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Carbon skeleton doped with Co, N, S and P as
efficient electrocatalyst for oxygen evolution reaction
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ABSTRACT A new strategy for the preparation of highly

efficient catalyst used in oxygen evolution reaction (OER) in

alkaline media was developed. A Co-containing carbonitride

polymer network (CoCN) was selected as a structural-direct-

ing template and a hypercross-linked polymer containing S

and P, which formed on CoCN skeleton in situ, was used as a

cover. After calcination at 450°C for 2 h, an interconnected

nanostructure was obtained and showed excellent activity and

high stability for electrochemical water splitting. Trace

amount of Co and other heteroatoms including N, S, P and

the formed Co–N and Co–O species are essential for the im-

pressive catalysis performance. The calcination temperature of

450°C is optimal to the catalysis performance. These results

suggest that Co in addition to heteroatom-doped (S, P) car-

bonitride could be used as a supplement and/or an alternative

to noble metal oxides for water splitting.

Keywords: electrocatalyst, oxygen evolution, carbonitride, cal-

cination, alkaline

INTRODUCTION
The aggravating energy and environment issues have
stimulated intense focus on searching renewable and
clean energy. Among various candidates proposed to
date, hydrogen appears as a promising option. The state-
of-the-art method for hydrogen generation is water
splitting triggered either by electricity or light, which
contains two complementary processes, i.e., the hydrogen
evolution process [1] and the oxygen evolution reaction
(OER) [2–4]. To overcome sluggish kinetics involved in
OER relies on the development of efficient anodic elec-
trocatalysts.

Up to date, the most active OER electrocatalysts are still
precious metals and their oxides, such as Ru, Ir and RuO2.

Their high costs and low abundance hindered their large-
scale application. Alternatively, Co-based catalysts have
received much attention due to facile preparation and
good performance, such as Co3O4 [5–10], Co9S8 [11,12],
CoSe [13] or CoSe2 [14], CoP [15,16], Co(OH)2 [17],
CoxN (x=2, 3, 4) [18] and various hybridized derivatives
[19–29]. The development of metal-free OER catalyst
[2,3] is also purposed. However, up to now this method is
concentrated on graphitic carbonitride (g-C3N4) [30–33]
and modified carbon nanostructures such as carbon na-
notubes (CNTs) [33–35]. The performance of other me-
tal-free materials which are entirely composed of light-
weight elements is not good in most cases. To integrate
the advantages of both transition metals and light-weight
elements into one catalyst, a promising strategy con-
taining carbon materials with metallic and/or heteroa-
tomic dopants is proposed. In addition, the stability of the
catalysts could be greatly improved due to the protection
from the carbon materials in harsh conditions. Moreover,
the performance of the hybridized materials could be
further improved by the introduction of heteroatoms to
modify the electronic structure of the adjacent carbon
atoms.

We present the preparation of a new carbon-based
catalyst doped with Co, N, S and P (Scheme 1a). Only
trace level of Co (<5% by mass) is detected in the final
catalyst. The catalyst shows impressive performance in
OER in alkaline media. To optimize the performance of
the catalysts, we also investigate the influences of other
transition metals and calcination conditions.

EXPERIMENTAL SECTION

Materials

All reagents were of analytical grade and used as received.
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Melamine (>99%), terephthalaldehyde (>99%), 4,4'-sul-
fonyldiphenol (>99%), phosphonitrilic chloride trimer
(>98%) were purchased from J&K Chemical Reagent Co.,
Ltd. Cobalt nitrate hexahydrate (>99%), nickel nitrate
hexahydrate (>98%) and copper (Ⅱ) nitrate trihydrate
(>98%) were obtained from Kermel Chemical Reagent
Co., Ltd. Distilled water was utilized in all the experi-
ments.

Synthesis of MCN (M=Co, Ni, Cu)

For the synthesis of CoCN, 4 mmol of melamine and
7 mmol of terephthalaldehyde were dissolved in 50 mL of
dichloromethane (DCM). The mixture was stirred at
70°C for 30 min, and then 6 mmol of cobalt nitrate
hexahydrate (Co(NO3)2·6H2O) was added and stirred for
24 h. Finally, the system was cooled down and the pro-
duct was isolated by filtration, washed successively with
distilled water and ethanol. The as-prepared product was

further washed with distilled water in a Soxhlet apparatus
for 24 h, and dried at 55°C under vacuum until constant
weight with a quantitative yield (62% based on the con-
version of melamine). NiCN and CuCN were prepared
using similar procedure.

Synthesis of MCN@PZS (M=Co, Ni, Cu)

CoCN (400 mg) and 80 mL of methanol were mixed by
sonication for 5 min. Then another portion of methanol
solution (20 mL) containing 300 mg of phosphoni-
trilicchloride trimer and 675 mg of 4, 4'-sulfonyldiphenol
was added dropwise under stirring. After 5 min, 1 mL of
triethylamine was added dropwise and the solution was
further stirred for 18 h. After that, the celadon pre-
cipitates were collected and washed with methanol three
times and dried under vacuum at room temperature for
12 h to obtain CoCN@PZS. The preparation of NiCN@
PZS and CuCN@PZS were carried out in a similar pro-

Scheme 1 Illustration of the synthetic route of the OER catalyst (a) and the hyper cross-linked polymer PZS (b).
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cedure. For CN@PZS the process was similar except the
addition of metal nitrate salts.

Synthesis of MCN@PZS-450°C (M=Co, Ni, Cu)

The dried powder of MCN@PZS (M= Co, Ni, Cu) was
calcined at 450°C under N2 in a quartz tube furnace for
2 h with a ramping rate of 5°C min−1. After cooling to
room temperature, the product was collected. The ob-
tained products were denoted as MCN@PZS-450°C (M=
Co, Ni, Cu). To investigate the temperature effect, the
temperature during calcination was also varied.

Structural characterizations

X-ray diffraction (XRD) patterns were obtained from a
Rigaku D/max-2400 diffractometer (Japan) with Cu Kα
radiation (λ=0.15418 nm). The microstructure and mor-
phology of materials were characterized using a trans-
mission electron microscope (TEM; TF20) and a field-
emission scanning electron microscope (FESEM; JSM-
6701F, JEOL). Energy-dispersive X-ray spectroscope
(EDS) attached to the FESEM was utilized to analyze the
composition. X-ray photoelectron spectroscopy (XPS)
was performed on an ESCALAB 250Xi and Raman
spectra were recorded on HR-800, Jobin Yvon with a
514 nm Ar-ion laser as excitation source. Fourier trans-
form-infrared spectroscopy (FTIR) was carried out on a
VERTEX-70/70v spectrometer (Bruker Optics, Ger-
many).

Electrochemical measurements

Electrochemical measurements were carried out using a
three-electrode system at an electrochemical workstation
(CHI660E, Shanghai Chenhua, China) in an aqueous
solution containing 1.0 mol L−1 KOH. Ag/AgCl was se-
lected as the reference electrode and a Pt wire was used as
the counter electrode. The working electrode was a glassy
carbon with a diameter of 3 mm. To prepare the working
electrode for OER test, 4 mg of the prepared catalyst was
dispersed in 1 mL of ethanol and 10 μL of nafion (5%) by
sonication for 5 min. The suspension was then carefully
dropped onto the electrode. The OER activity of the
catalysts was measured by linear sweep voltammetry
(LSV) from 1.20 to 1.80 V vs. reversible hydrogen elec-
trode (RHE) at a scan rate of 5 mV s−1. The essential
stability tests were measured with cyclic voltammetry
(CV) between 1.02 and 1.32 V at 100 mV s−1 for 1,000
cycles. The surface active area of CoCN@PZS-450°C
electrode was measured by CV from 1.02 to 1.32 V to
further analyze their catalytic activity. All the measured
potentials were calibrated with the RHE scale according

to the Nernst equation (ERHE=EAg/AgCl+0.059pH+0.197)
without any iR-correction.

RESULTS AND DISCUSSION
A well-defined Co-doped carbonitride framework (i.e.,
CoCN) was prepared first following a modified method
[36]. In brief, melamine was reacted with ter-
ephthalaldehyde at the presence of trace cobalt nitrate via

a one-step polycondensation reaction. SEM (Fig. 1a and
Fig. S1) and TEM (Fig. S2) images show that the as-
obtained CoCN exhibits interconnected nanostructures.
This structural feature makes CoCN an ideal catalyst,
because the nanostructure can facilitate the exposure of
the active sites. Without cobalt nitrate only micrometer-
sized blocks are obtained (Fig. S3). Besides C, N, and O,
evenly-distributed Co of about 1.15% (by atomic ratio)
was detected (Fig. S4). The FTIR (Fig. 2) bands at 3,410
and 1,150 cm−1 belong to the stretching vibrations of the
secondary amine (–NH–), indicating the formation of
aminal linkages. The bands at 2,965 and 2,911 cm−1 can
be assigned to the methyne (–CH) groups, and the
characteristic absorptions of triazinerings are observed at
1,562 and 1,468 cm−1 [37]. To enrich heteroatom-doping,
hyper-crosslinked polymer (PZS [38]) was then coated on
the surface of CoCN by in situ polymerization between
phosphonitrilic chloridetrimer and 4, 4'-sulfonyldiphenol
at the presence of triethylamine. With the PZS coating,
the material surface becomes smooth (Fig. 1b and Fig.
S5a). Typical SEM and TEM images for the catalyst ob-
tained at 450°C for 2 h (CoCN@PZS-450°C) show the
catalyst becomes porous after calcination in N2 atmo-
sphere (Fig. 1c and Fig. S5b). EDS mapping reveals that
all the elements are uniformly distributed in the sample
(Fig. 1d, e, Fig. S6 and Table S1).

XPS spectra (Fig. S7) and high resolution XPS spectra
(Fig. 3a–d and Fig. S8) show the Co 2p peaks at about 780
and 786 eV assigned to Co–N specie, while the peaks at
796.5 and 804.6 eV originate from Co–O species. The
N 1s spectra can be fit well with four kinds of N species.
Peaks at about 398.8, 400.0, 401.0 and 404.9 eV corre-
spond to pyridinic nitrogen, pyrrolic nitrogen, graphitic
nitrogen, and pyridinic N+–O−, respectively [39,40]. Be-
sides these four peaks, an additional peak locates at
398.6 eV, which is ascribed to the pyridinic nitrogen or
P=N/P–N bond [41,42]. The S 2p region displays three
peaks at 164.0, 165.2 and 168.3 eV, respectively, which are
ascribed to 2p3/2 and 2p1/2 splitting of the S 2p spin orbital
(–C–S–C–) and oxidized S, respectively. The P 2p spec-
trum shows two peaks at 132.7 and 133.9 eV, corre-
sponding to P–C and P–O, respectively. The C 1s
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spectrum exhibits a C–C peak at 284.7 eV, a C–N peak at
285.8 eV and a C=O peak at 287.8 eV. For O 1s, the peaks
centered at 531.5 and 533 eV can be assigned to the O 1s
core levels in highly cross-linked PZS and adsorbed water,
respectively. The atomic percentage of C, O, Co, N, S and

P is 73.99%, 14.13%, 0.80%, 4.60%, 1.18% and 5.30%,
respectively (Table S1).

The wide-angle XRD pattern (Fig. 3e) of the catalyst
(CoCN@PZS-450°C) is similar to the standard patterns
(JCPDF No. 76-1125). In Raman spectrum (Fig. 3f), two
peaks at 1,341 and 1,598 cm−1 are assigned to D and G
bands, respectively. The broad D-band indicates the
presence of substantial defects or disorder-induced mode
in the catalyst and the G-band is attributed to the gra-
phitic structure. The structural defects are mainly caused
by the doping of N, S, P and concomitant presence of Co
atom. The high intensity ratio of D-band and G-band (ID/
IG) suggests a large number of defects that might act as
active catalytic sites [43].

Cu and Ni doped catalysts were prepared with the same
procedure to investigate the influence of the type of
doped metal on the structure and properties of the cat-
alyst. The structural characterizations including SEM
observations, XRD and Raman spectra are summarized in
Fig. 4, and the contents of the elements both in the bulk
and on the surface are listed in Table S1. EDS mapping of
CuCN@PZS-450°C shows a significant increase of the
metal content, which is up to 15.25% (Table S1). The

Figure 1 SEM images of (a) the as-synthesized CoCN, (b) CoCN@PZS, (c) CoCN@PZS-450°C. (d) The SEM image of CoCN@PZS-450°C in-
vestigated by EDS mapping; (e) EDS mapping of Co, C, N, O, S and P. The scale bar in (d, e) is 500 nm.

Figure 2 FTIR spectra of (a) melamine, (b) terephthalaldehyde, (c)
CoCN and (d) CoCN@PZS (before calcination).
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large content of Cu can be also verified by the sharp
Cu 2p signal in XPS survey (Fig. S9), which gives an
atomic percentage of 10.42% (Table S1). Besides C, the

amount of S on the catalyst surface is high (Table S1).
SEM images reveal the threadlike aggregates together
with some amorphous structures (Fig. 4a, b). XRD pat-

Figure 3 Structural characterizations of CoCN@PZS-450°C. High-resolution XPS spectra of (a) Co 2p, (b) N 1s, c) (S 2p and (d) P 2p. (e) XRD
pattern; (f) Raman spectrum.

Figure 4 (a, b) SEM images at different magnifications of CuCN@PZS-450°C; (c) a typical SEM image of NiCN@PZS-450°C; (d) XRD pattern and (e)
Raman spectra.
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tern (Fig. 4d) shows an overlying of face-centred cubic
lattice (JCPDF No.85-1326) and primitive cubic lattice
(JCPDF No.74-1230), indicating good polycrystallinity.
The Raman spectrum (Fig. 4e) looks similar with that of
CoCN@PZS-450°C with a slight decrease of ID/IG. In case
of NiCN@PZS-450°C, the doping is unsuccessful and
only trace of Ni (0.03%) is detected by EDS mapping
(Table S1). XPS survey gives a slightly higher content of
Ni, which is different from CoCN@PZS-450°C and
CuCN@ PZS-450°C where the metals tend to stay inside.
However, the peak belonging to Ni is hardly seen due to
the low content (0.27%) (Fig. S10).

The catalysts’ activities in OER were evaluated by LSV
using a three-electrode system with a Pt foil as the
counter electrode, Ag/AgCl electrode as the reference
electrode and a glassy carbon electrode loaded with cat-
alyst as the working electrode in 1.0 mol L−1 KOH aqu-
eous solution. As shown in Fig. 5a, CoCN@PZS-450°C
was highly active for OER with a small overpotential of
450 mV to achieve the current density of 10 mA cm−2

(η10). The small Tafel slope of 79 mV dec−1 (Fig. 5b) de-
monstrates the superior catalytic activity and efficient
electron/mass transfer in CoCN@PZS-450°C. The per-
formance of CoCN@PZS-450°C is better than those re-
ported recently under the same conditions [44,45] and
comparable to those performed in 0.1 mol L−1 KOH
aqueous solutions [46–49] (Table 1). Moreover, a very
small decay of the current density after continuous CV
scanning for 1,000 cycles demonstrates very good elec-
trochemical stability, partially ascribed to the presence of
an outer C-rich protecting layer.

In Fig. 5a, the performance of CoCN@PZS-450°C is
much better than its counterparts, i.e., CuCN@PZS-
450°C and NiCN@PZS-450°C. Due to the ultralow cur-
rent density in the range of high potentials (> 1.45 V), the
curves of CuCN@PZS-450°C and NiCN@PZS-450°C
cannot be fitted to Tafel equation. Besides the intrinsic
differences between the catalytic activity of Co, Cu and
Ni, the different OER activity among these three catalysts
could also be attributed to their different morphologies

Figure 5 (a) OER polarization curves obtained in 1.0 mol L−1 KOH at a scan rate of 5 mV s−1 for CoCN@PZS-450°C, CuCN@PZS-450°C and
NiCN@PZS-450°C. The curve after 1,000 cycles is also included, which is presented as the dotted line. (b) Tafel plot of CoCN@PZS-450°C. The slope
obtained from the linear fit (the solid line) is 79 mV dec−1; (c) CV of CoCN@PZS-450°C measured at different scan rates in 1.0 mol L−1 KOH; (d) plot
of current density at 1.054 V as a function of the scan rate.
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and internal structures. Compared with the other two
catalysts, CoCN@PZS-450°C with sheet-like nanos-
tructure shows high crystallinity and provides more active
sites. The electrochemically active surface area (ECSA)
can be evaluated on the basis of the electrochemical
double-layer capacitance (Cdl) [50–52], since Cdl is pro-
portional to the number of active sites of the catalysts.

Fig. 5c displays the CV curves of CoCN@PZS-450°C in
the range of 1.02–1.32 V vs. RHE at a scan rate ranging
from 2 to 10 mV s−1. A Cdl of 54 mF cm−2 can be calcu-
lated from the linear relationship of the current density
against the scan rate shown in Fig. 5d. This high value
implies that CoCN@PZS-450°C has a large number of
active sites, consistent with the excellent OER activity.

Figure 6 (a) OER polarization curves of CoCN@PZS calcinated at different temperatures. The curve of CoCN@PZS-450°C which shows the best
performance is highlighted by the dotted line. (b) OER polarization curves of the catalysts without Co doping (CN@PZS) calcinated at different
temperatures. (c) OER polarization curve of CoCN@PZS-450°C after removing Co by etching in 0.5 mol L−1 H2SO4. (d) OER polarization curve of the
catalyst without PZS coating calcinated at 450°C. Measurements were carried out in 1.0 mol L−1 KOH at a scan rate of 5 mV s−1.

Table 1 Comparison of several recently reported highly active noble metal-free OER catalysts

Catalyst η10 (mV vs. RHE) Tafel slope (mV dec−1) Electrolyte Substrate Ref.

Co3O4-35 525 Not available 1 mol L−1 KOH Gold disk [44]

Co3O4/SWCNT 594 104 1 mol L−1 KOH ITO [45]

CoCN@PZS-450°C 450 79 1 mol L−1 KOH Glassy carbon This work

Co3O4/N-PC 390 72 0.1 mol L−1 KOH Glassy carbon [46]

CYM-350 ~470 68 0.1 mol L−1 KOH Glassy carbon [47]

N/Co-doped PCP-RGO 430 292 0.1 mol L−1 KOH Glassy carbon [48]

N, S-codoped carbon nanosheets ~420 59 0.1 mol L−1 KOH Glassy carbon [49]
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The calcination temperature has an obvious influence
on the activity of the catalyst. The sample prepared at
450°C shows the best performance, and lowering or
raising the calcination temperature leads to fast decrease
of the catalytic activity (Fig. 6a) , indicating sample pre-
pared at 450°C has the optimum doping content. Another
contribution could be the structural changes induced by
temperature. While SEM image of the sample obtained at
550°C shows that the catalyst still contains discrete and
interconnected particles (Fig. S11), and the sample ob-
tained at 600°C shows totally loose porous structure (Fig.
S12).

In order to further reveal the mechanism of good
electrocatalytic activity of our catalyst, control experi-
ments were carried out. First, samples without Co-doping
(CN@PZS) calcinated at different temperatures were
prepared and the OER activities exhibit poor perfor-
mance (Fig. 6b). On the other hand, when the doped Co
in CoCN@PZS-450°C was etched away by refluxing the
catalyst in 0.5 mol L−1 H2SO4 for 2 h, the OER activity of
the Co-free catalyst became eclipsed (Fig. 6c). These ob-
servations clearly demonstrated that the trace Co in the
form of Co–O and Co–N species in the catalyst is in-
dispensable to get good catalytic performance. We also
investigated the role of S, P and extra N introduced by
coating PZS in the electrocatalytic process, and found that
without PZS coating the catalyst exhibited unsatisfactory
performance (Fig. 6d). Thus, it is clear that these het-
eroatoms in CoCN@PZS-450°C could take a synergistic
catalytic effect on the OER activity by changing the
electronic structure and spin density of the adjacent
carbon atoms [53–55].

CONCLUSIONS
In summary, we demonstrated that OER catalyst using a
Co-containing carbonitride polymer network as a tem-
plate and a hyper cross-linked polymer containing S and
P as a cover, can be facilely obtained by a simple in situ

polymerization and subsequent calcination process.
When used for electrochemical water splitting in
1.0 mol L−1 KOH aqueous solution, the catalyst shows
excellent activity and high stability. EDS mapping and
XPS measurement show that the catalyst contains a cat-
alytic amount of Co in Co–N and Co–O forms, which is
essential for the impressive performance of the catalyst.
Replacing Co by other transition metals such as Cu and
Ni significantly lowers the activity of the catalyst. The
performance of the catalyst is also affected by calcination
procedure, with 450°C as the optimized temperature. The
heteroatoms (N, S and P) could take a synergistic catalytic

effect on the OER activity. These results suggest that Co-
containing, heteroatom-doped (S, P) carbonitride could
be used as a supplement and/or an alternative to noble
metal oxides for water splitting.
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掺杂钴、氮、硫、磷的碳骨架作为电化学析氧反应的高效催化剂
曹佳梅1,2, 冯永强1,3*, 刘宝勇1,2, 李洪光1*

摘要 本文提出了一种制备碱性介质中电化学析氧反应高效催化剂的新方法. 该方法选用一种含钴的碳-氮聚合物网络作为结构模板, 外
面包裹一层原位制备的、含硫和磷的超支化交联聚合物. 450°C煅烧2 h后, 获得可用于电化学析氧反应的、内部交联、微观呈现层状结
构的催化剂. 该催化剂在1.0 mol L−1的氢氧化钾水溶液中表现出很好的电化学催化活性和高稳定性. 电子衍射图谱(EDS)和X-射线光电子
能谱(XPS)研究表明该催化剂含有痕量钴及其他杂原子, 包括氮、硫、磷, 且证实了能够大幅提高催化活性的Co–N和Co–O活性物质的存
在. 将钴替换为铜和镍之后, 催化剂的催化活性大大降低, 表明当前方法对钴基催化剂的制备最为有效. 煅烧过程中所选用的温度对催化
剂的催化活性亦有显著影响, 450°C为最优温度. 这些结果表明, 含钴的、杂原子(硫、磷)掺杂的碳氮化物有望成为一类新的电解水催化
剂, 以取代贵金属氧化物, 或作为其有益的补充.
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