectively.
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Matyba et al. also reported an LEC device using graphene as the anode [246]. All these studies
indicate that graphene is a promising material in the light-emitting devices market.
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7.3. Energy Storage/Conversion Devices

Heteroatom-doped and co-doped graphene-based materials (n-type and p-type dop-
ing) have been synthesized for devices in energy-related devices such as solar cells [253,254],
batteries, fuel cells, water splitting and supercapacitors. Figure 40 demonstrates a typical
solar cell structure. It has been reported that graphene can be used in solar cells in three
different ways [129,255–257], which will be discussed below.

Micromachines 2022, 13, x FOR PEER REVIEW 34 of 64 
 

 

mixture of poly paraphenylene vinylene copolymer (or “Super Yellow” (SY)) and a disso-
lution of KCF3SO3 salt in poly ethylene oxide (PEO). 

 
Figure 38. Body of an LEC. The chemical formulas and the formula icons of every layer are also 
displayed [246]. 

Lights could couple out of both sides in this device, because the electrodes were 
transparent in this research. Figure 39 demonstrates the brightness and current density as 
functions of applied voltage measured with a graphene cathode and PEDOT-PSS anode, 
respectively. Matyba et al. also reported an LEC device using graphene as the anode [246]. 
All these studies indicate that graphene is a promising material in the light-emitting de-
vices market. 

 
Figure 39. Brightness (circles) and current density (squares) as a function of applied voltage (a) 
measured through a graphene cathode and (b) measured through a PEDOT-PSS anode [246]. 

7.3. Energy Storage/Conversion Devices 
Heteroatom-doped and co-doped graphene-based materials (n-type and p-type dop-

ing) have been synthesized for devices in energy-related devices such as solar cells 
[253,254], batteries, fuel cells, water splitting and supercapacitors. Figure 40 demonstrates 
a typical solar cell structure. It has been reported that graphene can be used in solar cells 
in three different ways [129,255–257], which will be discussed below. 

 
Figure 40. Schematic diagram of a typical solar cell structure. Figure 40. Schematic diagram of a typical solar cell structure.

7.3.1. As the Window Electrode

The transparent window electrode (conductive electrode), where light couples in or
out of the devices, is a figure of merit in optoelectronic devices. For the traditional solar
cells, ITO is often utilized as the window electrode material. However, graphene has
advantages over ITO as explained above. Wang et al. have reported a window electrode
using a 1000–3000 nm-thick thermal reduced graphene sheet with a high conductivity of
550 S/cm and transparency of 70% [129]. Recently, Wu et al. utilized a solution-processed
4–7 nm-thick graphene film as the conductive anode in the organic photovoltaic cell. The
film has a resistance of 100–500 kΩ/sq and a transparency of 85–95% [256]. It should be
noted that the solution-processed graphene sheets may contain many lattice defects and
oxidative traps. Therefore, to get proper sheet resistances, the graphene sheet number
shall be increased. Because the transparency and resistance decrease with increasing film
thickness, this tradeoff shall be taken into consideration before making a viable conductive
electrode. Compared to that of ITO-based solar cells, the performance of graphene-based
solar cells is decreased because of the high sheet resistance of graphene films [256].

7.3.2. As an Acceptor

When the light is absorbed in an organic solar device, excitons (closely bounded
electron-hole pairs) are created in the active layer. To create a voltage in the device,
these excitons have to be separated into free charges in a donor/acceptor interface and
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then accumulate near electrodes. Liu et al. have reported an organic graphene solar cell
device using solution-processed graphene film as the acceptor layer. Figure 41a displays a
schematic of the device structure [255].
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7.3.3. Photo-Thermoelectric Effect

As mentioned before, most solar cells are photovoltaic devices. Nevertheless, solar
power can also be collected and generate electricity using devices based on the photo-
thermoelectric effect.

It is proved that the generation of photocurrent in the graphene–metal contacts is
a result of the photovoltaic effect. However, recent research on the monolayer–bilayer
interface indicate that the photo-thermoelectric effect is vital in photocurrent generation.
Gabor et al. reported that hot electronic carriers dominate the intrinsic optoelectronic
responses from room temperature down to 10 K.

They designed a graphene solar cell based on the photo-thermoelectric effect for
generating photovoltage [257]. A local laser excitation on dual-gated monolayer and
bilayer graphene p-n junction devices is employed to examine the optoelectronic responses’
characteristic. Figure 41b demonstrates the device structure in the experiment. As shown
in the figure, the device contains a global bottom gate and a local top gate. A six-fold
photovoltage pattern as a function of bottom-gate (VBG) and top-gate voltage (VTG) was
obtained using laser excitation at the p-n interface, see Figure 41c. By altering the gate
voltage, four regions of n-p, n-n, p-p and p-n were built in the double-layer graphene. The
obtained highest optoelectronic response was reported to be 5 mA/W at low temperatures.

7.4. Reconfigurable Multi-Function Logic

We are entering an era that the downscaling of Si-based MOSFET devices may reach
the physical limit. Many efforts have been made to search for alternative solutions and
materials to silicon-based devices. Graphene-based transistors are considered to be a
promising alternative to CMOS. However, as discussed before, its zero bandgap and
degraded exciting features after introducing a bandgap is the main disadvantage for
graphene to be used in switching applications. For instance, the mobility would decrease in
the case of GNR materials. Recently, a new approach was developed using doped graphene
films for switching applications [258].

Graphene could be doped by applying an electrostatic voltage [259]. When a positive
voltage is applied, the Fermi level would increase and the graphene would behave like
an n-type semiconductor. By contrast, the Fermi level drops when applying a negative
voltage; thus, p-type graphene would be achieved. A PN junction could be obtained by
applying symmetric voltages to two split gates. Figure 42a shows the obtained PN junction
with positive voltage on gate1 and negative voltage on gate2 [258].
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Figure 42. (a) The effect of applied voltages (positive and negative) on graphene’s Fermi level [258].
(b) Total reflections of electrons when the angle between the incidental electron beam and PN interface
is 45◦ [260]. The schematic of the device when used as an MUX, (c) A = ’1′, F = C. (d) A = ’0′, F = B [260].

The electron transmission probability T between the interfaces is largely dependent
on the angle θ between the incident electron beam and the PN junction interface. It follows
the equation [261]:

T(θ) = cos2(θ)e−πkFdsin2(θ) (10)

where kF is the Fermi wavevector and d is the gap.
When θ equals 45◦ (the critical angle), the electron beams would reflect totally and give

an on/off current ratio in the range of 103 and 105 [260]. The total reflection phenomenon
is displayed in Figure 42b.

Reconfigurable multifunction logics can be built based on this angular dependence of
carrier reflection phenomenon. Tanachutiwat et al. achieved multiplexer (MUX), AND, OR,
inverter and buffer functions using this phenomenon [260].

Figure 42c,d display the device consisting of three split-back gates and three electrodes
located on the top of the single graphene layer. Symmetric voltages are applied to create
PN junctions. In this research, the logic ‘0’ and ‘1’ were defined as − 1

2 VDD and + 1
2 VDD,

respectively. The input A was defined by the middle back gate. The other two back gates
were connected to ‘0’ and ‘1’ electrostatically doping graphene areas above them to p-type
and the n-type, respectively. For the electrodes, the middle F was the output terminal. The
B and C were defined as inputs. When A = ‘1′, the middle area was n-type. The output
electrode F would be connected to the right electrode C, which means F = C. In this case,
there would be a total reflection at the B and F PN junction, where a very high resistance
would be created, because of the critical angle as mentioned earlier. Consequently, there is
no current flow between the B and F electrodes.

In the case of A = ‘0′, a p-type area would be constructed on top of the middle back
gate. Then, F was connected to the left electrode. It means F = B. Meanwhile, there is no
current flow between C and F. As a result, this device behaves like a MUX function:

F = AC + AB (11)

Figure 42c,d demonstrate the device working as an MUX. The device can also be
turned into other logic devices by modifying the input voltages.

This advantage of graphene-based CMOS over traditional Si-based CMOS makes it a
promising option to build smaller microelectronic devices and to further continue Moore’s
law. Moreover, these devices have better delay-power product and signal restoration
compared to traditional CMOS devices with similar device footprints [260].
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7.5. Graphene Biosensors

A biosensor is a device used to detect the presence of a biological component like
molecules. It is based on sensing the interaction with some other known bio-feature
and producing a detectable signal. A general biosensor contains a receptor where the
molecule interactions happen and a transducer detecting the interactions, as displayed
in Figure 43a. The two of the most sensed interactions detected with biosensors are
the antibodies/antigens and the single strands of DNA. Carbon-related materials, such
as carbon black [262], graphite [263], and CNTs [264,265], have been widely applied in
biosensors because of their biocompatibility [266,267]. Nevertheless, the application of
graphene as transducers in biosensors has just begun. It is reported that graphene has many
advantages compared to other carbon materials such as CNTs. For example, graphene
offers a larger sensing area concerning CNTs. Moreover, exfoliated graphene has a higher
sensitivity due to the elimination of metallic catalysts such as Ni, which commonly exist in
CNT-based biosensors. Different types of graphene biosensors have been reported recently,
such as bio-FETs [268–272], electrochemical biosensors [273], impedance biosensors [274]
and fluorescence biosensors [275].
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7.5.1. Graphene Bio-FETs

A bio-FET is a device detecting interactions between molecules at the FET’s channel
or gate [270]. The charge density at the gate region would change when the interactions
happen owing to the redistribution of charge carriers in the channel. This will lead to a con-
ductivity shift of the device. This detecting approach is label-free [276], and the procedure
is simpler compared to other label approaches, for example, ELISA [277]. Thus, bio-FET has
advantages in sensing charged molecules. It seems that the chemically modified graphene
is one of the most promising options in the applications for sensing DNA molecules in
which the phosphate atom can be charged [271,278]. Nevertheless, the interactions are
not stable because of the weak π-type interactions between the pristine graphene and the
molecules. Consequently, graphene has to be modified to obtain a tight bond. Oxidation is
one of the modification methods. Graphene oxide contains different kinds of functional
groups, such as hydroxyl, carboxyl and epoxy. These functional groups can withstand
the hydrogen bonding, the covalent or electrostatic attractions [279]. After oxidation, a
reduction process was used to obtain graphene layers with such defects, since we are only
interested in graphene other than the oxides. The obtained reduced graphene oxide (RGO)
FETs have a sensing limit of close to 2 nano molars (nM), comparable with other label-free
sensors. The achieved graphene is labeled as thermally reduced graphene oxide (TRGO).

Additionally, other graphene bio-FETs have been reported which are used to detect
antibodies or antigens [268,270]. One of the most sensitive TRGO bio-FETs have been
fabricated by Mao et al. who exploited Au nanoparticles as their sensing area on TRGO. The
sensing limit is in the order of ng/mL when they link an anti-IgG, a type of immunoglobulin
antibody in human blood, to TRGO sheets with Au nanoparticles in the sensing experiments.
Figure 43b schematically demonstrates the TRGO biosensor.
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7.5.2. Impedance Biosensors

An impedance biosensor is used to sense the interaction of biomolecules based on
detecting the shift of impedance at the sensing area. Because nanomaterials have high
sensitivity to the surrounding electronic variations, sensitive devices can be fabricated by
detecting the biomolecules electrically. For instance, specific proteins can be detected with
a graphene-based impedance biosensor [274,280,281].

Bonnani et al. and Pumera et al. [280] claimed that pristine graphene is promising in
the application for sensing Hairpin-DNA (HpDNA) molecules. The experiment was carried
out by fixing Hp-DNA on monolayer and bilayer GNRs with the physically adsorbing
method. They have demonstrated that when the complementary single-strand DNA
(ssDNA) causes a hybridization, a partial release of HpDNA happens. As HpDNA is
negatively charged, the release will cause a decrease in the charge density at the electrode
surfaces. As a result, the impedance decreases. They have identified the diminishment of
the impedance because of the hybridization with an accuracy of 82 pM [280].

Recently, Hu et al. have successfully fixed a positively charged N, N-bis-(1-amino
propyl-3-propylimidazolium salt)-3, 4, 9, 10-perylene tetracarboxylic acid diimide (PDI) to
the graphene films. The ssDNA is anchored due to the electrostatic interaction between
the positively charged PDIs and the negatively charged DNA molecules. They employed
a similar method, in which no partial release happens and no attraction is disturbed, to
detect the hybridization, as shown in Figure 44a [274].
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of fluorescent-tagged DNA hybridization: A stands for no hybridization occurring when an irrelevant
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Gas sensors can also be fabricated using graphene [282] and the detecting procedure
is similar to that of impedimetric biosensors. In other words, the adsorption of particular
gas molecules would cause a change in impedance [283].

7.5.3. Electrochemiluminescence Biosensors

Electrochemiluminescence biosensors can identify molecules based on detecting the
emission light from an electrochemical reaction. Tang et al. reported the immobilization
of fluorescent-tagged ssDNA on functionalized graphene. They successfully detected the
fluorescent light after introducing the complementary ssDNA into the solvent, confirming
the hybridization of DNA strands, as shown in Figure 44b. Moreover, they found that the
ssDNA is stable on graphene because the deoxyribonuclease I fails to degrade the adsorbed
ssDNAs on graphene [275].

7.6. Graphene Optoelectronics Applications
7.6.1. Graphene Photodetector

Graphene also has many advantages in the fabrication of optoelectronic devices, such
as the production of multiple electron-hole pairs with a high-energy excitation and high
mobility [95]. However, the main disadvantage is the low optical absorption, resulting in a
low responsivity.
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When a light laterally incidents on the graphene film on a waveguide, the light
absorption is determined by the film length (or the waveguide length). A full absorption
happens providing a long enough film length.

Graphene absorbs the incident light in both vertical and lateral directions, as demon-
strated in Figure 45. The oxide layers are employed for the isolation when transferring the
graphene sheet on a Si-based waveguide [284].
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Figure 45. (a) The absorption coefficient is 2.3% when the light vertically incidents on a graphene
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The vertical light is absorbed via the inter-band and intra-band transitions, see
Figure 46a. The conductivity curve could deviate from the universal value of 2.3%. The
curve is dependent on the substrate material, because of the phonons which change the
inter-band absorption behavior [285].
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To increase the device’s photo responsivity, it is mandatory to search for new isolation
material [286,287]. It should be noted that other 2D crystals, such as WS2, black P and
MoS2, are expected to gain high responsivity for future photodetectors [288,289].

Gan et al. have proposed the integration of graphene photodetectors on silicon-on-
insulator (SOI) bus waveguides to overcome the drawbacks of the low photo-responsivity.
In their study, they successfully obtained a more than 0.1 AW−1 photo-responsivity with
a uniform response between 1450 and 1590 nm by increasing the graphene’s absorption.
The device structure consists of one waveguide and two Au electrodes sitting at the
opposite sides of the waveguide and collecting photocurrents, see Figure 46b. Moreover,
the graphene layer is isolated from the beneath Si using a 10 nm SiO2 layer. The graphene
utilized here is a 53 µm double-layer graphene whose light absorption is two times larger
than that of single-layer graphene. It is metal doped at the junctions. It should be noted
that the coupling between the graphene and the waveguide is evanescent [286].

They measured the photocurrent by illuminating the sample from the top using a continu-
ous wave laser at the length of 1550 nm at zero bias voltage. Figure 47a displays the device’s
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reflective scanning image, and Figure 47b shows the measured photocurrent pattern at zero
bias voltage. The highest photocurrent obtained is about 13 µA at the waveguide region, corre-
sponding to 50 µW excitation power. Because of the graphene photodetector’s low detecting
efficiency at normal illumination, a poor responsivity of 2.6 × 10−4 A W−1 was obtained.
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Figure 47. (a) SEM image of the measured region. (b) Photocurrent diagram at zero bias voltage.
Two photocurrent strips show at the metal/graphene interface [286].

The photodetection efficiency was measured by modulating a 1550 nm continuous-wave
laser at a low frequency through a pre-amplifier and a lock-in amplifier. Figure 48 displays
the photocurrent (Iphoto) as a function of the input power (Pinput) at zero bias. The calculated
responsivity (Iphoto/Pinput) was 15.7 mA·W−1, which is two orders of magnitude larger compared
to that of the normal incidence. This is owing to the increased interactions between graphene
and light. Moreover, efficient separation of photoexcited electron-hole pairs because of the
strong local electric fields along the metal-doped junctions also plays a role.
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7.6.2. CMOS-Compatible Graphene Photodetector

Optical interconnection and communication as alternatives to electrical wiring are
playing an important role in linking intra-chip and inter-chip communication [290]. Es-
pecially, it is more attractive to integrate with CMOS technology because it will be cost-
effective to integrate optics and electronics on one chip. To do this, both the integration
of Si and the optical absorption materials are needed, where the Si is used to realize the
optical waveguides and the graphene is used as the absorption material due to its optical
characteristics [28,291–294].

Graphene was firstly found to be able to use as a photodetector when utilized in a
back-gate transistor [295–297]. A generated current was discovered at the metal–graphene
interface due to the band bending. Additionally, photocurrents were also observed at the
interfaces of monolayer and bilayer graphene and p-n junctions due to the thermoelectric
effect [298,299].
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Pospischil et al. have reported the design and fabrication of a CMOS-compatible
graphene photodetector device [300], as shown in Figure 49. The fabrication process has
three steps. It starts with the Si waveguide’s etching and passivation. This follows with the
graphene deposition. The last is metallization.
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Figure 49. (a) Graphene photodetector integrated on the waveguide. The purple part is the graphene’s
active region. Inset: graphene covers the sidewalls and the topside. (b) The magnified region of the
black dashed area in (a). The photocurrent is from central electrode S to the ground (GND) [300].

When the device operates, the photocurrent is generated toward GND because of
the potential gradient existing between the electrode S and the graphene. The potential
gradient is due to the different doping levels in the metal-uncovered and covered graphene
parts. Because of the zero bandgap in graphene, it has a high bandwidth photodetection.

The photocurrent was measured through a transimpedance amplifier with low impedance
connecting to the device. Figure 50a displays that the photocurrent is linearly dependent on
the optical power. Figure 50b shows the bilayer graphene photodetector’s photocurrent as a
function of the wavelength. A flat response is observed from 1310 nm (O band) to 1650 nm (U
band). The ultra-wide range of wavelengths in which the inter-band optical transitions take
place is owing to the graphene’s gapless feature [301–304].
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Except for the wideband operation and the compatibility with CMOS, graphene also
has other features, such as low-energy consumption, high-speed operation, cost efficiency,
small footprint and simplicity, which can be used for optical interconnects.

7.6.3. Graphene-on-Graphene Modulator

The linear absorption coefficient and the absorption wavelength of graphene can
be tuned via a gate voltage. This research was undertaken by Koester et al. using a
graphene-on-graphene modulator [213]. The modulator was fabricated using the CVD-
grown graphene on a planar single-mode photonic waveguide. Figure 51a shows the device
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structure. The downside graphene layer acted as the absorber. It was separated from the
beneath waveguide by an oxide layer grown with the atomic layer deposition method. The
Ohmic contacts were fabricated with the graphene patterning and the metal deposition.
This followed with a deposition of another oxide layer on the graphene. Then, the steps
were repeated to grow the second layer graphene and the contacts. The obtained device is
simple and has a high modulator speed and low insertion loss. Moreover, it can modulate
in the wavelength range from near-infrared to mid-infrared.

Micromachines 2022, 13, x FOR PEER REVIEW 43 of 64 
 

 

 
Figure 51. (a) Waveguide-integrated bilayer graphene modulator. The overlay displays a typical 
waveguide’s fundamental TE mode profile [305]. (b) The electric field amplitude decreases from the 
waveguide top. (c) The field amplitude decreases from the waveguide side [305]. In (b,c), the green 
part is the waveguide, the black dashed lines represent the graphene layers and the orange parts 
are the metal contacts. 

The electrical field amplitude as a function of the waveguide length in both the ver-
tical and the lateral directions are displayed in Figure 51b and Figure 51c, respectively. 
The modulator can work appropriately by adding a DC offset voltage at a specified back-
ground carrier concentration range. In this situation, the top graphene layer is transparent 
at the working wavelength and the bottom graphene layer acts as an absorber. 

Simulations have been done to investigate the modulator’s performance by utilizing 
an equivalent circuit model, which is based on random potential fluctuations, quantum 
capacitance effects and Fermi-Dirac statistics. The carrier concentrations in the graphene 
are calculated through the integration of the Fermi-Dirac distribution function with the 
graphene density of states, where a random potential with a standard deviation is applied 
to the graphene band structure. The mean electron and hole sheet densities and the mean 
absorption probability are achieved by averaging over 1000 random values. 

The results are displayed in Figure 52. The simulated parameters such as the band-
width, the insertion loss and the modulation depth are calculated as a function of back-
ground carrier concentration with two standard deviations of σ = 0 and 65 mV, respec-
tively. 
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The electrical field amplitude as a function of the waveguide length in both the vertical
and the lateral directions are displayed in Figures 51b and 51c, respectively. The modulator
can work appropriately by adding a DC offset voltage at a specified background carrier
concentration range. In this situation, the top graphene layer is transparent at the working
wavelength and the bottom graphene layer acts as an absorber.

Simulations have been done to investigate the modulator’s performance by utilizing
an equivalent circuit model, which is based on random potential fluctuations, quantum
capacitance effects and Fermi-Dirac statistics. The carrier concentrations in the graphene
are calculated through the integration of the Fermi-Dirac distribution function with the
graphene density of states, where a random potential with a standard deviation is applied
to the graphene band structure. The mean electron and hole sheet densities and the mean
absorption probability are achieved by averaging over 1000 random values.

The results are displayed in Figure 52. The simulated parameters such as the band-
width, the insertion loss and the modulation depth are calculated as a function of back-
ground carrier concentration with two standard deviations of σ = 0 and 65 mV, respectively.
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To obtain the bandwidth using Equation (12), the total capacitance and series resistance
are required. The total capacitance is a series combination of the oxide capacitance and the
quantum capacitances of the two graphene layers. The former is calculated using a simple
parallel plate approximation. The latter can be calculated from the derivative of the charge
concentration with respect to the Fermi-level position. While the total series resistance can
be calculated by adding together the resistances of the two graphene layers and the metal
contacts. The calculated bandwidths are displayed in Figure 52a.

f3dB (Bandwidth) =
1

2πτRC
(12)

To obtain the insertion loss and the modulation depth, the total absorption coefficient
and transmission (T) shall be calculated firstly. The total absorption coefficient was calcu-
lated using the sum of the entire structure (α) and the additional attenuation coefficient
(αm). The α is the sum of the absorption coefficients in the two graphene layers, while the
αm is the absorption coefficient due to the metal contacts. The total transmission (T) can
be calculated with the total absorption coefficient according to Equation (13). The Tmax
and Tmin are the maximum and minimum of the T which were obtained from one full AC
voltage cycle. With these two values, the insertion loss and the modulation depth can be
calculated according to Equation (14) and Equation (15), respectively [305].

T (Total Transmission) = e−(α+αm)Lm (13)

L (Insertion Loss) = 10 log(Tmax) (14)

M(Modulation Depth) =
Tmax − Tmin

Tmax
(15)

7.7. Graphene Photo Memtransistor

A very recently developed application is the graphene photo memtransistor. Figure 50
illustrates the structure of the graphene memory device. Note that the top platinum layer
is not related to the real device geometry but for the assistance to cut out the sample for
STEM imaging during the FIB process. The graphene can be integrated with conventional
flash memory technology. This integration can achieve programmable doping of graphene
by applying short gate pulses, setting the graphene’s conductivity to either a higher or
a lower conductive state. As shown in Figure 53, a positively applied bias on the gate
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electrode makes the electrons tunnel from the graphene into the nitride layer; thus, p-
doping graphene. Likewise, a negative bias will result in n-doping of the graphene, as
shown in Figure 53a. The carriers are able to de-trap by using ultraviolet light, as illustrated
in Figure 54b. Figure 54c shows that the conductivity initially goes up instantaneously after
applying the pulse, but then drops back off gradually to the initial level. The electrons gain
their energy from the UV light source and are being expelled from the nitride layer due to
the internal field generated by the other trapped charges. The approach may be used for
integrating graphene in CMOS technology memory applications, or even could be suitable
for large-scale neuromorphic computing structures [306].
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7.8. Other Applications

It should be noted that the above-mentioned are not all applications of graphene.
There are numerous applications of graphene which have been reported in many articles.

The graphene supercapacitor is another example of a graphene application. Promising
results have been reported when it was used as batteries [166,307–311]. Moreover, adhesive
conductive film recently has been achieved using graphene films decorated with silver
nanoparticles [312]. The smallest 2D resonators with megahertz range frequencies were
recently fabricated on the suspended graphene [313]. Other applications such as photo-
catalytic behavior have also been investigated in some studies [314]. The last but not the
least example is the application in infrared photodetectors. A strong photo-response near
metallic electrodes was reported [29,315,316].

8. Applications of CNTs

CNTs have brought much interest because of their amazing mechanical, electrical
and thermal features [317–319]. These extraordinary properties guide scientists to utilize
CNTs in a wider scope of operations, for instance, micro-electronics and nano-electronics,
spintronics, optoelectronics, material sciences, energy storage and mechanics. This section
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provides a review of these applications especially based on recent works related to the
chemical and electrical properties of CNTs.

8.1. Structural Applications

CNTs with remarkable properties and qualities related to their structure could find
growing structural applications [320–323]. Textiles and fibers based on CNTs can pro-
duce waterproof or bullet-protecting jackets [324–327]. Moreover, CNT composites with
polymers such as polyethylene provide more elasticity than polyethylene alone. Another
structural application of CNTs is utilizing them to replace metals to make lighter and
stronger constructions for bridges, flywheels and fire protection elements [53].

8.2. Electromagnetic and Electronic Applications

Buckypaper (buckytubes) of CNTs has a strong and light-sheet structure and can be
used as a heat sink of chipboards and backlight of LCD screens and protect electrical devices
(Faradaic cage) [328–331]. Another exciting use of CNTs is the ability to generate powerful
magnetic fields. For this purpose, MWCNTs are coated with magnetite and utilized in
many applications [38].

This attractive material demonstrates unique electronic properties, so it has been
one of the great elements for building electronic devices such as diodes, transistors
and interconnectors.

8.3. Transistors

Amongst the many full of potential applications of CNTs is the realization of carbon
nanotube field-effect transistors or CNTFETs as a replacement for silicon-based FETs.
The first CNTFET was reported in 1998, with a conventional MOSFET-like back-gate
structure shown in Figure 55a,b, indicating that CNTFETs could be potential successors
to silicon FETs [332,333]. However, such CNTFETs tend to exhibit p-channel behavior.
This is not an intrinsic characteristic of CNTs but rather attributed to source/drain metal
contacts [54,334,335]. Theoretically speaking, the CNT bandgap is inversely proportional
to its diameter. Therefore, MWCNTs which have bigger diameters than SWCNTs are not
the prime candidates for an effective semiconducting channel. In other words, CNTFETs
utilizing MWCNTs as their channel do not demonstrate transistor functionality. Martel
et al. [333] reported that deformed MWCNTs show a faint switching action (see Figure 56)
and may be used as an FET channel since MWCNTs are easier to fabricate.
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Figure 55. (a) AFM image of a single SWCNT over Pt electrodes. (b) Schematic view of the back-gate
CNTFET reported by Tans et al. Band diagram of the proposed FET (c) without bias voltage (i.e.,
VDS = 0, off state) and (d) with bias voltage (on sate) [332].
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Figure 56. Curve A belongs to a typical MWCNT-FET, as no apparent switching is observed. Curve
B belongs to a deformed MWCNT-FET. This device shows a faint switching action, and there is a
significant current in the off state due to the metallic behavior of the MWCNT channel [333].

Since every transistor implemented would have the same gate voltage, a back-gate
FET has the disadvantage that it does not allow the fabrication of multiple transistors on a
single chip. A novel implementation technique was proposed by Bachtold et al. [336] to
eliminate this constraint.

To integrate multiple transistors on a single chip, a resistor-transistor logic was intro-
duced. In this logic style, the negative voltage is regarded as the logic value 1 while the
zero voltage is considered to be the logic value 0. Figure 57 illustrates the measured results
of NOT, NOR, front-to-back coupled NOT gates and a ring oscillator circuit. However, a
complementary logic gate set is more desirable, which requires n-type CNTFETs. As stated
before, such CNTFETs exhibit p-type behavior. This problem can be resolved by doping
the SWCNTs with an electro-positive dopant (e.g., potassium) [334,337] or by vacuum
annealing [54]. The acquired n-type CNTFET can revert to p-type if exposed to oxygen [60].
The I-V plot diagrams of back-gate CNTFETs are depicted in Figure 58.
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Figure 58. (a) Vacuum annealed p-FET exhibits n-type behavior. (b) Potassium doping of p-FETs,
note that there is a change in location in the threshold voltage after doping [337].

Furthermore, PMMA is used to insulate the n-type CNTFET from oxygen/air exposure
(see Figure 59) [337]. However, an intramolecular NOT gate fabrication is explained in the
sequence depicted in Figure 59c. Intermolecular fabrication (i.e., using the same nanotube
for both transistors utilized in a NOT gate) is more desirable. The illustration and the result
are shown in Figure 60. Another example of such logic element capable of integration was
published by Liu et al. [338].
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Figure 59. (a) Two vacuum-annealed CNTFETs, the red curve belongs to an FET that PMMA protects.
(b) Unprotected (gray curve) CNTFETs revert to p-type after the oxygen exposure. (c) The n-CNTFET
and p-CNTFET are wired together to form an NOT gate. (d) VTC curve of the intramolecular NOT
gate [337].
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CNTFETs discussed so far are categorized as Schottky barrier (SB) FETs since the
switch was controlled mainly by contact resistance rather than CNTs’ conduction. The key
to improving the performance and the conductance modulation lies in providing better
contacts (usually high work function metals such as gold are used) [339,340]. The back-gate
structure reported here has two significant issues. First, the integration of many transistors
on a single chip is troublesome, which was addressed by Bachtold et al. [336]. Second,
the gate-to-substrate dielectric constant is reduced due to the practiced open-air structure.
Therefore, a top-gate structure is favorable [9]. The method presented by Wind et al. [339]
also enables in situ modification of p-type FETs to produce n-type FETs.

A design for a non-volatile RAM (Random Access Memory) was proposed by Rueckes
et al. [341], using a matrix of SWCNTs. One set of SWCNTs is placed on a substrate while
another perpendicular set is placed on top of them with the assistance of some evenly
placed supports (see Figure 61a,b). However, rather than a conventional bi-stable design,
each cross-over of nanowires in this design represents a bit. The off-state is defined by the
high electrical resistance (i.e., the free suspension of nanowire), while the on-state is defined
by the low resistance of contact junction when drawn together (nanowire cross-over). It is
achieved by charging the two corresponding nanowires with different signs [11]. Another
memory device with high mobility was reported by Brintlinger. The applied gate voltage
of the device was swiping in the range between +10 and −10 V [342]. This is interesting
because it suggests the injection of charge into the dielectric.
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As mentioned above, the CNTFET’s performance is reduced by the SB in the vicinity of
contact electrodes. Therefore, extending the potent ballistic or near ballistic transport char-
acteristic of SWCNTs will provide better contacts and wetting interaction with the SWCNTs



Micromachines 2022, 13, 1257 48 of 64

utilized in FETs. SWCNTs are expected to show two units of quantum conductance which
gives an electrical resistance of 6.5 kΩ. This makes the SWCNTs a potential material for the
realization of ballistic FETs. Pd was suggested as a suitable candidate for contact electrodes
(see Figure 62a). Forming SB at the contacts is dependent on the SWCNT’s bandgap and the
contact’s work function. The modification of the Pd work function revealed that reduced
Pd work function increases the SB height and limits the device’s performance (Figure 62b).
Additionally, SWCNTs with small diameters (~2 nm) form immensely low SBs, though
they are not entirely removed [343].
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8.4. Diode

Besides transistor construction, photodetectors are a valuable field to employ semi-
conducting CNTs in nanoelectronics. As a fundamental building block of semiconducting
electronics, the diode is one of the structures that can be formed based on CNTs instead
of Si p-n junctions [344,345]. The quasi one-dimensional nature of the CNT leads to the
dominating photocurrent spectra by photo-excitation, along with hundreds of mV of en-
ergy [346–348]. The high excitation binding energy of the CNT-based photodetectors makes
the phonon-assisted excitation dissociation negligible [349,350].

A diode made of CNTs was reported by Bughes et al., who described a diode with Pd
and Ti contact split gates [351]. This device displayed strong rectification and ultra-low
leakage current. Additionally, many studies have been performed using CNT-based diodes
in the power supply applications such as mobile communication devices. These devices
invert the diode’s reflection direction in the high-speed signal process [352,353].

8.5. Interconnection

In order to manage the heat of IC, it is necessary to replace conventional conductors
with high electrical resistance and the Joule effect [354]. Meanwhile, increasing temperature
limits the electrical current in conventional interconnections. CNTs with outstanding prop-
erties are a great alternative conducting material for this purpose [355,356]. Several reports
are based on employing CNTs for interconnection production. The results demonstrated
the possibility of obtaining a negative temperature coefficient of the resistance [357–360].

8.6. Sensor and Biosensors

Recent investigations are focusing on dealing with the design and fabrication of sensors
and biosensors using CNTs. Most of its chemical and electrochemical properties are related
to this unique large surface area [361]. The absorption of molecules on the CNTs surface
changes the electronic properties and makes them a promising starting material for developing
sensitive sensors and biosensors [142–145]. The principle of sensor operation may change the
I-V curve of the CNTs due to accumulation or binding molecules on their surface.

Biosensors are analytical devices that provide an analytical response related to a biolog-
ical interaction using a suitable transducer [362]. An ideal biosensor needs to have excellent
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stability, sensitivity and wide dynamic range. Therefore, CNTs are a promising material
to fabricate biosensors due to their physicochemical characteristics, such as good electron
transfer, mechanical strength, extended surface area, biocompatibility and tailorable surface
to be functionalized with biomolecules [188,362].

CNT-FET-based biosensors are usually designed based on the CNTs’ conductivity as
the transistor channel that connects the source and the drain. Biological interaction near
chemical conductive can change the conductivity [147–149,363]. Various functionalization
methods have been developed to improve the CNT’s dispensability and give access to
chemical reagents consequently. These methods make CNTs able to integrate with biological
elements and gain electroanalytical properties [364,365].

Covalent binding may result from amine or acid bonding of amino and carboxyl
groups [366–369]. The noncovalent immobilization also can be applied to fabricate biosen-
sors derived from the CNT π-π conjugation. The π which stacks between the CNT
and baroreceptor leads to combining them and fixing biomolecules on the surface of
the CNT [370–373].

One of the most widespread types of CNT-based sensors and biosensors are electro-
chemical devices. These sensors are based on the CNT modified working electrodes [48]. A
redox polymer usually acts as the catalyst that transfers the electron between the base of the
electrode and the biomolecules. This arrangement of the CNT and the catalyst improves
the electrical conductivity of the CNTs. The catalyst polymers provide reversible redox
reactions and thus detect different analytes such as nitride, sorbitol, glucose, hydrogen
peroxide, uric acid, dopamine, etc. [374–377].

8.7. Other Applications

Research has been undertaken to develop CNT/metal oxide composites with the
ability of electrochemical energy storage. A supercapacitor or electrochemical double-
layer capacitor provides a higher energy density than conventional capacitors. These
capacitors also have higher power density than batteries and faster charge and discharge
rates, representing distinctive superior properties [378–380]. Despite these outstanding
characteristics, low specific capacitance needs to be modified using combining metal oxides
such as MnO2, Co2O4, RuO2, NiCo2O4, etc. [381–384].

Furthermore, the excellent chemical and physical properties of CNTs make them a
proper possibility to be utilized in solar cell structures. CNTs could be an interesting,
exciting alternative hole-transporting layer and counter electrode material in different
solar cells [385–389]. In addition, they can represent ballistic electrical conductivity, semi-
transparency and flexibility in solar cell fabrication. CNTs are incredibly fascinating in
transparent electronics [390], smart drug delivery [391] and high-power converters [392].

9. Conclusions and Outlook

This article reviewed the structural features and properties of graphene and CNTs,
the synthesis and transfer methods, the characterization methods and a few important
applications of graphene and carbon nanotubes in electronics, optoelectronics and sensors.
The conclusions are summarized below.

Carbon nanomaterials such as graphene and CNTs have various special features due
to their unique structures. The discovery of the graphene and CNTs has revolutionized the
nanoelectronics industry.

CNT has a 1D structure with a high surface-to-volume ratio feature. As a nanotube is
a surface structure, its whole weight is concentrated in the surface of its layers. Because of
the special chemical, mechanical, thermal, optical, electronic and electrical characteristics,
many efforts are engaged in continuing to improve the synthesis techniques and develop
the novel applications, such as energy conversion electrode structures, sensor and biosensor
design, gas discharge tubes for telecommunication, screening of electromagnetic waves,
batteries, hydrogen storage and composite materials.
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Graphene consists of a 2D monolayer structure. Graphene can be used in the elec-
tronic and optoelectronic applications by tuning its zero-band gap by applying an external
electric field or chemical doping. It also has various novel electrical properties such as
the Klein tunneling, quantum Hall effect because the electron movements are confined
in two dimensions. The atoms are on the surface, making the properties and electronic
band structure of graphene sensitive to environmental interactions, surface curvatures and
size. Moreover, the charge carrier concentration has a relation with the magnitude and sign
of applying a gate voltage. Graphene produces holes at a negative voltage, while it has
electrons with a positive voltage. All these special features make it an excellent candidate
in various applications such as electronics, optoelectronics, biosensors, and so on. Thus, it
is known as an alternative for silicon technology.

Although the growth techniques have rapidly developed but significant market pen-
etration has not yet occurred in any field. These carbon nanomaterials will continue in
a research and prototyping phase for the next few years. A major threat and critical bot-
tleneck for the commercialization is the availability of a suitable supply concerning both
quality and quantity at a competitive price [393]. Beyond the cost reduction and capacity
expansion of the industry, three interrelated challenges still exist: (a) the perception of their
immaturity among potential customers, (b) a lack of reliability and standardization and
(c) regulatory hurdles (such as REACH) and associated toxicology concerns. The present
status of the global supply industry is characterized by the following major trends: steady
demand growth in a low rate, stagnation of global production capacity, slow decay of
production cost, the sales strongly depending on the quality and consistency of products.

More focus must be paid on making purified materials with fewer defects and on
upgrading the lab-scale processes into technologies applicable in industry. Implementing
the various technologies such as silicon technologies with CNTs and graphene will make
the process more efficient, increase production, and lessen defects in the application of the
electronic field. It is expected that, in the near future, novel techniques will emerge and
make the CNTs and graphene more affordable and viable in various fields of applications.
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