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Abstract: In this work, we have developed novel beads based on carboxymethyl cellulose (CMC)
encapsulated copper oxide-titanium oxide (CuO-TiO2) nanocomposite (CMC/CuO-TiO2) via Al+3

cross-linking agent. The developed CMC/CuO-TiO2 beads were applied as a promising catalyst
for the catalytic reduction of organic and inorganic contaminants; nitrophenols (NP), methyl orange
(MO), eosin yellow (EY) and potassium hexacyanoferrate (K3[Fe(CN)6]) in the presence of reducing
agent (NaBH4). CMC/CuO-TiO2 nanocatalyst beads exhibited excellent catalytic activity in the
reduction of all selected pollutants (4-NP, 2-NP, 2,6-DNP, MO, EY and K3[Fe(CN)6]). Further, the
catalytic activity of beads was optimized toward 4-nitrophenol with varying its concentrations and
testing different concentrations of NaBH4. Beads stability, reusability, and loss in catalytic activity
were investigated using the recyclability method, in which the CMC/CuO-TiO2 nanocomposite
beads were tested several times for the reduction of 4-NP. As a result, the designed CMC/CuO-TiO2

nanocomposite beads are strong, stable, and their catalytic activity has been proven.

Keywords: catalytic reduction; carboxymethyl cellulose; nanocatalyst; catalytic reduction; organic
and inorganic pollutants

1. Introduction

Large quantities of organic and inorganic contaminates released to the ecosystem
through wastewater steam due to different human activities (e.g., industrial waste, textile,
agrochemical and pharmaceutical). These organic and inorganic pollutants, such as dyes,
nitrophenols, and potassium hexacyanoferrate are naturally unmanageable, highly toxic,
hazardous in nature, carcinogenic, mutagenic, and limited biodegradable. They are also
seen as being harmful and dangerous to living things [1–5].

As a result, the techniques for removing these types of pollutants have significant
drawbacks, such as low elimination rates, high cost and complexity, and slow removal
efficiency, which limit their uses. Many efforts have been devoted to remove toxic con-
taminants from water bodies, but some of the established methods are not useful enough
to complete the removal of toxic pollutants, besides long time consumption and their
high cost. The demand for pollution management around the world is to develop new
cost-effective, environmentally friendly, simple, and new manageable processes to remove
the toxic contaminants or convert into the toxins into useful compounds. The rising ad-
vancement of usage of green chemistry in pollution management is due to the fact that
environmentally friendly processes have a long history of being both environmentally and
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economically beneficial [6–8]. Recently, huge efforts have been made to develop methods
based on catalytic reduction/degradation/transformation of these toxic contaminates to
less toxic form and useful compounds which is a good way to deal with wastewater con-
taminates. Catalytic reduction is one strategy that requires less time to remove the toxic
pollutants, which is easy, fast and involves a very low quantity of solvent compared to
other techniques. According to literature, various catalysts have been prepared from an
efficient, stable, and selective material to be an efficient for the removal toxic organic and
inorganic contaminates from wastewater.

Copper oxide nanocatalyst can achieve good selectivity without any extra additives for
reducing nitrophenols and dyes. Due to its unique characteristics, such as a high surface-to-
volume ratio and higher activity compared to those of the bulk materials [9–11]. Titanium
dioxide (TiO2) is also frequently used as a nanocatalyst or substrate for immobilizing metal
nanomaterial because of its favorable qualities of non-toxicity, stability, and hydroxyl-
rich surface [12]. In particular, copper oxide (p-type) and titanium oxide (n-type) are an
important class of semiconductor for efficient dye degradation processes and the reduction
of nitrophenols. Thus, a nanocatalyst based on the combination of TiO2 and CuO have
been developed for the reduction of nitrophenol and dyes due to their great advantages
of adjustable oxidation states, low cost, as well as thermal and chemical stability [13–18].
Unfortunately, the powder nanocatalyst of metal oxides encountered issues like aggregation,
difficulties in separation and reuse of these materials [14,19–23].

Polymer-based metal oxide nanocomposite holds great promise as a viable approach
to overcome the aforementioned challenges of metal oxide nanoparticles. According to
recent studies, different polymer-based nanocomposites have been fabricated by vari-
ous ways, either by coating or hosting the fine nanomaterial onto the polymer matrix of
larger size. Polymeric host materials are an attractive route to control the pore space and
surface of the nanomaterials as well as their excellent properties, which could improve
the mechanical strength for long-term use. Several polymers, including cellulose or car-
boxymethyl cellulose [13,24–28], chitosan, agarose, clay, alginate and so on [21,29–36], are
used. Among them, CMC has been proven to be an appropriate polymer host for various
metal oxide nanocomposites.

In the current study, an efficient nanocatalyst beads were developed based on incor-
porating the nanocomposite CuO-TiO2 onto the CMC as a host polymer by the help of
cross-linking agent AlCl3. CMC/CuO-TiO2 beads were characterized by SEM, XRD and
EDS. The synthesized CMC/CuO-TiO2 beads were evaluated as catalyst for the reduction
of selected organic and inorganic pollutants.

2. Experimental
2.1. Chemicals and Reagents

Titanium (VI) oxide ((TiO2) of particle size < 100 nm and purity of >97% has been
provided by Sigma Aldrich. Copper (II) nitrate (Cu(NO3)2), nitrophenols including 4-
nitrophenol (4-NP), 2-nitrophenol (2-NP) and 2,6-dinitrophenol (2,6-DNP), organic dyes in-
volving methyl orange (MO) and eosin yellow (EY), potassium hexacyanoferrate K3[Fe(CN)6],
sodium borohydride (NaBH4), and carboxymethyl cellulose (CMC) were all purchased
from Sigma-Aldrich. Distilled water was used in all experiments.

2.2. Synthesis of CuO-TiO2 Nanoparticles

CuO-TiO2 nanoparticles were prepared by dissolving cupric nitrate in distilled water
(1:1 weight) and stirring thoroughly to completely dissolve the cupric nitrate. Then, the
TiO2 was added to cupric nitrate solution (1:1 weight). After that, NaOH was added to
elevate the pH of the liquid to 10. The resulting mixture was agitated overnight at 60 ◦C,
then rinsed and dried multiple times. The precipitate was then calcined for 5 h at 500 ◦C.
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2.3. Preparation of CMC/CuO-TiO2 Nanocatalyst Beads

CuO-TiO2 nanoparticles were dispersed in CMC solution to make CMC/CuO-TiO2
nanocatalyst beads. Firstly, 0.1 g of CMC powder was dissolved in 50 mL of deionized
water at 50 ◦C with stirring for 4 h. After CMC completely dissolved, 150 mg of CuO-TiO2
nanoparticles was added to the CMC solution and continuous stirring overnight at RT
(25 ± 1), which resulted in a viscous suspension. The mixture was filled in syringe and
loaded by dropwise into 0.2 M AlCl3, which used as a cross linker agent to form beads of
CMC/CuO-TiO2. The CMC/CuO-TiO2 beads were kept in a crosslinking agent solution
overnight for complete crosslinking. Afterward, the prepared beads were separated and
washed several times with deionized water to eliminate the excess of unreacted Al+3 on the
surface of the beads. Finally, the CMC/CuO-TiO2 beads were dried at a temperature of
25 ◦C on the pinch top, as shown in Figure 1.
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Figure 1. Schematic representation for the preparation of CMC/CuO-TiO2 nanocatalyst beads.

2.4. Characterization

To evaluate the phase structure of the produced catalysts, X-ray diffraction (XRD)
was used to confirm the morphologies and structures of CuO-TiO2 and CMC/CuO-TiO2.
CuO-TiO2 and CMC/CuO-TiO2 were also analyzed using a scanning electron microscope
(SEM) (JEOL, JSM-7600F, Akishima-shi, Japan) and were individually glued on the stub
using carbon tape as a binder and then sputtered with platinum for 15 s. For elemental
analysis, EDS was used, which is connected directly with the SEM. For UV–Vis spectra, a
Thermo Scientific TM Evolution TM 350 UV–vis spectrophotometer was used to record the
catalytic reduction studies.

2.5. Catalytic Reduction

The catalytic behavior of the developed nanocatalyst beads (CMC/CuO-TiO2) was
tested with organic pollutants such as nitrophenol isomers [4-NP, 2-NP, and 2,6-DNP] and
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organic dyes (EY and MO) as well as inorganic compound K3[Fe(CN)6]. All these selected
compounds were prepared in deionized water. In all catalytic reduction investigations,
2.5 mL of a pollutant solution was placed in the UV cuvette cell and passed across its UV-vis
spectrum. After that, 0.5 mL of fresh reducing agent (0.1 M NaBH4) was added, followed
by 5 mg of CMC/CuO-TiO2 beads, and the UV-vis absorption spectrum was continually
recorded every 1.0 min. The percent % reduction of all compounds was calculated by
utilizing Equation (1):

%Reduction =
C0 − Ct

C0
∗ 100 (1)

where C0 and Ct are the initial and final concentrations of the studied compounds [6].

3. Result and Discussion
3.1. Characterization
3.1.1. Scanning Electron Microscope (SEM)

The surface morphology of the prepared materials CuO-TiO2 and CMC/CuO-TiO2
was examined using SEM. Low-to-high-magnified SEM pictures for the prepared nanocom-
posites are represented on the left and right sides of Figure 2. Images of Figure 2a,a’ indicate
the particles of CuO-TiO2 which look like aggregated nanosheets [37,38]. The pure beads
of CMC show flat surfaces with less porousness, which was presented in our previous
studies [14,31]. On the other hand, CMC/CuO-TiO2 was planted well on the CMC matrix,
as observed in Figure 2b,b’. The surface of the CMC/CuO-TiO2 beads looks smooth due to
the CMC while the aggregated particles appeared due to CuO-TiO2.
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Figure 2. SEM images of (a,a’) CuO-TiO2 and (b,b’) CMC/CuO-TiO2.

3.1.2. X-ray Diffraction (XRD)

The crystal structures and phase purities of CMC/CuO-TiO2 nanocomposite beads and
CuO-TiO2 were tested by XRD analysis. The CuO-TiO2 nanocomposite pattern illustrated
several diffraction peaks, which were indications for the CuO and TiO2 phases. As shown
in Figure 3, the diffraction peaks at 2θ were equal to 27◦ and 55◦, confirming the TiO2 in the
rutile phase [39–41], whereas the diffraction bands at 2θ = 35.6◦, 38.6◦, and 48.8◦, indicating
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the monoclinic structure of CuO [42]. As per our previous studies [1,38], the XRD pattern
of CMC/CuO-TiO2 bead showed one additional small hump at 2θ = 23◦ which suggest the
presence of amorphous phase of CMC present in the bead. The developed CMC/CuO-TiO2
nanocomposite beads has the same diffraction peaks, which indicating that CuO-TiO2 was
planned very well in the CMC matrix as clearly seen from Figure 3.
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Figure 3. XRD pattern of CuO-TiO2 and CMC/CuO-TiO2.

3.1.3. EDS Analysis

As shown in Figure 4a,a’, EDS was used to confirm the composition of CuO-TiO2
and CMC/CuO-TiO2 nanocatalysts. Copper (Cu), titanium (Ti), and oxygen (O) peaks
were visible in the EDS spectra of the CuO-TiO2 nanoparticles. Cu peaks were found at
0.9, 8.0, and 9.0 keV, whereas Ti peaks were found at 0.5, 4.5, and 5.0 keV, and O peaks
were at 0.48 keV. Referring to Cu, Ti, and O, the data indicated the production of CuO-
TiO2 nanoparticles. Thus, the CuO-TiO2 nanoparticles were made up of Cu, Ti, and O,
according to EDS. The oxygen content was 27.32 wt% while Cu and Ti were 36.13 wt% and
33.71 wt%, according to EDS data. At the same time, the EDS analysis was also applied to
CMC/CuO-TiO2 beads. Elements such as Cu, Ti, O, C, Cl, and Al were all detected in the
CMC/CuO-TiO2 bead spectra (Figure 4b,b’), which indicated that the beads containe these
elements. The production of CMC/CuO-TiO2 beads was confirmed by these peaks. Cu,
Ti, O, and C were due to CuO-TiO2 and CMC, whereas Al and Cl were existing due to the
cross-linking agent (AlCl3). EDS proved that the developed CMC/CuO-TiO2 beads were
successfully prepared and contained Cu, Ti, O, C, Al, and Cl.
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Figure 4. EDS spectrum of (a,a’) CuO-TiO2 and (b,b’) CMC/CuO-TiO2.

3.2. Catalytic Reduction
3.2.1. Reduction of Nitrophenol Isomers

The CMC/CuO-TiO2 nanocatalyst beads were initially investigated for their ability
to reduce 4-NP in the presence of NaBH4. As can be observed in Figure 5, the 4-NP has a
pale yellow absorbance peak at 317 nm. The color changed to brilliant yellow after adding
0.5 mL of 0.1 M NaBH4, and the absorbance band was shifted to a longer wavelength of
400 nm at the same time. This is frequent in 4-NP reduction; a change in color and a shift
in the absorbance band are indications of 4-nitrophenolate ion formation. However, in
the absence of a catalyst, the additional conversion of 4-nitrophenolate ions to colorless
amino phenol (4-AP) by NaBH4 takes a long time, and for a few dyes, even with a large
amount of reducing agent, it is not accomplished [43]. A fast and good catalytic reduction
of 4-NP with only NaBH4 would be good enough; unfortunately, it seems to be impossible
to achieve it without a catalyst. Thus, a fast and good catalytic reduction of 4-NP with
only NaBH4 (without a catalyst) cannot be carried out. The excellent reduction of 4-NP
requires an efficient catalyst in the presence of NaBH4, which can speed up the reduction
reaction. Therefore, CuO-TiO2 nanocatalyst was tested for the reduction of 4-NP to 4-AP.
After the introduction of CuO-TiO2 to the mixture, the absorbance band intensity at 400 nm
decreased, with the gradual disappearance of the bright yellow color. At the same time,
a new absorbance band appeared at 300 nm. These results were signs of the complete
reduction of the nitro group (-NO2) in 4-NP to an amine group (-NH2). Figure 5a shows
the changes taking place during the catalytic reduction of 4-NP by CuO-TiO2, where the
reduction occurs in 12.0 min according to the spectra. However, the novel nanocatalyst
beads CMC/CuO-TiO2 were also evaluated for the catalytic reduction of 4-NP. As Figure 5a
confirmed that CMC/CuO-TiO2 performed a good catalytic reduction of 4-NP to 4-AP
in a shorter period of time compared to CuO-TiO2, where the catalytic reduction of 4-NP
to 4-AP was accomplished in only 3.0 min. The fast reduction ability of CMC/CuO-TiO2
might be due to the contribution of the Al+3 ion in the reduction, which had been used as a
crosslinker in the preparation of beads.
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(b–d), 4-NP, 2-NP, and 2,6-DNP reduction using 5 mg CMC/CuO-TiO2 in the presence of NaBH4,
(e) removal percentage of 4-NP, 2-NP and 2,6-DNP using 5 mg CMC/CuO-TiO2 in the presence
of NaBH4.

Similarly, under the same procedure described above, the catalytic behaviors of
CMC/CuO-TiO2 nanocatalyst beads were also tested for the catalytic reactions of ni-
trophenol isomers such as 2-NP and 2,6-DNP into their corresponding amino groups in
the presence of 0.5 mL of 0.1 M NaBH4. Figure 5 indicates that pure 2-NP and 2,6-DNP
had strong absorbance bands at 317 nm and 428 nm, respectively. In the beginning, the
catalytic reduction was examined in the absence of the nanocatalyst beads. The color of
the nitrophenol isomers (2-NP and 2,6-DNP) changed from pale yellow to bright yellow,
besides a slight shift of both absorption bands with only excess NaBH4. However, using
5 mg of CMC/CuO-TiO2 nanocatalyst beads, the 2-NP and 2,6-DNP were reduced to
2-AP and 2,6-DAP, respectively. The intensity of the absorbance peak at 413 and 428 nm
steadily dropped as the process progressed, while a new absorbance band developed at
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280 nm with increased intensity (Figure 5c,d). The spectra revealed that the reduction
reaction of 2-NP and 2,6-DNP occurred within 3.0 min. The removal percentage of the
reduction process was estimated using Equation (1). The reduction of nitrophenol isomers
4-NP, 2-NP, and 2,6-DNP were found to be 90.24%, 87.5%, and 85.43%, respectively. The
CMC/CuO-TiO2 nanocatalyst was efficient, selective, and had excellent catalytic activity
toward nitrophenol isomers.

Figure 6 depicts the schematic representation of 4-NP reduction mechanism. In
accordance with this scheme, it is proposed that initially both BH4

− and 4-NP get adsorbed
on the surface of the catalyst. The catalyst enhances the transfer of electron from BH4

− to
4-NP and thus decreases the activation energy of the reaction.
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Effect of 4-Nitrophenol Concentration

The effect of 4-NP concentration on the catalytic activity of CMC/CuO-TiO2 was
studied using 0.1 M NaBH4. For this investigation, three different concentrations of 4-NP
solution (0.13, 0.08, and 0.04 mM) were prepared to determine the catalytic effects of 4-NP
concentration. Figure 7 indicated the spectra of a range of 4-NP concentrations, in which
0.13 mM concentration reduced up to 90% in 3.0 min and up to 83% and 80% in 2.0 and
1.30 min for 0.08 and 0.04 mM, respectively. As a result, it was noticed that as compared
to higher concentrations of 4-NP, the low concentration could be easily reduced while the
catalyst quantity remained constant [1].

Effect of NaBH4 Concentration

The influence of NaBH4 concentration on the catalytic reduction of 4-NP was studied
by using CMC/CuO-TiO2 nanocatalyst beads. Various doses of NaBH4 (0.1 M and 0.05 M)
were employed in the presence of 5 mg CMC/CuO-TiO2 beads in this work. Based on the
results, increasing the NaBH4 concentration led to speeding up the reaction, as shown in
the UV–Vis spectra of the catalytic reduction of 4-NP in Figure 8. With 0.1 M and 0.05 M,
4-NP was reduced up to 90% and 92%, respectively. As a result, it was shown that 0.1 M
NaBH4 concentration could speed up the reaction and reduce the 4-NP in less time than
0.05 M concentration of NaBH4.
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3.2.2. Reduction of Organic Dyes

Organic dyes are widely used in the textile industry, and their non-biodegradability,
toxicity, mutagenicity, and carcinogenicity make them a growing source of pollution in
the environment. The goal of this investigation was to see how well the newly designed
nanocatalyst beads reduce two types of organic dyes: methyl orange (MO) and eosin
yellow (EY). UV–Vis spectroscopy was used to record the catalytic reduction, as shown
in Figure 9a,b.
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Figure 9. UV–Vis spectra for catalytic reduction of (a) MO, (b) EY, and (c) K3[Fe(CN)6] using
CMC/CuO-TiO2 beads in the presence of NaBH4, (d) removal percentage of MO, EY, and K3[Fe(CN)6]
using 5 mg CMC/CuO-TiO2 in the presence of NaBH4.

The catalytic reduction of MO and EY was tested using 5 mg of CMC/CuO-TiO2
nanocatalyst beads in the presence of NaBH4. In the addition of only NaBH4, no reductive
reaction could take place between NaBH4 and the dyes. However, a regular decrease
in the adsorption band was observed in the presence of CMC/CuO-TiO2 nanocatalyst
beads. The catalytic reduction was recorded via UV–Vis spectroscopy. As clearly seen
from (Figure 9a,b), the removal (%) of EY and MO occurred within 1.0–4.0 min, which
reduced MO and EY up to 93.14%, and 91.5%, respectively (Figure 9d). Electrons were
transferred from BH4

− to CMC/CuO-TiO2 and then to acceptor dye molecules, reducing
the azo (-N=N-) group found in dye molecules, according to recent results [1].

3.2.3. Reduction of Inorganic Complex

Inorganic contaminants such as K3[Fe(CN)6] are known as pollutants that are dis-
tributed in the environment in either soil or water. Accordingly, K3[Fe(CN)6] can cause
acute toxicity and carcinogenicity at very low levels, and it has been proven to easily accu-
mulate inside human beings via food chains [44,45]. Due to this, K3[Fe(CN)6] was chosen
as one of our selected pollutants. To test the catalytic activity of CMC/CuO-TiO2 beads,
they were used to catalyze the reduction of K3[Fe(CN)6]. The UV–Vis absorbance of the
catalytic reduction of K3[Fe(CN)6] was monitored to check the progress of the K3[Fe(CN)6]
reaction. Using CMC/CuO-TiO2, the absorption band of K3[Fe(CN)6] at 420 nm was
gradually lowered in 1.0 min, with the yellow color disappearing, indicating the complete
reduction of K3[Fe(CN)6] to K4[Fe(CN)6] [44]. Figure 9c shows the transformation of 90%
of K3[Fe(CN)6] to K4[Fe(CN)6], which was obtained in only 1.0 min.

An electron-transfer reaction is the probable mechanism for the reaction of K3[Fe(CN)6]
in the presence of catalyst beads and NaBH4, as indicated in Equation (2) below [1,44].

BH4
− (aq)+ 8[Fe(CN)6]−3 (aq) + 3H2O (aq)→ H2BO3

− (aq) + 8[Fe(CN)6]−4 (aq) + 8H+ (2)

As a result, there are two steps in the catalytic reaction mechanism of K3[Fe(CN)6].
The reducing agent NaBH4 causes the polarization of the catalyst nanocomposite beads
at first. Subsequently, electrons are transported from the catalyst surface to the [Fe(CN)6]−3
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pollutant, where they are reduced to [Fe(CN)6]−4. The obtained reduction results of all studied
compounds were compared with the literature, as shown in Table 1 [1,6,18,27,42,46–48].

Table 1. Comparison of the catalytic reduction of 4-NP, MO, EY, and K3[Fe(CN)6] by using CMC/CuO-
TiO2 beads in the presence of NaBH4 with other reported catalysts.

Pollutant Catalyst Time (s) Reference

4-NP CMC/CuO-TiO2 180 This Work
4-NP Co-Cu/CIN/SCMC/TiO2 240 [27]
4-NP cf -CA-AuNPs 900 [46]
4-NP Fe3O4/TiO2/CuO 120 [18]
MO CMC/CuO-TiO2 120 This Work
MO CA-ZA10@Ni NPs 1080 [47]
MO Ni/Cs@CMC/CuO-Co2O3 120 [42]
EY CMC/CuO-TiO2 240 This Work
EY Ni/Cs@CMC/CuO-Co2O3 360 [42]
EY MnFe2O4@PANI@Ag 420 [48]

K3[Fe(CN)6] CMC/CuO-TiO2 60 This Work
K3[Fe(CN)6] Ni/Cs@CMC/CuO-Co2O3 360 [42]
K3[Fe(CN)6] Alg@Cu2O-Sb2O3 180 [6]
K3[Fe(CN)6] CMC/CuO-NiO 40 [1]

3.2.4. Catalyst Stability and Reusability

Besides the activity of catalysts, stability is also a critical factor for evaluating their
efficiency and potential applications. For this study, the stability of CMC/CuO-TiO2
nanocatalyst beads was examined regarding the catalytic reduction of 4-NP, and we found
that the beads were stable for up to more than one year without any degradation or loss
of activity. The recyclability of CMC/CuO-TiO2 beads was also studied for the catalytic
reduction of 4-NP under the same conditions described in the experimental part. The
CMC/CuO-TiO2 nanocatalyst beads were examined over four cycles, and the beads were
washed three times after each use with distilled water and dried at RT. The catalytic
reduction of 4-NP took 3.0 min for the first use, and 4.0 min, 6.0 min, and 11.0 min for the
second, third, and fourth cycles, respectively (Figure 10). This suggests that the catalyst
was active and effective in the reduction of 4-NP. Thus, the CMC/CuO-TiO2 beads were
able to be used up to four cycles.

3.2.5. Catalytic Efficiency of CMC/CuO-TiO2 Beads in Real Samples

To evaluate the efficiency of the CMC/CuO-TiO2 nanocatalyst beads under optimized
conditions, four types of real samples were used (orange juice, full-fat milk, seawater, and
wastewater), which were collected or obtained from a local market (Jeddah, Saudi Arabia).
Real samples were prepared by diluting approximately 1 mL of each sample in 100 mL of
deionized water individually. Afterwards, 2.5 mL of each sample was then transferred into
a cuvette cell, together with 0.5 mL of 0.13 mM 4-NP, 0.5 mL of 0.1 M NaBH4, and 5 mg of
CMC/CuO-TiO2 nanocatalyst beads. A UV–Vis spectrophotometer was used to monitor
the catalytic reduction of 4-NP. As can be observed from the data in Table 2, full-fat milk
and seawater have low reduction percentages, which reduced by up to 79.4% in 10.0 min
and 82.5% in 11.0 min, respectively. This is because there was a lot of interference in these
samples, which can impact the catalytic reduction of 4-NP. The reduction of 4-NP in the
other samples took 5.0 min and was 92–89%. The results showed that the CMC/CuO-TiO2
nanocatalyst was effective in decolorizing and reducing of 4-NP from the real samples.
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Figure 10. UV–Vis spectra for recyclability of CMC/CuO-TiO2 beads toward the catalytic reduction
of 0.13 mM 4-NP.

Table 2. Application of CMC/CuO-TiO2 nanocatalyst beads on four types of real samples spiked
with 4-NP.

Real Sample Reduction Time (min) % Reduction

Orange Juice 5.0 92.6%
Full-Fat Milk 10.0 79.4%
Wastewater 5.0 89.2

Seawater 11.0 82.5%

4. Conclusions

Herein, a simple and potentially cost-effective method was used for the fabrication
of nanocatalyst CMC/CuO-TiO2 beads. The CMC/CuO-TiO2 beads were analyzed us-
ing SEM, XRD and EDS. The developed beads exhibited high catalytic activity toward
nitrophenol isomers (4-NP, 2-NP, and 2,6-DNP), organic dyes (MO and EY), and inorganic
complex K3[Fe(CN6)]. The developed materials can act as promising nanocatalysts for
water treatment purposes.
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