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INTRODUCTION

An important element of most ecosystem models is
the computation of primary production. Sathyendra-
nath & Platt (2007) and Sathyendranath et al. (2007)
have pointed out that 4 categories of models are
presently in use for the computation of primary pro-
duction at sea: available-light models, absorbed-light
models, inherent-optical-property models and growth
models. Regardless of the type of model selected, the
computation of primary production at discrete depths
requires a set of 4 parameters: (1) the initial slope of the

photosynthesis–irradiance curve, (2) the light-satura-
tion parameter of the curve, (3) the specific absorption
coefficient of phytoplankton and (4) the carbon-to-
chlorophyll ratio of phytoplankton. Any other parame-
ter invoked in any primary production model can be
derived from this basic set. For models in which phyto-
plankton are partitioned into several compartments
(for example functional types), one needs information
on these parameters for each of the compartments.
Of the 4 basic parameters, phytoplankton absorption
characteristics are routinely measured now on many
bio-optical cruises, and our knowledge of their vari-
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ability has been steadily growing (Bricaud et al. 2004,
Devred et al. 2006). There is also a growing set of
observations at sea of photosynthesis–irradiance para-
meters (Platt et al. 2008), though they are by no means
as numerous as those for optical property measure-
ments. The least studied of our short list of essential
parameters turns out to be the carbon-to-chlorophyll
ratio of phytoplankton. Improving our understanding
of this ratio should provide an opportunity to refine
models of phytoplankton dynamics.

Here, we addressed the matter by analysis of previ-
ously unpublished data on total particulate carbon and
chlorophyll collected in areas extending from the shelf
to the open ocean, covering various seasons, and in a
semi-enclosed bay (Tokyo Bay) over an annual cycle.
Since particulate carbon values from the field included
contributions from many components of the ecosystem
other than phytoplankton, such as detritus, bacteria
and viruses, it was not straightforward to estimate the
phytoplankton component of the total particulate car-
bon. Here, we analysed our dataset to infer phyto-
plankton carbon-to-chlorophyll ratios across different
types of marine and coastal environments. We also
examined the data to find systematic differences, if any
exist, in this ratio across different phytoplankton types.
The relationships established using field data were
applied to a satellite-derived chlorophyll field in the
NW Atlantic in order to generate maps of particulate
carbon, phytoplankton carbon, phytoplankton carbon-
to-chlorophyll ratios and carbon-based, light-saturated
growth rates for phytoplankton, thus demonstrating
several applications of the results.

MATERIALS AND METHODS

Background. Typically, carbon-based growth mod-
els of phytoplankton utilise a growth parameter μ,
defined as the rate of change of carbon due to photo-
synthesis per unit time and unit carbon:

(1)

where Cp is the phytoplankton carbon concentration.
On the other hand, in chlorophyll-based models, gross
primary production P is often computed as a function of
available light, using equations such as the following
(Platt et al. 1980), in which photo-inhibition is ne-
glected, for simplicity:

(2)

where Pm
B is the assimilation number or light-satura-

tion parameter, αB is the initial slope at light-limiting
conditions, B is phytoplankton biomass in chlorophyll

units, and E is available irradiance in the photosyn-
thetic domain. Since P = dCp/dt, we have the equiva-
lence:

(3)
where χ = Cp/B is the carbon-to-chlorophyll ratio for
phytoplankton. Thus, we need to know χ if we are to
make use of data on photosynthesis–irradiance para-
meters to constrain growth models at sea. Note that
Eqs. (1) to (3) represent gross primary production, and
so hold for results of short-term incubation experi-
ments from which losses in production due to dark res-
piration are not subtracted. Daily growth rates in cul-
tures represent net production (Cloern et al. 1995), and
would not be directly applicable to Eq. (3), unless
appropriate measures were taken to account for respi-
ration losses. Note also that the photosynthesis–irradi-
ance formalism (Eq. 2) does not require knowledge of
χ, unless the intention is to convert estimated P to an
increment in chlorophyll biomass B.

The carbon-to-chlorophyll ratio is also invoked when
fields of phytoplankton carbon computed in global bio-
geochemical models are converted to fields of chloro-
phyll a (chl a), in order to compare them with satellite
data for initiation and validation of the models. This
is an important application of remotely-sensed ocean
colour data, so it is worthwhile to optimise the protocol
for the computation of phytoplankton carbon.

Data and analysis. Offshore data: Over a period of
more than a decade, particulate carbon and phyto-
plankton pigment data (fluorometric chl a and HPLC
pigments) were collected from 16 cruises to shelf and
open-ocean waters, mostly from the NW Atlantic, but
also from the Arabian Sea. The geographical areas and
periods of data collection and the number of samples
collected are summarised in Table 1.

Water samples were collected, using Niskin bottles,
from the surface to a maximum sample depth of 80 m
(most of the samples [>90%] were from depths of 40 m
or less). Particulate carbon samples were analysed
with a CHN analyser (Collos 2002), and may be consid-
ered to consist primarily of particulate organic carbon
(POC). Estimates of fluorometric chl a concentrations
were obtained using a Turner Designs fluorometer
following the method of Holm-Hansen et al. (1965).
Samples were also analyzed by high-performance
liquid chromatography (HPLC), in order to obtain in-
formation on the composition of the accessory pig-
ments. Between 0.5 and 1.5 l of seawater was filtered
onto a 25 mm GF/F filter, which was frozen in liquid
nitrogen and stored at –80°C until analysis in the labo-
ratory using the method of Stuart & Head (2005).

The HPLC pigment data were used to identify sam-
ples that were dominated by diatoms, dinoflagellates,
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prymnesiophytes, Prochlorococcus, other cyanobacte-
ria (e.g. Synechococcus) and green algae. The pigment
criteria used to identify these algal groups are shown
in Table 2.

Since, for the same particulate carbon samples, cor-
responding chl a estimates were available using both
the Turner fluorometric method (BF) and the HPLC
method (BH), the relationships between particulate
carbon and chl a were explored separately for the 2
chlorophyll estimates, especially because some sys-
tematic differences were often encountered between
the chl a values estimated by the 2 methods (e.g. r2 =
0.89, slope = 1.39, n = 814, for linear regression of
HPLC chlorophyll and Turner fluorometric chlorophyll
for our offshore data set). Both particulate carbon and
chl a data were log-transformed to linearise the rela-
tionship and to reduce the weight of the stations with
high values of particulate carbon and chl a in the
regression analysis (see also Legendre & Michaud
1999). Ordinary least-squares regression analysis was
carried out with particulate carbon as the dependent
variable and BF or BH as the independent variable. If
we represent total particulate carbon by CT, then the
fitted equations have the form: log (CT) = log m + p (log
Bi), where i = H or F, and log m and p are the fitted
parameters. The results can then be expressed as:

(4)

Tokyo Bay data: Particulate carbon and pigment
data were collected at 3 stations in Tokyo Bay every
month from August 1997 until July 2000. Water sam-
ples were collected, using 5 l Van-Dorn bottles, at 7 to
8 depths throughout the water column (maximum

depth 30 m). Particulate carbon, fluorometric
chl a concentration and HPLC pigment com-
position were measured at each sampling
depth as described above (HPLC samples
were collected within the top 10 m only). In
the offshore dataset, HPLC pigments were
used to identify samples dominated by any 1
of 6 phytoplankton functional types. It
emerged that, when our criteria were
applied to identify algal groups, this set of
observations included samples dominated
by diatoms and dinoflagellates, but none of
the other types (Table 2). Again, the rela-
tionships between carbon and chl a were
estimated for Turner fluorometric chl a and
HPLC chl a separately.

Satellite data: Local-area coverage Sea-
WiFS data collected during the period from
1997 to 2006 at the Bedford Institute of
Oceanography were used to generate bi-
monthly composite maps of chlorophyll
using the NASA OC4 algorithm (O’Reilly et

al. 2000) and SeaDAS software. The composites for the
second half of May for all years were then combined to
create a climatological chlorophyll map for this time
interval, which was then used to illustrate how the
results established from the field data could be used to
arrive at first-order estimates on the distribution of par-
ticulate carbon, phytoplankton carbon, carbon-to-
chlorophyll ratios (χ) and carbon-based growth rates
for phytoplankton.

Quantile regression: For a given observation of par-
ticulate carbon in the ocean, the result may be parti-
tioned into a portion that corresponds to the living
organic carbon contained in phytoplankton and a
residual that includes contributions from heterotrophs
and various sources of detritus. Addition of any of
these components other than phytoplankton would
increase total particulate carbon without increasing
chlorophyll. Therefore, we assumed that, at any given
chlorophyll concentration, the lowest particulate car-
bon content observed represents the phytoplankton
carbon associated with that chlorophyll concentration.
Given such data over a range of chlorophyll concentra-
tions, we sought the relationship between the phyto-
plankton carbon concentration (as opposed to total
particulate carbon) and the chlorophyll concentration.
This relationship can be represented as a line forming
a lower envelope to the values of total particulate car-
bon plotted as a function of chlorophyll concentration.
The appropriate method to find this relation is quantile
regression (Koenker & Bassett 1978). At the same time,
we want to exclude any outliers that, through mea-
surement error, are biased too low to belong to the
parent distribution.

C mBi
p

T =

75

Area Dates n

Arabian Sea (Tyro Cruise) 13 Jan–4 Feb 1993 17
Arabian Sea (Arabesque 1 Cruise) 28 Aug–30 Sep 1994 110
Arabian Sea (Arabesque 2 Cruise) 17 Nov–15 Dec 1994 95
Labrador Sea (JGOFS Cruise) 15 May–30 May 1996 45
Labrador Sea (JGOFS Cruise) 24 Oct–17 Nov 1996 28
Scotian Shelf (Hudson Cruise) 18 Apr–28 Apr 1997 16
Labrador Sea (JGOFS Cruise) 12 May–9 Jun 1997 50
Scotian Shelf (Hudson Cruise) 8 Apr–21 Apr 1998 26
Scotian Shelf (Hudson Cruise) 3 Oct–20 Oct 1998 30
Scotian Shelf (Hudson Cruise) 9 Apr–17 Apr 1999 39
Scotian Shelf (Hudson Cruise) 24 Oct–12 Nov 1999 37
Scotian Shelf (Hudson Cruise) 9 Apr–22 Apr 2000 49
Scotian Shelf (Hudson, Cruise) 1 Oct–15 Oct 2000 98
Scotian Shelf (Hudson, Cruise) 2 May–16 May 2001 105
Labrador Sea (Hudson Cruise) 31 May–13 Jun 2001 42
Scotian Shelf (Hudson Cruise) 24 Oct–7 Nov 2001 60

Total 847

Table 1. Details of the 16 shelf and open-ocean cruises (offshore data)
where samples were collected for chlorophyll and carbon measurements,
showing geographic area, sampling dates and total number of samples 

(n) collectedon each cruise
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For example, the 50th percentile (median, q = 0.5)
regression is a fitted line for which half the observa-
tions of the dependent variable lie above and half
below. The line represented by the 5th percentile
regression lies below 95% of the observations. Clearly,
to find the desired lower range, we sought such a low-
order quantile regression. In fact, we sought the
regression for the lowest quantile consistent with the
criterion of robustness. Rogers (1992) advises that the
minimum quantile q should satisfy the condition q >

5/N, where N is the total number of observations. With
some 800 observations, this working rule would allow
a regression at the first percentile (q = 0.01), but not
much lower.

The other fitting criterion is derived from inspection
of the (log-transformed to base 10) data. It is clear that
they are convergent from lower to higher values of
chlorophyll, an indication that phytoplankton carbon
constitutes a higher proportion of particulate carbon as
chlorophyll concentration increases and approaches
that characteristic of bloom conditions. In fitting the q =
0.01 regression, we required that the fitted slope
reflected this evident convergence. Therefore, if the
fitted slope for the q = 0.01 regression was smaller than
that of the q = 0.02 regression, we omitted the observa-
tion with the largest residual and refitted the lines. The
procedure was repeated iteratively until the slope
exceeded or equalled that of the q = 0.02 regression. In
this way, 3 (HPLC) to 8 (Turner fluorometer) data
points were identified as outliers in the offshore
dataset. The final fit was judged to be free of bias by
outliers and to be the best available linear description
of the lower edge of the scatter plot for the log-trans-
formed data.

RESULTS

Offshore data

The straight-line fits to the log-transformed offshore
data are shown in Fig. 1 for particulate carbon plotted
as a function of both Turner fluorometric chl a and
HPLC chl a (see also Table 3). The method of Legendre
& Michaud (1999), who also analysed the relationship
between POC and chl a, is slightly different from ours
in the sense that they integrated POC and chl a over a
finite depth of the water column and then used aver-
age values of the variables over the depth of integra-
tion in the regression analysis. Our analyses, on the
other hand, are based on discrete-depth samples. Our
results for the parameters log m and p for the offshore
data are remarkably close to the values reported by
Legendre & Michaud (1999) for all station depths
(Table 3) for POC.

The particulate carbon field data incorporate all
types of carbon in the system, including that from
phytoplankton, detritus, bacteria and viruses that are
retained on the filter. We can assume that the mini-
mum carbon amount associated with each concentra-
tion of chl a represents the phytoplankton carbon, any
other particulate carbon serving to increase the mea-
sured carbon over the minimum. Using quantile
regression (for q = 0.01), we therefore fitted a line
(Fig. 1) that follows the minimum values of particulate
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Phytoplankton type Criteria for omitting samples
not belonging to a type

Prymnesiophytes Chl c3/Chl a < 0.035
% Divinyl Chl a and b > 10%
Zeaxanthin/Chl a > 0.01
Peridinin/Chl a > 0.1
Alloxanthin/Chl a > 0.01
Chl b/Chl a > 0.1
Hex/Chl a and But/Chl a < 0.05

Prochlorococcus sp. % Divinyl Chl a and b < 50%
Fucoxanthin/Chl a > 0.01
Chl c3/Chl a > 0.01
Hex/Chl a > 0.2

Diatoms Fucoxanthin/Chl a < 0.4
Chl c1, 2/Chl a < 0.1
Chl c3/Chl a > 0.01
Zeaxanthin/Chl a > 0.01
Hex/Chl a > 0.1
Chl b/Chl a > 0.1
Diadinoxanthin/Chl a < 0.01

Cyanobacteria Zeaxanthin/Chl a < 0.1
% Divinyl Chl a > 20%
Fucoxanthin/Chl a > 0.1
Chl b/Chl a > 0.2
Peridinin/Chl a > 0.03
Hex/Chl a > 0.2
Chl c3/Chl a > 0.035

Green algae Chl b/Chl a < 0.1
% Divinyl Chl b and b > 10%
Fucoxanthin/Chl a > 0.01
Chl c1, 2/Chl a > 0.1
Hex/Chl a > 0.2
Alloxanthin/Chl a >0.05

Dinoflagellates Fucoxanthin/Chl a < 0.25
Peridinin/Chl a < 0.4
Hex/Chl a > 0.2
Chl b/Chl a > 0.1

Table 2. Criteria used to omit samples from the database in or-
der to identify various phytoplankton types. These criteria re-
quire that the concentrations of pigments diagnostic for a par-
ticular type of phytoplankton should be high relative to the
concentration of chlorophyll a, while, at the same time, the
relative concentrations of diagnostic pigments for other types
of phytoplankton should be low. Collectively, the criteria
identify those samples in which a single phytoplankton
type may be assumed to dominate, based on the chemo-
taxonomic signature. Chl: chlorophyll; Hex: 19’-hexanoyloxy-

fucoxanthin; But: 19’-butanoyloxyfucoxanthin
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carbon associated with any given chl a concentration
(ignoring identified outliers). Since phytoplankton con-
tribution to total particulate carbon may be expected to
increase from oligotrophic to eutrophic waters, we
anticipated that the lines representing total and phyto-
plankton carbon would approach each other at high
chlorophyll concentrations. The equations for estimat-
ing phytoplankton carbon from chl a concentration are
also given in Table 3 for both Turner fluorometric and
HPLC pigment data. From these equations, one can
estimate χ, the carbon-to-chlorophyll ratio of phyto-
plankton, and its variation with chl a.

Since the data set contains information on the pigment
composition of phytoplankton, samples dominated by a
single phytoplankton type could be identified based on
their diagnostic pigments. These phytoplankton types
are fairly well separated along the chlorophyll axis, with

samples dominated by Prochlorococcus,
other cyanobacteria and green algae appear-
ing in oligotrophic waters, and diatoms and
prymnesiophytes becoming more dominant in
high-chlorophyll waters. No dinoflagellate-
dominated samples were identified from this
data set according to the criteria outlined in
Table 2. Using the chlorophyll concentrations
of the samples and Eqs. (7) & (8) from Table 3
for HPLC and Turner fluorometer data, respec-
tively, one can compute χ for these samples.
The averages and ranges of χ for the 5 phyto-
plankton types identified are presented in
Table 4. These numbers are consistent with
values in the literature on the carbon-to-
chlorophyll ratios for various phytoplankton
types (Malone 1982, Geider 1987, Campbell et
al. 1994, Kuninao et al. 2000, Schoemann et al.
2005, Veldhuis et al. 2005), providing indirect
validation of our method.

The shape of the cloud of points above the
minimum relationship (Fig. 1) is consistent
with the interpretation that there would be a
more variable contribution to the particulate
carbon from material other than phytoplank-
ton in oligotrophic waters, whereas the rela-
tionship between particulate carbon and
phytoplankton carbon would be tighter at
higher chlorophyll concentrations. Note also
that the parameter p is <1, that is, particulate
carbon increases less rapidly than chl a,
which could be a consequence of the greater
contribution of phytoplankton to the total
particulate carbon pool in eutrophic, com-
pared with oligotrophic, conditions. This
would also provide an explanation for the
decrease in scatter in the relationship at
higher chl a concentrations.

Buck et al. (1996) proposed a relationship (green line
in Fig. 1b) for estimating phytoplankton carbon as a
function of chl a concentration, based on observations
at sea. The correspondence between this relationship
and Eq. (8) (Table 3) is excellent for chlorophyll con-
centrations of about 1 mg m–3 or less, for which the
Buck et al. (1996) relationship was established. If we
extrapolated the equation by Buck et al. (1996) to-
wards higher chlorophyll concentrations, the line
would intersect our best fit between particulate carbon
and chlorophyll at a chlorophyll concentration of about
10 mg m–3. Because phytoplankton carbon cannot be
greater than the total community carbon, the minimum
relationship applied to our data arguably provides a
better estimate of phytoplankton carbon for high
chlorophyll values than the extrapolated relationship
from Buck et al. (1996).
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All data 
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Cyanobacteria
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Green algae

Fig. 1. Particulate carbon (CT) as a function of chlorophyll a for offshore
data. Chlorophyll a estimated by (a) HPLC and (b) Turner fluorometer.
Least-squares fits to log-transformed data are shown, as well as mini-
mum carbon estimates (Cp, by quantile regression [QR] q = 0.01), which
may be interpreted as the upper limits for phytoplankton carbon in the
system. The relationship between phytoplankton carbon and chloro-
phyll a in field data (Buck et al. 1996) is also shown in (b). The samples
identified as being dominated by a particular type of phytoplankton are 

identified by different colours
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The mean (±SD) fraction of phytoplankton carbon in
particulate carbon estimated by this method is 45 ±
21% using Turner fluorometric chlorophyll data (or 46
± 20% using HPLC data), which is on the high side, but
within the range of values reported in the literature
(Eppley et al. 1992, Buck et al. 1996, DuRand et al.
2001, Oubelkheir et al. 2005). On the other hand, χ val-
ues obtained by this simple method (Table 4) compare
reasonably well with values in the literature on differ-

ent phytoplankton types. Furthermore, the relation-
ship is also consistent with that observed by Buck et al.
(1996), suggesting that the estimates of the phyto-
plankton carbon-to-chlorophyll relationship in the
marine environment provided here are reasonable.
Note that, based on the equations for phytoplankton
carbon and total particulate carbon, the fraction of
phytoplankton carbon in the total particulate carbon
can be estimated as a function of chlorophyll concen-
tration (Cp/CT = 0.44 BH

0.17 for HPLC data and Cp/CT =
0.41 BF

0.18 for Turner fluorometer data).

Tokyo Bay data

The Tokyo Bay data yielded higher values of both
the parameters m and p for particulate carbon CT as a
function of chl a, compared with the offshore data
(Fig. 2, Table 3). This suggests the influence of a higher
background of non-phytoplankton carbon. The rela-
tionships between phytoplankton carbon and chl a
established for the offshore data by Turner fluoromet-
ric and HPLC pigments (Fig. 1) are also extended here
for the higher chlorophyll concentrations encountered
in the semi-enclosed bay. The separation between the
extrapolated phytoplankton–carbon–chlorophyll lines
and the data points in Fig. 2 also suggest that non-
phytoplankton contributions to the POC are higher in
the coastal environment than in the open ocean, which
may be expected for areas influenced by river outflow
and land drainage. Analyses of HPLC data revealed
that this data set contained samples dominated by
diatoms and dinoflagellates. Those samples are identi-
fied in Fig. 2, and their carbon-to-chlorophyll ratios are
presented in Table 4.
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x y log (m) p n r2 Eq. No. Source

Offshore (HPLC) BH CT 2.26 ± 0.006 0.48 ± 0.014 847 0.58 5 In situ data
Offshore (Turner) BF CT 2.20 ± 0.006 0.45 ± 0.013 839 0.59 6 In situ data
Offshore (HPLC) BH Cp 1.90 0.65 844 7 In situ data
Offshore (Turner) BF Cp 1.81 0.63 831 8 In situ data
Tokyo Bay (HPLC) BH CT 2.43 ± 0.014 0.64 ± 0.017 469 0.76 9 In situ data
Tokyo Bay (Turner) BF CT 2.41 ± 0.010 0.60 ± 0.011 811 0.78 10 In situ data
North Atlantic BF Cp 1.92 0.69 0.60 12 Buck et al. (1996)
Euphotic layer BF POC 1.95 0.57 409 0.68 11 Morel (1988)
All station depths BF POC 2.21 ± 0.0140 0.505 ± 0.021 510 0.54 13 Legendre & Michaud (1999)
Station depth < 200 m BF POC 2.29 ± 0.0194 0.353 ± 0.033 222 0.34 14 Legendre & Michaud (1999)
Station depth > 300 m BF POC 2.16 ± 0.0213 0.614 ± 0.029 240 0.65 15 Legendre & Michaud (1999)

Table 3. Fitted relationships between log carbon and log chlorophyll in the field for Turner fluorometric chlorophyll a (BF) and
HPLC chlorophyll a (BH). Total particulate carbon is represented as CT , and Cp is the estimated phytoplankton carbon. The fits to
log CT are by standard linear least-squares regression. The fits to estimate log Cp are the results of 1% quantile regression, after
elimination of outliers. Results from Morel (1988), Legendre & Michaud (1999) and Buck et al. (1996) are also given, for compari-
son. Number of observations (n) and r2 values are also given for log–log regressions. Note that the fitted relationships are of the

form log(Y) = log (m) + p[log(X)]. POC: particulate organic carbon

Phytoplankton type Mean χ (g/g) Range χ (g/g)
1% QR 1% QR

Turner fluorometer
Diatoms (Offshore) 39 21–75
Diatoms (Tokyo Bay) 29 15–55
Dinoflagellates (Tokyo Bay) 34 22–62
Prymnesiophytes 65 44–82
Cyanobacteria 93 74–126
Green algae 99 80–126
Prochlorococcus sp. 125 123–126
All diatoms together 34 15–75

HPLC
Diatoms (Offshore) 56 31–107
Diatoms (Tokyo Bay) 39 20–68
Dinoflagellates (Tokyo Bay) 45 27–80
Prymnesiophytes 85 65–111
Cyanobacteria 130 95–176
Green algae 137 122–159
Prochlorococcus sp. 145 143–147
All diatoms together 47 20–107

Table 4. Mean and range of the carbon-to-chlorophyll ratios
(χ) of different phytoplankton types, using the results of the
1% quantile regression (QR). Chl a was determined using a

Turner fluorometer and HPLC
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Satellite-based maps

To illustrate the potential applications of this work,
the results presented above were used in conjunction
with chl a estimates derived from SeaWiFS to map
particulate carbon, phytoplankton carbon and carbon-
to-chlorophyll ratios of phytoplankton (Fig. 3) in May
in the NW Atlantic. This is the spring bloom season,
and the chlorophyll distribution is highly variable
(Fig. 3a), ranging from oligotrophic Gulf Stream
waters to high chlorophyll waters off SW Greenland.
The map of particulate carbon is based on Eq. (6)
(Table 3) for offshore data, which relies on a large
number of observations from the area. It is an alterna-
tive approach to that based on back-scattering (e.g.
Loisel et al. 2002) or the method of Gardner et al.
(2006), which is based on relationships between beam
attenuation, POC and the diffuse attenuation coeffi-
cient at 490 nm. Our method is designed to capture
the particulate carbon that covaries with chl a. It is not

capable of identifying variations in particu-
late carbon that are independent of chl a. On
the other hand, our method is unlikely to be
influenced by phenomena such as coccolith
blooms or bubbles, which can increase back-
scattering or the attenuation coefficient with-
out increasing chlorophyll concentration. The
maps of particulate carbon and phytoplank-
ton carbon reveal similarities with the chloro-
phyll map, given the correlation between
these properties. The phytoplankton carbon
map (using Eq. 8; Table 3) relies, in addition,
on a simple conceptual model, which has
been tested indirectly by comparison with
values from the literature (Buck et al. 1996).
The ratio χ estimated here has a conservative
range (10 to 150) and is low in high-biomass
areas and high in low-biomass areas. In
Fig. 3, we also show the assimilation number
Pm

B computed using the Nearest-Neighbour
Method of Platt et al. (2008) and the maxi-
mum, light-saturated growth rate, which is
computed as Pm

B/χ (see Eq. 3). Note that both
Pm

B and the maximum growth rate peak in
frontal areas, possibly because of associated
high nutrient supply.

DISCUSSION

Relationship between particulate carbon
and chl a concentration

The data presented here show a strong cor-
relation between particulate carbon and chl a

concentration. The results are remarkably close to
those presented by Legendre & Michaud (1999) for an
independent data set on POC and chl a. They noted
that, since chl a is readily estimated from satellite data,
such relationships provide a simple avenue for estimat-
ing POC from satellite data. They also pointed out the
importance of POC in ecosystem models as the food
source for zooplankton. Our data also show that our
method is robust, even though it straddles a broad
range of trophic conditions, ranging from oligotrophic
to eutrophic. Such macro-ecological patterns, which
appear to transcend boundaries of biogeochemical
provinces and even biomes, can also serve as useful
tools for testing the performance of marine ecosystem
models. Typically, particulate carbon or POC is not
represented explicitly in ecosystem models, but can be
estimated as the sum of the computed particulate car-
bon in the various elements of the model, including
detritus. If the models were able to reproduce the bulk
properties of the ecosystem, as shown here, we would
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have an independent validation of the overall perfor-
mance of the model. One anticipates that macro-
ecological patterns, such as those presented here,
would be modulated locally and regionally (as seen, for
example, in the differences between offshore and
Tokyo Bay data).

Phytoplankton carbon measurement in the field

Many ecosystem models are not based on chl a, but on
carbon, such that a suitable carbon-to-chlorophyll ratio
has to be invoked to estimate chl a for comparison with
satellite data. For phytoplankton at sea, the carbon-to-
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Fig. 3. Climatological chlorophyll a data (1997 to 2006) for the second half of May for the NW Atlantic, derived from SeaWiFS (a).
(b) Particulate carbon and (c) estimated fields of phytoplankton carbon (Cp) derived from (a) using Eq. (7) from Table 3. The
chlorophyll and phytoplankton carbon fields are then used to derive χ, the carbon-to-chlorophyll ratio of phytoplankton (d). The
Nearest-Neighbour Method of Platt et al. (2008) is used to map the light saturation parameter Pm

B (e). Finally, Pm
B is divided by χ

to estimate maximum (light-saturated) carbon growth rates (μ) using Eq. (3), and setting the terms in parentheses on the 
right-hand side of the equation to 1 (f)
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chlorophyll ratio is a poorly known quantity. Phytoplank-
ton carbon concentration is not easily measured in the
field, given the difficulty of distinguishing phytoplankton
carbon from other types of carbon. What is often mea-
sured is the total particulate carbon or POC, of which
phytoplankton carbon is recognised to be a variable frac-
tion (Eppley et al. 1992, Oubelkheir et al. 2005). Linear
regression of POC on chlorophyll has been used to de-
rive the phytoplankton fraction of the carbon from the
slope of the fit, on the assumption that there is a back-
ground of POC at sea that is not associated with phyto-
plankton (e.g. Steele & Baird 1961, Townsend & Thomas
2002, Behrenfeld et al. 2005). But the method ignores the
possibility that this background might be variable and
that other types of particulate carbon might co-vary with
the phytoplankton, leading to erroneous results (Banse
1977, Eppley et al. 1992, Legendre & Michaud 1999), es-
pecially when dealing with large data sets from a variety
of locations covering a wide range of chl a values, as is
the case here. The non-linear approach used here over-
comes some of the limitations of these earlier methods.

Oubelkheir et al. (2005) used an analysis of optical
data and phytoplankton carbon measurements in cul-
tures to derive the fraction of phytoplankton carbon in
POC. Their method has not yet been validated by
direct measurements. Another approach to estimating
phytoplankton carbon at sea relies on measurements
of cell carbon in various types of phytoplankton in lab-
oratory cultures, combined with cell counts of the
phytoplankton types at sea (Eppley et al. 1992, Du-
Rand et al. 2001, Grob et al. 2007). The limitation of
this method is that the cell quota of carbon is a variable
quantity that depends on growth conditions (Geider
1987, Cloern et al. 1995), and this often introduces a
level of uncertainty into the calculations. A direct
method to estimate the carbon-to-chlorophyll ratio (χ)
at sea is the pigment-labelling method (Goericke &
Welschmeyer 1998). Unfortunately, this method has
not yet been widely used.

The variability observed in the relationship between
total carbon and chlorophyll (Figs. 1 & 2) arises from 2
main sources: variability in the proportion of non-phyto-
planktonic particulate carbon and variability in the
phytoplankton carbon itself. The former type of variabil-
ity is related to the status of the ecosystem as a whole,
whereas the latter may be associated with changes in the
phytoplankton community itself or with its acclimation to
the light or nutrient regime. Assuming that, at any given
chlorophyll concentration, the variability in the total car-
bon-to-chlorophyll ratio is primarily due to changes in
the non-phytoplanktonic carbon, data on total particu-
late carbon and chlorophyll can be used to retrieve the
phytoplankton carbon, as demonstrated here. The esti-
mates we have given for phytoplankton carbon in the
field have been derived from measurements of particu-

late carbon, invoking simple ecosystem considerations.
Since there will always be some contribution to particu-
late carbon in the field from material other than phyto-
plankton, this estimate (Eqs. 7 & 8; Table 3) represents an
upper limit of phytoplankton carbon for a given chl a
concentration. Moreover, it is well known that adapta-
tion to low light levels usually leads to an increase
in chlorophyll concentration per cell (e.g. Cullen 1982,
Veldhuis & Kraay 2004). Hence, we may refine the inter-
pretation of the field estimates to state that they repre-
sent maximal phytoplankton carbon for a given chloro-
phyll concentration under the prevailing ambient light
conditions. We may expect these estimates to be modu-
lated with changes in the available light, e.g. the carbon-
to-chlorophyll ratio decreasing with decreasing light.
Since most of the offshore data come from depths of 40 m
or less, the results presented here may be taken to be
representative of the surface mixed layer.

Carbon-to-chlorophyll ratios of phytoplankton

The analyses presented here provide an indirect
estimate of carbon-to-chlorophyll ratios in the field,
based on an extensive database. They compare well
with values in the literature (Table 4), and the esti-
mates of χ that emerge from the analyses (see Fig. 3)
are conservative. This relationship may be modulated
by light conditions during growth, as noted above.
Since most of our data are from surface and near-sur-
face waters, we may anticipate lower values of χ at
depth in the ocean, where the average light levels
experienced by the cells are lower. Carbon-to-chloro-
phyll ratios also vary with phytoplankton group, being
lowest for the larger diatom cells and highest for
smaller species such as Prochlorococcus sp., which is
also consistent with literature values.

The indirect method established here yields carbon-
to-chlorophyll ratios for phytoplankton that are reason-
able, based on our current knowledge. The field data
for various phytoplankton types separate into groups
along the chlorophyll axis, which made it possible to
establish χ for the different groups. These estimates
may be considered reasonable first approximations of
what can be expected in the field, when one of these
phytoplankton types is dominant. It remains to be
established whether these values of χ would hold if
other phytoplankton types were dominant and if the
nutrient and light regimes were different.

Phytoplankton growth rates

Cloern et al. (1995) used over 200 measurements of
carbon-to-chlorophyll ratios and growth rates from
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laboratory cultures reported by various investigators
and established an empirical model that relates car-
bon-to-chlorophyll ratios to growth rates based on
physiological considerations. They then developed a
model for conversion between carbon-based growth
rates and chlorophyll-specific photosynthesis rates.
Geider (1987) and Geider et al. (1997) also proposed
models that account for variations in carbon-to-chloro-
phyll ratios based on algal responses to culture condi-
tions. The method of Behrenfeld et al. (2005) for esti-
mating phytoplankton growth rates for remote-sensing
applications is also based on laboratory measurements.
Since laboratory cultures are often maintained in con-
ditions that poorly represent typical growth conditions
at sea, some uncertainty is introduced when laboratory
models are translated for application to field models.

Phytoplankton growth rates can be measured at sea
indirectly, from dilution experiments on zooplankton
grazing (Landry & Hassett 1982), from chl a labelling
experiments (e.g. Welschmeyer & Lorenzen 1984), or
from pigment budget experiments assuming steady-
state conditions in the water column sampled (e.g.
Welschmeyer & Lorenzen 1985, Landry et al. 1995).
But such measurements are not implemented on a rou-
tine basis at sea. The method applied here is based on
in situ measurements of photosynthesis–irradiance
parameters and an indirect estimate of carbon-to-
chlorophyll ratios. It allows us to exploit the existing
archives of photosynthesis–irradiance parameters, and
to reconcile chlorophyll-based and carbon-based mod-
els of primary production. It would be desirable to test
the performance of the method presented here by
using in situ experiments.

The method developed here for estimating the carbon-
based growth rates of phytoplankton (Fig. 3) is based on
a large body of field observations of photosynthesis–irra-
diance parameters and particulate carbon at sea. It is dif-
ferent from that proposed by Behrenfeld et al. (2005),
which relies on backscattering-derived POC, with the
additional assumption of a constant background contri-
bution from heterotrophic organisms and detritus, to de-
rive phytoplankton carbon. Their carbon-based growth
model relies on culture data, whereas the photosynthe-
sis–irradiance parameters on which our method is based
are estimated for natural seawater samples from the
study area. Photosynthesis–irradiance parameters are
directly observable at sea, and it is now possible to ex-
trapolate these observations on a pixel-by-pixel basis
(Platt et al. 2008). Therefore, algorithms for primary pro-
duction that are based on photosynthesis– irradiance for-
malism remain the methods of choice, compared with
carbon-based models. In the absence of routine tech-
niques to measure carbon-based growth rates for phyto-
plankton at sea, these rates have to be either extra-
polated from laboratory observations or estimated

indirectly from photosynthesis–irradiance parameters,
as proposed here. At present, the value of mapping car-
bon-based growth rates by remote sensing is principally
for comparison with growth rates used in large-scale
ecosystem models. The sources of differences between
models and estimates, if identified, could provide in-
sights that would allow further improvements of both
models and remote-sensing methods.

CONCLUSIONS

Almost 50 yr ago, Strickland (1960) identified limita-
tions of existing methods for estimating the carbon-to-
chlorophyll ratios of natural phytoplankton. Seventeen
years later, Banse (1977, p 199) lamented ‘matters have
not improved greatly’, and identified further problems
with existing methods. Now, 30 yr later, we are still
in search of a robust method for measuring this elu-
sive property. Even though new technologies such as
labelled chlorophyll (see Welschmeyer & Lorenzen
1984) have been brought to bear on the problem, such
measurements have yet to become routine, and field
estimates of phytoplankton carbon still often rely on
the cell quotas of carbon measured in laboratory cul-
tures, which bring their own uncertainties into the esti-
mates. We still do not have a direct, accurate and rou-
tine method for measuring phytoplankton carbon at
sea.

Meanwhile, the need to quantify phytoplankton car-
bon has increased. Ecosystem and climate-change
models use carbon-to-chlorophyll ratios, which are
known to be highly variable (values reported in the
literature range from <20 to >1000; see also Table 4
for a more conservative range). We need to be able to
measure the carbon-to-chlorophyll ratio directly and to
understand its variability if we are to improve phyto-
plankton growth models and better evaluate the role of
phytoplankton in the global carbon cycle and how it
might vary in the context of a changing climate. It is a
fundamental property of phytoplankton that remains
difficult to define.

The relationships between particulate carbon and
chl a presented here are based on bulk-property con-
siderations and rely on a large body of field data. They
reveal macro-ecological properties of use in models
and in remote sensing. Simple ecosystem considera-
tions then allow us to establish an upper limit for the
carbon-to-chlorophyll ratio of phytoplankton in the
field and its variation with chlorophyll concentration.
We were also able to determine the ratios for several
particular phytoplankton types, with results that are
consistent with earlier observations. These findings
lead to first-order estimates of the ratio from remote
sensing. Once the carbon-to-chlorophyll ratio is estab-
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lished, it is easy to switch between photosynthesis–
irradiance models and carbon-based growth models of
phytoplankton in a consistent manner, for application
in remote sensing or in ecosystem models, as illus-
trated here.
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