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Abstract. We quantify how well column-integrated CO2

measurements from the Orbiting Carbon Observatory (OCO)

should be able to constrain surface CO2 fluxes, given the

presence of various error sources. We use variational data

assimilation to optimize weekly fluxes at a 2◦×5◦ resolution

(lat/lon) using simulated data averaged across each model

grid box overflight (typically every ∼33 s). Grid-scale simu-

lations of this sort have been carried out before for OCO us-

ing simplified assumptions for the measurement error. Here,

we more accurately describe the OCO measurements in two

ways. First, we use new estimates of the single-sounding re-

trieval uncertainty and averaging kernel, both computed as a

function of surface type, solar zenith angle, aerosol optical

depth, and pointing mode (nadir vs. glint). Second, we col-

lapse the information content of all valid retrievals from each

grid box crossing into an equivalent multi-sounding measure-

ment uncertainty, factoring in both time/space error corre-

lations and data rejection due to clouds and thick aerosols.

Finally, we examine the impact of three types of systematic

errors: measurement biases due to aerosols, transport errors,

and mistuning errors caused by assuming incorrect statistics.

When only random measurement errors are considered,

both nadir- and glint-mode data give error reductions over

the land of ∼45% for the weekly fluxes, and ∼65% for sea-

sonal fluxes. Systematic errors reduce both the magnitude

and spatial extent of these improvements by about a factor

of two, however. Improvements nearly as large are achieved
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over the ocean using glint-mode data, but are degraded even

more by the systematic errors. Our ability to identify and

remove systematic errors in both the column retrievals and

atmospheric assimilations will thus be critical for maximiz-

ing the usefulness of the OCO data.

1 Introduction

The global carbon cycle plays a key role in the climatic re-

sponse to anthropogenic forcing, yet our understanding of

its dominant processes is still too weak to make accurate

long-term predictions (IPCC, 2007). Atmospheric CO2 mea-

surements have revealed much of what we know about the

functioning of the global carbon cycle. As our data coverage

has increased, inverse methods have been used to optimize

global sources and sinks of CO2 and the process models that

compute them (Enting et al., 1995; Bousquet et al., 2000;

Rödenbeck et al., 2003; Baker et al., 2006a; Rayner et al.,

2005).

So far, the “top-down” atmospheric inverse approach to

validating carbon models has been only marginally success-

ful: where the data are most dense, fluxes may be estimated

at continental scales (Baker et al., 2006a), but not at the re-

gional scales where they would be most useful for identify-

ing flaws in the carbon models. Part of the problem is that

the transport models have systematic mixing errors, notably

in the vertical. The models also have great difficulty repre-

senting point measurements, particularly over the continents,

using grid boxes 100s of km wide. The largest problem,

however, is that the spatio-temporal density of the current in
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situ measurement network is insufficient to correct the sur-

face fluxes at regional scales. For the continental United

States, for example, solving for fluxes at a 500 km reso-

lution would require at least 7 500 000 km2/(500 km)2 ≈30

sites, each sampling air high enough in the column to have a

footprint at least 500 km wide, with a frequency dictated by

the cross-continental advection time scale.

Space-based measurements provide the most realistic op-

portunity to achieve global coverage at such regional scales.

Recently, two satellites have been designed specifically

to measure the column-averaged dry air mole fraction of

CO2 (XCO2
): Japan’s Greenhouse Gases Observing Satel-

lite (GOSAT) and NASA’s Orbiting Carbon Observatory

(OCO). Their instruments measure CO2 absorption in the

near infra-red (IR) portion of the reflected solar beam and

thus have sensitivity down to the surface, including the vari-

able near-surface CO2 concentrations most affected by the

fluxes (Olsen & Randerson, 2004); previous instruments

measuring in thermal IR bands sensed CO2 concentrations

mostly in the mid- to upper-troposphere, with little infor-

mation about the surface fluxes (Chevallier et al., 2005a, b).

Both missions also try to identify cloud-free scenes for their

retrievals, since radiative transfer modeling problems associ-

ated with clouds can cause large errors in the retrieved CO2

concentrations. Both use sun-synchronous orbits with early

afternoon sun-lit equator crossing times and orbital inclina-

tions near 98◦ (though, since their ascending nodes are 180◦

off, their paths cross only at the equator); subsequent orbits

are separated by ∼25◦ in longitude, ∼99 min apart. In addi-

tion to nominal near-nadir pointing, both missions can also

point at the sun glint spot, greatly increasing the signal over

the oceans, which do not otherwise provide much reflection

in the near IR (Miller et al., 2007). GOSAT was launched in

January 2009, OCO in February 2009; GOSAT successfully

reached its operational orbit, OCO did not. While GOSAT

the measurements should greatly expand our knowledge of

the global carbon cycle, the OCO design had certain strong

points that have led to a push for a relaunch, possibly as early

as 2012. OCO would measure more frequently than GOSAT

(180 vs. 13.4 cross-scans per minute) with a smaller FOV

(∼2 km2 vs. ∼100 km2) and thus ought to find more cloud-

free scenes (Crisp et al., 2004) with low XCO2
retrieval er-

rors.

In this study, we use an atmospheric inverse method to

quantify how well XCO2
measurements from OCO would

help estimate sources and sinks of CO2 at the surface. A

tracer transport model relates simulated atmospheric CO2

concentrations to the surface CO2 fluxes at earlier times that

determined them. Progressively higher layers in the atmo-

spheric column reflect the influence of fluxes from increas-

ing broad areas at the surface, due to atmospheric mixing.

The transport model allows this XCO2
measurement infor-

mation, weighted properly in the vertical column, to be dis-

tributed appropriately to fill in the 25◦ gaps between subse-

quent OCO passes on any given day. Though OCO cannot

clarify the diurnal cycle of flux, it can shed light on flux vari-

ability due to synoptic-scale weather systems when they are

modeled well by the transport model. Previous global CO2

flux inversions using data from the global in situ measure-

ment network have most often used the “Bayesian synthesis”

inversion approach (Enting et al., 1995). This method has

also been used to determine the information on surface CO2

fluxes provided by satellite data (Rayner and O’Brien, 2001;

Houweling et al., 2004; Miller et al., 2007), although only for

monthly fluxes from fairly large emission regions (∼2000 km

on a side) since the number of fluxes solved for was limited

by the inversion method. The density of OCO’s data should

permit fluxes to be estimated at a finer resolution than this,

but a more computationally-efficient inversion method is re-

quired.

We use a state-of-the-art variational data assimilation

scheme (Baker et al., 2006b) to solve for the CO2 fluxes at

the horizontal resolution of our transport model; optimized

time-varying 3-D CO2 concentration fields are also produced

as a by-product. The fluxes are solved at a weekly resolu-

tion, though the measurements are modeled at the time step

of the transport model (1 h). Our data assimilation approach

is used to perform observing system simulation experiments

(OSSEs) in which simulated data and measurement errors are

input to produce statistics on the flux estimation errors and

the improvement in the initial guess of the fluxes. Both Baker

et al. (2006b) and Chevallier et al. (2007a) have done prelim-

inary OSSEs for OCO using this approach before. For mea-

surements, they assumed a single measurement per model

grid box with a 1 or 2 ppm uncertainty value (1σ), respec-

tively, and with a flat weighting versus pressure in the verti-

cal. Here, we improve upon their assumptions in two ways.

First, for each individual retrieval, we use new OCO XCO2
re-

trieval uncertainties and averaging kernels (AKs) calculated

as a function of surface type, solar zenith angle, aerosol op-

tical depth (OD), and pointing mode (nadir vs. glint) using

the OCO Level 2 XCO2
retrieval scheme forced with radi-

ances simulated by the OCO “full-physics” radiative transfer

scheme, taken from Bösch, et al .(2010). Second, instead

of assuming only a single valid retrieval per crossing of each

model grid box (which takes ∼33 s for our 2◦×5◦ boxes), we

collapse the information content of all valid retrievals across

each grid box crossing into an equivalent multi-sounding

measurement uncertainty, which is then used in the assimila-

tion. Valid XCO2
retrievals are only attempted for cloud-free

conditions in which the aerosol OD is less than 0.30, in or-

der to reduce associated radiative transfer modeling errors.

We compute the number of valid retrievals for each grid box

crossing based on the probability that such cloud-free and

low-aerosol conditions exist for each retrieval; these prob-

abilities are computed using climatological statistics from

MODIS data. We attempt to account for along-track correla-

tions in the XCO2
measurements when specifying the equiva-

lent measurement uncertainty for each model grid box cross-

ing. Finally, we examine more types of systematic errors than
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Fig. 1. (a) An example of the field-of-view (FOV) ground tracks for OCO for 21 March: 100 min of measurements for nadir pointing mode

(asterisks) and glint (circles). Black lines connect nadir and glint FOVs at same time. The maximum SZA is taken as 85◦/80◦ for nadir/glint.

Green asterisks indicate positions where nadir SZA≥85◦ and glint SZA≤80◦. (b) One-, (c) four-, and (d) seven-day coverage for nadir (red)

and glint (blue) beginning 21 March.

these previous studies: measurement biases due to aerosols,

transport errors, and errors caused by “mistuning” the inver-

sion (i.e., assuming incorrect a priori flux and measurement

error statistics). Feng et al. (2009) used the Bösch et al.,

OCO retrieval errors in an OCO OSSE study similar to this

one, but with an ensemble Kalman filter approach. Cheval-

lier et al. (2009) have recently performed a similar OSSE to

evaluate the flux constraint provided by GOSAT, using vari-

able measurement uncertainties appropriate for that satellite.

2 Method

2.1 OCO orbit and resolution choices

The OCO satellite measures XCO2
, the column-averaged dry

air fraction of CO2, in the near-infrared (reflected solar)

band with sensitivity down to the surface, but with a vertical

weighting that varies with surface type, aerosol amount, and

solar zenith angle (SZA) as described in Bösch et al. It sam-

ples eight fields of view (FOV), each with an area ≤2.8 km2,

every 333 milliseconds across an FOV ground track up to

10 km wide (Crisp et al., 2004), of which only four are down-

linked. It is in a sun-synchronous orbit taking a single sun-lit

pass of data per day every 24.7◦ in longitude; we asume a

13:18 local ascending node time here. Examples of the sun-

lit portion of the OCO FOV ground track are given in Fig. 1.

The OCO ground track repeats precisely after 16 days, a

fact that is useful for calibrating the measurements at fixed

ground sites. However, as shown in Fig. 1, the ground tracks

also achieve a somewhat uniform spatial coverage of ∼3.5◦

in longitude after only 7 days: we use this 7-day period as

the discretization step for our solved-for fluxes, since it gives

good coverage over our transport model grid boxes, 5◦ wide

in longitude. The latitudinal resolution of the model is cho-

sen at 2◦ to match that of our meteorological products to give

maximum resolution in the predominantly north/south (N/S)

direction of the OCO ground tracks. Because the OCO data,

sampled only once per day locally, provide little information

on the diurnal cycle of XCO2
, some assumption for the diur-

nal cycle of the surface CO2 fluxes must also be made (see

Sect. 2.4 below); this then allows multi-day flux blocks to be

estimated in a reasonable way from the data.

2.2 Transport model

An off-line atmospheric transport model (“PCTM”: see

Kawa et al., 2004) is used to relate surface CO2 fluxes to

CO2 concentrations. It is driven by pre-calculated meteo-

rological fields (horizontal winds, surface pressure, vertical

diffusion coefficient, and cloud-convective mass flux) from

the GEOS4-DAS reanalysis (Bloom et al., 2005) for the

year 1987, interpolated from the resolution normally input

to PCTM (2.0◦ × 2.5◦ in lat/lon; 55 vertical layers) to the

resolution of the model version used here (2◦ × 5◦ lat/lon;

25 vertical layers). The model uses a vertically-Lagrangian

finite volume advection scheme (Lin, 2004) and has simple

linear schemes for both dry and convective vertical mixing.

The modeled 3-D concentration fields are sampled in as

similar a manner to the true OCO XCO2
measurements as

the transport model permits: vertically, using the averaging

kernels computed by Bösch et al., as a function of surface

type, SZA, aerosol OD, and nadir or glint viewing mode;

horizontally, at the transport model’s 2◦ ×5◦ resolution; and

temporally, at the model’s integration time step (1 h).

www.atmos-chem-phys.net/10/4145/2010/ Atmos. Chem. Phys., 10, 4145–4165, 2010
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The adjoint of the transport model is needed in the assim-

ilation scheme to move model-data misfit information back-

wards in time to compute the cost function gradient. The ad-

joint of the forward model has been computed in an efficient

manner by running a linear version of the forward advection

scheme backwards, and by computing the exact adjoint of

the vertical mixing schemes’ column mixing matrices. The

adjoint is accurate to within ∼0.05% across a two-week run

(as computed using the definition of the adjoint, i.e., compar-

ing (M(x))T M(x) to xT MT (M(x)), for point perturbations

in the initial concentration field x, where M represents the

forward transport operator and MT the adjoint). As shown

in Baker et al. (2006b), this adjoint allows the true fluxes to

be recovered to within 0.2% after 60 iterations in a perfect-

model simulation with no measurement errors added.

2.3 Data assimilation scheme

We solve for weekly surface CO2 fluxes at 2◦ ×5◦ in lat/lon,

using simulated XCO2
measurements across a data span

of 1 year. Both the number of fluxes to be solved for

(90×72×52=∼35 000) and the number of data values used

(365×1500=∼50 000) are at least an order of magnitude

larger than that used in typical past time-dependent CO2 in-

versions of in situ data (e.g., Rödenbeck et al., 2003; Peylin

et al., 2005b; Patra et al., 2005; Baker et al., 2006a; Rayner

et al., 2008). Most of these previous inversions used the

“Bayesian synthesis method”, a batch least squares technique

in which transport basis functions were constructed in sepa-

rate model runs, either one for each solved-for flux or (back-

wards in time using the adjoint) one for each measurement, to

fill a Jacobian matrix relating fluxes to concentrations. The

resulting system of linear equations was solved directly to

give both the optimal estimate and the accompanying covari-

ance matrix describing the estimation errors. For problems

of the size addressed here, this sort of direct (non-iterative)

method is not computationally feasible and a more efficient

approach is needed.

We have chosen to use a variational data assimilation ap-

proach to overcome these hurdles. It is similar to the “4-

D Var” methods used in numerical weather prediction, ex-

cept that instead of optimizing an initial condition (the at-

mospheric state) at the start of a relatively short assimilation

window, we optimize time-varying boundary values (surface

CO2 fluxes) over a longer span. Baker et al. (2006b) out-

line the mathematical details and give some test results using

simulated data. Rödenbeck (2005) has used a similar ap-

proach to estimate daily CO2 fluxes from 20+ years of in situ

CO2 measurements, and Meirink et al. (2008) have recently

used this method to estimate surface CH4 fluxes on a fine grid

from SCIAMACHY data. Rayner et al. (2005) have used a

variational approach for solving directly for parameters in

land biosphere carbon models, bypassing the surface fluxes.

Over the past several years, a new class of ensemble filtering

methods have also been applied to the tracer transport prob-

lem (Peters et al., 2005; Zupanski et al., 2007; Feng et al.,

2009). Both the ensemble and variational methods achieve

their computational savings in a similar fashion: by solving

for only an approximate, low-rank version of the full a poste-

riori covariance matrix. The ensemble filters have the advan-

tage of not requiring an adjoint and are easier to implement,

but they also introduce approximations that may degrade the

estimate. We have chosen to go with the proven computa-

tional savings of the variational methods for this study.

The variational method works in an iterative fashion, run-

ning an estimate of the surface fluxes forward in time through

the transport model to derive modeled measurements, com-

paring these to the true measurements, and running these

measurement residuals (weighted using assumed measure-

ment error statistics) backwards in time through the adjoint

of the transport model to obtain flux corrections, then repeat-

ing. The flux inversion is posed mathematically as a mini-

mization problem, with the adjoint run providing the gradient

to the measurement portion of the cost function. We use the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve

it.

2.4 Simulation approach

The assimilation seeks to drive an initial (a priori) guess of

the fluxes towards the real-world (“true”) fluxes, using the

measurements. In our simulations here, we generate mea-

surements with different error sources added on that attempt

to describe the real errors OCO will encounter when it actu-

ally flies, then process the measurements with the assimila-

tion method in the same way that we would do with the real

data. Since we know the fluxes used in generating the data,

we can compare the estimated fluxes to these “true” values to

get actual estimation errors. If only random estimation errors

are added to the data (see Experiments 1 and 2, Sect. 2.6), the

statistics of these estimation errors should be consistent with

what would be given by the full-rank covariance matrix, if

one were computed. To approximate the uncertainties that

would be given by the covariance matrix, we accumulate our

random estimation error statistics over seasons (13 weekly

flux values) and over a full year (52 values).

Our simulation approach has the added benefit of allow-

ing us to quantify the impact of systematic errors, such as

measurement biases or errors in the transport model, with

the same statistics as for the random error experiments. In

the first case, the biases are added when simulating the true

measurements; in the second case, different winds and verti-

cal mixing parameters are used in the optimization than are

used to generate the truth.

For our true fluxes, we use monthly land biospheric fluxes

from the LPJ model (Sitch et al., 2003) and monthly ocean

fluxes from a biospheric run of the NCAR ocean model

(Doney et al., 2006; Najjar et al., 2007); both are interpo-

lated to daily values. For our a priori fluxes, we use similar

fluxes from the CASA land biosphere model (Randerson et

Atmos. Chem. Phys., 10, 4145–4165, 2010 www.atmos-chem-phys.net/10/4145/2010/
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Fig. 2. January (left) and July (right) mean values for (a) the “true” surface CO2 fluxes (LPJ land + NCAR ocean); (b) the a priori CO2

fluxes (CASA land + Takahashi ocean); (c) the prior-truth flux difference; and (d) |prior-truth|. The values in (d) are used in the assumed a

priori flux error covariance matrix for all experiments except Experiment 3, the mistuning experiment, which used the values in (e). All in

[10−8 kg CO2 m−2 s−1].
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al., 1997) and the Takahashi et al. (1999) ocean CO2 flux

product. Figure 2a–c gives snapshots of both sets of fluxes

for January and July, as well as their difference. While both

sets of fluxes show similar features (e.g., the seasonal cycle

of net photosynthesis minus respiration in both the northern

and tropical land vegetation, uptake of CO2 by the extra-

tropical oceans versus outgassing by the tropical oceans),

their timing and spatial details vary enough that the prior-

truth difference (Fig. 2c) is often as large as the fluxes from

either model: there is much room for improvement, even if

the models appear to be doing a fair job, superficially.

The prior-truth flux differences (Fig. 2c) show systematic

spatial and temporal correlations. The spatial correlations are

often at fine scales, many times associated with deserts and

mountain ranges: thin lines of ± values running parallel to

the Canadian Rockies, for example. Because of the physical

basis of these differences, we have some hope that the dif-

ferences between our two sets of models will bear some re-

semblance to the difference between any one model and the

real-world fluxes. The Bayesian prior in our cost function

performs the useful function of damping out spurious noise

in the estimate due to noise in the measurements (or, more

accurately, in the model-measurement mismatches). How-

ever, inaccuracies in our knowledge of the a priori flux er-

ror covariance, Po, including both correlations and the over-

all magnitude of the variances, will degrade the final assim-

ilated estimate. We use a diagonal Po with variances set

equal to the square of the actual weekly prior-truth flux dif-

ference (Fig. 2d) in most of our assimilation experiments (see

Sect. 2.6), but also use an less precise estimate (Fig. 2e, based

on the magnitude and variability of the prior fluxes) in a sen-

sitivity experiment to examine the impact of realistic errors

in the assumed Po. It is possible that we could have con-

structed a Po with off-diagonal elements (correlations) that

would better represent our prior-truth flux difference; since

this would presumably lead to better-converged results, we

should obtain conservative results using our diagonal Po.

We have not included fossil fuel fluxes in these simula-

tions: errors in our best estimate of the fossil fuel source are

thought to be small at our 2◦×5◦ resolution. The net flux un-

certainties we obtain over land should thus be thought of as

applying to the sum of the fossil and land biospheric fluxes.

Similarly, the diurnal cycle of flux is not modeled here, since

the OCO data, taken at a single local time per day, cannot

resolve it. Insofar as the OCO data are biased with respect

to daily mean XCO2
, the resulting CO2 flux estimates will be

biased as well; this error term is not quantified here.

2.5 XCO2
measurement errors and averaging kernels

The assimilation requires a statistical description of the er-

rors in individual XCO2
measurement retrievals, as well as

knowledge of the averaging kernel (AK— how strongly each

vertical layer contributes to the column average). Bösch et

al. have obtained new estimates of both quantities as a func-

tion of surface type, SZA, aerosol OD, and pointing mode

(nadir vs. glint) (Fig. 3). They used a detailed radiative trans-

fer scheme to simulate the radiances seen in the measured

OCO spectral bands, then fed these through the OCO “full-

physics” XCO2
retrieval scheme, testing sensitivities to var-

ious error sources. We use these error and AK estimates,

along with surface FOV locations and SZAs taken from an

accurate OCO orbit generator for both nadir and glint point-

ing modes, to calculate realistic values single-sounding XCO2

retrieval errors and AKs around the orbit.

There are potentially hundreds of separate measurements

(with FOV areas ≤2.8 km2) along the FOV ground track

swath for any single crossing of our 2◦×5◦ atmospheric

model grid boxes. Since these measurements are taken over

an often heterogeneous surface with different reflective prop-

erties and CO2 emissions, with varying cloud and aerosol

amounts interfering with the retrieval, the measurement er-

rors along the swath could be quite variable. When averaged

across the grid box, the uncorrelated portion of these errors

could be expected to cancel out significantly. We make an

attempt here to estimate what portion of this error cancels

out and what does not, to quantify the effective measure-

ment error of all the valid retrievals inside each model grid

box. In computing this effective error, we consider the prob-

ability of obtaining cloud-free retrievals with aerosol ODs

lower than a 0.30 cutoff, and we model correlations along

the orbit as a function of SZA. The along-orbit computation

of the AKs and single- and multi-sounding retrieval uncer-

tainties are done first at a 1◦ ×1◦ resolution, then translated

to the 2◦ ×5◦ model grid box resolution used in the assim-

ilation based on the time spent in each 1◦ × 1◦ area inside

the 2◦ × 5◦ box. We show annual mean plots here for the

uncertainties and quantities used to compute them, but they

vary monthly in the simulations (see the Supplementary Ma-

terial for seasonal plots; http://www.atmos-chem-phys.net/

10/4145/2010/acp-10-4145-2010-supplement.pdf).

2.5.1 Single-sounding XCO2
errors and supporting

fields

The calculation of the SZA and the FOV location on the sur-

face, required for the XCO2
error and AK calculations, both

depend on an accurate orbit propagation. For nadir mode,

the FOV is located at the sub-satellite point. For glint mode,

the surface normal at the glint spot is computed by itera-

tion until the surface normal is the same angle from the sun

and the satellite position vectors, in the plane they define.

In both pointing modes, the surface normal is computed as-

suming the Earth is an oblate spheroid. The orbit is taken as

sun synchronous, with a 13:18 local time of ascending node,

a=7083.45 km, e=0.0012, i=98.2◦. The anomaly is chosen

arbitrarily to have the spacecraft crossing north across the

equator at 00:00:00 on 1 January.

Figure 4a gives the distribution of the five surface types

used to calculate the XCO2
errors and AKs: ocean/water,

Atmos. Chem. Phys., 10, 4145–4165, 2010 www.atmos-chem-phys.net/10/4145/2010/
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Fig. 3. A summary of (a) the single-sounding OCO XCO2
uncertainties [ppm] and (b) and (c) normalized averaging kernels (AKs) for

nadir (top) and glint (bottom), from Bösch et al., for five surface types (conifer, green; desert, red; sparse vegetation, magenta; snow, cyan;

and ocean, blue) and for four 760 nm aerosol ODs (0.00, dotted; 0.10, dot-dash; 0.20, solid; and 0.30, dashed). The AKs in (b) have been

averaged over SZAs of 20◦ −50◦; those in (c) over 60◦ −75◦ for glint and 60◦ −80◦ for nadir.

snow/ice, desert, conifer (representing all types of dense veg-

etation), and sparse vegetation/exposed soil. Figure 4b gives

median total aerosol ODs derived from Aqua/MODIS data.

The aerosol OD histograms used to compute these medians

are described in more detail in Bösch et al. Computed solar

zenith angles as a function of latitude for four seasons are

given in Fig. 5a. Finally, the OCO single-sounding XCO2
re-

trieval uncertainties calculated from these fields are given in

Fig. 6a for both nadir and glint pointing modes. The most no-

ticeable feature of Fig. 6a is how much lower the uncertain-

ties are over the oceans in glint mode as compared to nadir

mode. Note also, however, that they are somewhat lower over

the land in nadir mode compared to glint.

2.5.2 Computing effective multi-sounding XCO2
errors

Our ability to represent the OCO XCO2 retrievals is lim-

ited by the fairly coarse spatial resolution of our transport

model: our ∼220 km wide grid boxes cannot represent the

XCO2
variability occurring in the real world at shorter spatial

scales. However, for the purposes of estimating CO2 concen-

trations and fluxes at scales of 100s to 1000s of km, there is

no need to model every ∼2 km2 XCO2
retrieval correctly. The

real question is: how close does the average of all the XCO2

measurements taken inside a model-scale grid box come to

the average of all true XCO2
values across the full area of that

grid box (not just inside the ∼10 km-wide OCO FOV track)?

We model the latter quantity.

The first point to note is that even if the XCO2
measure-

ments are perfect and complete (no data gaps due to clouds

or aerosols) across the full length of the 10 km-wide FOV

ground track, there will still be a difference between this per-

fect ground track average and the average XCO2
across the

full grid box. Second, the perfect XCO2
measurements may

not even get the ground track average correct, because of

non-uniform coverage (data gaps) due to clouds and aerosols.

And, third, the XCO2
measurements are obviously not per-

fect, but are subject to the measurement errors discussed

above. When all the XCO2
measurements inside a grid box

are averaged together, their errors may cancel out to some

extent in the average, but there will still be a remaining error

between the average measurement and the true XCO2
value

for the measured portion of the ground track. All three of

these errors – track-to-box representation error, along-track

representation error, and average effective measurement er-

ror – must be combined to get the model-measurement mis-

match error that should be fed into the flux error simulations.

The first two of these error sources have been examined by

Corbin et al. (2008). They did detailed simulations of XCO2

variability inside domains of 1◦ × 1◦ and 4◦ × 4◦ using a

mesoscale atmospheric transport model, comparing the XCO2

averages along an OCO-like FOV ground track to the aver-

age values across the full domain to obtain estimates of the

track-to-box representation errors. They also simulated the

effect of clouds on the availability of OCO retrievals, coming

up with realistic estimates of the along-track representation

errors. For the two sites they examined, they concluded that

the along-track representation error was small compared to

the track-to-box representation error. They also concluded
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Fig. 4. (a) The five surface cover types assumed: desert (red),

conifer (white), ocean/water (yellow), snow (blue), and soil/sparse

vegetation (black). (b) The median aerosol OD at 760 nm com-

puted from Aqua/MODIS data according to the procedure outlined

in Bösch et al. (annual mean of four seasonal medians).

that the track-to-box error was, in turn, largely random and

relatively small compared to the measurement errors. In our

study here, we neglect the along-track errors, and extrapo-

late the Corbin et al., track-to-box representation errors from

their two sites to the full globe using a fit proportional to

the absolute value of the net ocean or land biosphere flux

from our monthly-varying a priori flux model inside each

1◦ × 1◦ grid box (Fig. 6c, with a proportionality factor of

2.5·106 ppm/(kg CO2 m−2s−1)). These track-to-box repre-

sentation errors are taken to be unbiased and gaussian, and

are added in all the simulation cases presented here.

The third error source, the effective joint error of all the in-

dividual XCO2
measurements inside a grid box, is the largest

over almost all of the globe at all times of the year. To com-

pute it, one must factor in data gaps due to cloud coverage

or aerosol ODs greater than 0.30 (the level beyond which

the OCO retrievals will not be routinely performed). Fur-

thermore, one must estimate the error correlation along the

ground track of near-by measurements. Here we assume that

errors from aerosols and clouds will dominate the correlated

errors (both directly by causing single-sounding retrieval bi-

ases that are correlated along-track, and indirectly by intro-

ducing data gaps of finite extent that cause representation er-

Fig. 5. (a) The solar zenith angles (SZA) encountered in nadir (red)

and glint (blue) pointing modes for four times of the year, plot-

ted against FOV latitude. (The 1 October–12 March difference re-

flects the east/west shift in the Sun’s position in the analemma). (b)

The correlation length L beyond which measurement errors are as-

sumed to be independent, for nadir (red) and glint (blue), as given

by Eq. (1).

rors) and that their correlation lengths increase with SZA and

path in atmosphere. We represent this with a simple ad hoc

correlation length L (Fig. 5b):

L2 = (c2
w +(chP tan(SZA))2) (1)

where cw is a fine-scale cloud width (taken here as 4 km), ch

is a typical average cloud height (taken here as 7 km), and

P is a path-length factor (taken as 1 for nadir pointing mode

and 2 for glint). The maximum number of possible indepen-

dent measurements inside a 1◦ × 1◦ grid box is then taken

to be Nmax = l1×1/L, where l1×1 is the OCO FOV ground

track path length inside the box. This maximum value is re-

duced by the availability of data due to clouds and aerosols,

giving Neff, the effective number of independent XCO2
mea-

surements inside the 1◦ ×1◦ grid box, as

Neff = Pcloud−free(1−PHiAeroOD)l1×1/L (2)

where PHiAeroOD is the probability of aerosol ODs exceeding

the 0.30 value beyond which OCO XCO2
retrievals are not

attempted, and Pcloud−free is the probability of finding at least

one cloud-free scene in a swath of OCO FOV ground track

of length L. PHiAeroOD is computed from the same aerosol

OD histograms as the median aerosol ODs, from Bösch et al.

Pcloud−free is computed from climatologies of Aqua/MODIS

and Terra/MODIS data, sampled in 10 km-wide swaths, as

detailed in the Appendix.

Both aerosol and cloud coverage are calculated using data

from the MODIS instrument aboard NASA’s Aqua satellite,
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Fig. 6. (a) The single-sounding OCO XCO2
retrieval uncertainties σ1shot computed in Bösch et al., for both nadir (left) and glint (right)

viewing modes. (b) The effective multi-sounding OCO XCO2
measurement uncertainty σeff, computed as σeff = σ1shot/

√
Neff. using Neff

from Fig. 7a, (c) The assumed spatial representation error, extrapolated from Corbin et al. (2008). (d) The random measurement error added

to the data (in place of σeff in Fig. 6b) in Experiment 3, the mistuning experiment. The extra measurement uncertainty assumed to account

for the impact of (e) aerosol biases and (f) transport errors.

which flies in the same “A-train” orbit as OCO will. MODIS

has a 1×1 km FOV that, being close to the ∼2 km2 OCO

FOV area, should give realistic idea of cloud free areas and

aerosol amounts over most areas. Since the MODIS instru-

ment scans up to 45◦ off-nadir, the sensed radiation actu-

ally passes though a slightly longer path than that for OCO

in nadir mode, encountering if anything more clouds and

aerosols. For OCO in glint mode, however, the path length of

the radiation in the atmosphere can be quite a bit longer than

that sensed by MODIS. To account for the increased prob-

ability of encountering clouds and aerosols at SZAs greater

than 20◦ in glint mode, we use:

Pcloud−free = P
(2/(1+cos(SZA)/cos(20◦)))
cloud−free MODIS (3)

whilePHiAeroOD is recomputed by shifting the 0.30 OD cut-

off to a lower value of 0.30·(2/(1+cos(SZA)/cos(20◦))) and

summing aerosol OD histogram to the right of this new value.

Once Neff is calculated, the effective measurement error ac-

counting for all XCO2
measurements inside each 1◦ × 1◦

grid box, is given as: σeff,1×1 = σ1shot/
√

Neff. The effective
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Fig. 7. (a) The effective number of independent XCO2
measurements Neff in each 1◦ latitude band for a single sun-lit pass of the OCO

orbit for both nadir (left) and glint (right), computed with Eq. (2). (b) The probability Pcloud−free of finding at least one cloud-free XCO2

measurement across an OCO FOV ground track of length L (Fig. 5b), calculated from MODIS data according to the procedure outlined in

the Appendix. (c) The probability PHiAeroOD of encountering 760 nm aerosol ODs greater than 0.30, from Aqua/MODIS data.

measurement uncertainties at 2◦ ×5◦ resolution used in the

assimilation are then computed from these 1◦ × 1◦ values,

based on the distance l1×1 and l2×5 inside each 1◦ ×1◦ and

2◦ ×5◦ box, as:

l2×5/σ
2
eff,2×5 =

∑

i

l1×1,i/σ
2
eff,1×1,i.

Figure 6b gives the distribution of σeff,1×1 and Fig. 7, Neff,

along with the Pcloud−free and PHiAeroOD values used to com-

pute them. Figure 7b, c shows that both persistent cloudiness

and areas of high aerosol contamination significantly reduce

the availability of OCO measurements in this approach. The

σeff,1×1 values in Fig. 6b are substantially higher than the

track-to-box representation errors given in Fig. 6c, by gen-

erally more than a factor of 5. The areas of low error in

Fig. 6b, c show where the measurements with the greatest

information content will occur; the assimilation convolutes

these with transport to determine where the flux constraints

will be the strongest.

2.6 Flux estimation simulations

The main objective of our study is to perform a series of

OSSEs meant to represent how well our data assimilation

system will estimate surface CO2 fluxes, given the presence

of various error sources. We somewhat arbitrarily divide

these errors into purely random ones (modeled as unbiased,

gaussian noise) and biases constant in space and time. In

reality, of course, there is a spectrum of errors that are corre-

lated in both space and time that fall between these extremes,

due to correlations in such error-causing factors as scattering

due to aerosols and undetected clouds, spectral effects, and

surface reflectance properties. We have attempted to account

for some of these terms above by transforming the correlated

errors into the corresponding purely random problem using

the idea of “effective independent measurements”. Since the

finest-resolution unit that the atmospheric transport model,

and thus the atmospheric flux assimilation, can deal with is

the transport model grid box at the model time step, both ran-

dom and systematic errors are quantified at that scale: what
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is the net bias or random error between the weighted average

of all measurements in a grid box (from a single crossing)

and the true concentration in that box?

Table 1 outlines a series of assimilation experiments we

perform, with the error sources that have been added in each

case. Two of the sources of error described above – the

“track-to-box” representation errors and the random mea-

surement errors – have been added in all the experiments

as gaussian noise. Biases due the representation errors were

found to be small in Corbin et al. (2008) and are not added

here at all. Systematic errors in the measurements have been

added onto true measurements in Experiments 4–6 (Table 1)

as described below. Whenever these systematic errors are

added, we increase the uncertainties assumed in the mea-

surement error covariance matrix, R, in an attempt to ac-

count for them. Although it is not formally valid, statis-

tically, to represent systematic errors with random ones, it

is often done and is certainly better than not attempting to

account for the biases, since in that case the measurements

would be given too much weight vis-a-vis the prior and the

impact of the biases would be greater than if the measure-

ments had been de-weighted (Chevallier, 2007c). In all ex-

periments, both the measurement error and a priori flux er-

ror covariance matrices, R and Po, are diagonal: we account

for measurement correlations inside a grid box by comput-

ing the effective number of independent measurements and

adjusting the multi-sounding measurement uncertainties ac-

cordingly; measurement correlations between grid boxes are

neglected; both time and space correlations between the esti-

mated weekly fluxes are neglected, since using a 2◦×5◦ grid

box already effectively imposes a fairly coarse correlation

length.

Our control experiments (1 and 2) examine the impact

of only random measurement errors in the nadir and glint

mode data. There is no transport error: the same model that

was used to generate the true data is used in the assimila-

tion. There are no measurement biases added, only random

measurement errors. And the assimilation is well “tuned”:

both the assumed measurement error covariance matrix and

the assumed a priori flux estimation error covariance matrix

are chosen to be consistent with the statistics of the added

measurement errors and of the prior-truth flux errors, respec-

tively. With these assumptions, the flux errors that result

from the assimilation should agree with the error statistics

that would be given by the a posteriori flux covariance ma-

trix of inverse methods that produce one (our assimilation

here does not produce a full rank covariance matrix, only

a low-rank approximation not useful for quantitative error

analyses at the fine scales examined here). Such a poste-

riori covariance matrices are often the end product of error

analyses and are useful for quantifying the precision of the

assimilation (the standard deviation of errors about the mean

estimate), though not the accuracy (the standard deviation of

errors about the truth) since they do not quantify the impact

of systematic errors. The variances in the a priori flux error

covariance matrix were taken to be the square of the actual

prior-truth flux difference given in Fig. 2c.

The remainder of the tests were done only for glint view-

ing mode; Experiments 3–5 differ from Experiment 2 in that

a different source of systematic error was added in each case.

In Experiment 3, we add more realism by “mistuning” the

assimilation, adding realistic errors to both the assumed a

priori flux error and measurement error covariance matrices.

Instead of making the a priori flux uncertainties proportional

to the actual prior-truth flux difference (Fig. 2d), we use un-

certainties based only on our a priori flux patterns (Fig. 2e)

since, in real world simulations, we have no knowledge of

the true fluxes. To mistune the assumed measurement er-

ror covariance matrix, R, we actually change the added mea-

surement uncertainties from the glint mode values in Fig. 6b

to those shown in Fig. 6d; we keep the assumed values the

same as in the other experiments to allow the cost function

values to be compared with the other experiments more read-

ily. To obtain the values in Fig. 6d, we simplified the SZA-

dependent glint mode XCO2
retrieval errors (Fig. 3a) as fol-

lows: for the conifer and sparse vegetation surface types, the

measurement errors were taken to be 0.60 and 0.50 ppm, re-

spectively, for SZAs under 55◦, and 0.70 and 0.90 ppm over

55◦; over deserts and snow, 0.40 and 1.10 ppm under 45◦,

and 0.75 and 3.00 ppm over 45◦; and over water, 0.40 ppm

for all SZAs.

Biases due to aerosols are expected to cause the main sys-

tematic errors in the OCO XCO2
retrievals (Connor et al.,

2008). In Experiment 4, we add a bias of +α·aero OD

to all measurements over land and ice-covered areas, and a

bias of −α·aero OD over the ocean, where aero OD is the

seasonally-varying median aerosol OD (Fig. 4b) and α =
2 ppm/OD; the maximum bias is ±0.6 ppm, since no XCO2

retrievals are attempted for aerosol ODs greater than 0.3. The

magnitude of these assumed aerosol biases is generally larger

than the (1σ) multi-sounding random measurement uncer-

tainties over land, especially over Africa and central/southern

Asia. To account for this extra error in the assimilation,

we add the aerosol bias uncertainties given in Fig. 6e to the

assumed multi-sounding random measurement uncertainties

(Fig. 6b and c) in quadrature. (The values added to the as-

sumed errors (Fig. 6e) are actually twice as high as the added

biases to account for two effects: a) the assumed errors at

1◦ ×1◦ in Fig. 6e will drop by a factor of
√

2 when averaged

across the 2◦-wide grid boxes on which scale the biases are

added, and (b) 50% of the area under a gaussian curve falls

withing ±0.676σ , requiring a larger 1σ value when attempt-

ing to represent a bias;
√

2/0.676 = 2.09 ≈ 2.)

Atmospheric transport models have a variety of inaccura-

cies, not only in their representation of the broad-scale gen-

eral circulation, but also in their smaller-scale mixing pro-

cesses (especially between the planetary boundary layer and

the free atmosphere) and in their ability to represent fine scale

in situ or satellite data, that impact the inverted flux esti-

mates. In Experiment 5 we add a simple approximation of
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Table 1. The errors added to the true measurements and the random error sources assumed in the assimilation for the various OSSEs. Figure

numbers are given for annual summary plots of the various added or assumed errors (e.g., “6b”). N=nadir, G=glint.

Experiment # Nadir/Glint Measurement Prior Flux Aerosol/Transport Extra Aerosol/

Noise Added Uncert. Assumed Biases Added? Transport Noise

and Assumed Assumed

Control, Nadir 1 N 6b, 6b 2d

Control, Glint 2 G 6b, 6b 2d

Mistuned 3 G 6d, 6b 2e

Aerosol bias 4 G 6b, 6b 2d ✓ /✗ 6e/–

Transport error 5 G 6b, 6b 2d ✗ /✓ –/6f

Mistuned+aerosols+transport 6 G 6d, 6b 2e ✓ /✓ 6e/6f

Fig. 8. Fractional error reductions in 7-day CO2 fluxes, using full-year RMS errors, after 50 iterations of the optimization method, for

experiments: (a) #1, control case (random measurement errors and spatial representation errors only) using nadir data; (c) #2, control case

using glint data, (b) #3, mistuned case, glint, (d) #4, random errors + aerosol biases, glint, (e) #5, random + transport errors, glint, and (f) #6,

random errors + aerosol biases + transport errors + mistuning effects, glint.

these errors by shifting the meteorology products driving the

transport model forward by 18 h when generating the truth

as compared to those used in the assimilation. This cap-

tures errors in both the synoptic meteorology as well as in

the timing of the diurnal cycle of mixing. At the same time,

we add the transport uncertainties in Fig. 6f to the assumed

measurement uncertainties to account for the transport er-

rors; these are taken as the mean of the absolute values of

the true and prior fluxes (Fig. 2a, b), divided by a factor of

10−7 kg CO2 m−2 s−1 ppm−1. This ad hoc estimate is based
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on the idea that the largest transport errors occur where the

surface flux variability is the greatest, and that this occurs

where the fluxes themselves are the greatest.

Finally, Experiment 6 examines the combined effect of all

three systematic error sources: the mistuning effects, aerosol

biases, and transport errors of Experiments 3, 4, and 5, re-

spectively.

3 Results

We use the root mean square (RMS) difference, RMSpost, be-

tween the estimated and true fluxes to assess the assimilation

results. This is presented here in terms of the fractional error

reduction statistic, given by (RMSprior−RMSpost)/RMSprior,

which puts areas of large and small flux variability on more

equal footing (the RMS values themselves are given in

the Supplemental Material http://www.atmos-chem-phys.

net/10/4145/2010/acp-10-4145-2010-supplement.pdf).

RMSprior quantifies the initial difference between the

prior and true flux models; no attempt to incorporate

the information provided by the current in situ measure-

ment network into RMSprior has been made, since Baker

et al. (2006b) suggest that its constraint is weak at the

2◦×5◦ resolution examined here. The RMS values for

the estimated 7-day fluxes given here are computed across

the full year (see Supplemental Material for a seasonal

breakdown http://www.atmos-chem-phys.net/10/4145/2010/

acp-10-4145-2010-supplement.pdf); RMS statistics for

seasonal means computed from the 7-day fluxes are also

given.

3.1 Control experiments

A posteriori RMS 7-day flux error reductions obtained using

data from nadir- and glint-mode OCO observations (Experi-

ments 1 and 2) after 50 descent iterations of the assimilation

algorithm are presented in Fig. 8a, c. The nadir observa-

tions provide little improvement over the oceans (in agree-

ment with the very high measurement errors there) but im-

pressive improvements over the land – 45% or more in most

areas, especially where the initial flux errors (Fig. 2d) are

largest. The glint mode improvement over land is nearly as

good as that of nadir mode – surprisingly, given that the ef-

fective glint mode measurement uncertainties are larger over

land than the nadir ones (Fig. 6b). Apparently, enough land

flux information blows out over the ocean for the more pre-

cise glint mode measurements there to compensate for the

less precise and/or less available glint mode measurements

over the adjacent land regions. As might be expected, the

ocean flux improvement in glint mode is much better than

in nadir; in fractional terms, it is as large as the improve-

ment over the land, over 45%, in the areas where the initial

errors are the largest. Since glint mode measurements give

lower flux errors over a broader area than nadir mode (i.e,

over both land and ocean), we focus on glint mode in the

remaining experiments.

Improvements are less impressive in the areas with low

initial flux errors – the background flux estimation error

due to the measurement noise masks improvements there.

The assimilation corrects the largest flux errors during initial

descent steps of the optimization, moving to progressively

finer-scale corrections later. While lack of improvement in

the low-flux areas could thus also be due to not running out

the optimization method for enough iterations, we have been

careful to converge adequately and feel that this is not the

case here.

In Fig. 9, we plot the seasonal flux error reductions (com-

puted from the RMS of four 13-week values) corresponding

to the 7-day flux error reductions given in Fig. 8. For the con-

trol experiments (Fig. 9a and c), the initial errors are reduced

by over 65% almost everywhere over land, as compared to

only over 45% for the 7-day fluxes for similar areas. In glint

mode, the ocean improvements are also greater.

The a posteriori error statistics given by these control ex-

periments correspond to those from a single draw from the a

posteriori estimation error covariance matrix, if our method

were to compute one. While they do not include system-

atic errors, they provide a useful “best case” error estimate –

if the measurements are not precise enough to provide useful

information in this view, they will never be when all the other

systematic error sources are added in. We address these other

errors next.

3.2 Estimation errors with a “mistuned” assimilation

When the measurement noise and a priori flux error covari-

ance matrices assumed in the assimilation (Ra and Po,a) are

not equal to those corresponding to the true measurement

noise added (Rt ) and the true statistics of the prior-truth flux

fields (Po,t ), then we call the assimilation “mistuned”. For a

basic Bayesian cost function J = (Hx −z)T R−1
a (Hx −z)+

(x −xo)
T P−1

o,a(x −xo), where x and xo represent the esti-

mated and a priori state vector, z the measurements, and H

the linearized measurement matrix, the true a posteriori co-

variance matrix in that case is given by

Px = [HT R−1
a H+P−1

o,a]
−1

[

HT R−1
a RtR

−1
a H+P−1

o,aPo,tP
−1
o,a

]

[HT R−1
a H+P−1

o,a]
−1 (4)

and no longer reduces to the simplified form Px =
[HT R−1

a H + P−1
o,a]−1 = Px,a . To produce a posteriori error

statistics corresponding to what would be given by a full-rank

covariance matrix with our simulation setup (in the control

experiments, 1 and 2), we had to set Rt = Ra by adding mea-

surement noise to the data using the statistics from Ra , and

we chose Po,a to agree with the actual (known) prior-truth

flux difference. However, in a real-world assimilation, one

has only an imprecise idea of what Rt and Po,t should be, so
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Fig. 9. Fractional error reductions in seasonal CO2 fluxes, computed from the RMS of the four seasonal values (JFM, AMJ, JAS, OND) for

experiments: (a) #1, (b) #3, (c) #2, (d) #4, (e) #5, and (f) #6, as in Fig. 8.

Ra 6= Rt and Po.a 6= Po,t and the covariance from Eq. (4) ap-

plies; this is captured in our error statistics when we mistune

Po,a and Ra .

Mistuning both Po,a and Ra (Experiment 3) degrades the

flux estimate over most of the globe (compare Fig. 8b to c),

especially in areas with lower initial flux differences. Areas

in the center of broad regions of initially-large flux errors are

affected the least by the mistuning. We have done a separate

assimilation, not shown here, that verifies that most of this

degradation is due to the mistuning of Po,a , rather than Ra .

3.3 The impact of aerosol-related measurement biases

Adding a bias proportional to aerosol depth (Experiment 4)

causes a significant degradation in the assimilated 7-day

fluxes over land (compare Fig. 8e to c), most noticeably

around the edges of the continents and around the high

aerosol regions of Africa, western Asia, and India. Over

the oceans, the impact is even larger, degrading the improve-

ment by almost a factor of two in many places. The im-

pact of the biases is at least this important for the seasonal

fluxes (Fig. 9), but even so, there are still large areas over

land where improvements over 65% remain, particularly in

the interior of the continents.

3.4 Impact of transport errors

The 18 hour shift in winds added in Experiment 5 greatly

degrades the estimated fluxes over the extra-tropics (com-

pare Fig. 8d to c), especially over North America and east

Asia where the jets are the strongest, and has a somewhat

lesser impact in the tropics. The near-surface winds in the

extra-tropics are predominantly horizontal, so transport er-

rors there lead to horizontal errors in where the flux correc-

tions are placed. Over the tropics, however, wind motions are

more vertical, due to the weak Coriolis force and the domi-

nance of convection; transport errors affect more where con-

centrations are distributed in the column (having little impact

on the column-integrated measurement) and less the horizon-

tal assignment of the fluxes. Interestingly, the degradation

in the estimates is weakest over the extratropical southern

oceans, where horizontal winds are strong: transport here

may be more predictable, or else the lower flux variability

here may account for the difference.
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The degradation of the 7-day flux estimates due to trans-

port error is much less than that due to the aerosol biases

over the oceans, and greater over the northern land (com-

pare Fig. 8d and e). The impact on the seasonal flux error

reductions (Fig. 9), however, is different: the transport er-

rors generally have a smaller impact than the aerosol bias er-

rors everywhere, except over North America, where they are

similar. Unlike the aerosol biases applied here, which vary

slowly across the year, the transport errors are more variable

and their effect on the inverted fluxes cancels out more when

averaged over longer spans.

3.5 Impact of all three systematic error sources

When the effects of all three systematic error sources (mis-

tuning, transport error, and measurement biases) are consid-

ered together (Experiment 6), most of the flux improvements

are lost. In terms of the weekly flux error reductions (Fig. 8f),

there are still areas over land with improvements of 45% or

higher, though these are restricted geographically to some of

the areas with the largest initial errors, or to broad regions

of homogeneous flux (eastern Siberia). Error reductions over

the oceans are less encouraging, under 15% for most areas.

Improvements in the seasonal fluxes (Fig. 9f) are 10–20%

higher over the land than for the weekly fluxes but just as re-

stricted geographically, and are similarly low over the ocean.

3.6 Impact of systematic errors at coarser scales

For climate research, flux averages over annual scales (or

longer) are of more interest than the weekly and seasonal

fluxes discussed above. The annual mean fractional error re-

ductions we obtain are noisy – we simulated only a single

year of data here, so random errors do not cancel out – but

they tend to be at least as large the seasonal error reductions

in Fig. 9. This suggests that the more-statistically-significant

fractional reductions we obtain for the seasonal flux errors

(Fig. 9) may be a good proxy for the annual mean error re-

ductions across the full globe. It was not clear that this would

be the case before doing these tests: the magnitude of the a

priori errors in the seasonal fluxes is generally higher than

in the annual means, especially over land, and since these

magnitudes are in the denominator of the error reductions,

one might think that the seasonal error reductions would be

higher.

The seasonal errors from the control experiments (see

Supplemental Material; http://www.atmos-chem-phys.net/

10/4145/2010/acp-10-4145-2010-supplement.pdf) are char-

acterized by alternating regions of counterbalancing errors

over the global land areas, on scales of ∼1000–2000 km.

The ocean errors vary across longer scales but are weaker.

For the experiments with systematic errors added, the errors

grow and take on coarser scale patterns over the land regions.

Much of the alternating ± errors over land cancel out when

integrated over larger regions. In Fig. 10, we integrate the

seasonal and annual mean flux errors across the 22 globe-

spanning regions from the Transcom3 (T3) flux inversion in-

tercomparison project (see Fig. 1 from Baker et al., 2006a

for a map). The RMS seasonal errors (plotted below the axis

as negative values) for the 11 land regions drop from a pri-

ori values of ∼0.5–2.0 PgC/year to ∼0.1–0.2 PgC/year for

the control experiments. When the systematic errors in the

problem are added on, however, these land errors increase

to ∼0.3–0.6 PgC/year, still low enough to give a significant

improvement over the a priori estimates, but much worse

than the control experiment statistics would indicate. For the

annual mean errors (absolute values plotted above the axis)

over land, a priori errors in the range of ∼0.1–0.5 PgC/year

are reduced to generally below 0.1 PgC/year in the control

experiments, but rise back up to ∼0.1–0.3 PgC/yr when the

systematic errors are considered. For those T3 regions with

the largest initial errors, the errors are halved at least, while

those with the smallest initial errors see little to no improve-

ment. Over the oceans, where the seasonal cycles are less

pronounced, error reductions of up to 50% are obtained for

both seasonal and annual mean errors in the control experi-

ment with glint mode data, but little improvement is obtained

when the systematic errors are also considered.

4 Summary and discussion

We have simulated how well XCO2
measurements from the

OCO satellite could constrain the surface sources and sinks

of CO2, using a variational data assimilation technique that

treats the measurements at the time and place they occur,

averaged only over the time step and grid resolution of the

transport model. The fluxes are solved at a coarser time

resolution – weekly – to get adequate measurement density

at our 2◦ × 5◦ spatial resolution. We have used improved

measurement information: new estimates of single-retrieval

error uncertainties and averaging kernels calculated as a

function of surface type, aerosol OD, and viewing geometry.

And we combine the information from all valid retrievals for

each ∼33 second grid box crossing to get the measurement

uncertainty used in the assimilation, accounting for measure-

ment correlations as well as data dropout from both clouds

and aerosol.

We first computed best case flux error estimates in our

control experiments using XCO2
measurements affected only

by random errors. These error statistics correspond to those

that would be given by a full-rank a posteriori covariance

matrix, were one to be calculated. Nadir- and glint-mode

measurements give similar flux improvements over the land:

generally over 45/65% for weekly/seasonal fluxes. The

weekly flux error reductions are larger than those obtained

by Chevallier et al. (2007a) by almost a factor of two, despite

the fluxes being solved for at a similar resolution: this is to

be expected, since our measurement uncertainties (Fig. 6b)

are several times lower than the 2 ppm values they assumed.
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Fig. 10. Annual mean flux errors and RMS seasonal flux errors [PgC/year] integrated over the areas of the 22 Transcom3 emission regions.

The absolute values of the annual mean errors are plotted above the axis as positive values, while the RMS of four 13-week seasonal values

are plotted below it as negative values. A posteriori errors from three glint mode experiments are given: #2 (black bars), in which only

random measurement errors are added, #4 (green) in which aerosol biases are also added, and #6 (red) in which random errors, aerosol bias,

and transport errors are all added, as well as mistuning effects. Also given: the a priori flux errors (light blue) and the a posteriori errors

given by assimilating only data from the in situ CO2 montoring network of the 1990s (dark blue), computed as the root sum square of the

“Post. Error” and “Model Error” columns from Table 4 of the Transcom3 CO2 flux interannual variability study (Baker et al., 2006a).

Also, we do not solve for both day and night fluxes for each

span as they do, resulting in fewer degrees of freedom and a

somewhat tighter flux constraint. It is more difficult to com-

pare our results with those of Miller et al. (2007) because

they both used higher measurement uncertainties (1 ppm)

and solved for larger flux regions (effectively adding strong

spatial correlations): our flux uncertainties are larger over the

land (except over Australia where they use smaller regions)

and smaller over the oceans (in both nadir and glint modes).

Our results, like those of Baker et al., 2006b and Miller et

al., 2007, indicate that the OCO data should provide a much

better constraint on the CO2 fluxes than the current in situ

network, in this random-errors-only view. On the scale of

the 22 global Transcom3 regions, our seasonal error reduc-

tions are generally similar to the 32-day values of Feng et

al. (2009); like them, we see a tendency towards lower im-

provements at high latitudes in the winter hemisphere, when

few glint-mode measurements are available.

In our simulations, glint mode data give land flux error re-

ductions that are nearly as great as with nadir data, despite

the larger glint measurement uncertainties over land, appar-

ently because the more precise glint measurements over the

ocean contain much information on the land fluxes, enough

to make up the difference. Feng et al. (2009) found a sim-

ilar compensation, using an entirely different approach for

assessing data availability and aggregated measurement er-

ror. The difference between glint and nadir results over land

is more noticeable here than in Feng et al., however, per-

haps because we decrease the probability of finding clear and

low-aerosol scenes at high SZAs (using the factor in Eq. 3)

more than they do. Over the oceans, the more precise glint

measurements lead to much larger flux error reductions than

the nadir data: over 45% across broad swaths of the tropi-

cal and southern oceans, versus under 15% in nadir. Because

the glint data provide more of an overall constraint on the

surface fluxes (both land and ocean), in this random-errors-

only view OCO would collect more information on the global

carbon cycle overall by remaining in glint mode at all times

rather than by switching between glint and nadir modes (but

see discussion below).

While the control experiment error analyses provide a use-

ful metric for comparing different sets of observations, they

provide an overly-optimistic view of how well the OCO data

actually will improve our flux estimates. On one hand, the

Atmos. Chem. Phys., 10, 4145–4165, 2010 www.atmos-chem-phys.net/10/4145/2010/



D. F. Baker et al.: Carbon flux information from OCO column CO2 measurements 4161

actual random retrieval errors are likely to be higher than

those assumed here, since the analysis of Bösch et al., does

not capture all possible radiative transfer errors (e.g. those

due to the vertical distribution, size, and shape of scatterers,

the absorption line shape, line mixing, etc.). Probably more

importantly, though, a variety of systematic errors will pre-

vent the improvement from being this large. It is difficult to

know beforehand which systematic errors will be most im-

portant for a mission; the crude representations added here

give only a rough idea of what may actually occur.

First of all, we found that mistuning the assimilation (as-

suming incorrect patterns for the a priori flux error covari-

ance and measurement error covariance matrices) by a real-

istic amount degrades the error reductions significantly, es-

pecially in areas where the initial flux differences are lower.

This error source is unavoidable: the assimilation must be

constrained by a realistic prior to damp out the worst effects

of the random measurement errors (Baker et al., 2006b), and

yet there is little chance of modeling the details of the a pri-

ori uncertainties correctly to avoid the mistuning (Chevallier

et al., 2006); the same modeling challenges apply to the as-

sumed measurement error covariance, as well.

Second, we added measurement biases proportional to

aerosol OD, since aerosol-related radiative transfer model-

ing errors are expected to be an important source of model-

measurement mismatches. With these biases added, the flux

error reductions over the oceans are degraded by about a fac-

tor of two compared with the unbiased values; over land,

flux improvements as high as in the unbiased case are still

often achieved, but the spatial extent of such improvements

are degraded by about a factor of two. Weekly flux error

reductions as high as 65% are still achieved in a few areas,

especially eastern Siberia. We obtain aerosol-related annual

mean flux biases on the scale of the 22 Transcom3 regions

that are generally smaller than Chevallier et al. (2007a) ob-

tain: they are never greater than 0.2 PgC/year (look at the

difference between the green and black bars on the top of

Fig. 10). The two largest biases from Chevallier et al. (0.73

and 0.57 PgC/year for Temp. Eurasia and Europe, respec-

tively; see their Fig. 4) seem to be due to the use of aerosol

biases as high as 1.0 ppm or higher over those regions; the

largest biases we applied were only 0.6 ppm (this, too, is

likely to be over-optimistic).

Finally, we examined the impact of transport model errors

in the assimilation with the ad hoc approach of shifting the

winds used to generate the truth by 18 h. These degraded

the 7-day flux improvements more strongly over land than

the aerosol bias experiment, especially in the extra-tropical

north, but had a much smaller impact over the oceans. The

impact on the seasonal flux error reductions was much less:

apparently, the transport errors that we added largely average

out in time, something that may not occur with more realistic

transport errors.

When all three systematic error sources (mistuning, trans-

port, and aerosol biases) are added at the same time, most of

the improvement seen in the control experiments is lost: the

OCO data improve the weekly flux estimates by more than

45% in only a few restricted areas over the land (roughly

corresponding to those areas where our a priori uncertainty

is the largest) and generally under 15% over the oceans.

Our simulations suggest that the precision of OCO’s XCO2

measurements is more than adequate for estimating weekly

grid-scale CO2 fluxes at scientifically-useful levels. Know-

ing annual mean CO2 fluxes to within 0.1 PgC/yr for most of

the 22 Transcom3 regions (Fig. 10) would constrain the key

sources and sinks of CO2 well on a global scale. The real

challenge, however, appears to be in identifying and remov-

ing systematic errors, both in deriving the XCO2
values and

in processing these values with an atmospheric assimilation

method. For the level of systematic errors considered here,

annual mean flux errors rise as high as 0.2–0.3 PgC/year for

many of the Transcom3 regions, a level which, while bet-

ter than that given by the current in situ network, still would

leave much uncertainty in the global carbon budget. Since

the value of the XCO2
data fall off rapidly if systematic er-

rors are much higher than this, more effort must devoted to

quantifying them. We have addressed the systematic errors

only in a very rough fashion here. The OCO XCO2
retrievals

will likely be corrupted by a variety of measurement error

sources, spectrographic and radiative transfer modeling er-

rors, and other errors besides the aerosol scattering effects

considered approximately here. Simulation studies might be

able to help characterize the impact of these error sources,

once they are identified. These are not simply of academic

interest, to be forgotten once the spacecraft begins return-

ing real data; rather, they will be critical for interpreting the

data once it arrives. A more detailed assessment of transport

errors must also be performed. The transport errors could

be quantified by running the identical fluxes (including fos-

sil fuel input at fine spatial scales and diurnally-varying land

biospheric fluxes) through multiple transport models, sam-

pling the resulting concentration fields with realistic averag-

ing kernels along realistic OCO orbits, and then comparing

the resulting XCO2
values in an approach similar to what the

Transcom group has done for continuous in situ and aircraft

profile data (Law et al., 2008; Patra et al., 2008; Pickett-

Heaps et al., 2010) and is currently doing for satellite mea-

surements (S. Maksyutov, lead). Finally, our mistuning ex-

periment illustrates the importance of having a good a priori

flux model to help partition the flux corrections properly: we

must continue to improve our flux process models, just as we

must improve our transport models.

If the systematic errors in the problem can be beaten down

to below the levels used here, then the OCO measurements

should provide much useful new carbon cycle science. Im-

provements in seasonal fluxes of ∼50% or more over the

tropical and northern forests, when viewed over the course of

multiple years, will begin to resolve the processes driving the

global interannual variability of CO2. Similar improvements

in weekly fluxes will help clarify the response of ecosystems
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Fig. A1. Computation of climatological cloud-free pixel availability from Terra/MODIS and Aqua/MODIS data. The ratio of the probability

of finding at least one cloud-free sounding across a ground track swath of length L (Fig. 5b) over the same probability for a swath only

5 km long, calculated by sampling 10 km-wide Terra/MODIS Level 2 data swaths in the along-track direction, using L for a) nadir- and (b)

glint. (c) The cloud-free probability at 1 km×1 km resolution, taken from the Aqua/MODIS Level 3 cloud-mask product. (d) and (e): the

probability of finding at least one cloud free sounding in an OCO ground track swath of length L (nadir and glint) found by multiplying (c)

by (a) and (b). (f) The glint-mode cloud-free probability from (e) corrected for the greater atmospheric path length at high SZAs according

to Eq. (3). Note that the probabilities in (e) are higher than in (d) because L is about two times longer in glint than nadir (Fig. 5b); because

they are divided by L in Eq. (2), however, the resulting Neff values are lower in glint than nadir, even without the glint path correction.

to fast disturbances (like fire) and variability in the weather-

related drivers. Improvements over the ocean may be as great

as over land, depending on the nature of the aerosol biases,

especially. Perhaps the greatest impact will come where our

current observations are the worst, such as over the tropi-

cal forests, which are thought to play in driving global CO2

variability (Baker et al., 2006a). Further, the global distribu-

tion of the improvements should help clarify the partitioning

of the global sink between the tropics and extra-tropics, and

help pin down the longitudinal distribution of the northern

CO2 sink.

Appendix A

Cloud coverage calculations

Figure 7b shows the probability of finding at least one cloud-

free scene inside an OCO ground track swath of length L,

the cloud influence length defined by Eq. (1) and plotted in

Fig. 5b. This appendix describes how climatological values

for this probability are derived from MODIS observations.

The cloud fraction parameter from the Aqua/MODIS

Level 3 MYD08 M3 product gives the monthly average

probability that any single MODIS scene will be clear of

detectable clouds, at 1◦ × 1◦ resolution. This is computed

from data at 1 km×1 km resolution, close to the OCO FOV

size, and is available for the same orbit as OCO. This should
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give a very good idea of the probability that any single OCO

sounding will see cloud-free conditions. Because of along-

track spatio-temporal correlations, however, it is not clear

how to compute the probability of finding at least one cloud-

free scene in an OCO ground track swath of length L from

these single-sounding probabilities. Obtaining that informa-

tion requires examining the Level 2 MODIS data from which

the Level 3 monthly averages were computed.

The Level 2 MODIS data come packaged in the form of

“granules”, approximately 5 min of measurements spanning

roughly 2000 km in the along-track direction and 2330 km

across-track (as swept out by a ±55◦ scan on either side of

nadir). Rather than process this massive archive of data our-

selves, we used a “climatology” of Level 2 MODIS cloud

and cloud mask products (MOD06 L2 and MOD35 L2) that

was compiled by Chang and Li (2005), albeit from the Terra

satellite which has a somewhat different orbit than Aqua and

OCO. To reduce the volume of data to process, Chang and Li

processed 8 full days of data in each of the months of January,

April, July, and October, spaced 4 days apart from each other.

Among other cloud-related quantities, they saved a cloud

mask value at 5 km×5 km resolution indicating whether the

scene was “cloudy”, “possibly cloudy”, “probably clear”,

or “confident clear”. For the “cloudy” boxes, an additional

value was saved indicating the number of 1 km×1 km pixels

inside the 5 km×5 km box (0–25) with measurable cloud op-

tical depths (MODIS can generally detect clouds with ODs

as thin as 0.10). This second quantity is valuable because it

provides the frequency of occasional cloud gaps in areas with

the cloudiest conditions, where OCO will have the most dif-

ficulty obtaining data, at a 1 km×1 km resolution that is close

to that seen by OCO (nominally 2.8 km2 when the sensor slit

is oriented perpendicular to the direction of motion, less than

that when the satellite “pirouettes” towards the sun to main-

tain its pointing in the sun/ground/satellite plane; overall, the

average FOV size is ∼2 km2).

We have sampled the Chang and Li data in 10 km-wide

swaths of differing lengths (5, 10, 20, 40, 100, and 200 km) in

the along-track direction, accumulating statistics on the prob-

ability of finding at least one cloud-free scene at 1 km×1 km

resolution inside the swaths of differing lengths for each

month. The probabilities increase with increasing swath

length. We normalize the probabilities at each swath length

by those at the 5 km length. This normalized multiple rep-

resents how many more time likely it is to find at least one

1 km×1 km cloud-free scene in a swath of length L than it is

inside a box of 5 km×10 km, accounting for realistic correla-

tions in cloud amount along the track, or cloud “clumpiness”.

Figure A1a, b gives maps of this multiple interpolated to the

actual swath lengths for nadir and glint modes (Fig. 5b) cor-

responding to the true solar zenith angles around the orbit. At

high solar zenith angles, including the near-polar areas where

it will be the most difficult to penetrate through the clouds,

this multiple is generally over 2.

In the final step of this process, we interpolate these mul-

tiples across the full year from the four months examined

by Chang and Li, and multiply them by the single-sounding

cloud-free probabilities of the Level 3 Aqua/MODIS product

(Fig. A1c) to obtain the probability of a cloud-free sound-

ing per cloud correlation length L shown in Fig. 5b for the

nadir case. For glint mode, these cloud-free probabilities are

further reduced to account for the greater path-length in the

atmosphere according to Eq. (3).

Our approach here is actually somewhat conservative,

since the probability of finding a cloud-free sounding inside

a box of 5 km×10 km (the value we normalize our Level

2 multiple by) should be higher than the single-sounding

cloud-free probability. Another factor to consider is that our

Level 2 MODIS multiples are computed using data from the

Terra satellite, which has a 10:30 a.m. local ascending node

time and thus may not exactly capture the cloud properties

that OCO will see in the early afternoon.

Acknowledgements. We wish to express our great appreciation

to Fu-Lung Chang of the National Institute for Aerospace,

Hampton, VA, for providing us with his Terra/MODIS cloud

climatology. SD and DB acknowledge support from NASA grant

NNG06G127G. DB also acknowledges initial support from NOAA

Grant NA16GP2935.

Edited by: W. E. Asher

References

Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin,

P., Denning, A. S., Bousquet, P., Bruhwiler, L., Chen, Y.-

H., Ciais, P., Fung, I. Y., Heimann, M., John, J., Maki, T.,

Maksyutov, S., Masarie, K., Prather, M., Pak, B., Taguchi, S.,

and Zhu, Z.: TransCom3 inversion intercomparison: Impact of

transport model errors on the interannual variability of regional

CO2 fluxes, 1988–2003, Global Biogeochem. Cy., 20, GB1002,

doi:10.1029/2004GB002439, 2006a.

Baker, D. F., Doney. S. C., and Schimel, D. S.: Variational data

assimilation for atmospheric CO2, Tellus B, 58(5), 359–365,

doi:10.1111/j.1600-0889.2006.00218.x, 2006b.

Bloom, S., da Silva, A., Dee, D., Bosilovich, M., Chern, J.-D., Paw-

son, S., Schubert, S., Sienkiewicz, M., Stajner, I., Tan, W.-W.,

and Wu, M.-L.: Documentation and Validation of the Goddard

Earth Observing System (GEOS) Data Assimilation System –

Version 4. NASA Technical Report Series on Global Modeling

and Data Assimilation 104606, v26, 2005.
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