1	Carcinogenic liver fluke secretes extracellular vesicles that promote
2	cholangiocytes to adopt a tumorigenic phenotype
3	
4	Sujittra Chaiyadet ^{1,2*} , Javier Sotillo ^{2*} , Michael Smout ² , Cinzia Cantacessi ^{2,3} , Malcolm K.
5	Jones ^{4,5} , Michael S. Johnson ⁶ , Lynne Turnbull ⁶ , Cynthia B. Whitchurch ⁶ , Jeremy Potriquet ⁴ ,
6	Marut Laohaviroj ⁷ , Jason Mulvenna ⁴ , Paul J. Brindley ⁸ , Jeffrey M. Bethony ⁸ , Thewarach
7	Laha ⁹ , Banchob Sripa ⁷ , Alex Loukas ^{2 #}
8	
9	¹ Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen, Thailand
10	² Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical
11	Health and Medicine, James Cook University, Cairns, QLD, Australia
12	³ Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
13	⁴ QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
14	⁵ School of Veterinary Sciences, The University of Queensland, Gatton, QLD, Australia
15	⁶ The iThree Institute, University of Technology Sydney, Sydney, NSW, Australia
16	⁷ Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
17	⁸ Department of Microbiology, Immunology and Tropical Medicine, and Research Center for
18	Neglected Diseases of Poverty, George Washington University, Washington DC, USA
19	⁹ Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
20	
21	* Both authors equally contributed to the manuscript
22	[#] Corresponding Author: Alex Loukas. Email: alex.loukas@jcu.edu.au
23	
24	Running title: Liver-fluke extracellular vesicles
25	Abstract: 245 words
26	Text: 6,311 words
27	

28 ABSTRACT (200 words)

29 Background

Throughout Asia there is an unprecedented link between cholangiocarcinoma and infection with the liver fluke *Opisthorchis viverrini*. Multiple processes including chronic inflammation and secretion of parasite proteins into the biliary epithelium drive infection towards cancer. Until now, the mechanism and effects of parasite protein entry into cholangiocytes was unknown.

35 Methods

Various microscopy techniques were used to identify *O. viverrini* extracellular vesicles (EVs) and their internalization by human cholangiocytes. Using mass spectrometry we characterised the EV proteome and associated changes in cholangiocytes after EV uptake, and detected EV proteins in bile of infected hamsters and humans. Cholangiocyte proliferation and IL-6 secretion was measured to assess the impact of EV internalization.

41 **Results**

EVs were identified in fluke culture medium and bile of infected hosts. EVs internalized by
cholangiocytes drove cell proliferation and IL-6 secretion and induced changes in protein
expression associated with endocytosis, wound repair and cancer. Antibodies to an *O. viverrini* tetraspanin blocked EV uptake and IL-6 secretion by cholangiocytes.

46 Conclusions

This is the first time that EVs from a multicellular pathogen have been identified in host
tissues. Our findings imply a role for *O. viverrini* EVs in pathogenesis and highlight an
approach to vaccine development for this infectious cancer.

50

51 Keywords: extracellular vesicles; *Opisthorchis viverrini*; cholangiocarcinoma; liver fluke;
52 cancer

53 FOOTNOTES

54	Conflict	of	interest
----	----------	----	----------

55 All authors: No reported conflicts.

56

57 **Funding statement**

This work was supported by a Project Grant (APP1085309) from the National Health and Medical Research Council of Australia (NHMRC). AL is supported by a NHMRC principal research fellowship. SC was supported by the Thailand Research Fund (TRF)-the Royal Golden Jubilee PhD scholarship (RGJ) through Dr. Banchob Sripa. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

64

65 Correspondence should be addressed to:

- 66 Professor Alex Loukas
- 67 Centre for Biodiscovery and Molecular Development of Therapeutics
- 68 Australian Institute of Tropical Health & Medicine
- 69 James Cook University
- 70 McGregor Rd, Smithfield
- 71 Cairns, QLD 4878
- 72 Australia
- 73 Ph. +61 7 4232 1608
- 74 Email. Alex.Loukas@jcu.edu.au

75 **Introduction** (3487 words)

76 The liver fluke, *Opisthorchis viverrini*, is classified as a group 1 carcinogen by the 77 International Agency for Research on Cancer, and is a major public health problem in many 78 parts of Southeast Asia. In Northeast Thailand alone, more than 8 million people harbour the parasite [1] due to traditional dietary preferences for eating uncooked fish that harbour the 79 80 infective stage of the fluke [2]. Upon ingestion of infected fish, the metacercariae excyst in the duodenum and migrate to the bile ducts of the definitive host where they feed on the 81 82 biliary epithelia. Infection is associated with a spectrum of hepatobiliary abnormalities 83 including bile duct cancer or cholangiocarcinoma (CCA) [2, 3]. The incidence of CCA in Northeast Thailand is substantially higher than elsewhere in the world, and associates 84 85 strongly with the prevalence of *O. viverrini* infection [4].

86 The mechanisms involved in liver fluke-driven tumorigenesis are multi-factorial, with 87 apparent roles for (i) mechanical damage caused by parasites grazing on the biliary 88 epithelium; (ii) chronic immunopathologic processes that are dominated by pro-inflammatory 89 cytokines such as IL-6 [1]; (iii) the active release of parasite-derived excretory/secretory (ES) 90 products into the bile ducts that drive unchecked cell proliferation [2, 5-7]. Intriguingly, some 91 of these ES products have been identified inside cholangiocytes of experimentally infected 92 hamsters [6, 8, 9], akin to the intracellular presence of the CagA protein from another 93 carcinogenic pathogen, *Helicobacter pylori* [10]. Until now, the mechanisms by which liver 94 fluke ES proteins are internalized by cholangiocytes, and the ramifications of this process for 95 the host cell, have remained unknown.

Recent reports have highlighted the presence of secreted extracellular vesicles (EVs)
from parasites of both unicellular [11, 12] and multicellular (helminths) [13-15] origin, and
provide a plausible explanation for the abundance in helminth ES products of apparently
"intracellular" proteins [16]. EVs are small membrane-enclosed structures that are released by
many different cell types [17, 18]. EVs from unicellular parasites have been shown to

101 influence host physiological processes, including immunomodulation, and adherence and 102 communication between host and parasite [12, 19, 20]. A recent report described the uptake 103 of parasitic platyhelminth EVs by host cell lines *in vitro* using low resolution fluorescence 104 microscopy [13], but the molecular impact of EV uptake on the recipient cell, and detection 105 of helminth EVs *in vivo* has until now, not been reported.

106 Here we show that O. viverrini secretes EVs that induce а pro-107 inflammatory/tumorigenic phenotype in human cholangiocytes. We also show that cellular 108 uptake of O. viverrini EVs can be blocked by antibodies to an EV recombinant tetraspanin, 109 highlighting the potential utility of EV proteins as vaccines to prevent fluke infection and 110 associated cholangiocarcinogenesis.

111

112 Materials and Methods

113 *Ethics statement*

Hamsters were maintained at Khon Kaen University (KKU), Thailand. The study was
approved by the KKU Animal Ethics Committee (AEKKU 55/2554). Human bile was
collected under an approved protocol (HE 521209) from the KKU Institutional Review Board.

118 Parasite material, isolation of ES products and EV purification

Parasites were obtained from experimentally infected hamsters and ES products were isolated as described [8]. EVs were purified from ES products using differential ultracentrifugation following a modified protocol [21]. Briefly, parasite culture media was centrifuged at 2,000 g for 30 min at 4°C to remove larger debris; supernatant was further centrifuged at 15,000 g for 30 min at 4°C. ES supernatants were filtered using a 0.2 μ m membrane (Schleicher and Schuell Bioscience) then ultracentrifuged at 110,000 g for 2 h at 4°C. The pellet was washed in PBS containing protease inhibitor cocktail (Roche) and ultracentrifuged for 1 h. Crude pellet was resuspended in 200 µl PBS/ protease inhibitor
cocktail and stored at 4°C.

128

129 Preparation of EVs for Transmission Electron Microscopy

Five µl of purified EVs was applied to a carbon-formvar coated grid and air dried.
Grids were negatively stained in 2% uranyl acetate for 15 secs. Stained grids were viewed in
a JEM1011 transmission electron microscope (JEOL) equipped with a Morada side-mounted
digital camera (Olympus).

134

135 Fluorescence labelling of EVs membranes

EVs were labelled with Alexa Fluor 488 5-SDP Ester (AF488) (Life Technologies) following the manufacturer's protocol. EV pellets were resuspended in 400 μ l of PBS and mixed with 50 μ g of AF488 for 1 h at 4°C. The samples were collected by ultracentrifugation at 110,000 g for 2 h to remove excess dye, washed twice and resuspended in 400 μ l of PBS.

140

141 *Cell co-cultures and fluorescence microscopy*

To investigate internalization of EVs by mammalian cells, normal immortalized human cholangiocytes (H69) were grown to 80% confluence as described [22]. Cells were starved of FCS overnight, incubated with AF488-EVs for 6 h, and analysed by fluorescence microscopy. Cell nuclei were stained with Hoechst dye and visualized using an AxioImager M2 ApoTome fluorescence microscope (Zeiss). Two technical and 2 biological replicates were performed and at least 5 fields were analysed in each replicate. Fluorescence was quantified using ImageJ.

149

150 Ultra-resolution microscopy

151 To convincingly demonstrate internalization of O. viverrini EVs by cholangiocytes, we used 152 3D-Structured Illumination microscopy (3D-SIM). H69 cholangiocytes were grown to 50% 153 confluence and co-cultured with AF488-EVs or an equivalent amount (based on fluorescence) 154 of ES products (10 µg/ml) for up to 6 h. Treated cells were fixed in 4% paraformaldehyde, 155 permeabilised in 0.1% Triton X-100 in PBS and stained with Alexa Fluor 568 Phalloidin 156 (Life Technologies). Specimens were mounted in 5% N-propyl-Gallate (Sigma) and 3D-SIM was performed on isolated single cells using a DeltaVision OMX 3D-SIM system (Applied 157 158 Precision Inc, GE Healthcare). Solid state lasers (405, 488, 593 nm) provided wide-field 159 illumination and multi-channel images were captured simultaneously using three 512× 512 160 pixel size PCO edge scientific CMOS cameras. All data capture used a 60x 1.4 NA oil 161 objective and standard excitation and emission filter sets (in nm, 405 EX / 419-465 EM, 488 162 EX / 500-550 EM and 592.5 EX / 608-648 EM). 3D-SIM images were sectioned using a 125 nm Z-step size. Raw 3-phase images were reconstructed as previously described [23]. 163 Reconstructed images were rendered in 3D using IMARIS version 7.X (Bitplane Scientific). 164

165

166 Proteomic analysis of EVs

167 Sample preparation for proteomic analysis was performed as described [13]. Peptides 168 were resuspended in 5% formic acid and analysed by LC-MS/MS. Ten microliters was 169 injected onto a C18 trap column (Thermo Scientific Acclaim) and flushed into an analytical 170 column (Agilent) and eluted via a mobile phase gradient: 5–80% solvent B over 120 min. The 171 eluted material was directly applied to the nanospray source of a QSTAR Elite instrument 172 (Applied Biosystems), and data analysis was conducted with Analyst 2.0 (Applied 173 Biosystems).

174

175 *iTRAQ analysis*

176 H69 cells were co-cultured with the quantity of EVs that corresponded to $1.2 \,\mu$ g/ml of 177 ES protein in PBS for 30 min, 3 h and 16 h. Cells were washed using PBS containing 178 protease inhibitor cocktail and lysed in 5 M urea, 2 M thiourea, 0.1% SDS, 1% triton X-100 179 and 40 mM Tris (pH 7.4). Each sample was ground with a TissueLyser II (QIAGEN) and centrifuged at 12,000 g for 20 min. The protein supernatant was precipitated with cold 180 181 methanol, centrifuged at 8,000 g and air dried pellets re-dissolved in 0.5 M triethylammonium bicarbonate (TEAB)/0.05% SDS, then centrifuged at 12,000 g. Samples were resuspended in 182 183 0.5 M TEAB prior to reduction, alkylation, digestion and iTRAQ labelling (AB Sciex) then 184 analysed on a 5600 TripleTOF mass spectrometer as described [24].

185

186 Bioinformatic analysis of protein expression data

187 For proteomic characterization of O. viverrini EV proteins, the O. viverrini genome 188 database [25] was interrogated using MASCOT (Matrix-Science) allowing two missed 189 cleavages and mass tolerance of 1.2 Da in MS mode and 0.8 Da on MS/MS product ions. 190 Probability (P < 0.05) of FDR was calculated for every search using the MASCOT decoy database facility. For iTRAQ, two biological and two technical replicates were conducted. 191 192 Database searches were performed against NCBInr using MASCOT allowing two missed 193 cleavages and a mass tolerance of 0.1 Da on MS and MS/MS modes, and results were validated using Scaffold v.4.2.1 (Proteome Software). Differentially expressed (dysregulated) 194 195 proteins were determined using a Kruskal-Wallis test and results expressed in log2 ratios. 196 Only proteins whose expression level underwent a significant (P < 0.05) log2 fold-change of >0.6 or <-0.6 for upregulated and downregulated proteins respectively were further 197 198 considered. KEGG and Reactome functional enrichment analyses for dysregulated proteins 199 were performed using KEGGMapper and DAVID [26]. Protein-protein interaction analysis 200 was performed using String [27].

202 Detection of EV proteins in bile of O. viverrini-infected humans and hamsters

Bile was collected from *O. viverrini*-infected humans by aspiration of resected gallbladders, and experimentally infected and uninfected hamsters (controls) by puncture of the gallbladder from euthanized animals, and EVs isolated as described above. Selected Reaction monitoring (SRM) was performed on a 5600 TripleTOF to identify *O. viverrini* EV proteins in bile. All analyses were performed using SRM-initiated IDA experiments in which a SRM survey scan triggered the acquisition of MS/MS spectra. Skyline 3.1 was used to generate SRM transitions and for data analysis.

210

211 *Cell proliferation*

H69 cholangiocytes were cultured as described above until 80% confluent. Cells were starved of FCS overnight and cultured with the amount of EVs that corresponded to $1.2 \,\mu$ g/ml of ES protein over 72 h at 37°C. Control cells were incubated with $1.2 \,\mu$ g/ml of ES products (not ultra-centrifuged) or $1.2 \,\mu$ g/ml BSA for the negative control group. Cell proliferation was assessed by measuring cell index (CI) values in real time using an xCELLigence SP system and E plates (Acea). Three biological replicates were analysed and a 2-way ANOVA was performed.

219

AF488-EVs were incubated with mouse $a \square \square Ov$ -TSP-1 serum [28] or normal mouse serum (NMS) at different dilutions (1:2.5, 1:5, 1:20) at RT for 1 h. EV:antibody complexes were added to H69 cells and co-cultured for 6 h. Images were obtained using an ECLIPSE Ni-u confocal microscope (Nikon) at 60× magnification. Thirty fields from 2 biological replicates were analysed and a 1-way ANOVA was performed. Cell fluorescence was quantified using ImageJ.

228 *IL-6 detection*

H69 cholangiocytes were cultured as above to monitor cell proliferation over 24 h. Culture media were collected and centrifuged at 2000 *g* for 10 min to remove cell debris. IL-6 levels were quantified using an IL6-ELISA kit (R&D System) following the manufacturer's instructions. Three biological replicates were analysed and statistical analysis was performed using a 2-way ANOVA.

234

235 **Results**

236 *Excretory/secretory products from O. viverrini contain EV-like vesicles*

After filtration and ultracentrifugation of ES products from adult *O. viverrini* we identified microvesicular structures using negative staining in transmission electron microscopy (Figure 1). These spherical vesicles had an external diameter of 40-180 nm, resembling EVs recently reported from other trematodes [13, 14].

241

242 Proteomic analysis of O. viverrini EVs reveals conserved and novel proteins

O. viverrini EVs were digested with trypsin and submitted to LC-MS/MS. We
identified 108 different proteins (Supplementary Table 1), 42 of which were homologous to
mammalian EV proteins in Exocarta [29], including proteins that are diagnostic of
mammalian exosomes such as tetraspanins, HSP-70, cytoskeletal, regulatory and trafficking
proteins. Gene Ontology (GO) analysis of the proteins (Supplementary Figure 1) returned 212
biological process terms. Pfam analysis identified proteins with an EF hand domain as the
most frequently represented (Supplementary Figure 1).

250

251 *O. viverrini exosome proteins are identified in bile of infected hosts*

SRM analysis confirmed the presence of specific EV proteins in the bile of *O. viverrini*infected humans and hamsters. Seven of the top 15 proteins identified in the EV proteomic

analysis (based on number of peptides identified) were successfully quantified(Supplementary Figure 2).

256

257 *O. viverrini EVs are internalized by human cholangiocytes*

We monitored the uptake of AF488-EVs by human cholangiocytes in vitro. Within 60 258 259 min punctate fluorescent structures were detected, the number of which increased markedly over 6 h (Figure 2A). Cell fluorescence of all fields from the two biological replicates 260 revealed fluorescence coverage of 62.44 ±9.52% and 90.57±4.58% at 0.5 h and 6 h 261 262 respectively. 3D-SIM analysis confirmed the intracellular presence of AF488-EVs within the cytoskeletal network of well-separated individual cells as evidenced by their position between 263 264 the basal and apical membranes outlined with phalloidin (Figure 2B, C, Supplementary 265 Movie). We attempted to co-localize EVs to defined organelles using specific fluorescent 266 markers but did not observe co-localization (not shown), suggestive of a cytoplasmic location. 267

268

269 *O. viverrini EVs promote cell proliferation and stimulate wound healing and tumorigenic*270 *pathways in cholangiocytes*

271 H69 cholangiocytes were incubated for 72 h with (i) crude ES products, (ii) EVs 272 purified from crude ES products, or (iii) an irrelevant protein control, Bovine Serum Albumin 273 (BSA). We chose BSA as a control rather than EVs from another source because H69 274 cholangiocytes produce (and uptake) their own exosomes in culture [30]. ES and EVs both 275 induced significant (P < 0.05) cell proliferation compared to BSA-treated control cells 276 (Figure 3). A total of 705 proteins containing at least 2 peptides were identified and 277 quantified with a 99.9% protein threshold and 1.2% false discovery rate (FDR) from 6,863 unique peptides (peptide threshold = 95% and 0.82% FDR) from H69 cholangiocytes that 278 were co-cultured with EVs (Supplementary Table 2); a total of 396 proteins from 279

cholangiocytes co-cultured with EVs were differentially expressed (P < 0.05 as determined using a Kruskal-Wallis test) and presented a fold-difference ≥ 1.5 (log₂ ≥ 0.6) at ≥ 1 time point (Supplementary Table 2). The greatest changes in protein expression in EV-co-cultured cells compared to control cells occurred after 3 h, where 238 (60.1%) proteins were differentially expressed (fold-difference ≥ 1.5 (log₂ ≥ 0.6)) in cells incubated with EVs (Figure 4A).

286 A total of 274 proteins from EV-treated cells matched homologous proteins in the 287 KEGG database associated with 186 distinct biological pathways; 171 of these proteins were 288 assigned to 14 Reactome pathways (Supplementary Table 3). The 25 KEGG and Reactome 289 pathways associated with the largest numbers of proteins differentially expressed after 290 incubation with EVs are shown in Figure 4B and C respectively. The expression of proteins 291 linked to four pathways implicated in cancer and wound healing was significantly modified 292 by EVs (Figure 4B). Supplementary Table 4 highlights all cholangiocyte proteins and KEGG 293 pathways related to cancer and wound healing and their expression following co-culture with 294 EVs. A total of 7 proteins involved in the Phagosome pathway were differentially expressed 295 following exposure of human cholangiocytes to EVs (Supplementary Figure 3, 296 Supplementary Table 5).

When differentially expressed proteins were assigned to Reactome pathways, those associated with Apoptosis, Regulation of activated PAK-2p34 by proteasome, and Cdh1mediated degradation of Skp2 pathways were differentially regulated in cholangiocytes cocultured with EVs (Figure 4C). Expression of 17 proteins associated with Apoptosis was regulated by EVs, and protein-protein interactions revealed that the majority of dysregulated cholangiocyte proteins formed a cluster belonging to the proteasome complex (Supplementary Figure 4).

305 Uptake of EVs and pro-inflammatory cytokine production by cholangiocytes can be blocked
306 with antibodies to an O. viverrini EV tetraspanin

307 Due to the roles of tetraspanins in the formation of EVs by mammalian cells and their 308 subsequent uptake by recipient cells [31], and the recent identification of the Ov-TSP-1 309 tetraspanin on the surface of O. viverrini [28], we explored the role of Ov-TSP-1 in the uptake 310 of EVs by cholangiocytes. Antiserum to recombinant Ov-TSP-1 blocked the uptake of EVs by cholangiocytes compared to normal mouse serum ($P \le 0.001 - P \le 0.0001$) (Figure 5). ES 311 312 and EVs both stimulated the secretion of significantly more IL-6 from cholangiocytes than did control cells incubated with media alone (P < 0.01 - P < 0.001; Figure 7), and IL-6 313 secretion was significantly reduced when EV internalisation was blocked by antiserum to Ov-314 315 TSP-1 (*P* < 0.05; Figure 6).

316

317 Discussion

318 While the mechanisms that drive chronic liver fluke infection towards cancer are 319 multi-factorial, a pivotal role for fluke ES products in promoting a tumorigenic phenotype has been demonstrated [7]. The intracellular localization of O. viverrini ES proteins in 320 321 cholangiocytes of infected hosts has prompted speculation on the mechanisms underlying this 322 process of parasite protein internalization and its potential pathologic and carcinogenic 323 consequences [6, 7]. Herein we show that O. viverrini secretes EVs that are internalized by 324 human cholangiocytes in vitro and trigger a cascade of inflammatory and pro-tumorigenic changes within the cell, thereby providing a plausible mechanism by which ES proteins are 325 taken up by biliary cells of infected hosts and contribute to the development of CCA in 326 327 infected individuals.

Investigations on the interactions between EVs derived from single celled parasites and the cells that they encounter in an infected host have shed light on a novel means of hostparasite cellular communication [11, 12]. Protozoan parasite EVs are also capable of 331 modulating pro-inflammatory immune responses and inducing production of regulatory 332 cytokines in recipient cells [19]. EV production by helminth parasites however has received 333 considerably less attention. A seminal study recently showed that the parasitic nematode 334 Heligmosomoides polygyrus secretes exosomes that contain microRNAs which suppress type 335 2 innate responses [15]. However, little is known about the production and particularly the 336 biological effects of EVs from parasitic flatworms (platyhelminths). EVs were reported in the 337 ES products from the flatworms Fasciola hepatica and Echinostoma caproni [13], and more 338 recently *Dicrocoelium dendriticum* [14], and while the authors showed binding of fluke EVs 339 to cell lines, neither the functional implications nor in vivo evidence of EV uptake by tissues of infected hosts were addressed. We show here for the first time that helminth EVs are 340 341 unequivocally internalized by host cells, and major EV proteins can be detected in the bile of 342 naturally infected humans and experimentally infected hamsters. From proteomic analyses, 343 we identified 108 proteins from O. viverrini EVs, and only a handful (13) of these had been 344 previously identified in a proteomic analysis of the ES products of the fluke [32].

345 Cholangiocytes line the bile ducts and provide the first line of defence against pathogens in the biliary system. We show here that O. viverrini EVs drive production of IL-6 346 347 from recipient human cholangiocytes, implicating these EVs in the hepatic disease process. IL-6 has been associated with chronic periductal fibrosis and CCA in opisthorchiasis patients 348 349 [33], and IL-6 has been implicated in the maintenance of a chronic inflammatory milieu that 350 could lead to tumorigenesis [34]. O. viverrini EVs were also capable of driving proliferation 351 of cholangiocytes, a phenomenon that has been convincingly documented in the hamster infection model [35]. This relentless cell proliferation, coupled with other carcinogenic insults 352 353 such as chronic immunopathology and elevated intake of dietary nitrosamines [2] culminates 354 in the establishment of an environment that is conducive to malignant changes.

Uptake of EVs by cholangiocytes resulted in dysregulated expression of proteins with documented roles in wound healing and cancer. Indeed, wound repair has long been 357 implicated in tumorigenesis, and there are striking histological and moelcular similarities 358 between tumor stroma and wounded tissues [36]. Nineteen KEGG pathways related to cancer 359 and wound healing were affected by EVs in human cholangiocytes. Among the proteins 360 significantly regulated we found different tropomyosin isoforms, PAK-2 and the tight junction protein ZO-2. PAK-2 is an important kinase that mediates tumor cell invasion [37]. 361 362 We also noted that PAK-2 could play an important role in tumour progression by interacting 363 with different components of the proteasome and with vimentin, a protein involved in 364 maintaining cellular integrity and providing resistance against stress in several epithelial 365 cancers [37]. Moreover, tight junction proteins play important roles in cell-cell junction assembly and organization, and are up-regulated during cell proliferation and wound healing 366 367 [38].

Other important cholangiocyte proteins underwent dysregulated expression after coculture with EVs, notably proteins involved in the proteasome complex. Most of the proteins involved in this complex were upregulated in cholangiocytes exposed to EVs and are known to interact with other proteins involved in cancer and wound healing processes. The proteasome complex regulates directly or indirectly many important cellular processes, and has been suggested as a therapeutic target for cancer [39, 40].

374 EV uptake by dendritic cells can be blocked with antibodies to EV tetraspanins [41]. 375 Tetraspanins are thought to be involved in the regulation of protein assembly and microRNA 376 recruitment in mammalian exosomes [31] and influence cell selectivity [42]. Our findings highlight an important role for Ov-TSP-1 in O. viverrini EV uptake by cholangiocytes. 377 Although tetraspanins are found on the surface membranes of all exosomes, their discovery 378 379 here is particularly pertinent due to their abundance on the surface membranes of parasitic 380 helminths [43] and their importance in the development of the O. viverrini tegument [28]. 381 Tetraspanins are efficacious helminth vaccine antigens [44-46], and our findings here suggest that the mechanism of vaccine efficacy is linked to interruption of parasite EV uptake by 382

recipient host cells *in vivo* and subsequent disruption of key physiological (and pathological)processes.

Our study describes for the first time the release of EVs in the secreted products of the carcinogenic liver fluke, *O. viverrini*, and highlights the role of fluke EVs in promoting an inflammatory yet simultaneously modulatory (wound healing) environment that ultimately facilitates the development of biliary cancer. Our findings do however offer hope for the eventual control of this debilitating neglected tropical disease by highlighting a key physiological process that can be potentially interrupted via subunit vaccines targeting key EV surface molecules.

392

393 FUNDING

This work was supported by a Project Grant (APP1085309) from the National Health and Medical Research Council of Australia (NHMRC). AL is supported by a NHMRC principal research fellowship. SC was supported by the Thailand Research Fund (TRF)-the Royal Golden Jubilee PhD scholarship (RGJ) through Dr. Banchob Sripa. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

400

401 ACKNOWLEDGMENTS

We thank Drs Antonio Marcilla and Rafael Toledo for helpful discussions and MrAlun Jones for assistance with proteomics.

404

405 CONFLICT OF INTEREST

406 The authors have no conflicts of interest to declare.

407

409 **REFERENCES**

- 410 1. Sripa B, Bethony JM, Sithithaworn P, et al. Opisthorchiasis and Opisthorchis-associated
 411 cholangiocarcinoma in Thailand and Laos. Acta Trop 2011; 120 Suppl 1:S158-68.
- 412 2. Sripa B, Kaewkes S, Sithithaworn P, et al. Liver fluke induces cholangiocarcinoma. PLoS
 413 Med 2007; 4:e201.
- 3. Vatanasapt V, Uttaravichien T, Mairiang EO, Pairojkul C, Chartbanchachai W, HaswellElkins M. Cholangiocarcinoma in north-east Thailand. Lancet **1990**; 335:116-7.
- 416 4. Srivatanakul P, Ohshima H, Khlat M, et al. *Opisthorchis viverrini* infestation and
 417 endogenous nitrosamines as risk factors for cholangiocarcinoma in Thailand. Int J Cancer
 418 1991; 48:821-5.
- 419 5. Thuwajit C, Thuwajit P, Kaewkes S, et al. Increased cell proliferation of mouse fibroblast
- 420 NIH-3T3 in vitro induced by excretory/secretory product(s) from *Opisthorchis viverrini*.
 421 Parasitology 2004; 129:455-64.
- 6. Smout MJ, Laha T, Mulvenna J, et al. A granulin-like growth factor secreted by the
 carcinogenic liver fluke, *Opisthorchis viverrini*, promotes proliferation of host cells. PLoS
 Pathog 2009; 5:e1000611.
- 7. Smout MJ, Sripa B, Laha T, et al. Infection with the carcinogenic human liver fluke, *Opisthorchis viverrini*. Mol Biosyst 2011; 7:1367-75.
- 8. Sripa B, Kaewkes S. Relationship between parasite-specific antibody responses and
 intensity of *Opisthorchis viverrini* infection in hamsters. Parasite Immunol 2000; 22:139-45.
- 429 9. Pinlaor P, Kaewpitoon N, Laha T, et al. Cathepsin F cysteine protease of the human liver
- 430 fluke, *Opisthorchis viverrini*. PLoS Negl Trop Dis **2009**; 3:e398.
- 431 10. Hatakeyama M. *Helicobacter pylori* CagA and gastric cancer: a paradigm for hit-and-run
- 432 carcinogenesis. Cell Host Microbe **2014**; 15:306-16.
- 433 11. Regev-Rudzki N, Wilson DW, Carvalho TG, et al. Cell-cell communication between
- 434 malaria-infected red blood cells via exosome-like vesicles. Cell **2013**; 153:1120-33.

- 435 12. Twu O, de Miguel N, Lustig G, et al. *Trichomonas vaginalis* exosomes deliver cargo to
 436 host cells and mediate hostratioparasite interactions. PLoS Pathog **2013**; 9:e1003482.
- 437 13. Marcilla A, Trelis M, Cortes A, et al. Extracellular vesicles from parasitic helminths
 438 contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS
 439 One 2012; 7:e45974.
- 440 14. Bernal D, Trelis M, Montaner S, et al. Surface analysis of *Dicrocoelium dendriticum*. The
 - 441 molecular characterization of exosomes reveals the presence of miRNAs. J Proteomics 2014;
 442 105:232-41.
 - 443 15. Buck AH, Coakley G, Simbari F, et al. Exosomes secreted by nematode parasites transfer
 - small RNAs to mammalian cells and modulate innate immunity. Nat Commun **2014**; 5:5488.
 - 445 16. Curwen RS, Ashton PD, Sundaralingam S, Wilson RA. Identification of novel proteases
- 446 and immunomodulators in the secretions of schistosome cercariae that facilitate host entry.
- 447 Mol Cell Proteomics **2006**; 5:835-44.
- 448 17. Schorey JS, Bhatnagar S. Exosome function: from tumor immunology to pathogen
 449 biology. Traffic 2008; 9:871-81.
- 450 18. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in
 451 intercellular communication. J Proteomics 2010; 73:1907-20.
- 452 19. Silverman JM, Clos J, Horakova E, et al. Leishmania exosomes modulate innate and
 453 adaptive immune responses through effects on monocytes and dendritic cells. J Immunol
 454 2010; 185:5011-22.
- 455 20. Silverman JM, Reiner NE. Exosomes and other microvesicles in infection biology:
 456 organelles with unanticipated phenotypes. Cell Microbiol 2011; 13:1-9.
- 457 21. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes
 458 from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006; Chapter
 459 3:Unit 3 22.

- 22. Smout MJ, Mulvenna JP, Jones MK, Loukas A. Expression, refolding and purification of
 Ov-GRN-1, a granulin-like growth factor from the carcinogenic liver fluke, that causes
 proliferation of mammalian host cells. Protein Express Purif 2011; 79:263-70.
- 463 23. Gustafsson MG, Shao L, Carlton PM, et al. Three-dimensional resolution doubling in
 464 wide-field fluorescence microscopy by structured illumination. Biophys J 2008; 94:4957-70.
- 465 24. Prasopdee S, Tesana S, Cantacessi C, et al. Proteomic profile of Bithynia siamensis
- 466 goniomphalos snails upon infection with the carcinogenic liver fluke Opisthorchis viverrini. J
- 467 Proteomics **2015**; 113:281-91.
- 468 25. Young ND, Nagarajan N, Lin SJ, et al. The *Opisthorchis viverrini* genome provides
 469 insights into life in the bile duct. Nat Commun 2014; 5:4378.
- 470 26. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large
 471 gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4:44-57.
- 472 27. Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction
- 473 networks, with increased coverage and integration. Nucleic Acids Res 2013; 41:D808-15.
- 474 28. Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles
 475 with continuous community annotation. PLoS Biol 2012; 10:e1001450.
- 476 29. Masyuk AI, Huang BQ, Ward CJ, et al. Biliary exosomes influence cholangiocyte
- 477 regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol
- 478 Gastrointest Liver Physiol **2010**; 299:G990-9.
- 479 30. Rana S, Zoller M. Exosome target cell selection and the importance of exosomal
 480 tetraspanins: a hypothesis. Biochem Soc Trans 2011; 39:559-62.
- 481 31. Piratae S, Tesana S, Jones MK, et al. Molecular characterization of a tetraspanin from the
- 482 human liver fluke, *Opisthorchis viverrini*. PLoS Negl Trop Dis **2012**; 6:e1939.
- 483 32. Mulvenna J, Sripa B, Brindley PJ, et al. The secreted and surface proteomes of the adult
- 484 stage of the carcinogenic human liver fluke *Opisthorchis viverrini*. Proteomics 2010;
 485 10:1063-78.

- 486 33. Sripa B, Mairiang E, Thinkhamrop B, et al. Advanced periductal fibrosis from infection
- 487 with the carcinogenic human liver fluke *Opisthorchis viverrini* correlates with elevated levels
- 488 of interleukin-6. Hepatology **2009**; 50:1273-81.
- 489 34. Schafer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat
 490 Rev Mol Cell Bio 2008; 9:628-38.
- 491 35. Sripa B, Brindley PJ, Mulvenna J, et al. The tumorigenic liver fluke *Opisthorchis*492 *viverrini*-multiple pathways to cancer. Trends Parasitol **2012**; 28:395-407.
- 493 36. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma494 generation and wound healing. N Engl J Med **1986**; 315:1650-9.
- 495 37. Coniglio SJ, Zavarella S, Symons MH. Pak1 and Pak2 mediate tumor cell invasion
- through distinct signaling mechanisms. Mol Cell Biol **2008**; 28:4162-72.
- 497 38. Farkas AE, Capaldo CT, Nusrat A. Regulation of epithelial proliferation by tight junction
 498 proteins. Ann N Y Acad Sci 2012; 1258:115-24.
- 39. Frankland-Searby S, Bhaumik SR. The 26S proteasome complex: an attractive target for
 cancer therapy. Biochim Biophys Acta 2012; 1825:64-76.
- 40. Rastogi N, Mishra DP. Therapeutic targeting of cancer cell cycle using proteasome
 inhibitors. Cell Div 2012; 7:26.
- 41. Morelli AE, Larregina AT, Shufesky WJ, et al. Endocytosis, intracellular sorting, and
 processing of exosomes by dendritic cells. Blood **2004**; 104:3257-66.
- 42. Rana S, Yue S, Stadel D, Zoller M. Toward tailored exosomes: the exosomal tetraspanin
 web contributes to target cell selection. Int J Biochem Cell Biol 2012; 44:1574-84.
- 43. Loukas A, Tran M, Pearson MS. Schistosome membrane proteins as vaccines. Int J
 Parasitol 2007; 37:257-63.
- 509 44. Dang Z, Yagi K, Oku Y, et al. A pilot study on developing mucosal vaccine against
- 510 alveolar echinococcosis (AE) using recombinant tetraspanin 3: Vaccine efficacy and
- 511 immunology. PLoS Negl Trop Dis **2012**; 6:e1570.

512	45. Josep	oh SK, R	Ramaswamy	K. Sing	le multivalent	vaccination	boosted	by trickle	larval
513	infection	confers	protection	against	experimental	lymphatic	filariasis.	Vaccine	2013;
514	31:3320-6	5.							

- 515 46. Tran MH, Pearson MS, Bethony JM, et al. Tetraspanins on the surface of *Schistosoma*516 *mansoni* are protective antigens against schistosomiasis. Nat Med **2006**; 12:835-40.
- 517 47. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal
 518 tool for annotation, visualization and analysis in functional genomics research.
 519 Bioinformatics 2005; 21:3674-6.

523 FIGURE LEGENDS

524 Figure 1. Extracellular vesicles (EVs) secreted by *Opisthorchis viverrini*. Transmission

525 electron micrograph showing the presence of microvesicles after ultracentrifugation of *O*.

viverrini excretory/secretory products. EV-like microvesicles of 40-100 nm can be observed.

527

Figure 2. Internalization of *Opisthorchis viverrini* secreted extracellular vesicles (EVs) by 528 human cholangiocytes. Fluorescence images of Alexa Fluor 488-labeled EVs (green) 529 530 internalized by H69 cholangiocytes (A). Cholangiocytes internalized the EVs within 1 h of 531 co-culture and maximum internalization was observed by 6 h. Control cells were incubated with PBS. Hoescht dye (blue) was employed to label cell nuclei (A). 3D-Structured 532 533 Illumination microscopy (3D-SIM) fluorescence image of the edge of a well-separated 534 individual cholangiocyte after 6 h incubation with Alexa Fluor 488-stained EVs (green) (B). 535 Lateral (xy) overview of cell showing EVs present within the cytoskeletal actin network (red) 536 of the cell (B). Rendered axial (xz) view of inset in panel A revealed EVs between the apical 537 and basal surfaces of the cell that were stained by phalloidin (red) (C).

538

Figure 3. *Opisthorchis viverrini* extracellular vesicles (EVs) drive proliferation of human cholangiocytes. *O. viverrini* EVs (open triangles) and excretory/secretory (ES) products (closed circles) promoted the proliferation of human cholangiocytes. Asterisks represent the time-point from which cell growth remained significantly different between test and control groups after each treatment. * P<0.05.

544

Figure 4. Comparison of proteins that were significantly regulated, and biological pathways regulated in cholangiocytes co-cultured with *Opisthorchis viverrini* extracellular vesicles (EVs). (A) Heatmap of the proteins from human cholangiocytes with a significant fold regulation after Kruskal-Wallis test and that underwent a 2-fold-change (log₂=1.5) in at least one of the time-points assessed after incubation with EVs from *O*. *viverrini*. (B) Top 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
regulated after incubation with EVs. (C) Reactome pathways regulated after incubation with
EVs. Pathways that are involved in wound healing and cancer are indicated by red font.

553

554 Figure 5. Blockade of uptake of Opisthorchis viverrini extracellular vesicles (EVs) by antibodies to recombinant Ov-TSP-1. Mouse antibodies raised to recombinant Ov-TSP-1 555 556 blocked the uptake of Alexa Fluor 488-labeled O. viverrini EVs by H69 cholangiocytes. 557 Fluorescence micrographs of internalized EVs co-cultured with H69 cholangiocytes in the 558 presence of anti-Ov-TSP-1 serum (A) or normal mouse serum (NMS) (B) at different 559 dilutions. A $\Box \Box \Box - Ov$ -TSP-1 significantly reduced the binding and internalization of EVs at 560 all serum dilutions when measured as fluorescence intensity (C) when compared to NMS (D). ****P*<0.001; *****P*<0.0001. 561

562

Figure 6. IL-6 production by human cholangiocytes after internalisation of *Opisthorchis viverrini* extracellular vesicles (EVs). Human cholangiocytes produce significantly greater levels of IL-6 after co-culture with *O. viverrini* EVs. IL-6 production was partially blocked when EVs were incubated with antibodies against recombinant *Ov*-TSP-1 prior to cell culture. *P<0.05; **P<0.01; ***P<0.001.

- 568 Supplementary Materials.
- 569

Figure S1. Gene Ontology and Pfam analysis of proteins in *Opisthorchis viverrini*extracellular vesicles (EVs). Gene Ontology terms according to biological process (A),
molecular function (B) and cellular component (C) assigned to the proteins present in *O*. *viverrini* EVs. Bar graph showing the most frequently represented protein families (Pfam) in
in *O. viverrini* EVs (D).

575

576 Figure S2. Single Reaction Monitoring (SRM) analysis confirms the presence of specific 577 extracellular vesicle (EV) proteins in the bile of Opisthorchis viverrini infected humans 578 and hamsters. The peak area for each transition analysed in the different proteins is shown. 579 Seven of the top 15 proteins identified in the EV proteomic analysis (based on number of 580 peptides identified) were successfully quantified, including a tetraspanin-family member (TSP-2B). Protein names and target peptide sequences for SRM are indicated at the top and 581 the bottom of each graph, respectively. The transitions identified are also indicated in each 582 583 graph. Only proteins and peptides identified by LC-MS/MS in the proteomic analysis from 584 EVs secreted by O. viverrini were pre-selected for the SRM analysis. The software Skyline® 585 was used to select the best peptides and transitions based on default parameters. Peptides analysed were the following: Annexin (EGVSSILDMAK, VGQDVADIYDAGVGK), 586 Hypothetical protein (FAQHGDQGLRRR), Myosin heavy chain (ANGMASQLER, 587 588 MQGELQQLR, DVEDLESSLQK), Myosin regulatory chain (LDYNEFVTLIK), Taurocyamine kinase (LANAISELGK, TSFGGSLAQCVSHNAR), Tetraspanin 2-B 589 590 (KLIDLIQK), Tubulin alpha (DAIDTISVIK).

591

Figure S3. Expression of cholangiocyte proteins in the phagosome pathway was altered by co-culture with *Opisthorchis viverrini* extracellular vesicles (EVs). Phagosome pathway mapping of significantly regulated ($log_2=0.6$) proteins (red boxes) identified from human cholangiocytes after incubation with EVs from *Opisthorchis viverrini* using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Green boxes represent proteins in the phagosome pathway that were not identified or were identified but not significantly regulated by co-culture with EVs.

Figure S4. Functional interactions of cholangiocyte proteins associated with the "Apoptosis" pathway whose expression was affected by co-culture with *Opisthorchis viverrini* extracellular vesicles (EVs). STRING database [27] was used to identify proteinprotein interactions associated with the apoptosis pathway for proteins from human cholangiocytes that were significantly regulated ($log_2=0.6$) after incubation with *O. viverrini* EVs.

606

607

Table S1. Proteins identified in extracellular vesicles of *Opisthorchis viverrini*. Mascot
was used as the search engine; spectra were searched against the *O. viverrini* genome
database [25] and hits were annotated using Blast2GO [47].

611

Table S2. Quantitative protein and peptide report of human cholangiocyte proteins
after incubation with extracellular vesicles from *Opisthorchis viverrini*. Scaffoldgenerated report of the iTRAQ results showing the proteins identified by MASCOT and X!
Tandem and peptides matching each protein.

616

Table S3. Reactome pathway. Human cholangiocyte proteins associated with Reactome
pathways after incubation with *Opisthorchis viverrini* extracellular vesicles (EVs).

619

620 Table S4. Phagosome pathway. Human cholangiocyte proteins involved in the Phagosome
621 pathway after incubation with *Opisthorchis viverrini* extracellular vesicles (EVs).

622

Table S5. Proteins related to wound healing and cancer pathways that were
differentially regulated in human cholangiocytes after co-culture with extracellular
vesicles (EVs) from *Opisthorchis viverrini*. Proteins significantly up- or downregulated in

626	cholangiocytes after incubation with EVs were subjected to functional enrichment analysis
627	using the Kyoto Encyclopedia of Genes and Genomes (KEGG). A log ₂ =0.6 corresponding to
628	a 1.5-fold change in proteins with P -value <0.05 was considered to be significant.
629	
630	Supplementary Movie. 3D-Structured Illumination microscopy (3D-SIM) fluorescence
631	video of an individual cholangiocyte after 6 h incubation with Alexa Fluor 488-stained EVs

632 (green). Cytoskeletal actin network was stained by phalloidin (red).

D

Supplementary Figure 1 Click here to download Figure: Supplementary_Figure1.tif

Pfam domain

RUDUQS

DAIETTSVIN

Plagobynoscow

(14) 45 5/1414 (r) Kawhira Laboratories

Seq. Name	BLAST Accession	BLAST hitName
T265_11028	gi 358253594	actin beta/gamma 1
T265_02106	gi 358332991	tubulin beta
T265_00284	gi 126116628	paramyosin
T265_06881	gi 22655518	AF527456_1calcium binding pr
T265_07359	gi 358336555	ubiquitin C
T265_09134	gi 358341210	annexin A7
T265_15787	gi 358334577	cathepsin D
T265_09973	gi 358340940	syntenin-1
T265_08714	gi 262213552	myosin regulatory light chain
T265_13308	gi 325513923	helminth defence molecule-1
T265_10526	gi 684407701	hypothetical protein T265_105
T265_15836	gi 684413836	hypothetical protein T265_158
T265_16303	gi 353229182	putative major vault protein
T265_08893	gi 358340880	annexin A7
T265_06253	gi 684390600	hypothetical protein T265_062
T265_03631	gi 358334667	tRNA (adenine-N(1)-)-methyltr
T265_05238	gi 684386456	hypothetical protein T265_052
T265_09955	gi 325459332	unknown transmembrane prot
T265_09952	gi 358333044	myosin heavy chain
T265_15563	gi 360043476	venom allergen-like (VAL) 8 pr
T265_15799	gi 685936383	Ras-related protein Rac1, parti
T265_03867	gi 20270894	AF461710_1myoglobin
T265_02259	gi 23428564	glutathione S-transferase
T265_08043	gi 358337609	tegumental protein
T265_08991	gi 358333925	Ras homolog gene family mem
T265_09265	gi 358337832	endophilin-B1
T265_10536	gi 684407743	hypothetical protein T265_105
T265_03615	gi 684379718	hypothetical protein T265_036
T265_04144	gi 684381871	hypothetical protein T265_041
T265_07169	gi 360044564	cript-related
T265_04047	gi 350023777	tubulin alpha chain
T265_07596	gi 358333877	taurocyamine kinase
T265_10204	gi 426308934	tetraspanin 2A
T265_13185	gi 684378098	hypothetical protein T265_131
T265_00358	gi 358253276	hypothetical protein CLF_1087
T265_01977	gi 358342015	COMPASS component SWD1
T265_04046	gi 358335874	tubulin alpha
T265_08065	gi 426308936	tetraspanin 2B
T265_09781	gi 358253835	DNA repair protein REV1, parti
T265_06356	gi 358335181	zinc finger protein 341
T265_10362	gi 226468366	Vesicle transport protein SFT2

Table S1. Proteins identified in extracellular vesicles of Opisthorchis viveri

T265_02867	gi 358333977	myosin essential light chain str
T265_04527	gi 358332486	KRAB domain-containing zinc f
T265_08099	gi 904121	tropomyosin
T265_10125	gi 358254620	copine-8, partial
T265_08367	gi 358342140	hypothetical protein CLF_1033
T265_04851	gi 358336212	replication factor C subunit 3/5
T265_05756	gi 684388548	hypothetical protein T265_057
T265_13582	gi 58263527	14-3-3 protein
T265_07292	gi 358331798	tubulin alpha
T265_08188	gi 254587308	endonuclease-reverse transcri
T265_10730	gi 358339096	BRO1 domain-containing prote
T265_01105	gi 358333593	beta-arrestin
T265_03959	gi 358337668	hypothetical protein CLF_1096
T265_12534	gi 358333203	serine/threonine-protein kinas
T265_13848	gi 358254343	calcium-binding protein
T265_14319	gi 358333055	cyclin-dependent kinase-like
T265_01853	gi 360044613	putative merlin/moesin/ezrin/
T265_03292	gi 358334092	U3 small nucleolar RNA-associa
T265_06061	gi 153861719	heat shock protein 70
T265_06656	gi 358333984	hypothetical protein CLF_1080
T265_10899	gi 358342418	acetyl-CoA acyltransferase
T265_13810	gi 358340653	protein unc-80 homolog
T265_14094	gi 358332850	signal-induced proliferation-as
T265_14629	gi 685962441	Regulator of G-protein signalin
T265_00300	gi 358342642	pre-mRNA-splicing factor
T265_03216	gi 360044772	putative dead box ATP-depenc
T265_03979	gi 358335239	large subunit ribosomal protei
T265_08081	gi 358254618	coiled-coil domain-containing
T265_09935	gi 358336872	transitional endoplasmic reticu
T265_11598	gi 358253589	hypothetical protein CLF_1103
T265_11632	gi 358340214	spectrin beta chain
T265_14214	gi 358253196	calpain
T265_14955	gi 358332908	hypothetical protein CLF_1062
T265_01157	gi 358336587	sterol regulatory element-bind
T265_01206	gi 358253741	gamma-tubulin complex comp
T265_01323	gi 358332388	cullin 1
T265_01951	gi 358253292	serine/threonine-protein phos
T265_03269	gi 358336101	innexin unc-9
T265_05027	gi 353228659	putative serine-rich repeat pro
T265_06464	gi 358254922	protein tyrosine phosphatase i
T265_06544	gi 358334779	protocadherin-9
T265_06597	gi 358340957	protein CIP2A
T265_07346	gi 358341589	nuclear factor interleukin-3-re
T265_08700	gi 358332999	splicing factor arginine/serine-

T265_08792	gi 358339172	programmed cell death 6-inter
T265_09632	gi 358342856	polycomb protein Su(z)12
T265_10413	gi 358338282	integrin alpha-5
T265_15583	gi 358334974	coiled-coil domain-containing
T265_05385	gi 358254660	ecdysone-induced protein 78C
T265_06055	gi 358338672	ankyrin repeat domain-contair
T265_09823	gi 358338574	patatin-like phospholipase dor
T265_12442	gi 358342089	exocyst complex component 6
T265_14563	gi 358336386	terminal uridylyltransferase 7
T265_14630	gi 358338747	zinc finger CCCH domain-conta
T265_15132	gi 358333293	ATPase family AAA domain-coi
T265_15342	gi 358341675	cell division cycle 2-like
T265_00630	gi 358340488	telomerase protein componen
T265_00976	gi 358252933	FH1/FH2 domain-containing pi
T265_02851	gi 358335297	neurofibromin 1
T265_04878	gi 684384900	hypothetical protein T265_048
T265_05525	gi 358340495	DNA polymerase alpha subunit
T265_11520	gi 358338356	Ca(2+)/calmodulin-responsive
T265_12500	gi 358340364	striated muscle preferentially (
T265_13055	gi 353229947	putative spectrin beta chain, b
T265_14174	gi 358254651	plectin, partial
T265_14303	gi 358255157	rootletin
T265_15051	gi 358342072	twitchin, partial

ini are diagnostic features of exosomes. Mascot was used as the search engine; spectra were searc

BLAST Organism	SignalP	ТМНММ	Exocarta homologu	Present in O. viverrini	E: #GO s
Clonorchis sinensis	Ν	Ν	Yes	No	7
Clonorchis sinensis	Ν	Ν	Yes	Yes	8
Clonorchis sinensis	Ν	Ν	No	Yes	3
Clonorchis sinensis	Ν	Ν	No	Yes	1
Clonorchis sinensis	Ν	Ν	Yes	No	1
Clonorchis sinensis	Ν	Ν	Yes	No	2
Clonorchis sinensis	Ν	Ν	Yes	No	2
Clonorchis sinensis	Ν	Ν	No	No	1
Fasciola hepatica	Ν	Ν	Yes	No	8
Fasciola hepatica	Ν	Ν	Yes	No	5
Opisthorchis viverrini	Ν	Ν	No	No	0
Opisthorchis viverrini	Ν	Ν	No	No	0
Schistosoma mansoni	Ν	Ν	Yes	Yes	3
Clonorchis sinensis	Ν	Ν	Yes	No	2
Opisthorchis viverrini	Ν	Ν	No	No	0
Clonorchis sinensis	Ν	Ν	No	No	4
Opisthorchis viverrini	Ν	Ν	No	No	0
Clonorchis sinensis	Ν	Υ	No	No	0
Clonorchis sinensis	Ν	Ν	Yes	No	6
Schistosoma mansoni	Ν	Ν	No	Yes	1
Schistosoma haematobi	U N	Ν	Yes	No	6
Clonorchis sinensis	Ν	Ν	No	Yes	5
Opisthorchis viverrini	Ν	Ν	Yes	Yes	2
Clonorchis sinensis	Ν	Ν	No	Yes	3
Clonorchis sinensis	Ν	Ν	No	No	20
Clonorchis sinensis	Ν	Ν	Yes	Yes	2
Opisthorchis viverrini	Ν	Ν	No	No	0
Opisthorchis viverrini	Ν	Ν	No	No	0
Opisthorchis viverrini	Ν	Υ	No	No	0
Schistosoma mansoni	Ν	Ν	No	No	0
Clonorchis sinensis	Ν	Ν	Yes	No	8
Clonorchis sinensis	Ν	Ν	No	No	6
Opisthorchis viverrini	Ν	Υ	Yes	No	1
Opisthorchis viverrini	Y	Ν	No	No	0
Clonorchis sinensis	Ν	Ν	No	No	1
Clonorchis sinensis	Ν	Ν	No	No	1
Clonorchis sinensis	Ν	Ν	Yes	No	8
Opisthorchis viverrini	Ν	Υ	Yes	No	1
Clonorchis sinensis	Ν	Ν	No	No	3
Clonorchis sinensis	Ν	Ν	No	No	7
Schistosoma japonicum	Ν	Υ	No	No	2

Clonorchis sinensis	Ν	Ν	Yes	No	1
Clonorchis sinensis	Ν	Ν	Yes	No	2
Clonorchis sinensis	Ν	Ν	Yes	No	0
Clonorchis sinensis	Ν	Ν	Yes	No	4
Clonorchis sinensis	Ν	Ν	No	No	0
Clonorchis sinensis	Ν	Ν	Yes	No	3
Opisthorchis viverrini	Ν	Ν	No	No	0
Fasciola gigantica	Ν	Ν	Yes	Yes	2
Clonorchis sinensis	Ν	Ν	Yes	No	12
Schistosoma japonicum	Ν	Ν	No	No	4
Clonorchis sinensis	Ν	Ν	Yes	No	1
Clonorchis sinensis	Ν	Ν	No	No	1
Clonorchis sinensis	Ν	Ν	No	No	0
Clonorchis sinensis	Ν	Ν	Yes	No	4
Clonorchis sinensis	Ν	Ν	Yes	Yes	2
Clonorchis sinensis	Ν	Ν	Yes	No	3
Schistosoma mansoni	Ν	Ν	No	Yes	7
Clonorchis sinensis	Ν	Ν	Yes	No	2
Fasciola hepatica	Ν	Ν	Yes	No	2
Clonorchis sinensis	Ν	Ν	No	No	1
Clonorchis sinensis	Ν	Ν	Yes	No	14
Clonorchis sinensis	Ν	Ν	No	No	0
Clonorchis sinensis	Ν	Ν	No	No	3
Schistosoma haematobi	υN	Ν	No	No	1
Clonorchis sinensis	Ν	Ν	No	No	3
Schistosoma mansoni	Ν	Ν	Yes	No	4
Clonorchis sinensis	Ν	Ν	Yes	No	2
Clonorchis sinensis	Ν	Ν	No	No	4
Clonorchis sinensis	Ν	Ν	No	No	3
Clonorchis sinensis	Ν	Ν	No	No	1
Clonorchis sinensis	Ν	Ν	Yes	No	2
Clonorchis sinensis	Ν	Ν	Yes	Yes	4
Clonorchis sinensis	Ν	Y	No	No	0
Clonorchis sinensis	Ν	Ν	No	No	35
Clonorchis sinensis	Ν	Ν	No	No	3
Clonorchis sinensis	Ν	Ν	No	No	6
Clonorchis sinensis	Ν	Ν	Yes	No	1
Clonorchis sinensis	Ν	Y	No	No	1
Schistosoma mansoni	Ν	Ν	No	No	0
Clonorchis sinensis	Ν	Ν	No	No	3
Clonorchis sinensis	Ν	Y	No	No	4
Clonorchis sinensis	Ν	Ν	No	No	8
Clonorchis sinensis	Ν	Ν	No	No	3
Clonorchis sinensis	Ν	Ν	No	No	0

Clonorchis sinensis	Ν	Ν	Yes	No	1
Clonorchis sinensis	Ν	Ν	No	No	5
Clonorchis sinensis	Y	Ν	Yes	No	3
Clonorchis sinensis	Ν	Ν	No	No	5
Clonorchis sinensis	Ν	Y	No	No	8
Clonorchis sinensis	Ν	Ν	No	No	1
Clonorchis sinensis	Ν	Ν	Yes	No	2
Clonorchis sinensis	Ν	Ν	No	No	4
Clonorchis sinensis	Ν	Ν	No	No	3
Clonorchis sinensis	Ν	Ν	No	No	8
Clonorchis sinensis	Ν	Ν	Yes	No	4
Clonorchis sinensis	Ν	Ν	No	No	4
Clonorchis sinensis	Ν	Ν	No	No	3
Clonorchis sinensis	Ν	Ν	No	No	8
Clonorchis sinensis	Y	Ν	No	No	4
Opisthorchis viverrini	Ν	Ν	No	No	0
Clonorchis sinensis	Ν	Ν	No	No	5
Clonorchis sinensis	Ν	Y	No	No	3
Clonorchis sinensis	Ν	Ν	No	No	6
Schistosoma mansoni	Ν	Ν	No	No	31
Clonorchis sinensis	Ν	Ν	Yes	No	9
Clonorchis sinensis	Y	Ν	Yes	No	2
Clonorchis sinensis	Ν	Ν	No	No	5

GOs	Enzyme Codes	InterProScan score	Number peptid	Score	emPA
P:sarcomere	-	IPR004000 (PI 728.783	9	1040	1.05
C:microtubu	l -	Coil (COILS); II 846.655	8	852	0.94
C:myofibril;	(-	Coil (COILS); C 1540.4	13	945	0.52
F:calcium ior	า -	IPR002048 (SI 133.265	1	32	0.45
F:protein bir	nding	IPR019956 (PF 303	2	147	0.43
F:calcium ior	า-	IPR001464 (PF678.707	4	213	0.39
F:aspartic-ty	۶ EC:3.4.23	IPR001461 (PF141.739	1	17	0.36
F:protein bir	nding	IPR001478 (SI 287	3	216	0.34
P:DNA duple	e: EC:3.6.1	Coil (COILS); II 311.997	3	201	0.33
C:retromer of	complex; P:vacuola	Coil (COILS); N 50.447	2	84	0.32
-		no IPS match 100	1	14	0.31
-		no IPS match 99	1	38	0.31
P:eye develo) -	IPR002499 (PI 206	1	40	0.3
F:calcium ior	า -	IPR001464 (PF653.67	3	199	0.28
-		no IPS match 117	1	17	0.26
P:methylatic) -	IPR007316 (PF 207.223	1	15	0.24
-		no IPS match 134	1	27	0.24
-		Coil (COILS); C 191	5	261	0.22
C:myosin fila	a) -	Coil (COILS); C 3319.25	13	509	0.21
C:extracellul	ar region	IPR001283 (PF 134.42	2	134	0.21
F:GTP bindin	g; P:small GTPase	IPR001806 (PF143	1	44	0.21
F:heme bind	i -	IPR011406 (PI 256.144	1	200	0.2
F:transferase	9 -	IPR004046 (PF342.813	1	52	0.17
F:calcium ior	า -	IPR011992 (PF 306.22	1	98	0.17
P:ovipositior	۱-	IPR001806 (PF 293.123	1	20	0.17
C:cytoplasm	; -	Coil (COILS); II 263.848	1	50	0.17
-		no IPS match 188	1	15	0.17
-		no IPS match 182	1	25	0.16
-		CYTOPLASMIC 191	1	18	0.16
-		IPR019367 (PF92	1	16	0.16
C:microtubu	-	Coil (COILS); II 800.431	2	56	0.14
F:metal ion b	o EC:2.7.3.4	IPR022413 (G: 567	3	70	0.14
C:integral to	membrane	IPR000301 (PF 178.333	1	114	0.14
-		SIGNAL_PEPTI211	1	44	0.14
F:zinc ion bir	า -	IPR000433 (PI 368.622	1	23	0.13
F:protein bir	nding	IPR001680 (SI 269	2	14	0.13
C:microtubu	-	Coil (COILS); II 753.051	2	44	0.13
C:integral to	-	IPR000301 (PF336.265	1	39	0.13
P:DNA repai	r; F:DNA-directed [no IPS match 91.2781	1	33	0.13
F:translation	EC:2.7.7.49	no IPS match 182.57	1	14	0.12
C:integral to	-	IPR007305 (Pf 148.288	1	19	0.11

ched against the O. viverrini genome database [65] and hits were annotated using Blast2GO

F:calcium ion -	IPR011992 (G: 370.933	1	147	0.1
F:nucleic acic -	IPR015880 (Sf 226.868	1	17	0.1
-	Coil (COILS); C 279	1	44	0.1
F:RNA bindin EC:2.7.7.49	IPR010734 (PF 213.001	1	18	0.1
-	no IPS match 322	1	26	0.09
F:nucleoside- EC:3.6.1.15	PF13177 (PFA 622.854	1	23	0.08
-	no IPS match 354	1	32	0.08
F:protein dor -	IPR000308 (PF 338.191	1	46	0.08
C:cilium; F:pr -	Coil (COILS); II 840.491	1	55	0.07
F:RNA binding; P:RNA-depende	no IPS match 101.679	1	13	0.07
C:membrane	IPR004328 (SI 286.96	1	34	0.07
P:signal trans -	IPR000698 (PF788.104	1	17	0.06
-	Coil (COILS); C 316	1	38	0.06
P:protein phc EC:2.7.11	IPR000095 (SI 891.338	1	13	0.06
C:membrane -	IPR002048 (SI 688.723	1	77	0.06
P:protein phc EC:2.7.11	no IPS match 181.8	1	18	0.06
F:RNA-direct(EC:2.7.7.49	Coil (COILS); C 355.14	2	76	0.05
C:intracellula -	Coil (COILS); C 946.806	1	17	0.05
F:ATP bindin _{ -	IPR013126 (PI 1083.94	1	54	0.05
F:protein tyrosine phosphatase	IPR028472 (P/ 415	1	19	0.05
C:mitochond EC:4.2.1.17; EC:1.	IPR002155 (TI 573.933	1	19	0.05
-	Coil (COILS); P 344	1	14	0.05
F:GTPase acti-	no IPS match 996.882	1	21	0.05
P:termination of G-protein cou	IPR000342 (PF 185	1	27	0.05
P:mRNA proc -	IPR003107 (SF 1461.82	1	28	0.04
F:helicase act-	IPR001650 (Sf 716.457	1	17	0.04
C:ribosome; I-	Coil (COILS); II 780.015	1	17	0.04
C:cytoplasm; C:cytoskeleton; P:	Coil (COILS); C 78.1814	1	15	0.04
F:nucleoside- EC:3.6.1.15	IPR003338 (Sf 1365.9	1	28	0.04
C:cell wall	TRANSMEMBI 58.5362	2	29	0.04
F:actin bindir -	Coil (COILS); C 1178.7	2	20	0.04
C:intracellula -	Coil (COILS); II 1535.39	1	28	0.04
-	CYTOPLASMIC 375	1	16	0.04
F:sequence-s EC:3.1.4.11	Coil (COILS); II 817.765	1	19	0.03
C:microtubul -	no IPS match 1664.82	1	18	0.03
C:SCF ubiquit -	IPR016158 (SF 1125.92	1	17	0.03
F:calcium ion -	IPR011992 (PF 1578.15	1	24	0.03
C:gap junctio -	IPR000990 (PI 803.897	1	30	0.03
-	no IPS match 323	1	14	0.03
F:protein tyrcEC:3.1.3.48	IPR000980 (PF 1274.61	1	14	0.03
C:integral to -	IPR002126 (PI 1865.51	1	33	0.03
F:RNA bindin EC:2.7.7.49	Coil (COILS); II 207.608	1	28	0.03
F:sequence-s -	Coil (COILS); C 1566.21	1	16	0.03
-	Coil (COILS); C 365	1	17	0.03

F:protein binding	Coil (COILS); II 334	1	41	0.03
F:binding; P:r -	IPR019135 (PI 159.844	1	17	0.03
C:integrin coı-	IPR000413 (PF 1672.14	1	16	0.03
P:system dev -	Coil (COILS); C 330.872	1	17	0.03
P:steroid hor -	IPR000008 (PI 804.668	1	22	0.02
F:protein binding	IPR002110 (SI 846	1	14	0.02
P:phosphatid EC:3.1.1.5	IPR000595 (Sf 2380.13	1	19	0.02
P:vesicle doc -	IPR007225 (PI 1456.04	1	18	0.02
F:zinc ion bin -	IPR001878 (Sf 3256.08	1	31	0.02
F:RNA-direct(EC:2.7.7.49	Coil (COILS); II 1535.78	1	18	0.02
F:nucleoside- EC:3.6.1.15	Coil (COILS); II 1464.51	1	18	0.02
P:protein phc EC:2.7.11	IPR002290 (Sf 1755.34	1	20	0.02
F:RNA bindin -	IPR001680 (SI 580.096	1	18	0.01
P:cell migrati -	Coil (COILS); C 3016.1	1	20	0.01
C:intracellula -	IPR001936 (SI 4016.08	1	19	0.01
-	no IPS match 2654	1	24	0.01
F:DNA-direct EC:2.7.7.7	Coil (COILS); C 2401.71	1	20	0.01
P:intracellula -	IPR001054 (Sf 5421.67	1	20	0.01
F:Rho guanyl -	Coil (COILS); C 5958.64	1	22	0.01
P:axon midlir -	Coil (COILS); C 3063.86	1	20	0.01
P:anatomical -	Coil (COILS); C 4715.6	1	21	0.01
P:centrosom(-	Coil (COILS); C 1859.73	1	13	0.01
F:protein binding; F:ATP bindin	PR00014 (PRII 20387	2	18	0.01

[66].

Seq. Length	#Hits	min. eValue	mean Similarity
358	20	0	93.80%
474	20	0	91.50%
871	20	0	93.05%
70	20	3.23E-40	67.50%
152	20	2.40E-103	99.95%
342	20	0	68.90%
86	3	7.42E-56	78.67%
302	20	0	61.45%
295	20	0	90.30%
202	17	4.42E-146	66.24%
100	1	8.01E-64	100.00%
99	2	5.38E-64	89.50%
101	20	4.75E-68	79.55%
354	20	0	69.45%
117	1	4.07E-82	100.00%
124	20	1.42E-84	69.70%
134	1	8.74E-79	100.00%
727	20	0	55.45%
1932	20	0	84.95%
298	20	0	61.20%
142	20	2.35E-99	72.10%
150	20	1.67E-104	66.00%
177	20	2.23E-126	63.20%
175	20	1.81E-112	59.80%
175	20	1.45E-111	80.40%
173	20	2.45E-95	57.90%
188	20	3.13E-135	74.00%
182	20	3.13E-127	71.35%
191	5	1.02E-137	82.00%
186	20	7.69E-135	85.10%
435	20	0	94.15%
655	20	0	82.50%
223	20	4.71E-154	66.35%
211	4	3.53E-154	70.25%
218	9	3.90E-149	64.89%
477	20	0	80.45%
473	20	0	90.00%
230	20	3.20E-149	66.00%
230	20	2.45E-170	73.40%
233	20	3.28E-159	83.50%
279	20	0	82.35%

300	20	0	85.80%
291	20	0	71.00%
284	20	7.91E-152	90.35%
314	20	0	77.30%
322	20	0	57.65%
367	20	0	80.10%
354	5	5.95E-136	66.60%
355	20	0	79.65%
451	20	0	93.15%
397	20	0	62.95%
436	20	0	60.25%
469	20	0	51.85%
499	20	0	54.65%
478	20	0	67.00%
516	20	0	77.65%
483	2	0	95.50%
1059	20	0	86.60%
561	20	0	62.50%
653	20	0	95.00%
553	20	0	78.15%
584	20	0	81.80%
610	20	0	78.20%
608	20	0	75.55%
628	20	0	54.05%
763	20	0	81.95%
744	20	0	66.60%
801	20	0	57.35%
648	20	0	56.80%
827	20	0	90.05%
1567	20	0	59.85%
1305	20	0	58.55%
756	20	0	73.05%
756	7	0	66.71%
1060	20	0	76.65%
918	20	0	68.45%
966	20	0	64.85%
929	20	0	79.25%
969	20	0	81.05%
895	5	0	67.60%
860	20	0	65.50%
1115	20	0	47.10%
1136	20	0	85.20%
936	20	0	75.30%
975	20	0	65.90%

1068	20	0	57.00%
1163	20	0	55.15%
1021	20	0	59.95%
969	20	0	58.45%
1255	20	0	54.50%
1991	20	0	56.55%
1619	20	0	62.65%
1660	20	0	58.60%
1835	20	0	54.90%
1736	20	0	95.10%
1613	20	0	69.25%
1571	20	0	88.35%
3231	20	0	56.05%
2026	20	0	64.15%
3568	20	0	72.90%
2654	2	0	74.50%
3052	20	0	62.65%
3148	20	0	58.00%
5487	20	0	53.75%
2421	20	0	77.70%
3288	20	0	56.55%
2198	20	0	59.90%
6861	1	0	100%

Table S2. Quantitative protein and peptide report of human cholangiocyte proteins after in

Microvesicles Quantitative Sample report created on 26/08/2014 **Experiment: Microvesicles** Identification Criteria: unknown Scaffold Version: Scaffold 4.2.1 Quantification Type: iTRAQ 8-Plex Peak Quantitation Measurement: Centroided Peak Intensity Peak List Generator: Analyst Version: 2.0 Charge States Calculated: True Deisotoped: True Textual Annotation: unknown Database Set: 2 Databases Database Name: a subset of the SwissProt 2013 09 da Version: 2013 09 **Taxonomy: All Entries** Number of Proteins: 17420 Database Name: the SwissProt 2013 09 database Version: 2013 09 Taxonomy: Homo sapiens Number of Proteins: 20272 Does database contain common contaminants?: Yes Search Engine Set: 2 Search Engines Search Engine: Mascot Version: 2.4.0 Samples: All Samples Fragment Tolerance: 0.50 Da (Monoisotc Parent Tolerance: 0.50 Da (Monoisotopic Fixed Modifications: +304 on Kn (iTRAQ8 Variable Modifications: +16 on M (Oxidat Database: the SwissProt 2013 09 databa **Digestion Enzyme: Trypsin** Max Missed Cleavages: 2 Probability Model: mascot daemon merge (e: mascot daemon merge (e: Search Engine: X! Tandem Version: CYCLONE (2010.12.01.1) Samples: All Samples Fragment Tolerance: 0.50 Da (Monoisotc Parent Tolerance: 0.50 Da (Monoisotopic Fixed Modifications: +304 on Kn (iTRAQ8 Variable Modifications: -18 on n (Glu->py

Database: a subset of the SwissProt 201 **Digestion Enzyme: Trypsin** Max Missed Cleavages: 2 Probability Model: mascot_daemon_merge (e: mascot daemon merge (e: Scaffold: Version: Scaffold 4.2.1 Modification Metadata Set: 1541 modifications Source: C:\Program Files\Scaffold 4\para Comment: Protein Grouping Strategy: Experiment-wide grouping Peptide Thresholds: 95.0% minimum Protein Thresholds: 99.9% minimum and 2 peptides m Peptide FDR: 0.8% (Decoy) Protein FDR: 1.2% (Decoy) Purity Correction Set: unknown Default iTRAQ 8-Plex Purity Correction: Purity Correction Values: [0.000,0.000,0.929,0.0689,0. Samples Applied To: All Samples Quantitation Preferences: unknown Minimum Value Preference: Use Minimum Absolute Intensity: false Minimum Absolute Intensity: 0.0 Minimum Value: 0.01 Model Preference: Model Type: Intensity-Based Normalization **Condenser Preference:** Use Intensity Weighting: true Use Standard Deviation Estimation: true Use Non-Exclusive Peptides: false Intensity-Based Normalization Preference: Calculation Type: Median Quant Uniqueness Model: Unique Peptides Use Inter Experiment Normalization: true Use Intra Sample Normalization: true Use Peptide Normalization: true Use Protein Reference Normalization: true Use Protein Average As Reference: true Use Iterative Normalization: true **View Preference:** View Type: Log2 Ratio Normalization Factors: unknown Inter-Experiment Normalization Factors:

Javi_microvesicles: -0.000

Intra-Sample Normalization Factors:

Javi_microvesicles: [0.609,1.40,55.7,55.7,-1.14,55.7,-1.

Quantitative Test: unknown

Quantitative Test: Kruskal-Wallis Test (P-Value)

Microvesicles Displaying:Log2 Fold Change

#

V	'isible?	Starred?	Identified Prc Accession Nu Molecular We	Protein Grou
1	TRUE	Empty	Serum album ALBU_HUMA 69 kDa	TRUE
2	TRUE	Empty	Cluster of Act ACTB_HUMA 42 kDa	TRUE
3	TRUE	Empty	Cluster of His H2B1M_HUN 14 kDa	TRUE
4	TRUE	Empty	Cluster of My MYH9_HUM/227 kDa	TRUE
5	TRUE	Empty	Neuroblast di AHNK_HUMA 629 kDa	TRUE
6	TRUE	Empty	Cluster of Vin VIME_HUMA 54 kDa	TRUE
7	TRUE	Empty	Cluster of GlyG3P_HUMAN36 kDa	TRUE
8	TRUE	Empty	Cluster of Tul TBB5_HUMA 50 kDa	TRUE
9	TRUE	Empty	Histone H4 O H4_HUMAN 11 kDa	
10	TRUE	Empty	Cluster of Hei HS90B_HUM, 83 kDa	TRUE
11	TRUE	Empty	Cluster of Ani ANXA2_HUM 39 kDa	TRUE
12	TRUE	Empty	Plectin OS=H(PLEC_HUMAI 532 kDa	TRUE
13	TRUE	Empty	Cluster of Fila FLNA_HUMA 281 kDa	TRUE
14	TRUE	Empty	Cluster of Tul TBA1A_HUM.50 kDa	TRUE
15	TRUE	Empty	Cluster of Elo EF1A1_HUM/50 kDa	TRUE
16	TRUE	Empty	Cluster of Mc MOES_HUM468 kDa	TRUE
17	TRUE	Empty	Nucleolin OS-NUCL_HUMA 77 kDa	TRUE
18	TRUE	Empty	Cluster of His H31T_HUMA 16 kDa	TRUE
19	TRUE	Empty	Cluster of Ub RL40_HUMAI 15 kDa	TRUE
20	TRUE	Empty	Prelamin-A/CLMNA_HUM/74 kDa	TRUE
21	TRUE	Empty	Cluster of Hei HSP7C_HUM, 71 kDa	TRUE
22	TRUE	Empty	Cluster of Pyr KPYM_HUMA58 kDa	TRUE
23	TRUE	Empty	Annexin A5 CANXA5_HUM 36 kDa	TRUE
24	TRUE	Empty	Peptidyl-prol PPIA_HUMAI 18 kDa	TRUE
25	TRUE	Empty	10 kDa heat sCH10_HUMA 11 kDa	
26	TRUE	Empty	Cluster of KerK1C18_HUM/48 kDa	TRUE
27	TRUE	Empty	Cluster of AlpENOA_HUMA47 kDa	TRUE
28	TRUE	Empty	Cluster of AlpACTN4_HUM 105 kDa	TRUE
29	TRUE	Empty	Cluster of His H12_HUMAN 21 kDa	TRUE
30	TRUE	Empty	Protein disulf PDIA1_HUM/ 57 kDa	TRUE
31	TRUE	Empty	60 kDa heat sCH60_HUMA 61 kDa	TRUE
32	TRUE	Empty	Cluster of L-IaLDHA_HUMA 37 kDa	TRUE
33	TRUE	Empty	Spectrin alph SPTN1_HUM, 285 kDa	TRUE
34	TRUE	Empty	Cluster of PhcPGK1_HUMA 45 kDa	TRUE
35	TRUE	Empty	Protein disulf PDIA3_HUM/ 57 kDa	TRUE

36	TRUE	Empty	Elongation fa EF2_HUMAN 95 kDa	TRUE
37	TRUE	Empty	78 kDa gluco: GRP78_HUM, 72 kDa	TRUE
38	TRUE	Empty	Cluster of Tra TAGL2_HUM, 22 kDa	TRUE
39	TRUE	Empty	Cluster of RN RBMX_HUM/42 kDa	TRUE
40	TRUE	Empty	Cluster of 14-1433Z_HUM/28 kDa	TRUE
41	TRUE	Empty	TriosephosphTPIS_HUMAN31 kDa	
42	TRUE	Empty	ATP synthase ATPB_HUMA 57 kDa	TRUE
43	TRUE	Empty	Nucleophosm NPM_HUMAI 33 kDa	TRUE
44	TRUE	Empty	Microtubule- MAP4_HUM/ 121 kDa	
45	TRUE	Empty	Cluster of EncENPL_HUMA 92 kDa	TRUE
46	TRUE	Empty	Cluster of Sta STMN1_HUN 17 kDa	TRUE
47	TRUE	Empty	Cluster of Hei HNRPC_HUM 34 kDa	TRUE
48	TRUE	Empty	Heterogeneo ROA2_HUMA37 kDa	TRUE
49	TRUE	Empty	Heterogeneo HNRPK_HUM 51 kDa	TRUE
50	TRUE	Empty	DNA-depend PRKDC_HUM 469 kDa	TRUE
51	TRUE	Empty	Ribosome-bir RRBP1_HUM, 152 kDa	TRUE
52	TRUE	Empty	MRO2B_HUN MRO2B_HUN?	TRUE
53	TRUE	Empty	Cluster of Cal CALM_HUMA17 kDa	TRUE
54	TRUE	Empty	Cluster of Sp <sptb2_hum 275="" kda<="" td=""><td>TRUE</td></sptb2_hum>	TRUE
55	TRUE	Empty	Profilin-1 OS= PROF1_HUM, 15 kDa	
56	TRUE	Empty	Cluster of 40 ^s RS10_HUMAI 19 kDa	TRUE
57	TRUE	Empty	Calreticulin OCALR_HUMA 48 kDa	
58	TRUE	Empty	Cluster of HeiROA1_HUMA39 kDa	TRUE
59	TRUE	Empty	Talin-1 OS=H(TLN1_HUMA 270 kDa	TRUE
60	TRUE	Empty	Stress-induce STIP1_HUMA 63 kDa	TRUE
61	TRUE	Empty	Heat shock prHSPB1_HUM, 23 kDa	
62	TRUE	Empty	Peroxiredoxir PRDX6_HUM.25 kDa	TRUE
63	TRUE	Empty	Peptidyl-prol [,] PPIB_HUMAN24 kDa	TRUE
64	TRUE	Empty	40S ribosoma RS19_HUMAI 16 kDa	
65	TRUE	Empty	T-complex pr TCPG_HUMA 61 kDa	
66	TRUE	Empty	Cluster of Fru ALDOA_HUM 39 kDa	TRUE
67	TRUE	Empty	ATP synthase ATPA_HUMA 60 kDa	TRUE
68	TRUE	Empty	Histone H1.5 H15_HUMAN23 kDa	TRUE
69	TRUE	Empty	Alpha-2-HS-g FETUA_HUM, 39 kDa	
70	TRUE	Empty	40S ribosoma RS9_HUMAN 23 kDa	TRUE
71	TRUE	Empty	Proteasome < PSME1_HUM 29 kDa	
72	TRUE	Empty	Cluster of Cla CLH1_HUMA 192 kDa	TRUE
73	TRUE	Empty	Transitional eTERA_HUMA 89 kDa	TRUE
74	TRUE	Empty	Protein S100-S10A6_HUM/10 kDa	
75	TRUE	Empty	Cluster of AD ADT2_HUMA 33 kDa	TRUE
76	TRUE	Empty	40S ribosoma RS16_HUMAI 16 kDa	
77	TRUE	Empty	L-lactate deh [,] LDHB_HUMA 37 kDa	TRUE
78	TRUE	Empty	40S ribosoma RS3A_HUMA 30 kDa	
79	TRUE	Empty	Ras GTPase-a IQGA1 HUM, 189 kDa	TRUE

80	TRUE	Empty	X-ray repair c XRCC6_HUM, 70 kDa	TRUE
81	TRUE	Empty	Cluster of HigHMGB1_HUN 25 kDa	TRUE
82	TRUE	Empty	Translational GCN1L_HUM 293 kDa	TRUE
83	TRUE	Empty	Cytoplasmic (DYHC1_HUM 532 kDa	TRUE
84	TRUE	Empty	Stress-70 pro GRP75_HUM, 74 kDa	TRUE
85	TRUE	Empty	Cluster of Prc TGM2_HUM/ 77 kDa	TRUE
86	TRUE	Empty	Cluster of HerHBA_HUMAN 15 kDa	TRUE
87	TRUE	Empty	Cluster of ColCOF1_HUMA 19 kDa	TRUE
88	TRUE	Empty	40S ribosoma RS18_HUMAI 18 kDa	
89	TRUE	Empty	Galectin-1 OSLEG1_HUMAI15 kDa	
90	TRUE	Empty	Prohibitin-2 (PHB2_HUMA 33 kDa	
91	TRUE	Empty	Cluster of 40 ^s RS4X_HUMAI30 kDa	TRUE
92	TRUE	Empty	Calnexin OS= CALX_HUMA168 kDa	TRUE
93	TRUE	Empty	Heterogeneo HNRPM_HUN 78 kDa	
94	TRUE	Empty	Cluster of Lac TRFL_HUMAN78 kDa	TRUE
95	TRUE	Empty	Cluster of His H2A2B_HUM 14 kDa	TRUE
96	TRUE	Empty	Myosin light MYL6_HUMA 17 kDa	
97	TRUE	Empty	60S ribosoma RL4_HUMAN 48 kDa	TRUE
98	TRUE	Empty	Cluster of Trc TPM3_HUMA33 kDa	TRUE
99	TRUE	Empty	Cluster of Nu YBOX1_HUM 36 kDa	TRUE
100	TRUE	Empty	60S ribosoma RL3_HUMAN 46 kDa	TRUE
101	TRUE	Empty	Cluster of GluG6PI_HUMA163 kDa	TRUE
102	TRUE	Empty	Cluster of Trc TPM1_HUMA33 kDa	TRUE
103	TRUE	Empty	Cystatin-B OSCYTB_HUMA 11 kDa	
104	TRUE	Empty	Malate dehyc MDHM_HUN 36 kDa	
105	TRUE	Empty	Protein S100-S10AA_HUM, 11 kDa	TRUE
106	TRUE	Empty	Thioredoxin (THIO_HUMAI12 kDa	
107	TRUE	Empty	Calpastatin OICAL_HUMAN77 kDa	
108	TRUE	Empty	Elongation fa EF1G_HUMA 50 kDa	
109	TRUE	Empty	Neutral alphaGANAB_HUN 107 kDa	
110	TRUE	Empty	Serine/argini:SRSF1_HUM#28 kDa	TRUE
111	TRUE	Empty	60S ribosomaRL6_HUMAN 33 kDa	TRUE
112	TRUE	Empty	Annexin A6 CANXA6_HUM 76 kDa	TRUE
113	TRUE	Empty	ATP-citrate syACLY_HUMAI121 kDa	TRUE
114	TRUE	Empty	40S ribosoma RS7_HUMAN 22 kDa	TRUE
115	TRUE	Empty	60S ribosoma RL23A_HUM/18 kDa	
116	TRUE	Empty	Vinculin OS=FVINC_HUMAI124 kDa	
117	TRUE	Empty	Heterogeneo ROAA_HUMA36 kDa	TRUE
118	TRUE	Empty	Far upstream FUBP2_HUM, 73 kDa	TRUE
119	TRUE	Empty	C-1-tetrahydr C1TC_HUMA 102 kDa	
120	TRUE	Empty	Annexin A1 CANXA1_HUM 39 kDa	TRUE
121	TRUE	Empty	Cluster of 60 ^c RL13A_HUM+24 kDa	TRUE
122	TRUE	Empty	TransketolaseTKT_HUMAN 68 kDa	TRUE
123	TRUE	Empty	Calumenin O: CALU_HUMA 37 kDa	TRUE

124	TRUE	Empty	Cluster of HerHBB_HUMAN 16 kDa	TRUE
125	TRUE	Empty	Eukaryotic tra IF4H_HUMAN27 kDa	TRUE
126	TRUE	Empty	40S ribosoma RS13_HUMAI 17 kDa	TRUE
127	TRUE	Empty	Glucosidase 2GLU2B_HUM 59 kDa	TRUE
128	TRUE	Empty	Cluster of HigHMGB2_HUN 24 kDa	TRUE
129	TRUE	Empty	Cluster of Eul IF4A1_HUMA46 kDa	TRUE
130	TRUE	Empty	60S ribosoma RL13_HUMAI 24 kDa	
131	TRUE	Empty	Peptidyl-prolyFKBP3_HUM/25 kDa	TRUE
132	TRUE	Empty	Myosin regul ML12A_HUM20 kDa	TRUE
133	TRUE	Empty	T-complex pr TCPQ_HUMA 60 kDa	
134	TRUE	Empty	40S ribosoma RS15A_HUM/ 15 kDa	
135	TRUE	Empty	GlycinetRN/SYG_HUMAN 83 kDa	TRUE
136	TRUE	Empty	Plasminogen PAIRB_HUM445 kDa	
137	TRUE	Empty	60S ribosoma RL7_HUMAN 29 kDa	TRUE
138	TRUE	Empty	Nuclear ubiqi NUCKS_HUM 27 kDa	
139	TRUE	Empty	ATPase inhibi ATIF1_HUMA 12 kDa	
140	TRUE	Empty	Procollagen-l [.] PLOD2_HUM 85 kDa	
141	TRUE	Empty	40S ribosoma RS25_HUMAI 14 kDa	
142	TRUE	Empty	Cluster of 6-pK6PF_HUMAI85 kDa	TRUE
143	TRUE	Empty	Cluster of Eul IF5A1_HUMA17 kDa	TRUE
144	TRUE	Empty	Cluster of Ser 2AAA_HUMA 65 kDa	TRUE
145	TRUE	Empty	Fatty acid syr FAS_HUMAN 273 kDa	TRUE
146	TRUE	Empty	Lupus La prot LA_HUMAN 47 kDa	
147	TRUE	Empty	Cluster of 60 ^s RL26_HUMAI 17 kDa	TRUE
148	TRUE	Empty	Protein disulf PDIA4_HUM/ 73 kDa	
149	TRUE	Empty	Cluster of Dih DPYL2_HUM/62 kDa	TRUE
150	TRUE	Empty	Protein S100-S10AB_HUM/12 kDa	
151	TRUE	Empty	Fascin OS=HcFSCN1_HUM,55 kDa	
152	TRUE	Empty	Protein DJ-1 (PARK7_HUM, 20 kDa	TRUE
153	TRUE	Empty	Cluster of PhcPGAM1_HUN 29 kDa	TRUE
154	TRUE	Empty	Heterogeneo HNRPU_HUN 91 kDa	
155	TRUE	Empty	60S acidic rib RLA0_HUMAI34 kDa	
156	TRUE	Empty	60S ribosoma RL10_HUMAI 25 kDa	
157	TRUE	Empty	Staphylococc SND1_HUMA 102 kDa	
158	TRUE	Empty	Cluster of Nu NDKB_HUMA17 kDa	TRUE
159	TRUE	Empty	Non-histone (HMGN2_HUN9 kDa	TRUE
160	TRUE	Empty	Nuclear mito NUMA1_HUN 238 kDa	TRUE
161	TRUE	Empty	Glycogen phc PYGB_HUMA 97 kDa	TRUE
162	TRUE	Empty	60S ribosoma RL31_HUMAI 14 kDa	TRUE
163	TRUE	Empty	Dolichyl-diph RPN1_HUMA 69 kDa	
164	TRUE	Empty	40S ribosoma RS3_HUMAN 27 kDa	
165	TRUE	Empty	Tropomyosin TPM4_HUMA29 kDa	TRUE
166	TRUE	Empty	28 kDa heat- HAP28_HUM 21 kDa	
167	TRUE	Empty	Programmed PDCD5_HUM 14 kDa	TRUE

168	TRUE	Empty	Non-POU dor NONO_HUM, 54 kDa	TRUE
169	TRUE	Empty	60S ribosoma RL5_HUMAN 34 kDa	
170	TRUE	Empty	Cluster of Spl DX39B_HUM.49 kDa	TRUE
171	TRUE	Empty	Thioredoxin cTXND5_HUM 48 kDa	
172	TRUE	Empty	RNA-binding EWS_HUMA168 kDa	TRUE
173	TRUE	Empty	Glutathione SGSTO1_HUM 28 kDa	
174	TRUE	Empty	Periplakin OS PEPL_HUMAI 205 kDa	TRUE
175	TRUE	Empty	Epiplakin OS=EPIPL_HUMA 556 kDa	TRUE
176	TRUE	Empty	Polymerase I PTRF_HUMAI43 kDa	TRUE
177	TRUE	Empty	ArgininetRNSYRC_HUMAI75 kDa	
178	TRUE	Empty	Exportin-2 OSXPO2_HUMA 110 kDa	
179	TRUE	Empty	T-complex pr TCPE_HUMAI60 kDa	
180	TRUE	Empty	Platelet-activ PA1B3_HUM 26 kDa	
181	TRUE	Empty	Elongation fa EFTU_HUMA 50 kDa	TRUE
182	TRUE	Empty	Eukaryotic traIF4B_HUMAN69 kDa	
183	TRUE	Empty	Splicing facto SFPQ_HUMA 76 kDa	TRUE
184	TRUE	Empty	Protein disulf PDIA6_HUM/ 48 kDa	
185	TRUE	Empty	Alpha-2-macrA2MG_HUM/163 kDa	TRUE
186	TRUE	Empty	Inter-alpha-trITIH2_HUMA 106 kDa	
187	TRUE	Empty	60S acidic rib RLA2_HUMAI12 kDa	
188	TRUE	Empty	Single-strand SSBP_HUMAI 17 kDa	
189	TRUE	Empty	DnaJ homolo; DNJC8_HUM, 30 kDa	
190	TRUE	Empty	40S ribosoma RS2_HUMAN 31 kDa	
191	TRUE	Empty	Elongation fa EF1B_HUMAI25 kDa	TRUE
192	TRUE	Empty	Caveolin-1 OSCAV1_HUMA 20 kDa	
193	TRUE	Empty	Non-histone (HMGN1_HUN11 kDa	TRUE
194	TRUE	Empty	Cluster of T-c TCPZ_HUMAI58 kDa	TRUE
195	TRUE	Empty	Peptidyl-prolyFKBP5_HUM/51 kDa	
196	TRUE	Empty	Cluster of AD ARF3_HUMA 21 kDa	TRUE
197	TRUE	Empty	Cluster of Pol PCBP1_HUM, 37 kDa	TRUE
198	TRUE	Empty	TransaldolaseTALDO_HUM 38 kDa	TRUE
199	TRUE	Empty	Ubiquitin-ass UBP2L_HUM, 115 kDa	
200	TRUE	Empty	Small nuclear RUXGL_HUM 9 kDa	
201	TRUE	Empty	Serine hydro>GLYM_HUM456 kDa	
202	TRUE	Empty	Interleukin er ILF2_HUMAN43 kDa	
203	TRUE	Empty	Caldesmon O CALD1_HUM, 93 kDa	TRUE
204	TRUE	Empty	Eukaryotic tra EIF3B_HUMA 92 kDa	
205	TRUE	Empty	D-3-phospho¦SERA_HUMA 57 kDa	
206	TRUE	Empty	60S ribosomaRL8_HUMAN 28 kDa	TRUE
207	TRUE	Empty	Cluster of PurPSA_HUMAN 103 kDa	TRUE
208	TRUE	Empty	Citrate synth; CISY_HUMAN 52 kDa	TRUE
209	TRUE	Empty	ATP-depende DDX1_HUMA 82 kDa	
210	TRUE	Empty	Cluster of Ub UB2V1_HUM 16 kDa	TRUE
211	TRUE	Empty	Serine/arginiiSRSF3_HUM/19 kDa	TRUE

212	TRUE	Empty	LIM and SH3 LASP1_HUM/30 kDa	
213	TRUE	Empty	DNA replicati MCM4_HUM 97 kDa	TRUE
214	TRUE	Empty	14-3-3 protei 1433E_HUM/29 kDa	TRUE
215	TRUE	Empty	Eukaryotic tra EIF3A_HUMA 167 kDa	TRUE
216	TRUE	Empty	DNA replicati MCM7_HUM 81 kDa	
217	TRUE	Empty	Reticulocalbir RCN1_HUMA 39 kDa	TRUE
218	TRUE	Empty	Ubiquitin-like UBA1_HUMA 118 kDa	
219	TRUE	Empty	Trifunctional ECHB_HUMA 51 kDa	
220	TRUE	Empty	Ran-specific (RANG_HUMA23 kDa	
221	TRUE	Empty	Flap endonuc FEN1_HUMA 43 kDa	
222	TRUE	Empty	Rab GDP diss GDIB_HUMAI51 kDa	
223	TRUE	Empty	Lamin-B2 OS=LMNB2_HUN 68 kDa	TRUE
224	TRUE	Empty	DNA replicati MCM5_HUM 82 kDa	
225	TRUE	Empty	AspartatetRSYDC_HUMA 57 kDa	
226	TRUE	Empty	14-3-3 protei 1433F_HUM/28 kDa	TRUE
227	TRUE	Empty	ADP-ribosylatARF4_HUMA 21 kDa	TRUE
228	TRUE	Empty	Extended syn ESYT1_HUM#123 kDa	TRUE
229	TRUE	Empty	Kinectin OS=FKTN1_HUMA 156 kDa	TRUE
230	TRUE	Empty	Cluster of UV RD23B_HUM 43 kDa	TRUE
231	TRUE	Empty	60S ribosoma RL19_HUMAI 23 kDa	TRUE
232	TRUE	Empty	Serine/arginiıSRSF7_HUM#27 kDa	TRUE
233	TRUE	Empty	40S ribosoma RSSA_HUMAI 33 kDa	TRUE
234	TRUE	Empty	Aspartate am AATM_HUM/48 kDa	
235	TRUE	Empty	60S ribosoma RL27_HUMAI 16 kDa	
236	TRUE	Empty	60S ribosoma RL28_HUMAI 16 kDa	
237	TRUE	Empty	Serpin H1 OS SERPH_HUM, 46 kDa	TRUE
238	TRUE	Empty	T-complex pr TCPD_HUMA 58 kDa	
239	TRUE	Empty	Alpha-2-macr AMRP_HUM/41 kDa	
240	TRUE	Empty	Catenin delta CTND1_HUM 108 kDa	
241	TRUE	Empty	GlutaminetlSYQ_HUMAN88 kDa	
242	TRUE	Empty	Annexin A3 CANXA3_HUM 36 kDa	TRUE
243	TRUE	Empty	Glucose-6-ph G6PD_HUMA 59 kDa	
244	TRUE	Empty	MitochondriaIMMT_HUM/84 kDa	TRUE
245	TRUE	Empty	Nucleobindin NUCB1_HUM 54 kDa	TRUE
246	TRUE	Empty	GTP-binding rRAN_HUMAN24 kDa	
247	TRUE	Empty	Cluster of DN TOP2B_HUM 183 kDa	TRUE
248	TRUE	Empty	Protein CDV3 CDV3_HUMA 27 kDa	TRUE
249	TRUE	Empty	DNA replicati MCM2_HUM 102 kDa	TRUE
250	TRUE	Empty	Proactivator SAP_HUMAN 58 kDa	
251	TRUE	Empty	T-complex pr TCPA_HUMA 60 kDa	
252	TRUE	Empty	Dynactin sub DCTN2_HUM 44 kDa	TRUE
253	TRUE	Empty	Zyxin OS=Hor ZYX_HUMAN 61 kDa	
254	TRUE	Empty	Proliferating PCNA_HUMA 29 kDa	
255	TRUE	Empty	Septin-9 OS=ISEPT9_HUM/65 kDa	TRUE

256	TRUE	Empty	Thioredoxin cTXD12_HUM, 19 kDa	
257	TRUE	Empty	Cluster of Ald AK1C2_HUM, 37 kDa	TRUE
258	TRUE	Empty	Adenylyl cycl:CAP1_HUMA 52 kDa	
259	TRUE	Empty	Lamin-B1 OS=LMNB1_HUN 66 kDa	TRUE
260	TRUE	Empty	Voltage-depe VDAC1_HUM 31 kDa	TRUE
261	TRUE	Empty	X-ray repair c XRCC5_HUM/83 kDa	TRUE
262	TRUE	Empty	60S ribosoma RL14_HUMAI 23 kDa	TRUE
263	TRUE	Empty	Serine protea HTRA1_HUM 51 kDa	
264	TRUE	Empty	Cluster of SWSMCA5_HUN 122 kDa	TRUE
265	TRUE	Empty	Cluster of He: HXK1_HUMA 102 kDa	TRUE
266	TRUE	Empty	Cluster of Ins IF2B3_HUMA 64 kDa	TRUE
267	TRUE	Empty	Peroxiredoxir PRDX2_HUM, 22 kDa	TRUE
268	TRUE	Empty	Parathymosir PTMS_HUMA 12 kDa	
269	TRUE	Empty	Reticulon-4 C RTN4_HUMA 130 kDa	TRUE
270	TRUE	Empty	Biliverdin red BIEA_HUMAN33 kDa	TRUE
271	TRUE	Empty	Chloride intra CLIC1_HUMA 27 kDa	TRUE
272	TRUE	Empty	Cluster of CorH2AY_HUMA 40 kDa	TRUE
273	TRUE	Empty	DNA replicati MCM3_HUM 91 kDa	TRUE
274	TRUE	Empty	60S ribosoma RL23_HUMAI 15 kDa	
275	TRUE	Empty	Adenosylhor SAHH_HUMA 48 kDa	TRUE
276	TRUE	Empty	ThrombosporTSP1_HUMAI 129 kDa	TRUE
277	TRUE	Empty	40S ribosoma RS24_HUMAI 15 kDa	
278	TRUE	Empty	Cluster of Kin KINH_HUMAI110 kDa	TRUE
279	TRUE	Empty	Splicing facto SF3B2_HUM/ 100 kDa	TRUE
280	TRUE	Empty	Cytochrome (CYC_HUMAN 12 kDa	
281	TRUE	Empty	Multifunctior PUR6_HUMA 47 kDa	
282	TRUE	Empty	Vitronectin O VTNC_HUMA 54 kDa	
283	TRUE	Empty	DNA replicati MCM6_HUM 93 kDa	
284	TRUE	Empty	Desmoplakin DESP_HUMA 332 kDa	TRUE
285	TRUE	Empty	Trifunctional PUR2_HUMA 108 kDa	
286	TRUE	Empty	40S ribosoma RS14_HUMAI 16 kDa	
287	TRUE	Empty	40S ribosomaRS12_HUMAI15 kDa	
288	TRUE	Empty	Eukaryotic tra EIF3F_HUMA 38 kDa	
289	TRUE	Empty	Beta-2-micro;B2MG_HUM/14 kDa	
290	TRUE	Empty	UPF0568 pro†CN166_HUM 28 kDa	
291	TRUE	Empty	rRNA 2'-O-meFBRL_HUMAI 34 kDa	TRUE
292	TRUE	Empty	Heterogeneo HNRPQ_HUN 70 kDa	TRUE
293	TRUE	Empty	Acidic leucine AN32B_HUM 29 kDa	TRUE
294	TRUE	Empty	Small nuclear SMD3_HUM/14 kDa	
295	TRUE	Empty	Proteasome ¿PSME3_HUM 30 kDa	
296	TRUE	Empty	Peroxiredoxir PRDX1_HUM. 22 kDa	TRUE
297	TRUE	Empty	40S ribosoma RS6_HUMAN 29 kDa	TRUE
298	TRUE	Empty	Exportin-1 OSXPO1_HUMA 123 kDa	TRUE
299	TRUE	Empty	CD44 antigen CD44_HUMA 82 kDa	

300	TRUE	Empty	Cluster of Int(ILF3_HUMAN95 kDa	TRUE
301	TRUE	Empty	Integrin beta ITB1_HUMAN88 kDa	TRUE
302	TRUE	Empty	Leucine-rich ILPPRC_HUM/158 kDa	TRUE
303	TRUE	Empty	Cluster of Ras RAB10_HUM, 23 kDa	TRUE
304	TRUE	Empty	40S ribosoma RS23_HUMAI 16 kDa	
305	TRUE	Empty	Proliferation-PA2G4_HUM 44 kDa	
306	TRUE	Empty	Aldose reduc ALDR_HUMA 36 kDa	
307	TRUE	Empty	Destrin OS=H DEST_HUMAI 19 kDa	TRUE
308	TRUE	Empty	Cluster of CycCD2A1_HUM 17 kDa	TRUE
309	TRUE	Empty	Cytochrome (COX5B_HUM 14 kDa	
310	TRUE	Empty	Basigin OS=H BASI_HUMAN42 kDa	
311	TRUE	Empty	Clathrin light CLCA_HUMA 27 kDa	
312	TRUE	Empty	Polyadenylat(PABP3_HUM, 70 kDa	TRUE
313	TRUE	Empty	Lysophospha PCAT1_HUM, 59 kDa	
314	TRUE	Empty	Gelsolin OS=I GELS_HUMAI 86 kDa	
315	TRUE	Empty	TATA-binding RBP56_HUM, 62 kDa	TRUE
316	TRUE	Empty	Alpha-fetoprcFETA_HUMAI69 kDa	TRUE
317	TRUE	Empty	Hepatoma-deHDGF_HUMA27 kDa	TRUE
318	TRUE	Empty	Eukaryotic traF4G1_HUMA175 kDa	TRUE
319	TRUE	Empty	Splicing facto SF3B1_HUM/ 146 kDa	TRUE
320	TRUE	Empty	Cluster of Prc PSA7_HUMA 28 kDa	TRUE
321	TRUE	Empty	Cluster of U1 SNRPA_HUM 31 kDa	TRUE
322	TRUE	Empty	Apoptotic chr ACINU_HUM, 152 kDa	
323	TRUE	Empty	Deoxyuridine DUT_HUMAN 27 kDa	
324	TRUE	Empty	Malate dehyc MDHC_HUM, 36 kDa	
325	TRUE	Empty	Phosphate ca MPCP_HUM#40 kDa	TRUE
326	TRUE	Empty	Prohibitin OS PHB_HUMAN 30 kDa	
327	TRUE	Empty	Cluster of Pol PTBP1_HUM/57 kDa	TRUE
328	TRUE	Empty	Glycogen phc PYGL_HUMAI97 kDa	TRUE
329	TRUE	Empty	Heterogeneo ROA3_HUMA 40 kDa	TRUE
330	TRUE	Empty	Serine/arginiiSRSF6_HUM/40 kDa	TRUE
331	TRUE	Empty	Tight junctior ZO2_HUMAN 134 kDa	TRUE
332	TRUE	Empty	Cysteine and CSRP1_HUM/21 kDa	
333	TRUE	Empty	Cluster of PutLC7L2_HUMA47 kDa	TRUE
334	TRUE	Empty	Coatomer sul COPD_HUMA 57 kDa	
335	TRUE	Empty	Sulfide:quino SQRD_HUMA 50 kDa	
336	TRUE	Empty	T-complex pr TCPH_HUMA 59 kDa	TRUE
337	TRUE	Empty	Proteasome sPSA1_HUMAI30 kDa	
338	TRUE	Empty	60S ribosoma RL35A_HUM/13 kDa	
339	TRUE	Empty	NAD(P)H deh NQO1_HUM/ 31 kDa	
340	TRUE	Empty	Cullin-associaCAND1_HUM136 kDa	TRUE
341	TRUE	Empty	Importin subrIMB1_HUMA 97 kDa	
342	TRUE	Empty	Galectin-3 OSLEG3_HUMAI26 kDa	
343	TRUE	Empty	Leucine-rich rLRC59_HUM/35 kDa	

344	TRUE	Empty	Nucleobindin NUCB2_HUM 50 kDa	TRUE
345	TRUE	Empty	Protein trans SC23A_HUM/86 kDa	TRUE
346	TRUE	Empty	Vacuolar protVPS35_HUM/92 kDa	
347	TRUE	Empty	Histone H2A. H2AV_HUMA 14 kDa	TRUE
348	TRUE	Empty	Heterogeneo HNRPD_HUN 38 kDa	TRUE
349	TRUE	Empty	CD166 antige CD166_HUM.65 kDa	
350	TRUE	Empty	Coatomer sul COPG1_HUM 98 kDa	TRUE
351	TRUE	Empty	Double-stran DSRAD_HUM 136 kDa	
352	TRUE	Empty	Hypoxanthin HPRT_HUMA 25 kDa	TRUE
353	TRUE	Empty	60S ribosoma RL10A_HUM/ 25 kDa	TRUE
354	TRUE	Empty	Tumor protei TPD54_HUM/22 kDa	TRUE
355	TRUE	Empty	Voltage-depeVDAC2_HUM 32 kDa	TRUE
356	TRUE	Empty	Hematologica HN1L_HUMA 20 kDa	
357	TRUE	Empty	AP-1 comple> AP1G1_HUM 91 kDa	
358	TRUE	Empty	Complement CO3_HUMAN 187 kDa	TRUE
359	TRUE	Empty	DnaJ homolo; DNJB1_HUM, 38 kDa	TRUE
360	TRUE	Empty	Dolichyl-diph OST48_HUM, 51 kDa	
361	TRUE	Empty	60S ribosoma RL38_HUMA18 kDa	
362	TRUE	Empty	Transferrin reTFR1_HUMAI85 kDa	TRUE
363	TRUE	Empty	WD repeat-cc WDR1_HUM/66 kDa	
364	TRUE	Empty	Inorganic pyr IPYR_HUMAN33 kDa	TRUE
365	TRUE	Empty	Cluster of AP AP2A1_HUM 108 kDa	TRUE
366	TRUE	Empty	E3 ubiquitin-¡TRIPC_HUMA220 kDa	
367	TRUE	Empty	Flavin reduct; BLVRB_HUM, 22 kDa	
368	TRUE	Empty	26S proteaso PSMD2_HUN 100 kDa	
369	TRUE	Empty	Tyrosine-prot PTN1_HUMA 50 kDa	
370	TRUE	Empty	Signal recogn SRP14_HUM/15 kDa	
371	TRUE	Empty	Activated RN/TCP4_HUMAI14 kDa	
372	TRUE	Empty	Actin-related ARPC4_HUM.20 kDa	
373	TRUE	Empty	CAD protein (PYR1_HUMAI243 kDa	TRUE
374	TRUE	Empty	Brain acid sol BASP1_HUM, 23 kDa	TRUE
375	TRUE	Empty	ATP-depende DHX9_HUMA 141 kDa	TRUE
376	TRUE	Empty	Hypoxia up-reHYOU1_HUM111 kDa	TRUE
377	TRUE	Empty	Phosphoserir SERC_HUMAI40 kDa	TRUE
378	TRUE	Empty	Heterogeneo HNRH3_HUN 37 kDa	
379	TRUE	Empty	Nuclear auto; NASP_HUMA 85 kDa	TRUE
380	TRUE	Empty	Glutathione r GSHR_HUMA 56 kDa	
381	TRUE	Empty	Macrophage MIF_HUMAN 12 kDa	
382	TRUE	Empty	Sorting nexin SNX12_HUM, 20 kDa	TRUE
383	TRUE	Empty	Cluster of ChrCBX3_HUMA 21 kDa	TRUE
384	TRUE	Empty	T-complex pr TCPB_HUMA 57 kDa	
385	TRUE	Empty	THO complex THOC4_HUM 27 kDa	
386	TRUE	Empty	Peroxiredoxir PRDX5_HUM. 22 kDa	
387	TRUE	Empty	Procollagen gGT251_HUM، 72 kDa	

388	TRUE	Empty	FACT comple: SSRP1_HUM/ 81 kDa	TRUE
389	TRUE	Empty	Myristoylatec MARCS_HUN 32 kDa	
390	TRUE	Empty	B-cell receptc BAP31_HUM, 28 kDa	
391	TRUE	Empty	Glutathione SGSTP1_HUM/23 kDa	
392	TRUE	Empty	Cytoplasmic ¿ACOC_HUMA 98 kDa	TRUE
393	TRUE	Empty	6-phosphofru K6PP_HUMAI86 kDa	
394	TRUE	Empty	Nucleoprotei TPR_HUMAN 267 kDa	TRUE
395	TRUE	Empty	Nucleoside di NDKA_HUMA17 kDa	TRUE
396	TRUE	Empty	Insulin-like gr IBP7_HUMAN 29 kDa	
397	TRUE	Empty	WW domain- WBP11_HUN 70 kDa	TRUE
398	TRUE	Empty	Tight junctior ZO1_HUMAN 195 kDa	TRUE
399	TRUE	Empty	Thyroid horm TR150_HUM/ 109 kDa	TRUE
400	TRUE	Empty	ATP synthase ATP5J_HUMA13 kDa	
401	TRUE	Empty	Immortalizati IMUP_HUMA 11 kDa	TRUE
402	TRUE	Empty	Ataxin-10 OS: ATX10_HUM/ 53 kDa	
403	TRUE	Empty	Trifunctional ECHA_HUMA 83 kDa	
404	TRUE	Empty	Cluster of Ras RB11A_HUM. 24 kDa	TRUE
405	TRUE	Empty	40S ribosoma RS28_HUMAI 8 kDa	
406	TRUE	Empty	High mobility HMGA1_HUN 12 kDa	TRUE
407	TRUE	Empty	SH3 domain-ISH3L1_HUM/13 kDa	
408	TRUE	Empty	NADH-cytoch NB5R3_HUM 34 kDa	
409	TRUE	Empty	Epidermal grcEGFR_HUMA 134 kDa	
410	TRUE	Empty	Protein SET C SET_HUMAN 33 kDa	
411	TRUE	Empty	Endoplasmic ERP29_HUM/29 kDa	
412	TRUE	Empty	Cathepsin D (CATD_HUMA 45 kDa	
413	TRUE	Empty	Prothymosin PTMA_HUM/12 kDa	
414	TRUE	Empty	Acidic leucine AN32A_HUM 29 kDa	TRUE
415	TRUE	Empty	Dihydrolipoyl ODO2_HUM/ 49 kDa	
416	TRUE	Empty	60S ribosoma RL12_HUMAI 18 kDa	
417	TRUE	Empty	Coatomer sul COPB2_HUM 102 kDa	
418	TRUE	Empty	Phenylalanin SYFA_HUMAI 58 kDa	
419	TRUE	Empty	Barrier-to-au BAF_HUMAN 10 kDa	
420	TRUE	Empty	Annexin A8 CANXA8_HUM 37 kDa	
421	TRUE	Empty	ATP synthase ATPG_HUMA 33 kDa	
422	TRUE	Empty	Heterochrom HP1B3_HUM.61 kDa	
423	TRUE	Empty	Nascent poly _I NACA_HUMA23 kDa	
424	TRUE	Empty	Polyadenylat PABP4_HUM, 71 kDa	TRUE
425	TRUE	Empty	Vesicle-trafficSC22B_HUM/25 kDa	
426	TRUE	Empty	TransmembraTMM43_HUN45 kDa	
427	TRUE	Empty	Cluster of His SYHC_HUMA 57 kDa	TRUE
428	TRUE	Empty	Protein diaph DIAP1_HUM/141 kDa	TRUE
429	TRUE	Empty	Protein CYR6: CYR61_HUM/42 kDa	
430	TRUE	Empty	Cluster of Ser SEPT7_HUM/51 kDa	TRUE
431	TRUE	Empty	40S ribosoma RS17L_HUM#16 kDa	TRUE

432	TRUE	Empty	ATP-binding (ABCF1_HUM,96 kDa	
433	TRUE	Empty	Actin-binding ANLN_HUMA 124 kDa	TRUE
434	TRUE	Empty	Clathrin light CLCB_HUMAI25 kDa	
435	TRUE	Empty	Band 4.1-like E41L1_HUM499 kDa	TRUE
436	TRUE	Empty	Bifunctional r PUR9_HUMA 65 kDa	TRUE
437	TRUE	Empty	IsoleucinetFSYIC_HUMAN 145 kDa	TRUE
438	TRUE	Empty	Proteasome sPSB6_HUMAI25 kDa	
439	TRUE	Empty	Atlastin-3 OS: ATLA3_HUM/61 kDa	
440	TRUE	Empty	Coiled-coil dc CC124_HUM/26 kDa	
441	TRUE	Empty	Drebrin OS=+ DREB_HUMA 71 kDa	
442	TRUE	Empty	Na(+)/H(+) exNHRF1_HUM 39 kDa	
443	TRUE	Empty	Methionine a MAT2B_HUN 38 kDa	
444	TRUE	Empty	Endoplasmic ERMP1_HUM100 kDa	
445	TRUE	Empty	Heterogeneo HNRH2_HUM 49 kDa	TRUE
446	TRUE	Empty	Growth facto GRB2_HUMA 25 kDa	
447	TRUE	Empty	Transcription TCAL3_HUM/23 kDa	
448	TRUE	Empty	CD109 antige CD109_HUM, 162 kDa	TRUE
449	TRUE	Empty	60S ribosoma RL24_HUMAI 18 kDa	TRUE
450	TRUE	Empty	Nicotinamide NNMT_HUM, 30 kDa	
451	TRUE	Empty	Thioredoxin cTXD17_HUM, 14 kDa	
452	TRUE	Empty	A-kinase ancł AKA12_HUM, 191 kDa	
453	TRUE	Empty	Nucleolar RN DDX21_HUM 87 kDa	TRUE
454	TRUE	Empty	Microtubule- MAP1B_HUN 271 kDa	TRUE
455	TRUE	Empty	Programmed PDC6I_HUM#96 kDa	
456	TRUE	Empty	Thioredoxin-cPRDX3_HUM.28 kDa	
457	TRUE	Empty	Ubiquitin carl UBP5_HUMA 96 kDa	TRUE
458	TRUE	Empty	Macrophage-CAPG_HUMA 38 kDa	TRUE
459	TRUE	Empty	Protein S100-S10AD_HUM, 11 kDa	
460	TRUE	Empty	Very-long-ch; TECR_HUMAI 36 kDa	TRUE
461	TRUE	Empty	Nicotinamide NAMPT_HUN 56 kDa	
462	TRUE	Empty	PDZ and LIM PDLI5_HUMA64 kDa	
463	TRUE	Empty	Eukaryotic peERF1_HUMAI49 kDa	TRUE
464	TRUE	Empty	Importin subi IMA1_HUMA 58 kDa	TRUE
465	TRUE	Empty	Coatomer sul COPB_HUMA 107 kDa	
466	TRUE	Empty	26S proteaso PSMD3_HUN 61 kDa	
467	TRUE	Empty	Proteasome sPSA3_HUMA 28 kDa	TRUE
468	TRUE	Empty	Cluster of Fra FXR1_HUMAI 70 kDa	TRUE
469	TRUE	Empty	Coatomer sul COPA_HUMA 138 kDa	TRUE
470	TRUE	Empty	Myb-binding MBB1A_HUN149 kDa	TRUE
471	TRUE	Empty	RNA-binding RBM8A_HUN20 kDa	
472	TRUE	Empty	60S ribosoma RL18A_HUM/21 kDa	
473	TRUE	Empty	60S ribosoma RL7A_HUMAI 30 kDa	TRUE
474	TRUE	Empty	Translocator TSPOA_HUM.19 kDa	
475	TRUE	Empty	Phenylalanin:SYFB_HUMA166 kDa	

476	TRUE	Empty	RuvB-like 2 O RUVB2_HUM 51 kDa	
477	TRUE	Empty	Calcium-bind SCMC1_HUM53 kDa	
478	TRUE	Empty	60S ribosoma RL27A_HUM/17 kDa	
479	TRUE	Empty	ATP-depende RECQ1_HUM 73 kDa	
480	TRUE	Empty	Microtubule- MARE1_HUN 30 kDa	TRUE
481	TRUE	Empty	Mesencephal MANF_HUM/21 kDa	
482	TRUE	Empty	Ras-related p RAB7A_HUM 23 kDa	TRUE
483	TRUE	Empty	Ubiquitin carl UCHL1_HUM 25 kDa	
484	TRUE	Empty	PC4 and SFRSPSIP1_HUMA 60 kDa	TRUE
485	TRUE	Empty	Phosphatidyl PEBP1_HUM/21 kDa	TRUE
486	TRUE	Empty	EH domain-ccEHD2_HUMA 61 kDa	TRUE
487	TRUE	Empty	Putative pre-DHX15_HUM 91 kDa	
488	TRUE	Empty	Integrin alphaITA3_HUMAN117 kDa	
489	TRUE	Empty	Major vault pMVP_HUMA199 kDa	
490	TRUE	Empty	PDZ and LIM PDLI1_HUMA36 kDa	TRUE
491	TRUE	Empty	SAP domain-(SARNP_HUM 24 kDa	TRUE
492	TRUE	Empty	Eukaryotic tra EIF3C_HUMA 105 kDa	
493	TRUE	Empty	26S proteaso PSD11_HUM/47 kDa	
494	TRUE	Empty	RNA-binding RBM14_HUN 69 kDa	TRUE
495	TRUE	Empty	60S ribosoma RL17_HUMAI 21 kDa	TRUE
496	TRUE	Empty	Latent-transf LTBP2_HUM/ 195 kDa	
497	TRUE	Empty	Pre-mRNA-pr PRP8_HUMA 274 kDa	
498	TRUE	Empty	RuvB-like 1 O RUVB1_HUM 50 kDa	TRUE
499	TRUE	Empty	26S proteaso PSMD8_HUN 40 kDa	
500	TRUE	Empty	Probable ATP DDX17_HUM 80 kDa	TRUE
501	TRUE	Empty	Eukaryotic tra IF5_HUMAN 49 kDa	
502	TRUE	Empty	Testin OS=HoTES_HUMAN 48 kDa	TRUE
503	TRUE	Empty	Tubulin-speci TBCA_HUMA 13 kDa	
504	TRUE	Empty	Probable ATP DDX5_HUMA 69 kDa	TRUE
505	TRUE	Empty	RibonucleosicRIR1_HUMA190 kDa	TRUE
506	TRUE	Empty	Cytosolic acylBACH_HUMA42 kDa	
507	TRUE	Empty	Vesicular inteLMAN2_HUN40 kDa	
508	TRUE	Empty	SYNE2_HUM/SYNE2_HUM/?	TRUE
509	TRUE	Empty	Cluster of Ser PAK2_HUMA 58 kDa	TRUE
510	TRUE	Empty	Vacuolar protVPS29_HUM/21 kDa	
511	TRUE	Empty	AsparaginetSYNC_HUMA 63 kDa	TRUE
512	TRUE	Empty	Very long-chaACADV_HUM70 kDa	TRUE
513	TRUE	Empty	26S protease PRS8_HUMAI46 kDa	TRUE
514	TRUE	Empty	Sorting nexin SNX1_HUMA 59 kDa	TRUE
515	TRUE	Empty	Protein-L-isoa PIMT_HUMA 25 kDa	
516	TRUE	Empty	Acetyl-CoA acTHIC_HUMA141 kDa	
517	TRUE	Empty	DNA damage DDB1_HUMA 127 kDa	
518	TRUE	Empty	Calponin-3 OCNN3_HUMA36 kDa	TRUE
519	TRUE	Empty	U2 small nucl RU2A_HUMA 28 kDa	

520	TRUE	Empty	Actin-related ARP2_HUMA 45 kDa	
521	TRUE	Empty	Ras-related p RAP1B_HUM.21 kDa	TRUE
522	TRUE	Empty	Transcription TCRG1_HUM, 124 kDa	
523	TRUE	Empty	Ras suppress RSU1_HUMA 32 kDa	
524	TRUE	Empty	AP-3 comple> AP3B1_HUM, 121 kDa	TRUE
525	TRUE	Empty	26S proteaso PSD12_HUM/53 kDa	
526	TRUE	Empty	Ubiquitin-con UBE2N_HUM 17 kDa	TRUE
527	TRUE	Empty	Septin-2 OS=ISEPT2_HUM/41 kDa	TRUE
528	TRUE	Empty	Transcription TIF1B_HUMA 89 kDa	
529	TRUE	Empty	Actin-related ARPC2_HUM, 34 kDa	TRUE
530	TRUE	Empty	Ubiquitin thic OTUB1_HUM 31 kDa	
531	TRUE	Empty	Eukaryotic tra IF2P_HUMAN 139 kDa	
532	TRUE	Empty	Collagen alphCOGA1_HUM158 kDa	TRUE
533	TRUE	Empty	Small EDRK-riSERF2_HUM/7 kDa	TRUE
534	TRUE	Empty	Cluster of N-aNAA10_HUM 26 kDa	TRUE
535	TRUE	Empty	Nexilin OS=HINEXN_HUMA81 kDa	TRUE
536	TRUE	Empty	Heterogeneo HNRL1_HUM 96 kDa	
537	TRUE	Empty	4F2 cell-surfa4F2_HUMAN 68 kDa	TRUE
538	TRUE	Empty	Adipocyte plaAPMAP_HUN46 kDa	
539	TRUE	Empty	Ubiquitin carl UBP14_HUM 56 kDa	
540	TRUE	Empty	26S protease PRS6A_HUM/49 kDa	
541	TRUE	Empty	Lysosome-as: LAMP2_HUM45 kDa	
542	TRUE	Empty	Eukaryotic tra IF2A_HUMAN 36 kDa	
543	TRUE	Empty	Trans-Golgi n TGON2_HUM 51 kDa	
544	TRUE	Empty	26S protease PRS7_HUMAI49 kDa	
545	TRUE	Empty	Unconventior MYO1C_HUN 122 kDa	TRUE
546	TRUE	Empty	Interleukin-1{IL18_HUMAN22 kDa	
547	TRUE	Empty	A-kinase ancł AKAP2_HUM.95 kDa	TRUE
548	TRUE	Empty	LactoylglutatlLGUL_HUMA 21 kDa	
549	TRUE	Empty	Integrin beta ITB4_HUMAN 202 kDa	
550	TRUE	Empty	NSFL1 cofact(NSF1C_HUM/41 kDa	
551	TRUE	Empty	40S ribosoma RS20_HUMAI 13 kDa	
552	TRUE	Empty	Dolichyl-diph RPN2_HUMA 69 kDa	TRUE
553	TRUE	Empty	Peptidyl-prolyFKB1A_HUM/12 kDa	TRUE
554	TRUE	Empty	Twinfilin-1 OSTWF1_HUMA40 kDa	
555	TRUE	Empty	Laminin subu LAMA5_HUN 400 kDa	
556	TRUE	Empty	Nucleolar prc NOP58_HUM 60 kDa	
557	TRUE	Empty	Nuclear migr; NUDC_HUM/ 38 kDa	TRUE
558	TRUE	Empty	Dolichyl-diph STT3A_HUM/81 kDa	TRUE
559	TRUE	Empty	dCTP pyroph DCTP1_HUM 19 kDa	
560	TRUE	Empty	Reticulocalbir RCN2_HUMA 37 kDa	
561	TRUE	Empty	Pyridoxal kinaPDXK_HUMA 35 kDa	
562	TRUE	Empty	NADPHcyto NCPR_HUMA 77 kDa	
563	TRUE	Empty	DNA (cytosin DNMT1 HUN 183 kDa	TRUE

564	TRUE	Empty	S-adenosylmeMETK2_HUM44 kDa	TRUE
565	TRUE	Empty	Cell division c CDC5L_HUM/92 kDa	TRUE
566	TRUE	Empty	UTP20_HUM,UTP20_HUM,?	TRUE
567	TRUE	Empty	Ribosome maSBDS_HUMA 29 kDa	
568	TRUE	Empty	Cluster of Prc PSA4_HUMAI29 kDa	TRUE
569	TRUE	Empty	26S proteaso PSMD6_HUN 46 kDa	
570	TRUE	Empty	Electron tran: ETFB_HUMAI 28 kDa	
571	TRUE	Empty	U6 snRNA-as:LSM3_HUMA 12 kDa	
572	TRUE	Empty	Fibrinogen ga FIBG_HUMA152 kDa	
573	TRUE	Empty	Vesicle-fusing NSF_HUMAN 83 kDa	
574	TRUE	Empty	Eukaryotic traF6_HUMAN 27 kDa	TRUE
575	TRUE	Empty	Ras GTPase-a G3BP1_HUM.52 kDa	TRUE
576	TRUE	Empty	Alcohol dehy AK1A1_HUM 37 kDa	
577	TRUE	Empty	Secernin-1 OSSCRN1_HUM.46 kDa	TRUE
578	TRUE	Empty	Cluster of AP-AP2B1_HUM, 105 kDa	TRUE
579	TRUE	Empty	Cluster of Trc TMOD3_HUN 40 kDa	TRUE
580	TRUE	Empty	Drebrin-like r DBNL_HUMA 48 kDa	
581	TRUE	Empty	RNA-binding FUS_HUMAN 53 kDa	TRUE
582	TRUE	Empty	60S ribosoma RL18_HUMAI 22 kDa	
583	TRUE	Empty	Sorting and a SAM50_HUM52 kDa	TRUE
584	TRUE	Empty	ERO1-like prc ERO1A_HUM 54 kDa	
585	TRUE	Empty	Cytochrome IQCR1_HUMA 53 kDa	
586	TRUE	Empty	Amine oxidas AOFA_HUMA 60 kDa	
587	TRUE	Empty	Cluster of GTISAR1A_HUM, 22 kDa	TRUE
588	TRUE	Empty	Calponin-2 O: CNN2_HUMA34 kDa	TRUE
589	TRUE	Empty	RNA-binding RALY_HUMAI32 kDa	
590	TRUE	Empty	Actin-related ARP3_HUMA 47 kDa	
591	TRUE	Empty	Insulin-like gr IF2B2_HUMA 66 kDa	TRUE
592	TRUE	Empty	40S ribosoma RS11_HUMAI 18 kDa	
593	TRUE	Empty	COP9 signalo CSN4_HUMA 46 kDa	
594	TRUE	Empty	UBX domain- UBXN1_HUM33 kDa	TRUE
595	TRUE	Empty	Hippocalcin-liHPCL1_HUM/22 kDa	
596	TRUE	Empty	Collagen alphCO4A5_HUM 161 kDa	
597	TRUE	Empty	Elongation fa EF1D_HUMA 31 kDa	TRUE
598	TRUE	Empty	Heterogeneo HNRPR_HUM 71 kDa	TRUE
599	TRUE	Empty	Cleavage stin CSTF2_HUM/ 61 kDa	TRUE
600	TRUE	Empty	Long-chain-faACSL1_HUM/78 kDa	TRUE
601	TRUE	Empty	ATP synthase ATPD_HUMA 17 kDa	TRUE
602	TRUE	Empty	DnaJ homolo; DNJC9_HUM, 30 kDa	
603	TRUE	Empty	Palladin OS=FPALLD_HUM/151 kDa	TRUE
604	TRUE	Empty	Cytoplasmic FCYFP1_HUM/145 kDa	TRUE
605	TRUE	Empty	Cell surface g MUC18_HUN 72 kDa	
606	TRUE	Empty	Glycerol-3-phGPDM_HUM/81 kDa	
607	TRUE	Empty	Nicastrin OS=NICA_HUMAI 78 kDa	

608	TRUE	Empty	39S ribosoma RM38_HUM445 kDa	
609	TRUE	Empty	RNA-binding RBM12_HUN 97 kDa	TRUE
610	TRUE	Empty	Cluster of sp MRCKG_HUN?	TRUE
611	TRUE	Empty	Double-stran STAU1_HUM.63 kDa	TRUE
612	TRUE	Empty	Protein PRRC PRC2A_HUM, 229 kDa	
613	TRUE	Empty	Transgelin OSTAGL_HUMA 23 kDa	
614	TRUE	Empty	Cluster of EH EHD1_HUMA 61 kDa	TRUE
615	TRUE	Empty	Actin-binding ABLM1_HUM 88 kDa	
616	TRUE	Empty	ATP synthase ATP5L_HUM/11 kDa	TRUE
617	TRUE	Empty	Splicing facto U2AF2_HUM.54 kDa	
618	TRUE	Empty	Isocitrate del IDHP_HUMAI51 kDa	TRUE
619	TRUE	Empty	Sortilin OS=H SORT_HUMA 92 kDa	TRUE
620	TRUE	Empty	Leukotriene / LKHA4_HUM, 69 kDa	
621	TRUE	Empty	PolyadenylatPABP2_HUM33 kDa	
622	TRUE	Empty	Cluster of Tra RHOA_HUM422 kDa	TRUE
623	TRUE	Empty	Isovaleryl-Co, IVD_HUMAN 46 kDa	
624	TRUE	Empty	Cluster of E3 RBP2_HUMA 358 kDa	TRUE
625	TRUE	Empty	Eukaryotic tra EIF3J_HUMAI 29 kDa	
626	TRUE	Empty	Gem-associat GEMI5_HUM 169 kDa	
627	TRUE	Empty	5'-nucleotida:5NTD_HUMA63 kDa	TRUE
628	TRUE	Empty	Transcription ELOB_HUMA 13 kDa	
629	TRUE	Empty	Thioredoxin-rTMX1_HUMA32 kDa	
630	TRUE	Empty	PEST proteoly PCNP_HUMA 19 kDa	
631	TRUE	Empty	Alpha/beta h [·] ABHEB_HUM 22 kDa	
632	TRUE	Empty	Cluster of Dyi DYN2_HUMA 98 kDa	TRUE
633	TRUE	Empty	Protein FAM1F136A_HUM/16 kDa	
634	TRUE	Empty	DnaJ homolo; DJB11_HUM/41 kDa	
635	TRUE	Empty	Probable heli SETX_HUMAI 303 kDa	
636	TRUE	Empty	Lysosomal alrMA2B1_HUN 114 kDa	TRUE
637	TRUE	Empty	Tryptophan SYWC_HUMA53 kDa	
638	TRUE	Empty	Serpin B6 OS: SPB6_HUMAI43 kDa	TRUE
639	TRUE	Empty	Coactosin-likeCOTL1_HUM/16 kDa	
640	TRUE	Empty	Plakophilin-2 PKP2_HUMA 97 kDa	
641	TRUE	Empty	Heterogeneo HNRPF_HUM 46 kDa	TRUE
642	TRUE	Empty	Purine nuclec PNPH_HUMA 32 kDa	
643	TRUE	Empty	Probable ATP DDX6_HUMA 54 kDa	
644	TRUE	Empty	Tubulin-foldir TBCB_HUMA 27 kDa	
645	TRUE	Empty	PRKC apopto: PAWR_HUM/37 kDa	TRUE
646	TRUE	Empty	Enoyl-CoA hy ECHM_HUM/31 kDa	
647	TRUE	Empty	RNA-binding RNPS1_HUM.34 kDa	
648	TRUE	Empty	26S protease PRS6B_HUM/47 kDa	TRUE
649	TRUE	Empty	Regulator of IRMD1_HUM/36 kDa	TRUE
650	TRUE	Empty	Prefoldin sub PFD2_HUMA 17 kDa	
651	TRUE	Empty	Phosphoserir SERB_HUMAI 25 kDa	

652	TRUE	Empty	Signal peptid SC11A_HUM/21 kDa	
653	TRUE	Empty	N(G),N(G)-dir DDAH1_HUN 31 kDa	TRUE
654	TRUE	Empty	SerinetRNA SYSC_HUMA159 kDa	
655	TRUE	Empty	Interferon-in(IFIT2_HUMAI 55 kDa	TRUE
656	TRUE	Empty	Structural maSMC4_HUMA147 kDa	TRUE
657	TRUE	Empty	Copine-1 OS=CPNE1_HUM, 59 kDa	
658	TRUE	Empty	Integrin-linke ILK_HUMAN 51 kDa	
659	TRUE	Empty	Procollagen-l PLOD3_HUM 85 kDa	
660	TRUE	Empty	Mannosyl-oli¦MOGS_HUM/92 kDa	
661	TRUE	Empty	Melanoma-a: MAGD2_HUN 65 kDa	
662	TRUE	Empty	Aminopeptid AMPN_HUM/110 kDa	
663	TRUE	Empty	Methionine SYMC_HUMA101 kDa	
664	TRUE	Empty	Nucleosome NP1L1_HUM/45 kDa	TRUE
665	TRUE	Empty	GDP-L-fucose FCL_HUMAN 36 kDa	
666	TRUE	Empty	Far upstream FUBP1_HUM, 68 kDa	TRUE
667	TRUE	Empty	Acylamino-ac ACPH_HUMA 81 kDa	
668	TRUE	Empty	Proteasomal ADRM1_HUN42 kDa	
669	TRUE	Empty	sp P02461 CCO3A1_HUM ?	
670	TRUE	Empty	Annexin A4 CANXA4_HUM 36 kDa	TRUE
671	TRUE	Empty	Collagen alphCO6A1_HUM 109 kDa	
672	TRUE	Empty	Electron tran: ETFA_HUMAI35 kDa	
673	TRUE	Empty	SPEG_HUMA SPEG_HUMA ?	
674	TRUE	Empty	TyrosinetRN SYYC_HUMAI 59 kDa	
675	TRUE	Empty	39S ribosoma RM12_HUMA 21 kDa	
676	TRUE	Empty	Serine/argini:SRSF9_HUM#26 kDa	TRUE
677	TRUE	Empty	Collagen alphCO2A1_HUM 142 kDa	TRUE
678	TRUE	Empty	Profilin-2 OS= PROF2_HUM, 15 kDa	
679	TRUE	Empty	AH receptor-iAIP_HUMAN 38 kDa	
680	TRUE	Empty	Adenylate kir KAD1_HUMA 22 kDa	
681	TRUE	Empty	Heterogeneo HNRPL_HUM 64 kDa	TRUE
682	TRUE	Empty	Sideroflexin-1SFXN1_HUM/36 kDa	
683	TRUE	Empty	Probable rRN EBP2_HUMAI35 kDa	
684	TRUE	Empty	Selenide, wat SPS1_HUMAI 43 kDa	
685	TRUE	Empty	Peptidyl-prolyFKBP2_HUM/16 kDa	
686	TRUE	Empty	Collagen alphCO7A1_HUM 295 kDa	
687	TRUE	Empty	Collagen alphCO5A3_HUM 172 kDa	
688	TRUE	Empty	ThreoninetFSYTC_HUMA183 kDa	TRUE
689	TRUE	Empty	Phosphatidyli PIPNB_HUM/ 32 kDa	
690	TRUE	Empty	EMILIN-2 OS=EMIL2_HUM/116 kDa	
691	TRUE	Empty	Protein phosi PP1R7_HUM/42 kDa	
692	TRUE	Empty	sp P08572 CCO4A2_HUM ?	
693	TRUE	Empty	Glutathione SGSTK1_HUM/25 kDa	
694	TRUE	Empty	DMWD_HUNDMWD_HUN?	TRUE
695	TRUE	Empty	Serine/threor PPP6_HUMAI35 kDa	TRUE

696	TRUE	Empty	F-actin-cappirCAZA1_HUM,33 kDa	TRUE
697	TRUE	Empty	14-3-3 protei 1433S_HUM/28 kDa	TRUE
698	TRUE	Empty	Polyglutamin PQBP1_HUM 30 kDa	
699	TRUE	Empty	Phosphopant COAC_HUMA 22 kDa	
700	TRUE	Empty	Rho guanine ARHG7_HUM90 kDa	
701	TRUE	Empty	Cluster of PutRS26L_HUM/13 kDa	TRUE
702	TRUE	Empty	Alpha-centra ACTZ_HUMA 43 kDa	TRUE
703	TRUE	Empty	Zinc finger pr ZN207_HUM, 51 kDa	
704	TRUE	Empty	sp Q32P51 FRA1L2_HUM/?	
705	TRUE	Empty	Huntingtin-in HYPK_HUMA 15 kDa	

END OF FILE

cubation with exosomes from Opisthorchis viverrini. Scaffold-generated report of the iTRAQ

atabase

ppic) ;) plex) tion), +57 on C (Carbamidomethyl), +304 on Y (iTRAQ8plex) ase (selected for Homo sapiens, 2013_09, 20272 entries)

xosomes_A): LFDR Model, Classifier data: Bayes, Good (50%) m:44.4/s:12.7 m:31.8/s:0.995 m:N xosomes_B): LFDR Model, Classifier data: Bayes, Good (50%) m:45.3/s:12.8 m:31.8/s:0.983 m:N

ppic) ;) plex) /ro-Glu), -17 on n (Ammonia-loss), -17 on n (Gln->pyro-Glu), +16 on M (Oxidation), +57 on C (Ca 3_09 database

xosomes_A): LFDR Model, Classifier data: Bayes, Good (50%) m:41.4/s:6.69 m:3.25/s:1.08 m:0.3 xosomes_B): LFDR Model, Classifier data: Bayes, Good (50%) m:41.0/s:6.78 m:3.17/s:1.12 m:0.3

meters\unimod.xml

with protein cluster analysis

inimum

00220]; [0.000,0.00940,0.930,0.0590,0.00160]; [0.000,0.0188,0.931,0.0490,0.001000]; [0.000,0.

72,0.794]

Kruskal-Walli Taxonomy	Control	0.5h		3h	16h
95% (< 0.000 unknown		0	0.8	-1.5	5 -2.2
95% (< 0.000 unknown		0	-0.6	0.0	6 0.5
95% (< 0.000 unknown	0	.2	-0.1	0.0	6 0.5
95% (< 0.000 unknown		0	0.5	0.3	3 0.6
95% (< 0.000 unknown		0	1	-0.3	3 -0.1
95% (< 0.000 unknown		0	0.3	0.5	5 0.7
95% (< 0.000 unknown	-0	.1	-0.5	0.8	8 0.7
95% (< 0.000 unknown	-0	.1	-0.6	0.3	3 0.4
95% (< 0.000 unknown	0	.1	-0.8	0.0	6 0.5
95% (< 0.000 unknown	-0	.1	-0.5	0.0	5 0.4
95% (< 0.000 unknown	-0	.1	-0.4	0.4	4 0.6
95% (< 0.000 unknown	0	.1	0.4	0.3	3 0.6
95% (< 0.000 unknown		0	0	0.3	3 0.5
95% (< 0.000 unknown	-0	.1	-0.4	0.4	4 0.3
95% (< 0.000 unknown	0	.1	-0.4	0.7	7 0.6
95% (< 0.000 unknown		0	0.3	0.2	2 0.4
95% (< 0.000 unknown		0	0.5	-0.6	5 -0.6
95% (< 0.000 unknown		0	-0.6	0.8	3 0.8
95% (< 0.000 unknown	-0	.2	0.6	-0.2	2 0
95% (< 0.000 unknown		0	1	. (0.2
95% (< 0.000 unknown		0	-0.1	0.3	3 0.2
95% (< 0.000 unknown		0	-0.3	0.7	7 0.8
95% (< 0.000 unknown	0	.1	-0.1	. (0.1
95% (< 0.000 unknown		0	-0.1	0.2	2 0.2
95% (< 0.000 unknown		0	0.6	-1.2	1 -1.1
95% (< 0.000 unknown		0	0.4	0.2	2 0.5
95% (< 0.000 unknown		0	-0.5	0.7	7 0.5
95% (< 0.000 unknown		0	-0.2	0.3	3 0.4
95% (< 0.000 unknown		0	0.4	. (0.1
95% (< 0.000 unknown		0	-0.4	-0.3	3 -0.5
95% (< 0.000 unknown		0	-0.1	0.3	3 0.2
95% (< 0.000 unknown		0	-0.6	0.8	3 0.6
95% (< 0.000 unknown	0	.1	0.4	0.1	1 0.1
95% (< 0.000 unknown		0	-0.5	0.7	7 0.5
95% (< 0.000 unknown		0	0.1	-0.2	1 -0.2

95% (< 0.000 unknown	0	-0.2	0.8	0.7
95% (< 0.000 unknown	0	0.3	-0.1	-0.2
95% (< 0.000 unknown	0	0	0	0
95% (< 0.000 unknown	0	0.8	-1.2	-1.2
95% (< 0.000 unknown	0	-0.1	-0.4	-0.4
95% (< 0.000 unknown	0	-0.2	0.4	0.4
95% (< 0.000 unknown	0	0	0.1	0
95% (< 0.000 unknown	0	0.4	-0.4	-0.5
95% (< 0.000 unknown	0	0.7	-0.6	-0.4
95% (< 0.000 unknown	0	-0.5	0.2	0.1
95% (< 0.000 unknown	0	0.6	-1.7	-1.8
95% (< 0.000 unknown	0	0.7	-0.3	-0.3
95% (< 0.000 unknown	0	0.6	-0.4	-0.3
95% (< 0.000 unknown	0	0.8	0.1	0
95% (< 0.000 unknown	0	0.1	0.5	0.4
95% (< 0.000 unknown	0	1.2	-0.2	-0.2
95% (< 0.000 unknown	0	0.1	-0.9	-0.7
95% (< 0.000 unknown	0	0.8	-2.9	-2.8
95% (< 0.000 unknown	0	0	0.4	0.6
95% (< 0.000 unknown	0	0.3	0.3	0.2
95% (< 0.000 unknown	0	0.4	-0.5	-0.4
95% (< 0.000 unknown	0	0.5	-1	-1.2
95% (< 0.000 unknown	-0.1	0.6	-0.4	-0.2
95% (0.0013) unknown	0.1	0.3	0.3	0.3
95% (< 0.000 unknown	0.1	0.3	-0.8	-0.9
95% (< 0.000 unknown	0	-0.1	0.2	0.3
95% (< 0.000 unknown	0	-0.6	0.1	-0.1
95% (< 0.000 unknown	0	0.2	0	0.1
95% (< 0.000 unknown	0	0	-0.5	-0.6
95% (< 0.000 unknown	-0.1	0	0.3	0.3
95% (< 0.000 unknown	0	-0.2	0.6	0.6
95% (< 0.000 unknown	0	0	0.4	0.4
95% (< 0.000 unknown	0	0.6	0.1	0.1
95% (< 0.000 unknown	0	0.6	-1.3	-1.7
95% (< 0.000 unknown	0	-0.3	0.7	0.5
95% (< 0.000 unknown	0	0.1	-0.7	-0.9
95% (< 0.000 unknown	-0.1	-0.2	0.5	0.5
95% (< 0.000 unknown	0	0	0.5	0.7
95% (< 0.000 unknown	0	0.5	-1.5	-1.1
95% (< 0.000 unknown	-0.2	-0.5	0.6	0.5
95% (< 0.000 unknown	0	-0.2	0.5	0.5
95% (< 0.000 unknown	0	-0.5	0.6	0.5
95% (< 0.000 unknown	0	-0.1	0.6	0.6
95% (< 0.000 unknown	-0.1	-0.1	0.5	0.3

95% (< 0.000 unknown	0	-0.3	0.7	0.5
95% (< 0.000 unknown	0	0	-1.4	-1.4
95% (0.0011) unknown	0	0.3	-0.6	-0.6
95% (< 0.000 unknown	0.1	0.2	0.5	0.4
95% (< 0.000 unknown	0	0.2	0.3	0.3
95% (< 0.000 unknown	-0.1	0	0.7	0.7
95% (< 0.000 unknown	0	-0.1	0.1	-0.6
95% (< 0.000 unknown	0	0.4	-0.5	-0.3
95% (< 0.000 unknown	0	-0.5	0.6	0.6
95% (< 0.000 unknown	0	0	-0.4	-0.2
95% (< 0.000 unknown	0	-0.2	0.5	0.5
95% (< 0.000 unknown	0	-0.6	0.7	0.6
95% (< 0.000 unknown	0	-0.5	0.2	0
95% (< 0.000 unknown	0	0.2	0.4	0.4
95% (< 0.000 unknown	0	1.3	1	0.3
95% (0.040) unknown	0	0.5	0.6	0.4
95% (< 0.000 unknown	0	0.2	-1.8	-1.9
95% (< 0.000 unknown	0	0	0.7	0.6
95% (< 0.000 unknown	0	0.6	-1.6	-1.6
95% (< 0.000 unknown	0	0.8	-1.9	-2
95% (< 0.000 unknown	0	0.2	0.6	0.7
95% (< 0.000 unknown	0	-0.2	0.9	0.8
95% (< 0.000 unknown	0	0.2	-2.2	-2.3
95% (< 0.000 unknown	0	0.9	-1.2	-1
95% (< 0.000 unknown	0	0.1	0.2	0.3
95% (< 0.000 unknown	0	0.3	-1.1	-1
95% (< 0.000 unknown	0	0.5	-1.3	-1.3
95% (< 0.000 unknown	0	0.7	-1.5	-1.4
95% (< 0.000 unknown	0	0.3	0.6	0.4
95% (< 0.000 unknown	0	-0.4	0.7	0.5
95% (< 0.000 unknown	0	0.3	-0.5	-0.6
95% (< 0.000 unknown	0	-0.4	0.8	0.5
75% (0.14) unknown	0.2	0	0.2	0.2
95% (< 0.000 unknown	0	0	0.6	0.7
95% (< 0.000 unknown	-0.1	0.3	0.1	0.1
95% (< 0.000 unknown	0	0.6	0	-0.1
95% (< 0.000 unknown	0.1	0.4	-0.2	0
95% (< 0.000 unknown	0	0.4	-0.7	-0.9
95% (< 0.000 unknown	0	0.3	0	0
95% (< 0.000 unknown	0	0	0.5	0.7
95% (< 0.000 unknown	0	0.4	0.3	0.3
95% (< 0.000 unknown	0	-0.1	0.5	0.4
95% (< 0.000 unknown	0	-0.3	0.6	0.6
95% (< 0.000 unknown	0	0.4	-2.6	-2.6
95% (< 0.000 unknown	0	0.1	-0.1	-0.5
----------------------	------	------	------	------
95% (< 0.000 unknown	0	0.4	-0.6	-0.6
95% (< 0.000 unknown	0	0	0.6	0.6
95% (< 0.000 unknown	0	0.4	-1.2	-1.2
95% (< 0.000 unknown	0	0.2	-1.6	-1.7
95% (< 0.000 unknown	0	0	0.6	0.5
95% (< 0.000 unknown	0	0	0.6	0.5
95% (< 0.000 unknown	0	0.5	-1.2	-1.2
95% (< 0.000 unknown	0	0.5	-1.3	-1.2
95% (< 0.000 unknown	0	-0.1	0.4	0.5
95% (< 0.000 unknown	0	0.1	0.5	0.4
95% (< 0.000 unknown	0	-0.4	0.7	0.6
95% (< 0.000 unknown	0	0.5	-0.8	-0.9
95% (< 0.000 unknown	0	0.2	0.2	0.1
95% (< 0.000 unknown	0	0	-1.3	-1.4
95% (< 0.000 unknown	0	0.4	-1.3	-1.1
95% (< 0.000 unknown	0	-0.4	0.7	0.5
95% (< 0.000 unknown	0.2	0.1	0.6	0.4
75% (0.065) unknown	0	-0.1	0.3	0.4
95% (< 0.000 unknown	0	0.4	-0.6	-0.7
95% (< 0.000 unknown	0	-0.3	0.3	0.2
95% (< 0.000 unknown	-0.1	0.1	0.6	0.7
95% (< 0.000 unknown	0	0.2	-0.4	-0.6
95% (< 0.000 unknown	0	0.5	0.3	0.2
95% (< 0.000 unknown	0	0.1	-0.2	-0.2
95% (< 0.000 unknown	0	0.1	0.4	0.4
95% (< 0.000 unknown	0	0.5	-2.1	-1.8
95% (< 0.000 unknown	0	0.6	0.3	0.4
95% (< 0.000 unknown	0	0	-0.1	-0.1
95% (< 0.000 unknown	0	-0.4	0.5	0.5
95% (< 0.000 unknown	0.1	-0.1	0.7	0.8
95% (< 0.000 unknown	0	-0.4	0.7	0.6
95% (< 0.000 unknown	0	0.4	0.6	0.6
95% (< 0.000 unknown	0	0.3	0.3	0.3
95% (0.023) unknown	0	-0.2	0.1	0.1
95% (< 0.000 unknown	0	0.2	-2.2	-2
95% (< 0.000 unknown	0	1.2	0.5	0.5
95% (< 0.000 unknown	0	0.4	0.4	0.6
95% (< 0.000 unknown	0	-0.1	-0.5	-0.6
95% (< 0.000 unknown	0	0.1	0.5	0.5
95% (< 0.000 unknown	0	0	0.5	0.3
95% (< 0.000 unknown	0	0.5	-2	-2
95% (< 0.000 unknown	0	0.8	-1.1	-1.3
95% (< 0.000 unknown	0	0.5	-1.1	-1.1

95% (0.0001(unknown	0	0.2	0.3	0.3
95% (< 0.000 unknown	0	-0.1	0.6	0.5
95% (< 0.000 unknown	-0.1	-0.2	0.4	0.6
95% (< 0.000 unknown	0	0	-0.3	-0.3
95% (< 0.000 unknown	0	0.5	-1	-0.9
95% (< 0.000 unknown	0	0.2	0.4	0.3
95% (< 0.000 unknown	-0.1	0.7	0.2	0.4
0% (NaN) unknown	No Values	No Values	No Values	No Values
95% (< 0.000 unknown	0	0.2	-0.3	-0.3
95% (< 0.000 unknown	0	-0.1	0.7	0.8
95% (0.0001!unknown	0	-0.2	0.5	0.6
95% (< 0.000 unknown	0	0.1	0.9	0.7
75% (0.092) unknown	-0.1	0.1	0.1	0.2
95% (< 0.000 unknown	0	0.1	0.5	0.4
95% (< 0.000 unknown	0	0.7	-0.6	-0.6
95% (< 0.000 unknown	0	0.5	0.1	0.2
95% (< 0.000 unknown	0	-0.1	0.2	0.2
95% (< 0.000 unknown	0	-0.8	0.9	0.2
95% (< 0.000 unknown	0	0.2	0.6	0
95% (< 0.000 unknown	0	0.3	-1.4	-1.8
95% (< 0.000 unknown	0	0.8	-0.4	-0.4
95% (< 0.000 unknown	0	0.7	-0.8	-0.9
95% (< 0.000 unknown	0	-0.3	0.8	0.7
95% (< 0.000 unknown	0	0.3	-0.7	-0.8
95% (< 0.000 unknown	0	-0.6	0.6	0.8
95% (< 0.000 unknown	0	0.4	-1.5	-1.7
95% (< 0.000 unknown	0	-0.4	0.6	0.5
95% (0.0009! unknown	0	0.1	0.3	-0.1
95% (< 0.000 unknown	0	-0.1	0.4	0.4
95% (< 0.000 unknown	0	-0.3	0.5	0.4
95% (< 0.000 unknown	0	-0.2	0.3	0.2
95% (< 0.000 unknown	0	0.8	-0.4	-0.6
95% (< 0.000 unknown	0	0.5	0	0
95% (< 0.000 unknown	0	-0.1	0.5	0.7
95% (< 0.000 unknown	0	0	0.5	0.7
95% (< 0.000 unknown	0	0.8	-1	-0.9
95% (< 0.000 unknown	0	0.1	0.5	0.5
95% (< 0.000 unknown	0.1	0	0.6	0.6
95% (< 0.000 unknown	0	-0.1	0.8	0.8
95% (0.0082)unknown	-0.1	0.3	0.4	0.5
95% (< 0.000 unknown	0	-0.5	0.9	0.8
95% (< 0.000 unknown	0	0.3	0.5	0.4
95% (< 0.000 unknown	0	0.2	0	0.1
95% (< 0.000 unknown	0	-0.6	-0.2	0.2

95% (< 0.000 unknown	0	0.7	-0.5	-0.5
95% (< 0.000 unknown	0.1	0.3	0.6	0.6
95% (< 0.000 unknown	0	0.2	-0.5	-0.6
0% (0.28) unknown	0	0.2	0.2	0.2
95% (0.0091) unknown	0	0.4	0.1	0.2
95% (< 0.000 unknown	0	0.4	-2	-2.1
95% (< 0.000 unknown	0	-0.3	0.2	0.3
95% (< 0.000 unknown	0	-0.1	0.5	0.5
95% (< 0.000 unknown	0	0.5	-0.7	-1.2
0% (0.11) unknown	0	0.3	0.3	0.3
95% (< 0.000 unknown	0	-0.5	0.6	0.4
95% (< 0.000 unknown	0	0.7	-0.1	-0.1
95% (< 0.000 unknown	-0.1	0.1	0.4	0.5
95% (< 0.000 unknown	0	-0.1	0.6	0.7
95% (< 0.000 unknown	-0.1	0	0.1	0.3
95% (< 0.000 unknown	0	-0.2	0.4	0
95% (< 0.000 unknown	0	-0.3	0.8	0.9
95% (< 0.000 unknown	0	0.1	0.5	0.6
95% (< 0.000 unknown	0	0.4	-0.9	-1
95% (< 0.000 unknown	0	0	0.9	1
95% (< 0.000 unknown	0	-0.6	-0.6	-0.3
95% (0.0012) unknown	0	0.5	0.4	0.3
95% (< 0.000 unknown	0	0.1	0.4	0.4
95% (< 0.000 unknown	0	1	0.9	0.8
95% (< 0.000 unknown	0	-0.6	0.8	0.6
95% (< 0.000 unknown	0	0	0.1	0
95% (< 0.000 unknown	0	-0.3	1	0.9
95% (< 0.000 unknown	0	0.1	-1.4	-1.6
95% (< 0.000 unknown	0.1	-0.1	0.3	0.6
95% (< 0.000 unknown	0	0.4	0.3	0.6
95% (0.021) unknown	0	-0.1	0	0.2
95% (0.0061)unknown	0	0	0.1	-0.2
95% (0.012) unknown	0	0.6	0.5	0.7
95% (< 0.000 unknown	0	0.4	-1.2	-1.3
95% (< 0.000 unknown	0	-0.3	0.4	0.4
95% (0.0019)unknown	0	0	0.5	0.4
95% (< 0.000 unknown	0	0.5	-1.2	-1.3
95% (< 0.000 unknown	0	-0.2	0.6	0.6
95% (< 0.000 unknown	0	0.8	-2.4	-2.4
95% (0.0086) unknown	0	0.1	0.3	0.2
95% (< 0.000 unknown	0	0.3	-0.5	-0.6
95% (< 0.000 unknown	0	0.9	0.2	0.2
95% (< 0.000 unknown	0	-0.2	0.4	0.3
95% (< 0.000 unknown	0	0	0.7	0.7

95% (< 0.000 unknown	0	0.3	-1.1	-1.1
95% (< 0.000 unknown	0	-0.5	0.3	0.1
95% (< 0.000 unknown	0	0	0.5	0.5
95% (< 0.000 unknown	0	0.4	0.2	0.4
95% (< 0.000 unknown	0	-0.1	0.6	0.5
95% (< 0.000 unknown	0	-0.2	0.6	0.7
95% (< 0.000 unknown	0	-0.3	0.8	0.7
95% (0.015) unknown	0	-0.2	-0.2	0
75% (0.047) unknown	0	-0.1	0	0.1
0% (0.076) unknown	0	0.5	0.3	0.1
95% (< 0.000 unknown	0	0	0.5	0.5
95% (< 0.000 unknown	0	0.1	-0.1	-0.1
95% (< 0.000 unknown	0	0.6	-2	-2
95% (0.0001: unknown	0	0.2	0.2	0.3
95% (< 0.000 unknown	0	0	0	0.1
95% (< 0.000 unknown	0	0	0.8	0.7
95% (< 0.000 unknown	-0.1	0.2	0.6	0.6
75% (0.12) unknown	0.1	0.4	0.6	0.4
95% (< 0.000 unknown	0	0	0.7	0.7
95% (< 0.000 unknown	0	0.1	0.6	0.5
95% (0.0035) unknown	-0.2	0.1	0.2	0.1
95% (< 0.000 unknown	0	-0.2	0.5	0.2
95% (0.0002: unknown	0	0.1	0.4	0.4
95% (0.0009! unknown	0	0.3	0.2	0.4
95% (< 0.000 unknown	0	0.2	-0.5	-0.5
95% (< 0.000 unknown	0	-0.2	1	0.7
95% (0.0004: unknown	0	-0.1	0.3	-0.1
95% (< 0.000 unknown	0	0	0.3	0.3
0% (0.75) unknown	0	1.1	0.4	0.5
95% (0.0001 unknown	0	0	0.6	0.6
95% (0.011) unknown	0	0.2	0.2	0.2
95% (< 0.000 unknown	0	0.1	-0.2	-0.1
95% (< 0.000 unknown	0	0	0.4	0.3
95% (< 0.000 unknown	0	0.2	-1.5	-1.3
95% (< 0.000 unknown	0	0.4	-0.4	-0.5
95% (< 0.000 unknown	-0.1	0.5	0.4	0.4
95% (< 0.000 unknown	0	0.2	0.1	0.1
95% (< 0.000 unknown	0	0.1	-0.4	-0.6
95% (< 0.000 unknown	0	0.2	0.6	0.7
95% (0.0005 unknown	0.1	0.6	0.5	0.2
95% (0.0001 unknown	0	0.2	0.1	0.2
95% (0.022) unknown	0	0.3	0.5	0.2
95% (< 0.000 unknown	0	-0.3	0.6	0.3
95% (< 0.000 unknown	0	0.1	-0.2	-0.2

95% (< 0.000 unknown	0	0.4	0.2	0.4
95% (< 0.000 unknown	0	-0.4	-0.1	-0.2
95% (0.040) unknown	0	0.2	0.6	0.4
95% (0.0013) unknown	0	0.2	0.5	0.4
95% (< 0.000 unknown	0	0.1	0.7	0.6
95% (< 0.000 unknown	0	0.3	0.5	0.4
95% (0.028) unknown	0	0.3	0.7	0.8
95% (< 0.000 unknown	0	-0.2	0	0
95% (< 0.000 unknown	0	1.2	-0.6	-0.4
95% (< 0.000 unknown	0	0.3	-1.6	-1.4
95% (0.0042)unknown	0	-0.1	-0.3	-0.2
95% (< 0.000 unknown	0	0.8	-1.1	-0.8
95% (< 0.000 unknown	0	0.6	0.2	0.4
95% (< 0.000 unknown	0	0.1	0.4	0.5
95% (0.0040) unknown	0	0.7	0.4	0.4
95% (< 0.000 unknown	0	0.8	-1.2	-0.9
95% (< 0.000 unknown	0	0.8	-0.9	-1.3
95% (< 0.000 unknown	0	0.9	-1	-1.2
75% (0.0054) unknown	0	0.3	0.4	0.2
95% (< 0.000 unknown	0	0.5	0.3	0.4
0% (0.15) unknown	0	0	-0.2	-0.1
95% (0.0089) unknown	0	-0.1	-0.3	-0.4
75% (0.069) unknown	0	1.1	0.9	0.9
95% (< 0.000 unknown	0	0.2	-0.4	-0.5
95% (< 0.000 unknown	0	-0.2	0.3	0.4
95% (< 0.000 unknown	-0.1	-0.3	0.6	0.7
95% (0.0041) unknown	0	0.2	0.2	0.2
95% (< 0.000 unknown	0.1	0.2	0.5	0.4
95% (< 0.000 unknown	0	-0.3	0.5	0.5
95% (< 0.000 unknown	0	0.5	0	0
95% (< 0.000 unknown	0	-0.2	0.1	0.1
95% (0.011) unknown	0	0.1	0.5	0.6
95% (< 0.000 unknown	0	0	-0.8	-0.5
95% (< 0.000 unknown	0	-0.1	0.4	0.6
95% (< 0.000 unknown	0	-0.1	0.3	0.3
95% (< 0.000 unknown	0	0.3	0.6	0.4
95% (0.0002 [,] unknown	0	-0.1	0.4	0.4
95% (< 0.000 unknown	0	-0.1	0.8	0.8
95% (< 0.000 unknown	0	-0.2	0.9	0.8
95% (< 0.000 unknown	0	0.2	0.6	0.6
95% (< 0.000 unknown	0	0.3	0.3	0.1
95% (< 0.000 unknown	0	-0.3	0.3	0.1
95% (< 0.000 unknown	0	0.1	-0.2	0
95% (< 0.000 unknown	0	-0.4	0.5	0.5

95% (< 0.000 unknown	0	0.5	-1.8	-1.8
0% (0.11) unknown	0	0.1	0.1	0.1
0% (0.053) unknown	0	0.1	0.3	0.3
95% (< 0.000 unknown	0	0	0.5	0.6
95% (< 0.000 unknown	0	0.3	-0.6	-0.6
95% (< 0.000 unknown	0	-0.5	-1.1	-1.2
95% (< 0.000 unknown	0	-0.5	0.7	0.6
95% (< 0.000 unknown	0	0.3	0.6	0.5
95% (0.0001: unknown	0	-0.1	0.2	0.4
95% (< 0.000 unknown	0	-0.1	0.6	0.4
95% (< 0.000 unknown	0	0.1	-0.7	-0.6
95% (< 0.000 unknown	0	0.4	0.7	0.6
95% (< 0.000 unknown	0	0.7	-1.2	-1
75% (0.29) unknown	-0.1	0.2	0.5	0.5
95% (0.0004 unknown	0	0.1	0.9	0.2
95% (0.0013) unknown	0	0.5	0.3	0.3
95% (< 0.000 unknown	0	0.3	0.3	0.5
95% (0.0001! unknown	0	0.5	-0.5	-0.5
95% (< 0.000 unknown	0	-0.4	0.8	0.6
95% (< 0.000 unknown	0	0	0.3	-0.1
95% (< 0.000 unknown	0	0.7	0.5	-0.5
95% (< 0.000 unknown	0	0	0.5	0.6
0% (0.92) unknown	0	0	0	0
0% (0.17) unknown	0	0	-0.1	-0.1
95% (< 0.000 unknown	0	-0.3	0.6	0.5
95% (0.024) unknown	0	0	0.2	0.2
95% (< 0.000 unknown	0	-0.1	-0.1	0
95% (< 0.000 unknown	0	0.2	0	0.2
95% (< 0.000 unknown	0	-0.2	0.4	0.5
0% (0.12) unknown	-0.6	3.7	3.9	3.6
95% (< 0.000 unknown	0.1	0.5	-1.8	-2.1
95% (0.0026) unknown	0	0.1	0.4	0.5
0% (0.36) unknown	0	0.2	0	0
95% (< 0.000 unknown	-0.1	0.3	0.5	0.5
95% (< 0.000 unknown	0	0.3	-0.5	-0.3
95% (0.0002 unknown	0	0.2	-0.4	-0.5
95% (0.0023) unknown	0.1	0.2	0.6	0.5
95% (< 0.000 unknown	0	-0.4	0.3	0.2
0% (0.18) unknown	0	-0.2	0.1	0.2
95% (< 0.000 unknown	0	0.2	-0.7	-0.9
95% (< 0.000 unknown	0	0	0.4	0.2
95% (< 0.000 unknown	0	0.7	-0.7	-0.8
95% (< 0.000 unknown	0	0	0.1	0.2
95% (0.021) unknown	0	0	0.1	0.5

95% (< 0.000 unknown	0	0.1	0.5	0.6
95% (0.0054)unknown	0	0	-1.3	-1.2
0% (0.54) unknown	0	0.3	0.2	0
95% (< 0.000 unknown	0	-0.9	0.1	0.2
95% (< 0.000 unknown	0	0	0.5	0.5
95% (< 0.000 unknown	0	0.3	0.6	0.6
95% (0.0007. unknown	0	0.6	-0.2	0.1
95% (< 0.000 unknown	0	-0.2	0.2	0
95% (< 0.000 unknown	0	0.4	-1.2	-1.2
95% (< 0.000 unknown	0	-0.6	-0.3	-0.4
0% (0.12) unknown	-0.4	3.4	1.5	2.4
95% (0.0002: unknown	0	0.2	-0.1	0.3
95% (< 0.000 unknown	0	0.5	-2.1	-2
95% (< 0.000 unknown	0	-0.1	-0.6	-0.1
95% (< 0.000 unknown	-0.1	-0.1	0.4	0.3
95% (0.0017) unknown	0	-0.2	0.7	0.5
95% (0.026) unknown	0	-0.2	0.2	0.3
95% (< 0.000 unknown	0	0.9	-0.6	-0.6
95% (< 0.000 unknown	0	0.9	-1.2	-1.1
95% (0.0001 unknown	0	0.6	-1.2	-1.4
95% (< 0.000 unknown	0	-0.4	0.3	0.3
95% (< 0.000 unknown	0	0	0.5	0.5
95% (< 0.000 unknown	0	0.6	-1.3	-1.5
95% (< 0.000 unknown	0	0.2	-0.8	-0.8
95% (< 0.000 unknown	0	-0.5	-0.1	0
95% (< 0.000 unknown	0	0.8	-1.9	-2.2
95% (< 0.000 unknown	0	0.4	-0.9	-1
95% (0.019) unknown	0	0.2	0.8	0.8
95% (< 0.000 unknown	0	-0.5	0.4	0.3
0% (0.59) unknown	0	0.4	0.2	0.1
95% (0.048) unknown	0	-0.1	0.2	0.3
95% (< 0.000 unknown	0	0.3	-0.8	-1
0% (0.36) unknown	0.2	0	-0.1	0.2
95% (< 0.000 unknown	0	-0.1	0.4	0.6
95% (< 0.000 unknown	0	0.7	0.3	0.7
95% (< 0.000 unknown	0	0.4	-0.7	-0.6
0% (0.32) unknown	0	0.3	0.4	0.3
95% (< 0.000 unknown	0	-0.9	0.5	0.5
95% (0.0046) unknown	0	0.1	0.3	0.2
95% (0.0052)unknown	0	0.4	0	0.4
0% (0.28) unknown	0	0.3	0.2	0.2
95% (< 0.000 unknown	0	0.6	0	0.2
95% (< 0.000 unknown	0	-0.6	0.6	0.5
95% (< 0.000 unknown	0	0	0.6	0.4

95% (< 0.000 unknown	0	0.1	0.7	0.8
95% (< 0.000 unknown	0	-0.1	0.5	0.4
95% (< 0.000 unknown	0	0.6	-1	-1
95% (< 0.000 unknown	0.1	0.8	0.3	0.4
95% (< 0.000 unknown	-0.1	-0.2	0.5	0.4
95% (< 0.000 unknown	0	0.3	1	0.8
75% (0.026) unknown	0	0.3	0	-0.2
95% (< 0.000 unknown	0	0.1	0.4	0.8
95% (< 0.000 unknown	0	0.7	-0.8	-0.9
95% (< 0.000 unknown	0	-0.3	-0.4	-0.3
95% (< 0.000 unknown	0	0.2	-0.3	-0.2
75% (0.031) unknown	0	0.2	0.3	0.2
0% (0.21) unknown	0.1	2.7	1.9	2.4
95% (0.0048)unknown	0	-0.3	0.4	0.4
95% (< 0.000 unknown	0	0.6	-0.6	-0.7
95% (< 0.000 unknown	0	0.7	-0.9	-0.7
95% (0.0059)unknown	0	-0.4	0.1	0.1
95% (< 0.000 unknown	0	-0.7	0.6	0.5
95% (0.0002≀unknown	0	0.2	-0.3	-0.2
95% (< 0.000 unknown	0	0.2	-0.1	-0.1
95% (0.014) unknown	0	0.8	-0.1	-0.3
95% (< 0.000 unknown	0	-0.6	1	0.7
95% (< 0.000 unknown	0	0.4	0	0
95% (0.015) unknown	0	0.3	0.4	0.2
95% (0.042) unknown	0	0.2	0	0
0% (0.58) unknown	0	0.2	0	0.2
95% (0.0011) unknown	0	0.2	-0.2	-0.2
95% (< 0.000 unknown	0	0.3	-1.7	-1.6
0% (0.12) unknown	0	0	0.2	0.2
0% (0.18) unknown	0	-0.7	-0.1	0.2
95% (< 0.000 unknown	0	0.7	-0.1	0.2
95% (< 0.000 unknown	0	-0.2	0.7	0.6
75% (0.057) unknown	0	-0.3	0.5	0.4
75% (0.072) unknown	0	0.4	0.2	0.2
95% (0.035) unknown	0	1	0.9	0.9
95% (< 0.000 unknown	0	0.2	0.2	0.2
0% (0.12) unknown	0	-0.1	0.3	0.3
95% (< 0.000 unknown	0	-0.5	0.7	0.4
95% (0.0001!unknown	0	0.4	0.7	0.5
95% (< 0.000 unknown	0	0.6	-0.8	-0.7
95% (< 0.000 unknown	0	0.1	0.8	0.6
95% (< 0.000 unknown	0	-0.1	0.6	0.5
95% (< 0.000 unknown	0	0	0.5	0.5
95% (< 0.000 unknown	0	-0.1	0.3	0.2

95% (< 0.000 unknown	0	0.2	0.6	0.4
95% (< 0.000 unknown	0	-0.1	0.2	0.2
95% (0.0003: unknown	0	0.1	0.5	0.1
0% (0.29) unknown	0	0.2	0.2	0.1
95% (< 0.000 unknown	0	0.6	0	0
95% (< 0.000 unknown	0	0	-1.4	-1.5
75% (< 0.000 unknown	0	-0.3	0	-0.1
95% (0.0043)unknown	0	0.3	0	0.1
95% (< 0.000 unknown	0	0.3	-0.5	-0.2
95% (< 0.000 unknown	0	0.2	-0.2	-0.1
95% (0.0001≀unknown	0	0.5	-0.1	0.1
95% (< 0.000 unknown	0	0.2	0.7	0.7
95% (0.0011) unknown	0	-0.5	0.3	0.4
95% (< 0.000 unknown	0	0	0.9	0.7
95% (< 0.000 unknown	0	-0.2	-0.5	-0.3
95% (< 0.000 unknown	0	0.3	-0.7	-0.6
95% (0.0073)unknown	0	0.3	0.4	0.4
0% (0.93) unknown	0	0.1	0	0.1
0% (0.51) unknown	0	0.2	0.1	-0.4
95% (< 0.000 unknown	0	-0.5	1	0.5
95% (< 0.000 unknown	0	0.9	-0.1	-0.2
0% (0.59) unknown	0	0.1	0.2	0.5
95% (0.011) unknown	0	-0.1	0.5	0.5
0% (0.095) unknown	0	0.6	-0.1	-0.1
95% (< 0.000 unknown	0	-0.3	0.7	0.7
0% (0.39) unknown	0	-0.1	0.2	0
95% (< 0.000 unknown	0	0.1	0.3	0.5
95% (< 0.000 unknown	0	0.6	-1.3	-1.3
0% (0.27) unknown	0	0.1	0.1	0.3
95% (< 0.000 unknown	0	-0.3	0.7	0.7
95% (< 0.000 unknown	0	0.9	-0.1	-0.1
95% (0.0005(unknown	0	0	0.4	0.4
75% (0.12) unknown	0	0.9	-1.6	-2.3
95% (< 0.000 unknown	0	0.9	0.5	0.6
95% (0.0023)unknown	-0.1	0.1	0.5	0.6
75% (0.034) unknown	0	0.7	0.8	0.2
0% (0.32) unknown	0.1	0.4	0.4	0.3
95% (0.0049)unknown	0	0	0.4	0.1
95% (< 0.000 unknown	-0.1	1.4	1.2	0.8
0% (0.11) unknown	0	0	0	0.1
0% (0.27) unknown	0	0.1	0.4	0.7
95% (0.016) unknown	0	-0.4	0.7	0.4
95% (0.0028)unknown	0	0.2	-0.4	0
95% (0.025) unknown	0	0.3	0.1	0.2

95% (< 0.000 unknown	0	0.3	0.4	0.4
95% (< 0.000 unknown	0	0.1	0.4	0.4
95% (0.048) unknown	0.1	0.6	0.7	0.2
0% (0.96) unknown	0	0.1	0	0.1
0% (0.79) unknown	0	-0.4	0	0.1
95% (< 0.000 unknown	0	-0.5	0.7	0.4
0% (0.45) unknown	0	0.2	0	-0.1
95% (< 0.000 unknown	0	-0.1	0.4	0.4
0% (0.71) unknown	0	0.1	0.2	0.4
95% (0.0026)unknown	0	0.5	0.5	0.4
95% (0.0009(unknown	0	0.4	-0.2	0
75% (0.052) unknown	0	-0.3	0	0.1
95% (< 0.000 unknown	0	0.9	-0.3	-0.1
95% (< 0.000 unknown	0	0.6	-1.4	-1.3
95% (< 0.000 unknown	0	-0.2	0.8	0.4
95% (< 0.000 unknown	0	0.7	-0.5	-0.9
95% (0.045) unknown	0	0.7	0.3	0.6
95% (< 0.000 unknown	0	1.1	0.1	0
95% (0.0008(unknown	0	-0.4	0	-0.3
95% (< 0.000 unknown	0	0.2	0.6	0.5
95% (0.0088)unknown	0	0.3	0.5	0.3
95% (< 0.000 unknown	0	0.1	-1	-1
0% (0.19) unknown	0	1	1.4	1.5
95% (< 0.000 unknown	0	0.2	-0.6	-0.9
0% (0.49) unknown	0	0.5	0.1	0.2
0% (0.91) unknown	0	-0.1	-0.2	0
95% (0.0085)unknown	0	-0.3	-1.1	-0.9
0% (0.47) unknown	0	0.6	-0.1	-0.1
95% (0.0005(unknown	0	1.3	-1	-0.8
0% (0.17) unknown	0	0	0.5	0.4
95% (< 0.000 unknown	0	0.4	-0.8	-0.8
95% (0.0019)unknown	0	0.3	0	-0.1
95% (< 0.000 unknown	0	-0.5	0.4	0.3
95% (< 0.000 unknown	0	0.5	-0.6	-0.5
0% (0.061) unknown	0	0.7	0	0.1
0% (0.23) unknown	0	0.6	0.7	0.5
95% (0.0004(unknown	0	-0.1	0.8	0.7
95% (0.0011)unknown	0	0.8	0	0.2
0% (0.13) unknown	0	-0.4	0.5	0.4
95% (0.0026)unknown	0	0.3	-0.3	-0.1
95% (0.0001 unknown	0	0.3	-0.8	-0.8
75% (0.026) unknown	0	-0.2	0.1	-0.3
95% (0.045) unknown	0	-0.1	0.9	0.7
0% (0.40) unknown	0	1.6	0.9	0.8

95% (0.0056) ur	nknown	0	0.3	0.5	0.4
95% (0.0035) ur	nknown	0	0	0.1	0.4
0% (0.70) ur	nknown	0	0.4	-0.6	-1
0% (0.052) ur	nknown	0	0.4	0.2	0.1
95% (< 0.000 ur	nknown	0	-0.3	0.7	0.7
0% (0.26) ur	nknown	0	0.2	0.4	0
95% (0.0052) ur	nknown	0	0.5	0.3	0.3
95% (0.0007. ur	nknown	0	0.3	-0.7	-0.7
75% (0.093) ur	nknown	0	-0.2	0.3	-0.3
0% (0.25) ur	nknown	0	0.2	0.4	0.8
95% (< 0.000 ur	nknown	0	0.9	0.3	0.4
95% (0.0005₁ ur	nknown	0	0.5	-0.2	-0.4
0% (0.058) ur	nknown	0	0.4	0.3	0.3
0% (0.35) ur	nknown	0	0.2	-0.1	-0.2
95% (0.014) ur	nknown	0	0.7	0.7	0.5
0% (0.13) ur	nknown	0	0.3	-0.2	-0.2
95% (< 0.000 ur	nknown	-0.1	1.1	-0.1	-0.2
95% (0.0001!ur	nknown	0	0.6	-0.5	-0.5
95% (< 0.000 ur	nknown	0	-0.1	0.6	0.5
75% (0.25) ur	nknown	0	1	0.3	-0.1
0% (0.44) ur	nknown	0	0.4	0.3	0.3
0% (0.19) ur	nknown	0	0.3	0.2	0.4
0% (0.47) ur	nknown	0	0.1	0.5	0.3
95% (< 0.000 ur	nknown	0	-0.4	0.4	0.2
0% (0.20) ur	nknown	0	0.2	-0.2	-0.2
95% (0.0001: ur	nknown	0	0.2	0.4	0.7
0% (0.056) ur	nknown	0	0.4	0.6	0.6
0% (0.12) ur	nknown	0	0.3	-0.1	0.5
95% (< 0.000 ur	nknown	0	0.2	0.5	0.5
0% (0.25) ur	nknown	0	0.2	-0.2	-0.1
95% (< 0.000 ur	nknown	0	0.6	-0.3	-0.6
95% (0.013) ur	nknown	0	0.7	-0.5	-0.8
95% (0.029) ur	nknown	0	-0.1	0.6	0.6
95% (< 0.000 ur	nknown	0	0.4	-0.4	-0.4
0% (0.69) ur	nknown	0	0.1	0.3	0.6
0% (0.30) ur	nknown	0	0.8	0.6	0.4
95% (0.0098) ur	nknown	0	0	0.2	0.1
95% (< 0.000 ur	nknown	0	0.2	-1.1	-0.9
95% (< 0.000 ur	nknown	0	0.3	-0.1	0.1
95% (0.0080) ur	nknown	0	0.3	-0.5	0.1
0% (0.48) ur	nknown	0	0.5	0.9	0.5
95% (0.016) ur	nknown	0	-0.5	-0.5	-0.4
95% (0.034) ur	nknown	0	-0.4	0.6	0.6
95% (0.0082) ur	nknown	0	0.1	-0.5	-0.5

0% (0.47)	unknown	0	0.4	-0.2	-0.1
0% (0.81)	unknown	0	0.3	0.1	0.2
95% (0.0023)	unknown	0	0.1	-0.2	-0.1
95% (0.0003	unknown	0	0.5	0.1	-0.3
0% (0.19)	unknown	-0.1	0.8	0	-0.1
95% (0.020)	unknown	0	-0.1	0.2	0.4
95% (< 0.000	unknown	0	-0.2	0.2	0
95% (0.046)	unknown	0	0.7	-0.1	-0.1
0% (0.46)	unknown	0	0.4	0.2	0.1
0% (0.58)	unknown	0	0.2	0	-0.1
95% (0.0003	unknown	0	0.1	0.6	0.9
95% (0.039)	unknown	0	-0.6	-0.2	-0.5
0% (0.72)	unknown	0	0.4	0.1	0.1
95% (< 0.000	unknown	0	0.5	-0.1	-0.4
95% (0.018)	unknown	0	0.2	0.4	0.5
95% (0.042)	unknown	0	0.4	0.6	0.3
0% (0.18)	unknown	0	0.8	-0.8	-1.2
95% (< 0.000	unknown	0	0.6	-0.5	-0.7
0% (0.46)	unknown	0	0.5	0.3	0.4
95% (0.0007	unknown	0	0.2	0.5	0.5
75% (0.066)	unknown	0	0.7	0.3	-0.3
0% (0.89)	unknown	0	0.1	-0.2	-0.3
95% (0.0069)	unknown	0	0.6	-1.4	-1
75% (0.29)	unknown	0.1	0.9	0.6	0.7
95% (0.045)	unknown	0	0.1	0.8	0.4
95% (0.031)	unknown	0	0.6	-0.2	-0.3
95% (0.019)	unknown	0	0.6	-0.7	-0.7
95% (0.020)	unknown	0	0.2	-0.9	-1.4
75% (0.0022)	unknown	0.1	0.7	-0.2	-0.1
75% (0.0012)	unknown	-0.1	0.2	0.3	0.3
75% (0.0071)	unknown	-0.1	0.2	0.3	0.4
0% (0.30)	unknown	0	0.9	0.4	0.5
75% (0.061)	unknown	0	0.2	0.8	0.9
75% (0.068)	unknown	0	-0.2	0.1	0.3
95% (0.0005	unknown	0	-0.3	0.3	0.6
0% (0.86)	unknown	0	0.2	0.3	0.2
0% (0.079)	unknown	0	0.7	0.2	0.2
95% (< 0.000	unknown	0	1	-0.3	-0.3
0% (0.22)	unknown	0	0	0.3	0.3
75% (0.087)	unknown	0	0	-0.4	-0.3
95% (< 0.000	unknown	0	-0.3	0.4	0.4
0% (0.36)	unknown	0	0.3	0.1	-0.2
95% (0.0047	unknown	0	0.5	-1.2	-0.8
0% (0.79)	unknown	0	0.1	0.1	0.2

75% (0.059)	unknown	0	-0.1	0	0.2
75% (0.055)	unknown	0	0.4	0.1	0
95% (0.018)	unknown	0	-0.1	0.4	0.4
0% (0.97)	unknown	0	0.1	-0.1	0
0% (0.13)	unknown	0	0	0.4	0.4
0% (0.30)	unknown	0	0.6	0.3	0.1
0% (0.60)	unknown	0	0.2	0.3	0.5
95% (0.037)	unknown	0	0	-0.1	-0.3
0% (0.85)	unknown	0	0.1	0	-0.1
0% (0.18)	unknown	0	-0.2	-0.8	-1.2
0% (0.48)	unknown	0	-0.1	0.2	0.2
0% (0.30)	unknown	0	0.6	0	0.2
95% (< 0.000	unknown	0	0.2	-0.1	-0.1
95% (0.046)	unknown	0	0.7	0.3	0.4
95% (< 0.000	unknown	0	0.4	-0.7	-0.7
0% (0.92)	unknown	0	-0.1	-0.2	-0.1
95% (0.013)	unknown	0	0.6	-0.4	-0.3
0% (0.064)	unknown	0	0.8	0.1	-0.2
0% (0.25)	unknown	0	0.6	0.4	0.5
95% (0.046)	unknown	0	0.7	0	-0.2
0% (0.19)	unknown	0	0.4	0.6	0.8
0% (0.25)	unknown	0	0.1	-0.3	-0.3
0% (0.28)	unknown	0	0.1	-0.4	-0.1
95% (0.0016	unknown	0	0.7	-0.9	-1.3
0% (0.42)	unknown	0	0	0.3	-0.2
0% (0.24)	unknown	0	0	0.5	0.5
75% (0.079)	unknown	0	0.4	0	-0.5
75% (0.097)	unknown	0	-0.1	-0.6	-0.1
0% (0.33)	unknown	0	-0.1	0.3	0.2
0% (0.54)	unknown	0	0.4	0	0.3
0% (0.13)	unknown	0	0.7	0.2	0.5
0% (0.085)	unknown	0	0	-0.9	-0.9
95% (0.012)	unknown	0	-0.1	0.4	0.1
0% (0.094)	unknown	0	0.4	0.1	-0.3
0% (0.42)	unknown	0	0.7	-0.4	0.1
0% (0.76)	unknown	0	0.8	0.8	0.5
0% (0.061)	unknown	-0.2	0.9	2.3	1.7
0% (0.70)	unknown	0	0.3	-0.2	-0.1
0% (0.16)	unknown	0	0.7	0	0.5
0% (0.72)	unknown	0	0.2	0.1	0
0% (0.31)	unknown	0	-0.4	0.2	0.5
95% (0.021)	unknown	0	0.3	0.1	0.1
0% (0.83)	unknown	0	0.5	0.2	0.4
0% (0.30)	unknown	0	-0.2	0	0

0% (0.24)	unknown	0	0.3	0.6	-0.1
0% (0.56)	unknown	0	1.3	-0.2	No Values
75% (0.043)	unknown	0	0.4	-0.9	-0.4
0% (0.20)	unknown	0	-0.2	0.4	0.2
0% (0.25)	unknown	0	0.2	-0.3	-0.1
0% (0.18)	unknown	0	0.4	0.3	0.2
0% (0.84)	unknown	0	-0.4	0.2	0
0% (0.20)	unknown	0	0.1	-0.3	-0.5
0% (0.40)	unknown	0	0.7	-0.9	-1.2
75% (0.081)	unknown	0	0.6	-0.6	-1.1

results showing the proteins identified by MASCOT and X! Tandem and peptides matching each

A m:37.0/s:14.6, Bad (50%) m:11.6/s:4.32 m:30.3/s:2.00 m:NA m:5.12/s:4.29 [all charge states] A m:38.0/s:14.6, Bad (50%) m:11.6/s:4.56 m:30.1/s:2.10 m:NA m:5.22/s:4.44 [all charge states]

rbamidomethyl), +304 on Y (iTRAQ8plex)

\$14/s:0.0809 m:0.617/s:0.0898, Bad (50%) m:27.4/s:4.17 m:0.0671/s:0.508 m:0.0714/s:0.0514 rr \$12/s:0.0844 m:0.611/s:0.0901, Bad (50%) m:26.8/s:4.20 m:-0.104/s:0.515 m:0.0613/s:0.0482 m

 $.0282, 0.932, 0.0390, 0.000700]; \\ [0.000600, 0.0377, 0.933, 0.0288, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.000900, 0.0471, 0.938, 0.000]; \\ [0.00090, 0.0471, 0.938, 0.000]; \\ [0.00090, 0.0471, 0.938, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.0471, 0.000]; \\ [0.00090, 0.000]; \\ [0.00090, 0.0000]; \\ [0.000$

protein.

1:0.431/s:0.118 [all charge states] :0.415/s:0.113 [all charge states]

0.0188,0.000]; [0.00140,0.0566,0.933,0.00870,0.000]; [0.000,0.000,0.000,0.000,0.000]; [0.00270,
0.0744,0.921,0.00180,0.000]

Category	Term	Count	%	PValue
REACTOME_PATHWA\REACT_	_6167:Influenza Infectior	50	15.15	3.03E-28
REACTOME_PATHWA\REACT_	_71:Gene Expression	67	20.30	2.00E-24
REACTOME_PATHWA\REACT_	1762:3' -UTR-mediated	38	11.52	8.20E-23
REACTOME_PATHWA\REACT_	_17015:Metabolism of pr	50	15.15	2.94E-21
REACTOME_PATHWA\REACT_	_125:Processing of Cappe	17	5.15	8.60E-05
REACTOME_PATHWA\REACT_	6185:HIV Infection	22	6.67	2.51E-04
REACTOME_PATHWA\REACT_	_578: Apoptosis	17	5.15	5.68E-04
REACTOME_PATHWA\REACT_	_13635:Regulation of act	8	2.42	0.00552566
REACTOME_PATHWA\REACT_	1698:Metablism of nucl	10	3.03	0.01359661
REACTOME_PATHWA\REACT_	9035:APC/C:Cdh1-media	8	2.42	0.03090836
REACTOME_PATHWA\REACT_	_11045:Signaling by Wnt	8	2.42	0.03090836
REACTOME_PATHWA\REACT_	_474:Metabolism of carb	10	3.03	0.04352214
REACTOME_PATHWA\REACT_	_6850:Cdc20:Phospho-AI	8	2.42	0.04485484
REACTOME_PATHWA\REACT_	_383:DNA Replication	10	3.03	0.05151479

Table S3. Reactome pathway. Human cholangiocyte proteins associated with Reactome pathwa?

ys after incubation with Opisthorchis viverrini exosomes.

Proteins	List Total	Pop Hits	Pop Total	old Enrichmer
P36578, P62750, P62277, Q07020, P2763	171	157	3398	6.32845383
P36578, P62750, P47897, Q07020, P6227	171	350	3398	3.80394319
P36578, P46777, P62750, P46779, P6227	171	108	3398	6.99176955
P36578, P62750, P62277, Q07020, P6070	171	217	3398	4.57865093
P84103, O75937, P22626, Q07955, P079	171	110	3398	3.07102605
Q13200, O43242, P25789, P25786, O755	171	184	3398	2.37592169
Q13200, O43242, P25789, P25786, Q063	171	129	3398	2.61870438
P62987, O43242, Q13200, P25789, P612	171	44	3398	3.61297182
P05141, P23921, P22234, P00491, P2210	171	77	3398	2.58069416
P62987, O43242, Q13200, P25789, P612	171	61	3398	2.60607804
P62987, O43242, Q13200, P25789, P612	171	61	3398	2.60607804
P04406, P00558, P00338, P06733, P0407	171	94	3398	2.11397288
P62987, O43242, Q13200, P25789, P612	171	66	3398	2.40864788
P62987, O43242, P33991, Q13200, P257	171	97	3398	2.04859227

Bonferroni	Benjamini	FDR
1.58E-26	1.58E-26	2.95E-25
1.04E-22	5.19E-23	1.94E-21
4.26E-21	1.42E-21	7.97E-20
1.53E-19	3.83E-20	2.86E-18
0.0044614	8.94E-04	0.08350818
0.01299322	0.00217736	0.24405723
0.02909015	0.0042085	0.55006245
0.25033666	0.03537551	5.2410823
0.50927638	0.07604983	12.4540283
0.80457868	0.15062946	26.2901322
0.80457868	0.15062946	26.2901322
0.90112283	0.18970139	35.1000501
0.90803813	0.18033954	35.9733001
0.93608698	0.19067631	40.1812903

#Query_ID	KEGG_description	ko_description
sp P60709 ACTB_HUMAN	actin beta/gamma 1	Phagosome
sp P27797 CALR_HUMAN	calreticulin	Phagosome
sp P01024 CO3_HUMAN	complement component 3	Phagosome
sp P13473 LAMP2_HUMAN	lysosomal-associated membrane protein 1/2	Phagosome
sp P02786 TFR1_HUMAN	transferrin receptor	Phagosome
sp P07437 TBB5_HUMAN	tubulin beta	Phagosome
sp 075396 SC22B_HUMAN	vesicle transport protein SEC22	Phagosome

Table S4. Phagosome pathway. Human cholangiocyte proteins involved in the Phagosome patl

#Query_ID	Control	0.5 h	3 h	16 h	
ACTB_HUMAN		0	-0.6	0.6	0.5
CALR_HUMAN		-0.1	0.4	-1.1	-1.2
CO3_HUMAN		0	0.1	0.9	0.2
LAMP2_HUMAN		-0.1	0	-1.1	-1.1
TFR1_HUMAN		-0.1	-0.5	0.7	0.5
TBB5_HUMAN		0.1	-0.6	0.4	0.4
SC22B_HUMAN		0	-0.8	0.6	0.6

hway after incubation with Opisthorchis viverrini exosomes.

Pathway	Iniprot-Accessic	Access name Protein name	Control
Adherens junction	<u>O60716</u>	CTND1_HUM Catenin delta-1	0.1
Adherens junction	P60709	ACTB_HUMA Actin, cytoplasmic	0
Bladder cancer	<u>P42771</u>	CD2A1_HUM Cyclin-dependent	0
Cell adhesion	<u>Q13740</u>	CD166_HUM.CD166 antigen	0
Chemical carcinogene	P09211	GSTP1_HUM Glutathione S-trar	0
Endometrial cancer	<u>P62993</u>	GRB2_HUMAGrowth factor rece	0
Focal adhesion	<u>P19105</u>	ML12A_HUM Myosin regulatory	0
Focal adhesion	<u>P29400</u>	CO4A5_HUMCollagen alpha-5(0
Focal adhesion	<u>P12109</u>	CO6A1_HUMCollagen alpha-1(0
Focal adhesion	<u>P62993</u>	GRB2_HUMA Growth factor rece	0
Focal adhesion	<u>Q13177</u>	PAK2_HUMA Serine/threonine-	0
Focal adhesion	<u>P60709</u>	ACTB_HUMA Actin, cytoplasmic	0
Focal adhesion	<u>Q15942</u>	ZYX_HUMANZyxin	0
Focal adhesion	<u>Q03135</u>	CAV1_HUMA Caveolin-1	0
Gap junction	<u>P07437</u>	TBB5_HUMA Tubulin beta chair	-0.1
Gap junction	<u>P62993</u>	GRB2_HUMA Growth factor rece	0
MicroRNAs in cancer	<u>P42771</u>	CD2A1_HUM Cyclin-dependent	0
MicroRNAs in cancer	<u>P62993</u>	GRB2_HUMA Growth factor rece	0
MicroRNAs in cancer	<u>P61978</u>	HNRPK_HUN Heterogeneous nu	0
MicroRNAs in cancer	<u>P16949</u>	STMN1_HUN Stathmin	0
MicroRNAs in cancer	<u>P29966</u>	MARCS_HUN Myristoylated alan	0
MicroRNAs in cancer	<u>Q16658</u>	FSCN1_HUM Fascin	0
MicroRNAs in cancer	<u>P09493</u>	TPM1_HUMATropomyosin alph	0
MicroRNAs in cancer	<u>P08670</u>	VIME_HUMA Vimentin	0
Non-small cell lung ca	1 <u>P42771</u>	CD2A1_HUM Cyclin-dependent	0
Non-small cell lung ca	P62993	GRB2_HUMA Growth factor rece	0
Pancreatic cancer	<u>P42771</u>	CD2A1_HUM Cyclin-dependent	0
Pathways in cancer	<u>P42771</u>	CD2A1_HUM Cyclin-dependent	0
Pathways in cancer	<u>P29400</u>	CO4A5_HUMCollagen alpha-5(0
Pathways in cancer	<u>P62993</u>	GRB2_HUMA Growth factor rece	0
Pathways in cancer	<u>P09211</u>	GSTP1_HUMGlutathione S-trar	0
Pathways in cancer	<u>P08238</u>	HS90B_HUM Heat shock protei	-0.1
Pathways in cancer	<u>P06753</u>	TPM3_HUMATropomyosin alph	0
Pathways in cancer	<u>P12270</u>	TPR_HUMAN Nucleoprotein TP	0
Prostate cancer	<u>P62993</u>	GRB2_HUMA Growth factor rece	0
Prostate cancer	<u>P09211</u>	GSTP1_HUMGlutathione S-trar	0
Prostate cancer	<u>P08238</u>	HS90B_HUM Heat shock protei	-0.1
Proteoglycans in canc	P23588	IF4B_HUMAN Eukaryotic transla	0
Proteoglycans in canc	P60709	ACTB_HUMA Actin, cytoplasmic	0
Proteoglycans in canc	Q03135	CAV1_HUMA Caveolin-1	0
renal cell carcinoma	<u>P62993</u>	GRB2_HUMAGrowth factor rece	0

Table S5. Proteins related to wound healing and cancer pathways that were differentia

Small cell lung cancer <u>P29400</u> CO4A5_HUMCollagen alpha-5(0
Thyroid cancer <u>P06753</u> TPM3_HUMA Tropomyosin alph	0
Thyroid cancer P12270 TPR_HUMAN Nucleoprotein TP	0
Tight junctionP19105ML12A_HUM Myosin regulatory	0
Tight junction <u>Q9H4G0</u> E41L1_HUM/Band 4.1-like prot	0.1
Tight junction <u>P35579</u> MYH9_HUMA Myosin-9	0
Tight junctionP60709ACTB_HUMA Actin, cytoplasmic	0
Tight junctionQ9UDY2ZO2_HUMAN Tight junction prot	0
Trans. misreg. in canc Q01844 EWS_HUMAI RNA-binding prote	0
Trans. misreg. in canc P35637 FUS_HUMAN RNA-binding prote	0
Trans. misreg. in canc <u>Q92804</u> RBP56_HUM TATA-binding pro	0
Trans. misreg. in canc Q16695 H31T_HUMA Histone H3.1t	0
Viral carcinogenesis <u>P42771</u> CD2A1_HUM Cyclin-dependent	0
Viral carcinogenesis Q16531 DDB1_HUMA DNA damage-bind	0
Viral carcinogenesis <u>P62993</u> GRB2_HUMA Growth factor rece	0
Viral carcinogenesis <u>P06396</u> GELS_HUMA Gelsolin	0
Viral carcinogenesis <u>P61978</u> HNRPK_HUN Heterogeneous nu	0
Viral carcinogenesis P14618 KPYM_HUM/Pyruvate kinase F	0
Viral carcinogenesis P43487 RANG_HUM/ Ran-specific GTP	0
Viral carcinogenesis P01024 CO3_HUMAN Complement C3	0
Viral carcinogenesis P62258 1433E_HUM/14-3-3 protein eps	0
Viral carcinogenesis <u>Q99879</u> H2B1M_HUM Histone H2B type	0.2
Viral carcinogenesis P62805 H4_HUMAN Histone H4	0.1

0.5h	3h	16h
-0.1	0.3	0.6
-0.6	0.6	0.5
1.2	-0.6	-0.4
-0.5	-1.1	-1.2
-0.9	0.1	0.2
0.6	-0.6	-0.7
0.5	-1.3	-1.2
-0.1	0.6	0.6
0.7	0	-0.2
0.6	-0.6	-0.7
0.9	0.5	0.6
-0.6	0.6	0.5
0.9	0.2	0.2
-0.6	0.6	0.8
-0.6	0.3	0.4
0.6	-0.6	-0.7
1.2	-0.6	-0.4
0.6	-0.6	-0.7
0.8	0.1	0
0.6	-1.7	-1.8
0	-1.3	-1.2
0.6	0.3	0.4
0.2	-2.2	-2.3
0.3	0.5	0.7
1.2	-0.6	-0.4
0.6	-0.6	-0.7
1.2	-0.6	-0.4
1.2	-0.6	-0.4
-0.1	0.6	0.6
0.6	-0.6	-0.7
-0.9	0.1	0.2
-0.5	0.6	0.4
0.6	-1.6	-1.6
0.6	-0.2	0.1
0.6	-0.6	-0.7
-0.9	0.1	0.2
-0.5	0.6	0.4
0.7	-0.6	-0.6
-0.6	0.6	0.5
-0.6	0.6	0.8
0.6	-0.6	-0.7

lly regulated in human cholangiocytes after co-culture with exosomes from Opisthorchis vi

0.9	0.5	0.6
-0.1	0.6	0.6
0.6	-1.6	-1.6
0.6	-0.2	0.1
0.5	-1.3	-1.2
0.8	0.3	0.4
0.5	0.3	0.6
-0.6	0.6	0.5
0.1	0.5	0.6
0.5	-1	-0.9
0.6	-0.5	-0.5
0.8	-1.2	-0.9
-0.6	0.8	0.8
1.2	-0.6	-0.4
-0.4	0.7	0.4
0.6	-0.6	-0.7
0.7	0.4	0.4
0.8	0.1	0
-0.3	0.7	0.8
0.5	-0.7	-1.2
0.1	0.9	0.2
0.2	-0.5	-0.6
-0.1	0.6	0.5
-0.8	0.6	0.5

verrini. Proteins significantly up- or downregulated in cholangiocytes after incubation with exoso

mes were subjected to functional enrichment analysis using the Kyoto Encyclopedia of Genes and

1 Genomes (KEGG). A $\log_2=0.6$ corresponding to a 1.5-fold change in proteins with *P*-value <0.(

)5 was considered to be significant.

Click here to download Video: Supplementary_video.mov