
REVIEW
published: 19 March 2021

doi: 10.3389/fmicb.2021.629163

Edited by:

George Tsiamis,

University of Patras, Greece

Reviewed by:

Zhongming Ge,

Massachusetts Institute

of Technology, United States

Óscar López,

Seville University, Spain

*Correspondence:

Claudiu T. Supuran

claudiu.supuran@unifi.it

Clemente Capasso

clemente.capasso@ibbr.cnr.it

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Systems Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 13 November 2020

Accepted: 22 February 2021

Published: 19 March 2021

Citation:

Campestre C, De Luca V,

Carradori S, Grande R, Carginale V,

Scaloni A, Supuran CT and

Capasso C (2021) Carbonic

Anhydrases: New Perspectives on

Protein Functional Role and Inhibition

in Helicobacter pylori.

Front. Microbiol. 12:629163.

doi: 10.3389/fmicb.2021.629163

Carbonic Anhydrases: New
Perspectives on Protein Functional
Role and Inhibition in Helicobacter
pylori
Cristina Campestre1†, Viviana De Luca2,3†, Simone Carradori1, Rossella Grande1,

Vincenzo Carginale2, Andrea Scaloni3, Claudiu T. Supuran4* and Clemente Capasso2*

1 Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy, 2 Department of Biology, Agriculture

and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy, 3 Proteomics

and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National

Research Council (ISPAAM-CNR), Naples, Italy, 4 Section of Pharmaceutical and Nutraceutical Sciences, Polo Scientifico,

Department of NEUROFARBA, University of Florence, Sesto Fiorentino, Italy

Our understanding of the function of bacterial carbonic anhydrases (CAs, EC 4.2.1.1)

has increased significantly in the last years. CAs are metalloenzymes able to modulate

CO2, HCO3
− and H+ concentration through their crucial role in catalysis of reversible

CO2 hydration (CO2 + H2O ⇄ HCO3
− + H+). In all living organisms, CA activity is

linked to physiological processes, such as those related to the transport and supply

of CO2 or HCO3
−, pH homeostasis, secretion of electrolytes, biosynthetic processes

and photosynthesis. These important processes cannot be ensured by the very low

rate of the non-catalyzed reaction of CO2 hydration. It has been recently shown that

CAs are important biomolecules for many bacteria involved in human infections, such

as Vibrio cholerae, Brucella suis, Salmonella enterica, Pseudomonas aeruginosa, and

Helicobacter pylori. In these species, CA activity promotes microorganism growth and

adaptation in the host, or modulates bacterial toxin production and virulence. In this

review, recent literature in this research field and some of the above-mentioned issues

are discussed, namely: (i) the implication of CAs from bacterial pathogens in determining

the microorganism growth and virulence; (ii) the druggability of these enzymes using

classical CA inhibitors (CAIs) of the sulfonamide-type as examples; (iii) the role played

by Helicobacter pylori CAs in the acid tolerance/adaptation of the microbe within the

human abdomen; (iv) the role of CAs played in the outer membrane vesicles spawned by

H. pylori in its planktonic and biofilm phenotypes; (v) the possibility of using H. pylori CAIs

in combination with probiotic strains as a novel anti-ulcer treatment approach. The latter

approach may represent an innovative and successful strategy to fight gastric infections

in the era of increasing resistance of pathogenic bacteria to classical antibiotics.
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vesicles, biofilm, microbiota
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INTRODUCTION

The Phenomenon of Antibiotic
Resistance
Bacteria are unicellular organisms having a simple circular DNA
as genetic material, which ensures organism reproduction (Wang
and Levin, 2009). Bacterial DNA is subjected to mutations or
can acquire exogenous genes from other bacteria (Watford and
Warrington, 2020). In the latter context, horizontal gene transfer

is generally accomplished through the transfer of a plasmid,
i.e., a small circular double-stranded extrachromosomal DNA
containing one or more genes, or by the fusion of extracellular

membrane vesicles (MVs), which are bilayer structures produced
in a budding manner by other bacteria (Grull et al., 2018;

Watford and Warrington, 2020). DNA mutations, gene transfer
processes as well as other mechanisms, such as changes in
the outer membrane permeability, drug extrusion by efflux
pumps and modification of the drug target, can induce the
bacteria to develop antibiotic resistance, which is now a severe
global health problem (Annunziato, 2019; Carradori et al., 2020;
Watford and Warrington, 2020). Different contexts determine
antibiotic resistance, namely the abuse and over-prescription
of drugs recommended to treat human infections, the frequent
use of such drugs in livestock farming, and the consumption
of vegetables, which may be contaminated with antibiotic-
resistant bacteria coming from the manure used to fertilize
vegetable farming (Ahl and Buntain, 1997; Roe and Pillai,

2003; Doyle, 2015). Infections caused by resistant bacteria are
treated by administering other antibiotics to which they may
still be sensitive (Fernando et al., 2017). However, bacteria
may acquire resistance to such new classes of antibiotics,
becoming multi-resistant organisms; accordingly, it is necessary
to discover novel types of antibiotics, which can overcome
the pan-resistance in these microorganisms (Walsh, 2005;
Collignon, 2015; Molchanova et al., 2017). Nowadays, pan-
resistant infections have become an odd reality, and clinicians
face this increasing problem with treating multidrug-resistant
strains of many pathogens (Walsh, 2005; Molchanova et al.,
2017). In Europe, it has been estimated that the resistance to
first-line of antibiotics (those of first use for the treatment of
infections) will remain substantially stable in 2030 compared
to 2005 levels. On the other hand, resistance to second-line
antibiotics used when the first-line antibiotics are ineffective, such
as the third generation cephalosporins and fluoroquinolones,
is expected to increase by 75% in the same period (Rossi and
Sternon, 2001). For third-line antibiotics (those of the last resort,
such as polymyxins), resistance is expected to double compared
to 2005 levels (Hartel et al., 2016). Therefore, the super-bacteria
tsunami slowly but surely is hitting, and an effective strategy is
needed to counteract it. A fundamental approach is to invest
in developing new drugs, and replacing those that have lost
effectiveness in the therapeutic settings (Dahle and Petersen,
2013; Littman and Halil, 2016; Cheesman et al., 2017). However,
the research and development of novel medicines take many
years, in some cases even more than a dozen per molecule in the
early stages of development, before a new product can reach the

market (Littman and Halil, 2016). Consequently, it is essential
to invest in a public health strategy to counteract the spread of
antibiotic-resistant bacterial infections.

The Drug Target Approach
The rapid progress in microbial genome sequencing has provided
important clues to the identification of bacterial virulence
factors, host specificity mechanisms, drug resistance phenomena,
and genes encoding for microbial enzymes indispensable for
corresponding metabolism (Selzer et al., 2000; Asif, 2012).
Enzymes represent significant druggable targets since they are
involved in decisive reaction catalyzing bacterial metabolic
pathways, and thus are fundamental for microbe strength
and virulence (Manchado et al., 2016; Sosa et al., 2018). In
this context, the drug-approach method consists in: (i) the
identification of essential metabolic pathways for pathogen life;
(ii) the discovery of critical enzymes that are indispensable
for bacterial catabolism and/or anabolism processes; (iii) the
discovery of small molecules and/or peptides able interfering
in vitro and in vivo with the activity of the target enzyme,
and ultimately with microbial growth (Manchado et al., 2016).
In general, the condition of identifying target enzymes that
are present only in the microbes and not in the host is
optimal for pharmaceutical purposes; for example, this situation
occurs in the case of natural/synthetic molecules interfering
with biosynthesis of bacterial peptidoglycan structure, which
is absent in mammalian cells. However, this condition is
uncommon due to the general conservation of most important
metabolic pathways in all organisms. In the latter case,
this limitation is overcome by designing/isolating molecules
selectively inhibiting bacterial enzymes and not host protein
homologs. For example, trimethoprim was found to selectively
inhibit the bacterial enzyme dihydrofolate reductase (DHFR),
which is ubiquitously expressed in all living organisms, but not
human DHFR (Capasso and Supuran, 2014). Using NADPH as
an electron donor, DHFR reduces the dihydrofolic acid (DHF)
to tetrahydrofolic acid (THF). THF is the cofactor of several
reactions concerning the synthesis of amino acids and nucleic
acids (i.e., purines, thymidylate, methionine, glycine, pantothenic
acid, and N-formyl-methionyl tRNA) (Capasso and Supuran,
2014). Besides, the amino acid sequence of bacterial DHFR
reveals 30% of identity when compared with the human protein,
and this phenomenon was associated with drug selectivity.

BACTERIAL CARBONIC ANHYDRASES
AS DRUGGABLE TARGETS

The genome exploration of microorganisms causing mammalian
and non-mammalian infections as well as the genome of those
considered not harmful evidenced genes encoding for an exciting
class of enzymes that are involved in the metabolic balance of
the bacterial carbon dioxide (CO2), bicarbonate (HCO3

−), and
protons (H+) (Annunziato et al., 2016; Capasso and Supuran,
2016; Del Prete et al., 2016a,b; Ozensoy Guler et al., 2016),
namely carbonic anhydrases (CAs, EC 4.2.1.1). They belong to a
superfamily of metalloenzymes that catalyze the physiologically
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crucial reversible reaction of CO2 hydration to HCO3
− and

H+, according to the following chemical reaction (Capasso and
Supuran, 2015a):

CO2 + H2O ⇌ HCO3
−

+ H+

Until now, eight CA classes indicated with α, β, γ, δ, ζ, η, θ,
and ι have been described in all kingdoms of living organisms
(Supuran and Capasso, 2017). All CA classes strictly conserve the
CO2 hydration and HCO3

− dehydration mechanisms, showing
an evident phenomenon of convergent evolution, having a very
low sequence similarity, and different 3D molecular folds and
structures (Supuran and Capasso, 2017). In Bacteria, four CA-
classes (α, β, γ, and ι) regulate the CO2 and HCO3

− balance,
being the only CA classes encoded by the bacterial genome
(Capasso and Supuran, 2013, 2015b,c; Supuran and Capasso,
2015; Del Prete et al., 2020b). For enzyme catalysis, most of
these CAs need Zn2+ as ion cofactor, which is coordinated by
three amino acid residues from the protein backbone (Buzas and
Supuran, 2016; Supuran, 2016e). The fourth metal ion ligand
is a water molecule/hydroxide ion acting as the nucleophile in
enzyme catalytic cycle (Carta et al., 2014). In particular, γ-CAs
are Fe2+-dependent enzymes, but they are also active with bound
Zn2+ or Co2+ ions; the last identified ι-CA class from the marine
diatom Thalassiosira pseudonana prefers Mn2+ to Zn2+ as the
ion cofactor. α-CAs are usually active as monomers or dimers;
β-CAs are active only as dimers, tetramers, or octamers. The
γ-CAs must be trimers for accomplishing their catalytic function
(Di Fiore et al., 2013; De Simone et al., 2015; Ferraroni et al.,
2015; Lomelino et al., 2016a). γ-CA monomers are characterized
by a tandemly-repeated hexapeptide crucial for the left-hand fold
of the trimeric β-helix structures (Fu et al., 2008). The X-ray
structure of ι-CAs is not available at this moment. Intriguing, α-
and ι-CAs catalyze also ester/thioester reactions (Supuran, 2016c;
Jensen et al., 2019).

Role of Bacterial CAs and Their
Relationship With the Bacterial Lifecycle
At a physiological pH value, the naturally occurring CO2

hydration reaction is too slow, with a first-order rate constant
of 0.15 s−1, while a rate constant of 50 s−1 was shown by
the reverse reaction (Supuran and Capasso, 2017). Thus, the
CA activity is connected to a very rapid process, such as that
related to the transport and supply of CO2 or HCO3

−, which
is generally essential for a number of physiological mechanisms,
such as pH homeostasis, secretion of electrolytes, biosynthetic
processes, photosynthesis, and others (Supuran and Capasso,
2018, 2020). These processes may not be supported by the
uncatalyzed reversible CO2 hydration reaction characterized, as
noted above, by very low catalytic constants.

The presence of multiple CA genes supports the crucial
role of these enzymes in prokaryotic physiology. In Gram-
negative bacteria, we initially proposed that α-CAs, which
are typified by a signal peptide at the N-terminus of the
polypeptide chain, occur in the periplasmic space where they
convert the CO2 to bicarbonate that diffuses in this environment,
ensuring the microbe lifecycle (Capasso and Supuran, 2015a,

2016). In contrast, the β- or γ-classes are localized into the
cytoplasm, accomplishing various intracellular functions, such as
CO2/HCO3

− transport, pH balancing, and other (Supuran and
Capasso, 2016, 2020). Recently, the existence of a short putative
signal peptide at the protein N-terminus of some β- and γ-CAs
from Gram-negative bacteria was also demonstrated; similarly,
it was observed that ι-CAs in the Gram-negative bacterium
Burkholderia territorii also present a signal peptide (Del Prete
et al., 2020a). Whenever characterized by a signal peptide, β-, γ-,
and ι-CAs might thus localized in the periplasmic space, having
a function similar to that performed by α-CAs. Finally, taking
advantage of protonography and mass spectrometry, members of
α-CA class were also ascertained to occur in the outer membrane
vesicles (OMVs) generatedH. pylori strains in the planktonic and
biofilm phenotypes (Ronci et al., 2019), underlying the existence
of additional secretion mechanisms for these enzymes.

By affecting CO2/HCO3
− balance, it was demonstrated that

CA activity influences a number of pivotal bacterial processes.
For example, it was verified that the deletion of the gene
encoding for the β-CA in Ralstonia eutropha is associated with
an heterotrophic growth of the bacterial mutant only when
elevated CO2 concentrations occur (Kusian et al., 2002). In
Escherichia coli, β-CA (CynT) catalyzes the hydration of CO2

generated by cyanase and generates HCO3
−, thus preventing

final HCO3
− depletion in bacteria resulting from degradation of

cyanate and/or othermetabolic processes. Besides, a second β-CA
(CynT2) was discovered in E. coli, which was demonstrated being
essential for the microorganism growth at atmospheric CO2

(Cronk et al., 2001;Merlin et al., 2003). Finally, bacteria belonging
to the genera Buchnera and Rickettsia were demonstrated being
adapted to live only in niches characterized by high CO2 levels,
and this adaptation is generally accompanied by loss of genes
encoding for CAs (Ueda et al., 2012).

On the other hand, a number of examples are present in
the literature concerning the relationship between CA activity
and survival, pathogenicity, and virulence of several human
pathogenic species. For example, the genome of V. cholerae, the
Gram-negative bacterium responsible for cholera, was shown to
encode for CAs of the β-, and γ-type, which are all involved
in the production of sodium bicarbonate, a potent inducer of
the cholera toxin (Abuaita and Withey, 2009). Similarly, two β-
CA from B. suis, a Gram-negative coccobacillus responsible for
brucellosis, and three β-CAs (mtCA1, mtCA2 and mtCA3) from
M. tuberculosis (Nishimori et al., 2010), the causative agent of
tuberculosis, were demonstrated being essential for the growth
of the corresponding microbes (Carta et al., 2009; Ceruso et al.,
2014; Singh and Supuran, 2014; Kohler et al., 2017). Analogously,
the genome of S. enterica serovar Typhimurium, a Gram-negative
bacterium causing gastroenteritis (Rollenhagen and Bumann,
2006), also encodes for a β-CA (Nishimori et al., 2011; Vullo et al.,
2011) that is highly expressed during the bacterial infection, as
demonstrated by in vivo gene expression studies (Rollenhagen
and Bumann, 2006). In P. aeruginosa (psCA1), a Gram-negative
bacterium commonly found in the environment, the β-CA
gene’s deletion provoked a reduction of calcium salt depositions,
impairing the microbe virulence (Lotlikar et al., 2019). Finally,
it was demonstrated that various CAs encoded by the H. pylori
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genome are essential for the acid tolerance/adaptation of the
microbe in the stomach, a harsh environment with pH values as
low as 1–2 (Buzas, 2010; Modak et al., 2019).

Inhibition of Bacterial CAs
With their activity, CAs continually provide the indispensable
CO2 and HCO3

−/protons to microbial biosynthetic pathways.
Thus, it is immediately apparent that their inhibition might
impair the survival of pathogens. CA inhibitors (CAIs) belonging
to many chemical classes are known and a description
is reported below.

Substituted Benzene-Sulfonamides and Clinically

Licensed Drugs

The initial antimicrobial products commonly used in healthcare
environments were the sulfonamides discovered by Domagk
in 1935 (Otten, 1986). Prontosil was the first sulfonamide to
demonstrate an intense antibacterial activity. It is a sulfanilamide
prodrug, which is isosteric/isostructural with p-aminobenzoic
acid (PABA), the substrate of dihydropteroate synthase (DHPS)
(Achari et al., 1997). DHPS is a critical enzyme for folate
synthesis, an essential vitamin/nutrient that mammals get from

their diet. Differently from mammals, bacteria use DHPS to
synthesize folate through the chemical reaction among DHPP
and PABA. After sulfanilamide was demonstrated to be an
effective antibacterial agent, many analogs (the sulfa drugs)
entered clinical use. Today, these compounds are still used
although knowing drug resistance issues. DHPS, as mentioned

above, is the target of the sulfa drugs, which work because they

fit into the DHPS active site and take PABA’s place. Several
DHPS mutations are responsible for sulfonamide resistance

(Capasso and Supuran, 2014). Sulfa drugs are derived from
sulfonamides, and the presence of primary sulfonamide moieties
in sulfanilamide characterizes most of the investigated CA
inhibitors (CAIs) (Supuran, 2016a,b, 2017a). Sulfonamides and
their structurally related derivatives, such as sulfamates and
sulfamides, have the general formula A-SO2NH-R, where A can
be an aromatic, heterocyclic, aliphatic, or sugar scaffold, while R
may be hydrogen (primary sulfonamides/sulfamates/sulfamides),
or a multiplicity of moieties incorporating heteroatoms (-OH,
-NH2, etc.), as well as organic scaffolds like those said for
A. Thus, a range of compounds containing the -SO2NH2

group were investigated as CAIs against bacterial CAs or CAs
from other organisms (Supuran, 2017b). Figure 1 shows some

FIGURE 1 | Sulfonamides and their isostere classes (sulfamates and sulfamides) as CAIs. Simple aromatic/heterocyclic derivatives 1–24 (A); clinically used drugs or

agents in clinical development (B).
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of these sulfonamide inhibitors (simple derivatives 1–24 and
clinically used drugs or agents in clinical development) (Carta
et al., 2009; Nishimori et al., 2010, 2014; Vullo et al., 2013,
2015a,b,c; Alafeefy et al., 2015a,b; Dedeoglu et al., 2015; Abdel
Gawad et al., 2016; Del Prete et al., 2016b,c,d; Diaz et al.,
2016; Supuran, 2016d). Acetazolamide (AAZ), methazolamide
(MZA), ethoxzolamide (EZA) and dichlorophenamide (DCP)
are systemically acting antiglaucoma CAIs. Dorzolamide (DZA)
and brinzolamide (BRZ) are antiglaucoma agents that function
topically; benzolamide (BZA) is an orphan drug of this
pharmacological class. Some of these compounds, such as
topiramate (TPM), sulthiame (SLT), and zonisamide (ZNS), are
antiepileptic drugs in clinical use for several decades. Other
sulfonamides, such as the clinically used sulpiride (SLP) and
the antitumor agent indisulam (IND), no longer in clinical
development, along with the sulfonamides originally developed
as COX-2 selective inhibitors [celecoxib (CLX) and valdecoxib
(VLX)] were also included in our experiments. Other investigated
compounds as CAIs are saccharin (SAC), hydrochlorothiazide
(HCT), a thiazide diuretic (Supuran, 2008), famotidine (FAM),
a histamine H2-receptor antagonist (Nguyen et al., 2020), as
well as the experimental agent epacadostat (EPA), which acts
as an inhibitor indoleamine 2,3-dioxygenase-1 (IDO1), a heme-
containing enzyme (Komiya and Huang, 2018). All of them
were shown to also act as CAIs primary sulfonamides as these
ones inhibit CAs by binding to the Zn2+ ion from the enzyme
active site, in a tetrahedral geometry of the metal, whereas
the sulfonamide is deprotonated at the SO2NH2 moiety. The
nitrogen atom of the SO2NH

− group then coordinates the Zn2+

ion, and participates to a network of H-bonds, which involve
conserved amino acid residues (Thr199 and Glu106), which
in this way anchor the inhibitor molecule to the enzyme very
strongly. This has been demonstrated by X-ray crystallographic
studies of many adducts of such sulfonamides with various CA
isoforms. The scaffold of the inhibitor (aromatic/heterocyclic
moiety) also interacts with amino acid residues from the active
site, either in the hydrophilic or within the hydrophobic part of
the catalytic cleft.

Inorganic Metal-Complexing Anions

Anions or complex molecules (such as carboxylates) can bind
CAs (De Simone and Supuran, 2012). Anions may bind
either to the metal ion in the tetrahedral geometry or as
trigonal–bipyramidal adducts. Anion inhibitors are generally
millimolar or submillimolar CAIs; they are thus less effective
than sulfonamides, which may show KIs in the submicromolar
to the nanomolar range. However, the anion inhibition profile
is essential for the comprehension of the cellular physiological
processes, which see involved the CAs, as well as for the
production of new forms of selective and efficient inhibitors; the
latter ones may be useful in the treatment of disease caused by an
alteration in the CA activity.

Dithiocarbamates

Other CAIs investigated as antibacterials are made of
dithiocarbamates (DTCs) (Scozzafava et al., 2000, 2001;
Carta et al., 2012a,b; Monti et al., 2012; Maresca et al., 2013).

These CAIs discovered after the inorganic anion trithiocarbonate
(CS3

2−, TTC) have been evaluated by using kinetic and X-ray
crystallographic studies, for understanding the binding of this
relatively weak inhibitor to the human isoform hCA II (Innocenti
et al., 2010). Afterward, it has been demonstrated that, due to
the fact that both DTCs, similar to TTC, incorporate the CS2

−

fragment, they bind through one of the sulfur atoms to the Zn2+

ion from the CA active site, interacting also with the conserved
residues mentioned above in all α-CAs, Thr199, and Glu106.
DTCs act as micromolar—low nanomolar CAIs against many
isoforms, since their organic scaffold was observed to participate
in various interactions with the CA active site (Adak et al., 2010;
Supuran, 2012; McKenna and Supuran, 2014).

Carboxylic Acids

Carboxylic acids are a group of non-classical CA inhibitors,
which include among others phenols, polyamines, fullerenes,
coumarins and their derivatives (Lomelino et al., 2016b).
Aromatic carboxylic acids (e.g., compounds 25–38 in Figure 2)
as well as aliphatic such derivatives (Figure 2B) inhibit CAs
by various mechanisms; they can coordinate the catalytic ion
cofactor as anions in a mono- or bidentate manner, or can anchor
to the Zn2+-coordinated water. Carboxylates may have thus
access to the catalytic zinc displacing the bound water/hydroxide
or impairing its catalytic effectiveness due to anchoring to it. This
binding is similar to that observed for phenol-based or polyamine
CAIs, which has been documented by X-ray crystallography
(Lomelino et al., 2016b).

Helicobacter pylori AND ITS
ADAPTATION IN THE STOMACH

In 1979, examining the tissue samples from patients subjected
to a gastric biopsy, the pathologist J. Robin Warren noted
many spiral-shaped curved bacteria below the thick mucus
layer, covering the stomach inner wall. Later, Warren associated
this infection with chronic superficial gastritis, and the nested
bacteria were identified as belonging to the genus Helicobacter
(Warren, 2000, 2006). Today, we know that a high percentage
of people infected with H. pylori have superficial chronic
gastritis. Besides, if left untreated, both H. pylori infection
and inflammation can persist for decades, and sometimes even
for all the lifetime (Rahman et al., 2020). Over the years,
it has learnt that H. pylori causes a chronic inflammatory
process, the peptic ulcer in the stomach and duodenum, the
portion of the small intestine that originates from the pylorus
(Zhu et al., 2020). The infection, previously considered to be
of metabolic origin, strongly increases the risk of neoplasms,
such as adenocarcinomas and lymphomas. For example, it
was discovered that some varieties of H. pylori have a 40 kb
DNA insertion element called cag pathogenicity island (cag
PAI), containing about 32 genes encoding the bacterial type
IV secretion system (Noto and Peak, 2012). The cag system
enables the transmission of bacterial effector molecules into the
gastric epithelial cells of the host. Some H. pylori strains slowly
inject into the gastric cells one of the virulent proteins, called
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FIGURE 2 | Carboxylic acids investigated as bacterial CAIs. Aromatic carboxylic acids 25–38 (A); aliphatic carboxylic acids (B).

CagA that can trigger severe gastritis atrophy, dysplasia, and
gastric adenocarcinoma, when a comparison with counterpart
strains lacking this component was done (Amieva et al., 2003;
Ye et al., 2003).

Helicobacter pylori is a Gram-negative pathogenic
neutralophilic bacterium with a metabolism harmonized
for a neutral pH development, but it is adapted to live in
the overly acidic gastrointestinal environment (Tarsia et al.,
2018). H. pylori genome encodes for α- and β-CAs. The α-CA
(hpβCA) has a periplasmic localization, while the β-CA (hpβCA)
is localized in the cytoplasm. It was aforementioned that the
activity of H. pylori CAs could be an additional adaptation of
the bacterium in the high acidic gastrointestinal environment
(pH in the range 1–2). Urease and CAs are the two enzymatic
systems used by the microbe for growing in this extreme
environment (Capasso and Supuran, 2015a). These enzymes
regulate the bacterial pH value determining an increase in the
cytoplasm through ammonia production (NH3). Urea goes into
the cytoplasm through the urea channel under acidic conditions,
where the urease converts it into NH3 and CO2. In the cytoplasm,
resulting CO2 is then hydrated by β-CA, while the periplasmic
α-CA hydrates the CO2 diffused in the periplasm (Capasso and
Supuran, 2015b). The produced ions (H+) by the CA-catalyzed
reaction are used by NH3 to form NH4

+ in the periplasm and
cytoplasm, which neutralizes the entering acid in the above

environments (Morishita et al., 2008). The combined action of
urease and CAs result in the acid acclimatization of the pathogen
within the stomach.

ENZYME ACTIVITY AND IN VITRO AND
IN VIVO INHIBITION OF THE
Helicobacter pylori CAs

Enzyme Activity
Periplasmic hpβCA and cytoplasmic hpβCA are catalytically
efficient for the CO2 hydration reaction with a kcat values in the
order of 105 s−1. This catalytic constant is quite close to the kcat
of human isoenzyme hCA I (Nishimori et al., 2008).

Inhibition by Substituted
Benzene-Sulfonamides and Clinically
Licensed Drugs
hpβCA and hpβCA were strongly inhibited by many
sulfonamides/sulfamates 1–24 and AAZ-HCT (see Table 1)
as well as by novel derivatives obtained by attaching
4-tert-butyl-phenylcarboxamido/sulfonamide tails to
benzenesulfonamide/1,3,4-thiadiazole-2-sulfonamide scaffolds
(Modak et al., 2015, 2016). Dorzolamide and simple 4-substituted
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benzenesulfonamides were feeble inhibitors (KIs 873–4,360 nM).
Sulfanilamide, orthanilamide, some of their derivatives,
and indisulam showed a more strong inhibitory effect (KIs

413–640 nM), whereas methazolamide, ethoxzolamide,
dichlorophenamide, brinzolamide, topiramate, zonisamide,
and others, worked as inhibitors of medium strength (KIs 105–
378 nM) (Nishimori et al., 2007; Table 1). For example, hpβCA
was selectivity inhibited over the hCAII by acetazolamide,
4-amino-6-chloro-1,3-benzenedisulfonamide, 4-(2-amino-
pyrimidin-4-yl)-benzenesulfonamide (KIs in the range of 20–96
nM), and compounds incorporating lipophilic tails (KIs = 12–84
nM) (Nishimori et al., 2006). Intriguingly, the hydrophilic pocket
of hpβCA resulted more open with respect to that of hCA II. As a
consequence, famotidine (FAM), an antiulcer drug incorporating
a sulfamide, resulted in an excellent inhibition of hpβCA (Angeli
et al., 2018; Table 1).

In vivo CA Inhibition
The involvement of CAs in the acid acclimation ofH. pylori in the
human stomach has been documented by administering CAIs,
which inhibited the acid-producing machinery within the gut
(Supuran, 2008). For example, acetazolamide was administrated
in 1960 to treat American patients affected by peptic ulcers before
the modern anti-ulcer agents were available (Buzas and Supuran,
2016). In 1968, Puscas administrated acetazolamide (2–4 g/day)
to many ulcer patients obtaining considerable success even if the
treatments were associated with a range of side effects. Recently,
it has been shown that acetazolamide administration (500 mg)
to volunteers with active H. pylori infection reduced the ability
of H. pylori to adapt/survive in the acid environment of the
stomach (Shahidzadeh et al., 2005). Other than acetazolamide,
ethoxzolamide (EZA) can be considered a potential drug for
developing new anti-H. pylori inhibitors since it kills the
bacterium in cell cultures (Modak et al., 2019). Besides, EZA
resistance did not develop easily in the H. pylori strains (P12,
SS1,m and 26695) used for the experiments, and the compound
seems to targetmultiple pathways since resistance acquisition was
due to mutations associated with other genes than CAs (Rahman
et al., 2020). In this context, we stress the fact that, recently, it
has been demonstrated that the well documented vancomycin-
resistant enterococci (VRE) might be addressed by targeting the
Enterococcus CAs using a modified scaffold of acetazolamide
(an inhibitor of the carbonic anhydrases) (Kaur et al., 2020).
As a result, the authors identified two lead compounds having
improved potency against clinical VRE strains (MIC from 0.007
to 1 µg/mL) (117). It is readily apparent that these results
support the proof-of-concept that CAIs can be considered as
novel antibacterials.

H.pylori OUTER MEMBRANE VESICLES

The bacterial extracellular vesicles (EVs) are generated in a
budding manner similar to that of the yeasts (Kim et al., 2015).
Gram-negative bacteria, differently from the Gram-positive
bacteria, produce extracellular vesicles by pinching off the
outer membrane and, for this reason, are defined with the

TABLE 1 | Inhibition of human hCA I and hCA II isoforms as well as of H. pylori
CAs (hpαCA and hpβCA) with sulfonamides 1–24 and the clinically used drugs

AAZ-FAM.

Inhibitor KI
c (nM)

hCA Ia hCA IIa hpαCAa hpβCAb

1 45,400 295 426 16,400

2 25,000 240 454 1,845

3 28,000 300 316 8,650

4 78,500 320 430 2,470

5 25,000 170 873 2,360

6 21,000 160 1,150 3,500

7 8,300 60 1,230 1,359

8 9,800 110 378 1,463

9 6,500 40 452 1,235

10 6,000 70 510 1,146

11 5,800 63 412 973

12 8,400 75 49 640

13 8,600 60 323 2,590

14 9,300 19 549 768

15 6 2 268 64

16 164 46 131 87

17 185 50 114 71

18 109 33 84 38

19 95 30 207 39

20 690 12 105 37

21 55 80 876 236

22 21,000 125 1,134 218

23 23,000 133 1,052 450

24 24,000 125 541 15,250

AAZ 250 12 21 40

MZA 50 14 225 176

EZA 25 8 193 33

DCP 1,200 38 378 105

DZA 50,000 9 4,360 73

BRZ 45,000 3 210 128

BZA 15 9 315 54

TPM 250 10 172 32

ZNS 56 35 231 254

SLP 1,200 40 204 35

IND 31 15 413 143

FAM 922 58 21 50

aHuman/bacterial recombinant isozymes and stopped-flow CO2 hydrase assay
method, as reported in Nishimori et al. (2008).
bRecombinant hpCA and stopped-flow CO2 hydrase assay method, as reported
in this work, mean ± SE (from three different assays) and in Nishimori et al. (2007).
cErrors in the range of 5–10% of the shown data, as resulting from three different
assays.

acronym OMVs (Outer Membrane Vesicles) (Liu et al., 2018).
Distinctive features of OMVs are the lipopolysaccharide (LPS)
and encapsulate periplasmic components, which are absent
in the Gram-positive EVs. The vesicles generated by Gram-
positive bacteria could bring inside various molecules, including
nucleic acids, proteins, lipids, viruses, enzymes, and toxins.
Depending molecules contained inside, these vesicles can have
variegated roles. For example, they are involved in horizontal
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gene transfer, antibiotic resistance, microbial survival, microbial
competition, nutrient acquisition, health benefits for the host,
microbial virulence, cell-cell communication among bacteria
and hosts, and biofilm formation (Ronci et al., 2019). The
H. pylori OMVs are implicated in biofilm formation, and the
presence of DNA inside these vesicles appears to be involved in
“joining” OMV–OMV and OMV–cell communications (Grande
et al., 2012, 2015). As aforementioned, Ronci et al. used mass
spectrometry to identify periplasmic β-CA in theH. pyloriOMVs
generated in vitro from the microbe both in its planktonic
and biofilm phenotypes (Ronci et al., 2019). Besides, β-CA
hydratase activity was determined using the protonography, a
technique selective for the detection of CAs. As a result, it was
demonstrated that the amount of the periplasmic β-CA was
higher in the planktonic OMVs (pOMVs) than in the biofilm
OMVs (bOMVs). Furthermore, it was observed that the content
of β-CA increased in pOMVs over time.

Moreover, the biofilm phenotype, a complex structure in
which bacteria adhere to a surface and are embedded in a
self-produced EPS (extracellular polymeric substance) matrix,
is a condition used by pathogenic bacteria to improve their
survival, bacterial infection, and resistance to the effects of
antimicrobial agents (Parsek and Singh, 2003; Grande et al.,
2014).H. pylori tends to form a biofilm on human gastric mucosa
(Yonezawa et al., 2015), and biofilm cells are more resistant to the
effects of antimicrobial agents (Carron et al., 2006). Generally,
the first-line therapy to eradicate H. pylori infection is based
on a combination of drugs, such as proton pump inhibitor
(PPIs), amoxicillin, clarithromycin (CAM) or metronidazole,
and fluoroquinolones (Bang et al., 2020). Novel approaches to
prevent biofilm formation and to treat infections by biofilm-
forming bacteria are currently under development (Bjarnsholt
et al., 2018). The identification of periplasmic β-CA in pOMVs
and its specific inhibition with the classical CAIs might shed new
light on this enzyme’s role in the H. pylori colonization, survival,
persistence, and pathogenesis.

CA INHIBITORS IN COMBINATION WITH
PROBIOTIC STRAINS

In the literature, it has been reported the possible existence
of a correlation between intestinal microbiota (i.e., microbial
populations living in the intestine) and various autoimmune
diseases, such as systemic lupus erythematosus or autoimmune
liver diseases (Manfredo Vieira et al., 2018). Kriegel and
colleagues noted that the bacterium Enterococcus gallinarum, a
very rare enterococcus, has been often identified in the intestinal
flora and liver of patients with lupus; thus, it was considered
as a trigger of the systemic lupus erythematosus (Manfredo
Vieira et al., 2018). In experiments on mice, it was demonstrated
that these bacteria can overcome the small intestine barrier
and quickly reach the liver and other organs, particularly the
spleen and lymph nodes. In this way, the bacterium triggers an
inflammatory process, which allows the secretion of chemical
messengers equal to those observed in subjects with lupus,
inducing the proliferation of autoantibodies that also attack the

cells of the organism. In contrast, some bacterial strains, which
live within the microbiota, function as brakes against intestinal
tumors (Zagato et al., 2020). For example, it has been observed
the absence of Holdemanella biformis, a bacterium belonging to
the family of Erysipelotrichaceae, in the microbiota of patients in
an early stage of development of intestinal cancer. These bacteria
have antitumor properties capable of blocking the uncontrolled
proliferation of cells, which happens in the case of a lack of them
in the gut (Zagato et al., 2020). Thus, it is reasonable to believe
that these anti-tumorigenic bacteria have a strong diagnostic,
therapeutic, and translational potential.

In H. pylori-infected individuals, the gastric microbiota is
similar to that of the non-infected persons. In general, infected
persons have 52.6% of Proteobacteria, 26.4% of Firmicutes, 12%
of Bacteroidetes and 6.4% of Actinobacteria (Llorca et al., 2017;
Ozbey et al., 2020). The resident gastric microflora may interfere
with H. pylori’s proliferation and gut disease. For this reason,
the pharmacological treatments for eradicating H. pylori from
the gastric mucosa can be ameliorate using probiotics (Emara
et al., 2014; Maccelli et al., 2020). The effect of new antimicrobial
molecules is rarely evaluated; thus, the identification of new
drugs that possess a selective toxicity between pathogens and
some components of the human microbiota might represent
an important step in the clinical field (Grande et al., 2020).
Therefore, the identification of probiotic strains, which do not
possess the CAs and constitute a significant component of the
human microbiota (Martin et al., 2013) used in combination
with innovative drugs, such as those coming from the modified
scaffold of CAIs, might represent an innovative anti-H. pylori
treatment. Not being affected by the inhibitor, the probiotic
can exert a synergistic effect improving the antimicrobial action
of the (bactericidal or bacteriostatic) CA inhibitors. Besides,
the probiotic, by educating or stimulating the host immune
system, could also contribute to the efficacy of the CA inhibitor.
Thus, this combination might represent an innovative and
successful strategy to fight infections without altering the
normal microbiota.

CONCLUSION

At least four classes of CAs (α, β, γ, and ι) are present in
Bacteria. During growth, microbes require CO2 and HCO3

− to
support their metabolism, as well as H+ ions/bicarbonate for
the balance of the pH value. CAs with their activity correctly
balance the interconversion of inorganic these species. Thus,
CAs play essential roles in the life cycle of pathogenic and non-
pathogenic bacteria, and their inhibition prejudices the growth of
the microbe. This paves the way for designing novel anti-infective
drugs, which function differently from the standard antibiotics.
The involvement of CAs in the lifecycle, pathogenicity, and
virulence of several species (e.g., H. pylori, V. cholerae, B. suis,
S. enterica, P. aeruginosa, and Enterococcus spp.) of human
pathogens is not new, but only recently programs to develop
agents that specifically and selectively inhibit these enzymes
have been initiated. Presently, many bacterial species have been
investigated for the presence of CAs belonging to all four classes
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mentioned above. Furthermore, many bacterial CAs have been
prepared as recombinant enzymes and thoroughly characterized
by a biochemical viewpoint and for their ability to be inhibited by
various compounds. These enzymes were effectively inhibited by
the classical CAIs, such as the sulfonamides and their derivatives,
sulfamates, sulfamides, (in)organic anions, and some of them
by dithiocarbamates as well as carboxylic acids. More exciting
is the discovery that ethoxzolamide can kill H. pylori in vitro
and in vivo, and that the bacterial resistance to this compound
does not develop easily. The recent study on the efficacy of
acetazolamide and some of its derivatives to act as inhibitors of
vancomycin resistant enterococci (VRE) is a breakthrough in the
field (Kaur et al., 2020). The drug design campaign reported in the
same study led to the identification of sulfonamide derivatives,
which seem to be orders of magnitudemore efficient against VRE,
when compared to the clinically used agent linezolid. Drug design
campaigns were also useful in finding H. pylori-selective CAIs

belonging to the sulfonamide class. Thus, it is not impossible to
hypothesize that the field of CAIs as anti-infectives may lead to
relevant developments in the near future and future dedicated
studies are necessary in this context.
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