
1900
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.9 SEPTEMBER 2017

PAPER Special Section on Discrete Mathematics and Its Applications

Card-Based Protocols Using Regular Polygon Cards∗

Kazumasa SHINAGAWA†,††a), Nonmember, Takaaki MIZUKI†††, Member, Jacob C.N. SCHULDT††,
Koji NUIDA††, Nonmembers, Naoki KANAYAMA†, Takashi NISHIDE†, Goichiro HANAOKA††, Members,

and Eiji OKAMOTO†, Fellow

SUMMARY Cryptographic protocols enable participating parties to

compute any function of their inputs without leaking any information be-

yond the output. A card-based protocol is a cryptographic protocol imple-

mented by physical cards. In this paper, for constructing protocols with

small numbers of shuffles, we introduce a new type of cards, regular poly-

gon cards, and a new protocol, oblivious conversion. Using our cards, we

construct an addition protocol on non-binary inputs with only one shuffle

and two cards. Furthermore, using our oblivious conversion protocol, we

construct the first protocol for general functions in which the number of

shuffles is linear in the number of inputs.

key words: card-based protocol, regular polygon cards

1. Introduction

1.1 Background

In 1989, den Boer [2] proposed a protocol called the Five-

Card Trick, which can securely compute the AND function,

using five cards that have two types of front sides (♣ , ♡)

and identical back sides (?). The feasibility of basing

cryptographic protocols on this, i.e., what functions can be

securely computed by these cards, was solved by the sub-

sequent works [1], [9]. On the other hand, the efficiency,

i.e., how many cards and shuffles are sufficient to compute a

function, is still an important question.

In terms of the number of cards, Nishida et al. [11]

showed that for any Boolean function f : {0, 1}n → {0, 1},

it is possible to construct a (2n + 6)-card protocol, using

the elementary protocols proposed by Mizuki and Sone [9].

Since n-bit input uses 2n cards, their result showed that only

six additional cards are sufficient to compute any function.

However, it has remained an open problem to provide upper

bounds on the number of shuffles required to compute any

function.

1.2 Our Contribution

In this paper, we propose new techniques for constructing a

Manuscript received September 26, 2016.
Manuscript revised January 31, 2017.
†The authors are with University of Tsukuba, Tsukuba-shi,

305-8577 Japan.
††The authors are with National Institute of Advanced Industrial

Science and Technology, Tokyo, 135-0064 Japan.
†††The author is with Tohoku University, Sendai-shi, 980-8578

Japan.
∗A preliminary conference version appeared at [16].

a) E-mail: shinagawa@cipher.risk.tsukuba.ac.jp
DOI: 10.1587/transfun.E100.A.1900

Table 1 Comparison between our protocols and previous protocols.

Card # of shuffles # of cards

◦ Addition and Subtraction over Z/mZ

[4], [9] based standard O(log m) O(log m)

Ours m-sided 1 2

◦ Multiplication by c ∈ Z/mZ

[4], [9] based standard O(log c · log m) O(log c · log m)

Ours m-sided ⌈log2 c⌉ + 1 ⌈log2 c⌉ + 2

◦ Protocol for an arbitrary f : (Z/mZ)n → Z/mZ

[11] based standard O(mn · log m) 2((n + 1)⌈log2 m⌉ + 2)

Ours m-sided n m + n + mn

◦ Protocol for an arbitrary f : (Z/2Z)n → Z/2Z

[11] standard O(2n) 2(n + 3)

Ours standard n 2(n + 2n)

card-based protocol with small number of shuffles. The first

technique is to introduce a new type of cards, a regular poly-

gon card. In contrast to all the previous works, our card can

deal with multiple values naturally. This leads to a new type

of protocols using only a small number of shuffles, which

cannot be achieved using the previous cards. The second

technique is an oblivious conversion, which is a new proto-

col. It is used to construct a protocol for general functions

using only a small number of shuffles. The details of our

contribution are follows.

The regular m-sided polygon cards have (360/m)◦ rota-

tional symmetry. Using the cards introduced by den Boer [2]

(hereafter the standard cards), the previous addition proto-

cols over Z/mZ require that the numbers of shuffles and

cards are proportional to log m. On the other hand, using

the regular m-sided polygon cards, we construct an addition

protocol over Z/mZ that requires one shuffle and two cards

(Table 1). We also construct a multiplication protocol with

⌈log2 c⌉ + 1 shuffles, where c is the multiplication factor,

while the previous binary protocol requires O(log c · log m)

shuffles (Table 1).

Our oblivious conversion∗ is a protocol that takes an

encoding of a ∈ Z/mZ and a function f as inputs, and out-

puts an encoding of f (a). Using it iteratively, we construct

a protocol for any function f (x1, · · · , xn) with only 2n shuf-

fles while it requires O(2n) number of cards (Table 1). We

note that such a protocol can be implemented by both our

polygon cards and the standard cards. This result is com-

plementary to that of Nishida et al. [11]: they constructed

a protocol for any function with only 2n + 6 standard cards

∗Oblivious conversion is named after the oblivious transfer.

Copyright c⃝ 2017 The Institute of Electronics, Information and Communication Engineers

SHINAGAWA et al.: CARD-BASED PROTOCOLS USING REGULAR POLYGON CARDS

1901

Table 2 Comparison of voting protocols for n voters.

[4] (standard) Ours (polygon)

of candidates 2 ℓ

of shuffles O(n log n) n + 1

of cards 2⌈log2 n⌉ + 6 (n + 2)ℓ

and O(2n) number of shuffles.

By designing a specific protocol in a careful way, we

can achieve a protocol with both a small number of shuffles

and cards. As an example, we construct a voting protocol.

For n voters and ℓ candidates, our protocol uses n+1 shuffles

and (n + 2)ℓ cards (Table 2).

1.3 Related Works

In 1993, Crépeau and Kilian [1] achieved protocols imple-

menting any function by constructing composable elemen-

tary protocols (COPY/XOR/AND). In 2009, Mizuki and

Sone [9] constructed composable elementary protocols us-

ing fewer cards, by applying a new shuffle called a random

bisection cut. Using these protocols, the number of shuf-

fles needed to evaluate a function f is exactly the number of

gates of f . Our construction (Sect. 4) improves the number

of shuffles by the number of inputs, which is strictly smaller

than the number of gates.

We note that almost all previous works [1]–[13], [17],

[18] only consider binary inputs. Our polygon cards enable

us to construct the first non-binary protocols.

2. Basic Notation

In this section, we introduce a regular polygon card and ba-

sic notations for describing card-based protocols.

2.1 Regular Polygon Cards

Let m ≥ 3 be an integer. A regular m-sided polygon card

is a card having a back side with (360/m)◦ rotational sym-

metry and a front side with no rotational symmetry. For the

sake of easy description, hereafter we use a concrete regular

polygon card, a regular four-sided polygon card: its front

side is ↑ and its back side is ■ . The elements of Z/4Z

(hereafter Z4) naturally correspond to rotations of a card as

shown below.

↑ = 0,

↑

= 1, ↑ = 2, ↑ = 3.

For x ∈ Z4, we use [[x]] to denote the back side of a card

that corresponds to x. We also use x to denote not only

an element in Z4 but also the front side card, as long as it

is clear from the context. The important property is that

[[0]], [[1]], [[2]] and [[3]] have the identical face ■ .

Although a “two-sided polygon” makes little geomet-

ric sense, the card whose back side has a 180◦ rotationally

symmetric pattern [8] can be regarded as a regular two-

sided polygon card. Its front side is ↑ and its back side is

. (Note that its shape is a rectangle instead of a square.)

Clearly, the back side has 180◦ rotational symmetry.

We note that all of our protocols can be applied to m-

sided polygon cards for any m ≥ 2 while our descriptions

use four-sided polygon cards.

2.2 Basic Definitions

We define basic definitions: stack, sequence, top function,

rotation function, and flip function.

(1) Stack and Sequence

We first define a stack and a stacking operation “·”, recur-

sively as follows.

• A card c is a stack.

• If d1 and d2 are stacks, then d1 · d2 is a stack.

For example, for k cards c1, c2, · · · , ck, d = c1 · c2 · · · · · ck is

a stack of k cards.

We next define a sequence, which is a line of stacks,

recursively as follows.

• If d is a stack, (d) is a sequence.

• If s = (d1, · · · , dk) is a sequence and d is a stack, then

(d1, · · · , dk, d) is a sequence.

(2) Top Function

Following the formalization [7], we define a top function

top, which returns the visible face of a card, as follows.

For a card with upward facing front side x ∈ {0, 1, 2, 3},

top(x) = x whereas top([[x]]) = ⊥ (here, ⊥ is a symbol

meaning “back side”). For a stack d = c1 · · · ck, top(d) =

(top(c1))k, where superscript denotes the number of cards

rather than exponentiation. This means that the visible face

of the stack is the same as the visible face of the top card ex-

cept the number of cards. For a sequence s = (d1, · · · , dk),

top(s) = (top(d1), · · · , top(dk)).

Example 1: The following stacks s1 and s2 satisfy

top(s1) = ⊥2 and top(s2) = ⊥3. The following sequence

S 3 satisfies top(S 3) = (⊥, 2,⊥2).

s1 = [[0]] · [[1]] = ■
︸︷︷︸

[[0]]·[[1]]

. s2 = [[0]] · 1 · [[2]] = ■
︸︷︷︸

[[0]]·1·[[2]]

.

S 3 = ([[0]], 2, [[2]] · 3) =
(

■
︸︷︷︸

[[0]]

, ↑ , ■
︸︷︷︸

[[2]]·3

)

.

(3) Rotation Function

We define a rotation function rot, which returns a card ro-

tated by a clockwise 90◦ rotation, as follows. For a card with

upward facing front side x ∈ {0, 1, 2, 3}, rot(x) = x+1 mod 4

whereas rot([[x]]) = [[x−1 mod 4]]. For a stack d = c1 · · · ck,

rot(d) = rot(c1) · · · rot(ck). For a sequence s = (d1, · · · , dk),

rot(s) = (rot(d1), · · · , rot(dk)).

Example 2:

rot(0) = rot
(
↑
)

=

↑

= 1.

1902
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.9 SEPTEMBER 2017

rot([[0]]) = rot
(

■
︸︷︷︸

[[0]]

)

= ■
︸︷︷︸

[[3]]

= [[3]].

rot([[0]] · 0) = rot
(

■
︸︷︷︸

[[0]]·0

)

= ■
︸︷︷︸

[[3]]·1

= [[3]] · 1.

(4) Flip Function

We define a flip function flip, which returns the flipped

cards, as follows. For a card with upward facing front

side x ∈ {0, 1, 2, 3}, flip(x) = [[x]] whereas flip([[x]]) = x.

For a stack d = c1 · c2 · · · ck−1 · ck, flip(d) = flip(ck) ·

flip(ck−1) · · · flip(c2)·flip(c1). For a sequence s = (d1, · · · , dk),

flip(s) = (flip(d1), · · · , flip(dk)).

Example 3:

flip(0) = flip
(
↑
)

= ■
︸︷︷︸

[[0]]

= [[0]].

flip([[0]] · [[1]]) = flip
(

■
︸︷︷︸

[[0]]·[[1]]

)

=

↑

︸︷︷︸

1·0

= 1 · 0.

2.3 Operations

(1) Basic Operations on a Sequence

Let s = (d1, · · · , dk) be a sequence. We define the following

operations for s.

Transposition: For any 1 ≤ i < j ≤ k, a transposition

operation (i, j) for s returns the following sequence

(d1, · · · , di−1, d j, di+1, · · · , d j−1, di, d j+1, · · · , dk).

Since every permutation can be represented by trans-

positions, we can rearrange a sequence arbitrarily.

Rotation: For any 1 ≤ i ≤ k, a rotation operation of the

i-th stack for s returns the following sequence

(d1, · · · , di−1, rot(di), di+1, · · · , dk).

Flip: For any 1 ≤ i ≤ k, a flip operation of the i-th stack for

s returns the following sequence

(d1, · · · , di−1, flip(d), di+1, · · · , dk).

We call a flip operation open when the stack is a stack-

ing of face-down cards.

Composition/Decomposition: For any 1 ≤ i < j ≤ k,

a composition operation of the i-th stack and the j-th

stack for s returns the following sequence

(d1, · · · , di−1, di · d j, di+1, · · · , d j−1, d j+1, · · · , dk).

If the i-th stack is di = d · c, where d is a stack and c is

a card, a decomposition operation of the i-th stack for

s returns the following sequence

(d1, · · · , di−1, d, c, di+1, · · · , dk).

Composition/Decomposition with Flip: For any 1 ≤ i <

j ≤ k, a composition operation with flip of the i-th stack

and the j-th stack for s returns the following sequence

(d1, · · · , di−1, di ·flip(d j), di+1, · · · , d j−1, d j+1, · · · , dk).

We note that this operation can be done without reveal-

ing face(flip(d j)) by utilizing a non-transparent cover to

mask face(flip(d j)). If the i-th stack is di = c · d, where

c is a card and d is a stack, a decomposition operation

with flip of the i-th stack for s returns the following se-

quence

(d1, · · · , di−1, c, flip(d), di+1, · · · , dk).

Similarly, this can be done without revealing face(d).

Insert/Delete An insert operation for s returns the follow-

ing sequence

(d1, · · · , dk−1, dk, 0).

A delete operation for s returns the following sequence

(d1, · · · , dk−1).

(2) Cyclic Shuffle

A cyclic shuffle (which is denoted by ⟨·⟩)

⟨

■ ■ ■ ■

⟩1 2 3 4

results in one of the the following sequences

■ ■ ■ ■

1 2 3 4

, ■ ■ ■ ■

2 3 4 1

, ■ ■ ■ ■

3 4 1 2

, ■ ■ ■ ■

4 1 2 3

each occurring with probability 1/4. In general, a cyclic

shuffle takes a sequence (s1, s2, · · · , sk) such that top(si) =

⊥ℓi for some integer ℓi, and outputs one of the following

sequences






(s1, s2, s3, · · · , sk−1, sk)

(s2, s3, s4, · · · , , sk, s1)
...

(sk, s1, s2, · · · , sk−2, sk−1)

each occurring with probability 1/k.

We say that a cyclic shuffle is an equal shuffle if

top(s1) = top(s2) = · · · = top(sk). In this paper, we use

only equal shuffles and rotation shuffles defined later. Re-

cently, Nishimura et al. [13] showed that an unequal shuffle,

which is not an equal shuffle, can be securely implemented

by using a special type of boxes.

(3) Rotation Shuffle

For a stack d, a rotation shuffle (which is denoted by (·))

(

■
︸︷︷︸

d

)

results in one of the four stacks

SHINAGAWA et al.: CARD-BASED PROTOCOLS USING REGULAR POLYGON CARDS

1903

■
︸︷︷︸

rot0(d)

■
︸︷︷︸

rot1(d)

■
︸︷︷︸

rot2(d)

■
︸︷︷︸

rot3(d)

each occurring with probability 1/4. For example, for d =

[[a]] · [[b]], a rotation shuffle results in one of the followings.






[[a]] · [[b]]

[[a − 1]] · [[b − 1]]

[[a − 2]] · [[b − 2]]

[[a − 3]] · [[b − 3]]

On the other hand, for d = [[a]] · b, a rotation shuffle results

in one of the followings.






[[a]] · b

[[a − 1]] · (b + 1)

[[a − 2]] · (b + 2)

[[a − 3]] · (b + 3)

It plays an important role in designing our addition protocol

(Sect. 3.1).

2.4 Security

Let Π be a protocol. Let (Γ0,Γ1, · · · ,Γt) be a history of

sequences in a protocol run, i.e., Γ0 is an initial sequence

determined by inputs, Γi+1 arises from Γi by a physical op-

eration (e.g. shuffle, rearrangement, open†), and Γt is a fi-

nal sequence. Now we define a visible sequence trace by

(top(Γ0), top(Γ1), · · · , top(Γt)). We say that Π is secure if a

random variable of the visible sequence trace and a random

variable of inputs are independent.

Definition 1 (Security): Let Π be a protocol. Let V be a

random variable of the visible sequence of Π and let U be

the set of inputs ofΠ. We say thatΠ is secure if for any input

distribution X on U, X and V are independet.

Example 4: See the following (meaningless) protocol Πex.

1. Place the two cards according to a, b ∈ {0, 1, 2, 3}:

■
︸︷︷︸

[[a]]

■
︸︷︷︸

[[b]]

.

2. Apply a cyclic shuffle:

⟨

■
︸︷︷︸

[[a]]

■
︸︷︷︸

[[b]]

⟩

→ ■ ■ .

3. Open the left-side card:

︸︷︷︸

ϵ

■ .

4. Output the right-side card.

†We call by open an operation which turns over a back side
card.

The history of sequences in a protocol run, when the cyclic

shuffle exchanges the two cards, is the following.

(Γ0,Γ1,Γ2,Γ3) = (([[a]], [[b]]), ([[b]], [[a]]), (b, [[a]]), [[a]]).

The random variable of the visible sequence of Πex is

V = ((⊥,⊥), (⊥,⊥), (ϵ,⊥),⊥).

where ϵ is a random variable on {a, b}. The set of inputs U

of the above protocol is as below.

U =
{

(a, b) | 0 ≤ a, b ≤ 3
}

.

Πex is not secure since ϵ depends on the inputs (a, b).

3. Addition Protocol

In this section, we construct an addition, a subtraction and a

copy protocols, which use only a rotation shuffle. We also

construct a c-multiplication protocol for any c ∈ Zm, which

takes [[a]] and outputs [[ca]]. It uses (⌈log2 c⌉ + 1) shuffles

and (⌈log2 c⌉ + 2) cards.

3.1 Addition Protocol

Our addition protocol takes [[a]] and [[b]] as inputs, and

outputs [[a + b mod 4]]. One can see the demonstration

movie [15].

Protocol 1 (Addition Protocol):

• Input: ([[a]], [[b]]).

• Output: [[a + b mod 4]].

1. Apply a composition with flip:

■
︸︷︷︸

[[a]]

■
︸︷︷︸

[[b]]

→ ■
︸︷︷︸

[[a]]·b

.

2. Apply a rotation shuffle:

(

■
︸︷︷︸

[[a]]·b

)

→ ■
︸︷︷︸

[[a−r]]·(b+r)

,

where r is a random integer with 0 ≤ r ≤ 3.

3. Apply a decomposition with flip to the stack:

■
︸︷︷︸

[[a−r]]·(b+r)

→ ■
︸︷︷︸

[[a−r]]

■
︸︷︷︸

[[b+r]]

.

4. Open the left-side card [[a − r]]:

︸︷︷︸

a−r

■
︸︷︷︸

[[b+r]]

.

5. Rotate the second card −(a − r) times and output it:

rot−(a−r)
(

■
︸︷︷︸

[[b+r]]

)

= ■
︸︷︷︸

[[a+b]]

.

1904
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.9 SEPTEMBER 2017

Theorem 1: The above protocol is secure. It uses one shuf-

fle and two cards.

Proof. We prove the security of the above protocol, which

uses one shuffle and two cards. Let A (or B) be a random

variable of the first input (second input, respectively). Let

X = (A, B) be a random variable of the inputs. Let R be

a random variable of the randomness used in the rotation

shuffle. The random variable of the visible sequence V is

V = ((⊥,⊥), (⊥2), (⊥2), (⊥,⊥), (E,⊥), (⊥))

where E = A − R mod 4. E and A are independent since

Pr[E = ϵ | A = a] = 1/4 and Pr[E = ϵ] = 1/4 for any

a, ϵ ∈ {0, 1, 2, 3}. Therefore, V and X are independent since

E and X are also independent and V is just derived from E.

Thus, the above protocol is secure. □

Corollary 1: There is a secure protocol that takes as inputs

[[a]] and ([[b1]], · · · , [[bk]]), and outputs ([[a + b1]], · · · , [[a +

bk]]) with one shuffle and k + 1 cards. Especially, there is

a secure protocol that takes as inputs [[a]], and outputs k

copies of [[a]] with one shuffle and k+ 1 cards for any k ∈ N.

Proof. By replacing the stack [[a]] ·b with a stack [[a]] ·b1 ·b2 ·

· · · · bk, we have a multiple addition protocol. This protocol

uses one shuffle and k + 1 cards, and its security is proven

in the same way as above. Applying the multiple addition

protocol to the inputs b1 = b2 = · · · = bk = 0, we have a

copy protocol that outputs k copies of [[a]]. □

Subtraction is also possible using the same idea of the

addition protocol. The differences are: use a stack [[a]] · [[b]]

instead of [[a]] · b and rotate with inverse direction in the last

step. We omit the security proof since it is almost identical

to the proof for the addition protocol.

Corollary 2: There is a secure protocol that takes as inputs

[[a]] and [[b]], and outputs [[b − a]] with one shuffle and two

cards.

3.2 Multiplication Protocol

In this section, we construct a c-multiplication protocol for

any public value c ∈ Zm, that takes [[a]] and outputs [[ca]].

Trivially, such a computation can be done by using our ad-

dition protocol c times. On the other hand, it is well known

that the number of additions can be reduced to O(log2 c) (bi-

nary method). In this section, we design a multiplication

protocol in a careful way and show that (⌈log2 c⌉ + 1) shuf-

fles are sufficient to compute the multiplication [[ca]] from

[[a]].

Protocol 2 (c-Multiplication Protocol):

• Input: [[a]].

• Output: [[ca]].

Let ℓ = ⌈log2 c⌉ and c − 1 =
∑ℓ−1

j=0 2 j · b j where b j ∈ {0, 1}.

1. Invoke our (ℓ + 1)-copy protocol to [[a]]:

■
︸︷︷︸

[[a]]

→

ℓ+1
︷ ︸︸ ︷

■
︸︷︷︸

[[a]]

■
︸︷︷︸

[[a]]

· · · ■
︸︷︷︸

[[a]]

.

2. Let W ← ([[a]], · · · , [[a]]
︸ ︷︷ ︸

ℓ+1

). For i = 0, 1, · · · , ℓ−1, repeat

the following.

a. Let W = (

ℓ−i
︷ ︸︸ ︷

[[w]], · · · , [[w]], [[z]]). (Note that w = 2ia

and z = (
∑i−1

j=0 2 jb j + 1)a.)

b. If bi = 0, apply a multiple addition protocol to W

except for [[z]]:

ℓ−i
︷ ︸︸ ︷

■
︸︷︷︸

[[w]]

■
︸︷︷︸

[[w]]

· · · ■
︸︷︷︸

[[w]]

■
︸︷︷︸

[[z]]

→

ℓ−i−1
︷ ︸︸ ︷

■
︸︷︷︸

[[2w]]

· · · ■
︸︷︷︸

[[2w]]

■
︸︷︷︸

[[z]]

c. If bi = 1, apply a multiple addition protocol to W:

ℓ−i
︷ ︸︸ ︷

■
︸︷︷︸

[[w]]

■
︸︷︷︸

[[w]]

· · · ■
︸︷︷︸

[[w]]

■
︸︷︷︸

[[z]]

→

ℓ−i−1
︷ ︸︸ ︷

■
︸︷︷︸

[[2w]]

· · · ■
︸︷︷︸

[[2w]]

■
︸︷︷︸

[[z+w]]

d. Update W to the current sequence. Note that the

length of W has now decreased by one.

3. W is now just the rightmost card [[z]], where z =

(
∑ℓ−1

j=0 2 jb j + 1)a = ca. Output the card [[z]].

Theorem 2: The above protocol is secure. It uses ⌈log2 c⌉+

1 shuffles and ⌈log2 c⌉ + 2 cards.

Proof. Let ℓ = ⌈log2 c⌉. Let A be a random variable of

the input, and let V be a random variable of the visible se-

quence. Let E be a random variable of the opened value in

copy protocol invoked in Step 1, and let Ei (i ∈ {1, · · · , ℓ})

be a random variable of the opened value in addition proto-

col invoked in the (i−1)-th iteration of Step 2. As mentioned

in the proof of Theorem 1, A and Ei are independent. More-

over, A and (E0, E1, · · · , Eℓ) are also independent since each

Ei is derived from each shuffle. Thus, A and V are indepen-

dent since V essentially consists of E0, E1, · · · , Eℓ. There-

fore, it is secure. □

Example 5: Let c = 6. Here, ℓ = ⌈log2 c⌉ = 3 and 5 =
∑2

i=0 2ibi = 20 · 1 + 21 · 0 + 22 · 1. The execution process of

c-multiplication protocol is as follows.

1. [[a]]
Copy 4
−−−−−→ ([[a]], [[a]], [[a]], [[a]]).

2. ([[a]], [[a]], [[a]], [[a]])
Add
−−−→ ([[2a]], [[2a]], [[2a]]).

3. ([[2a]], [[2a]], [[2a]])
Add
−−−→ ([[4a]], [[2a]]).

4. ([[4a]], [[2a]])
Add
−−−→ [[6a]].

4. Oblivious Conversion

In this section, we introduce a new protocol, oblivious con-

version, that enables secure computation for general func-

tions with a small number of shuffles.

SHINAGAWA et al.: CARD-BASED PROTOCOLS USING REGULAR POLYGON CARDS

1905

4.1 Oblivious Conversion

The oblivious conversion protocol takes as input a value

[[a]], a ∈ Zm, and an encoding of a function f using a se-

quence of stacks (f1, · · · , fm−1) where top(fi) = ⊥
k for some

integer k. Each stack fi is regarded as an encoding of f (i).

The output of the protocol will be fa, which corresponds to

an encoding of f (a). For simplicity, we will set m = 4 in

the following description. One can see the demonstration

movie [14].

Protocol 3 (Oblivious Conversion):

• Input: [[a]] and (f0, f1, f2, f3).

• Output: fa.

1. Using a copy protocol and rotation operations, generate

A = ([[a]], [[a − 1]], [[a − 2]], [[a − 3]]) from [[a]]. Let W

be the following sequence:

W = ■
︸︷︷︸

[[a]]· f0

■
︸︷︷︸

[[a−1]]· f1

■
︸︷︷︸

[[a−2]]· f2

■
︸︷︷︸

[[a−3]]· f3

.

2. Apply a cyclic shuffle to W and obtain the following

sequence:

■
︸︷︷︸

[[a−r]]· fr

■
︸︷︷︸

[[a−(r+1)]]· fr+1

■
︸︷︷︸

[[a−(r+2)]]· fr+2

■
︸︷︷︸

[[a−(r+3)]]· fr+3

where r is the randomness used in the shuffle.

3. Decompose the stack as shown below:

[[a−r]]
︷︸︸︷

■

[[a−(r+1)]]
︷︸︸︷

■

[[a−(r+2)]]
︷︸︸︷

■

[[a−(r+3)]]
︷︸︸︷

■

■
︸︷︷︸

fr

■
︸︷︷︸

fr+1

■
︸︷︷︸

fr+2

■
︸︷︷︸

fr+3

4. Open the cards in the top line:

a−r
︷︸︸︷

a−(r+1)
︷︸︸︷

a−(r+2)
︷︸︸︷

a−(r+3)
︷︸︸︷

■
︸︷︷︸

fr

■
︸︷︷︸

fr+1

■
︸︷︷︸

fr+2

■
︸︷︷︸

fr+3

5. Output the stack under the card 0.

Theorem 3: The above oblivious conversion protocol us-

ing m-sided polygon cards is secure. (It takes as inputs [[a]]

and f0, f1, · · · , fm−1, and outputs fa.) It uses two shuffles and

m(k+1)+1 cards, where k is the number of cards contained

in the stack fi.

Proof. Let A be a random variable of the input, and let V

be a random variable of the visible sequence. Let E be a

random variable of the opened value in the copy protocol

of Step 1. Let R be a random variable of the randomness

used in the cyclic shuffle used in Step 2. Let E′ = A −

R mod 4. As mentioned in the proof of Theorem 1, A and E

are independent. Similarly, A and E′ are independent. (The

only difference is that the latter uses a cyclic shuffle but it

does not affect this claim.) Moreover, A and (E, E′) are also

independent since E and E′ are derived from independent

and different shuffles. Thus, A and V are independent since

V essentially consists of E, E′. Therefore, it is secure. □

4.2 General Protocol

Using our oblivious conversion, Alice and Bob can securely

compute an arbitrary function f (x1, x2) whose input-domain

and output-range are Zm.

Protocol 4 (Two-Party Protocol):

• Input: Alice has a ∈ Z4 and Bob has b ∈ Z4.

• Output: [[f (a, b)]].

1. Alice and Bob generate [[a]] and [[b]], respectively.

2. Alice and Bob place the following sequences

F0, F1, F2, F3:

F0 = ■
︸︷︷︸

[[f (0,0)]]

■
︸︷︷︸

[[f (0,1)]]

■
︸︷︷︸

[[f (0,2)]]

■
︸︷︷︸

[[f (0,3)]]

F1 = ■
︸︷︷︸

[[f (1,0)]]

■
︸︷︷︸

[[f (1,1)]]

■
︸︷︷︸

[[f (1,2)]]

■
︸︷︷︸

[[f (1,3)]]

F2 = ■
︸︷︷︸

[[f (2,0)]]

■
︸︷︷︸

[[f (2,1)]]

■
︸︷︷︸

[[f (2,2)]]

■
︸︷︷︸

[[f (2,3)]]

F3 = ■
︸︷︷︸

[[f (3,0)]]

■
︸︷︷︸

[[f (3,1)]]

■
︸︷︷︸

[[f (3,2)]]

■
︸︷︷︸

[[f (3,3)]]

.

3. Let F′
i

be a stack that is stacking of Fi. Using an obliv-

ious conversion with inputs [[a]] and (F′
0
, F′

1
, F′

2
, F′

3
),

they compute F′a.

4. Let Fa be a sequence that is decomposing of F′a. Using

an oblivious conversion with inputs [[b]] and Fa, they

compute [[f (a, b)]]. This is the output of this protocol.

Theorem 4: Let f : (Zm)n → Zm be an arbitrary n-ary

function. There is a secure protocol that takes as inputs

([[a1]], · · · , [[an]]) and [[f (x1, · · · , xn)]] for all x1, · · · , xn ∈

Zm, and outputs [[f (a1, · · · , an)]]. It uses 2n shuffles and

m + n + mn cards.

Proof. Extending the above protocol in a canonical way, it

is possible to construct an n-party protocol. We first show

that the protocol uses m + n + mn cards. The number of

input cards is n + mn. To copy [[a1]], we needs m addi-

tional cards. On the other hand, we does not need additional

cards to copy [[a2]], · · · , [[an]] since the opened cards can be

reused. Thus, the number of cards is m + n + mn. Next

we show the security of the protocol. Let A be a random

variable of the input, and let V be a random variable of the

visible sequence. For the i-th (i = 1, 2, · · · , n) oblivious con-

version, let E2i−1 be a random variable of the opened value

in the copy protocol, and let E2i be a random variable of the

opened value in the last step. As mentioned in the proof of

Theorem 3, A and (E2i−1, E2i) are independent. Since each

1906
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.9 SEPTEMBER 2017

random variable is independently derived from each shuffle,

A and (E1, E2, · · · , E2n) are also independent. Thus, A and

V are independent. Therefore, it is secure. □

4.3 Oblivious Conversion Using the Standard Cards

The oblivious conversion can also be applied to the standard

cards (♣ , ♡). We use the following standard encoding

♣ ♡ = 0 and ♡ ♣ = 1, and denote the face down en-

coding of a by Com(a). We also use a random bisection cut

(which is denoted by [·||·]) as below:

[

? ?

∥
∥
∥
∥ ? ?

]1 2 3 4

→ ? ? ? ?

1 2 3 4

or ? ? ? ?

3 4 1 2

.

We note that it is derived from the cyclic shuffle by making

stacks 1 · 2 and 3 · 4.

Protocol 5 (Oblivious Conversion Using Standard Cards):

• Input: Com(a) and two cards (or stacks) f (0) and f (1).

• Output: The card (or stack) f (a).

1. Place the cards as below.

? ?
︸ ︷︷ ︸

Com(a)

?
︸︷︷︸

f (0)

?
︸︷︷︸

f (1)

2. Rearrange the cards as below.

? ? ? ?

❅❅❘��✠
? ? ? ? .

3. Apply a random bisection cut.

[

? ?

∥
∥
∥
∥ ? ?

]

→ ? ? ? ?

4. Rearrange the cards as below.

? ? ? ?

❅❅❘��✠
? ? ? ? .

5. Open the first and second cards, then the output card

f (a) is obtained as follows.

♣ ♡ ?
︸︷︷︸

f (a)

? or ♡ ♣ ? ?
︸︷︷︸

f (a)

Theorem 5: The above oblivious conversion is secure. It

uses one shuffle and 2k + 2 cards, where k is the number of

cards contained in f (0).

Proof. The opened value is independent of the inputs since

the randomness used in the shuffle is chosen uniformly at

random and independent of the inputs. Thus, it is secure. □

5. Voting Protocol for Multiple Candidates

In this section, we construct a voting protocol. Assume that

there are n voters A1, · · · , An and ℓ candidates C1, · · · ,Cℓ.

Each voter Ai has an input ai ∈ {1, · · · , ℓ}. They wish to

securely compute ci =
∑n

j=1 χi(a j), where χi(x) = 1 if x = i,

otherwise χi(x) = 0.

We will explicitly describe a voting protocol with two

voters A, B and three candidates. The protocol takes as in-

puts A’s input a ∈ {1, 2, 3} and B’s input b ∈ {1, 2, 3}, and

outputs ([[χ1(a) + χ1(b)]], [[χ2(a) + χ2(b)]], [[χ3(a) + χ3(b)]]).

In the following, we will consider a simplified voting

protocol which illustrates the idea behind and the correct-

ness of the full protocol (Protocol 6). However, the sim-

plified protocol does not hide which candidate each of the

voters A and B vote for, and is hence not secure.

1. Place the cards as below:

■
︸︷︷︸

[[χ1(a)]]

■
︸︷︷︸

[[χ2(a)]]

■
︸︷︷︸

[[χ3(a)]]

■
︸︷︷︸

[[χ1(b)]]

■
︸︷︷︸

[[χ2(b)]]

■
︸︷︷︸

[[χ3(b)]]

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

2. Open the first row. Then, add one to the bottom-most

card whose top card was [[1]]. For example, if the open-

ing of the top row is as shown, then add one to the

bottom-most card of the leftmost column:

↑ ↑ ↑

■ ■ ■

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

→

↑ ↑ ↑

■ ■ ■

■
︸︷︷︸

[[1]]

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

3. Open the second row. Then, add one to the bottom-

most card whose top card was [[1]]. For example, if the

opening of the top row is as shown, then add one to the

bottom-most card of the center column:

↑ ↑ ↑

↑ ↑ ↑

■
︸︷︷︸

[[1]]

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

→

↑ ↑ ↑

↑ ↑ ↑

■
︸︷︷︸

[[1]]

■
︸︷︷︸

[[1]]

■
︸︷︷︸

[[0]]

4. Output the bottom row.

From the above description, it should be clear the sim-

plified protocol correctly computes the voting result. How-

ever, as highlighted above, the protocol reveal which candi-

date each voter voted for.

In order to obtain the security, we use a cyclic shuffle.

More concretely, we apply a cyclic shuffle to the sequence

(d1, d2, d3), where di is a stacking of the i-th column, and

open the top row. Now the input is completely hidden due

to the randomness of the cyclic shuffle. To keep track of the

order of candidates when applying the cyclic shuffles, we

SHINAGAWA et al.: CARD-BASED PROTOCOLS USING REGULAR POLYGON CARDS

1907

append a sequence ([[1]], [[0]], [[0]]) which will be opened at

the end of the protocol. The protocol proceeds as follows.

Protocol 6 (Voting Protocol):

• Input: a, b ∈ {1, 2, 3}.

• Output: ([[y1]], [[y2]], [[y3]]) where yi = χi(a) + χi(b).

1. Place the cards as below:

■
︸︷︷︸

[[χ1(a)]]

■
︸︷︷︸

[[χ2(a)]]

■
︸︷︷︸

[[χ3(a)]]

■
︸︷︷︸

[[χ1(b)]]

■
︸︷︷︸

[[χ2(b)]]

■
︸︷︷︸

[[χ3(b)]]

■
︸︷︷︸

[[1]]

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

We use terms a column and a row in the usual sense. In

this case, we have three columns and four rows.

2. Make three stacks c1 = [[χ1(a)]] · [[χ1(b)]] · [[1]] · [[0]],

c2 = [[χ2(a)]] · [[χ2(b)]] · [[0]] · [[0]] and c3 = [[χ3(a)]] ·

[[χ3(b)]] · [[0]] · [[0]]. Apply a cyclic shuffle:
⟨

■
︸︷︷︸

c1

■
︸︷︷︸

c2

■
︸︷︷︸

c3

⟩

→ ■ ■ ■ .

3. Open the top row and remove the top row. Then, add

one to the bottom-most card whose top card was [[1]].

For example, if the opening of the top row is as shown,

then add one to the bottom-most card of the rightmost

column:

↑ ↑ ↑

■ ■ ■

■ ■ ■

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

→

■ ■ ■

■ ■ ■

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[0]]

■
︸︷︷︸

[[1]]

4. Let c′
1
, c′

2
and c′

3
be the current columns. Apply a cyclic

shuffle to (c′
1
, c′

2
, c′

3
):

⟨

■
︸︷︷︸

c′
1

■
︸︷︷︸

c′
2

■
︸︷︷︸

c′
3

⟩

→ ■ ■ ■ .

5. Open the top row and remove the top row. Then, add

one to the bottom-most card whose top card was [[1]].

For example, if the opening of the top row is as shown,

then add one to the bottom-most card of the center col-

umn:

↑ ↑ ↑

■ ■ ■

■
︸︷︷︸

[[x]]

■
︸︷︷︸

[[x′]]

■
︸︷︷︸

[[x′′]]

→
■ ■ ■

■
︸︷︷︸

[[x+1]]

■
︸︷︷︸

[[x′]]

■
︸︷︷︸

[[x′′]]

6. Let c′′
1
, c′′

2
and c′′

3
be the current columns. Apply a

cyclic shuffle to (c′′
1
, c′′

2
, c′′

3
):

⟨

■
︸︷︷︸

c′′
1

■
︸︷︷︸

c′′
2

■
︸︷︷︸

c′′
3

⟩

→ ■ ■ ■ .

7. Open the top row. Rearrange the current sequence

cyclically such that the column which has one in the

top is the leftmost column. For example, if the opening

of the top row is as shown, then rearrange as below:

↑ ↑ ↑

■
︸︷︷︸

[[y]]

■
︸︷︷︸

[[y′]]

■
︸︷︷︸

[[y′′]]

→

↑ ↑ ↑

■
︸︷︷︸

[[y′]]

■
︸︷︷︸

[[y′′]]

■
︸︷︷︸

[[y]]

8. Output the bottom row. The leftmost, center and right-

most cards correspond to the result values for the first,

second and third candidates.

It is relatively straightforward to confirm that the

changes done to the simplified protocol to obtain Protocol

6 will not change the output i.e. Protocol 6 will correctly

compute the voting result. The following theorem will es-

tablish the security of Protocol 6.

Theorem 6: Let n, ℓ ≥ 1. For n voters and ℓ candidates,

the above voting protocol is secure. It uses n+1 shuffles and

(n + 2)ℓ cards.

Proof. The opened values (in the above case, step 3, 5,

and 7) are independent of the inputs since the randomnesses

used in the shuffles are chosen uniformly at random and in-

dependent of the inputs. Thus, it is secure. □

Acknowledgment

The authors would like to thank members of the study

group “Shin-Akarui-Angou-Benkyou-Kai” for the valuable

discussions and helpful comments. We also thank the edi-

tor and the anonymous reviewers, whose comments helped

us to improve the presentation of this paper. This work

was partially supported by JSPS KAKENHI Grant Numbers

26330001 and 26330151.

References

[1] C. Crépeau and J. Kilian, “Discreet solitary games,” Advances in

Cryptology - CRYPTO’93, vol.773 of Lecture Notes in Computer

Science, pp.319–330, Springer, 1994.

[2] B. den Boer, “More efficient match-making and satisfiability:

The five card trick,” Advances in Cryptology - EUROCRYPT’89,

vol.434 of Lecture Notes in Computer Science, pp.208–217,

Springer, 1990.

[3] A. Koch, S. Walzer, and K. Härtel, “Card-based cryptographic pro-

tocols using a minimal number of cards,” Advances in Cryptology

- ASIACRYPT 2015, vol.9452 of Lecture Notes in Computer Sci-

ence, pp.783–807, Springer, 2015.

[4] T. Mizuki, I.K. Asiedu, and H. Sone, “Voting with a logarithmic

number of cards,” Unconventional Computation and Natural Com-

putation 2013, vol.7956 of Lecture Notes in Computer Science,

http://dx.doi.org/10.1007/3-540-48329-2_27
http://dx.doi.org/10.1007/3-540-48329-2_27
http://dx.doi.org/10.1007/3-540-48329-2_27
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/978-3-662-48797-6_32
http://dx.doi.org/10.1007/978-3-662-48797-6_32
http://dx.doi.org/10.1007/978-3-662-48797-6_32
http://dx.doi.org/10.1007/978-3-662-48797-6_32
http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1007/978-3-642-39074-6_16

1908
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.9 SEPTEMBER 2017

pp.162–173, Springer, 2013.

[5] T. Mizuki, U. Fumishige, and H. Sone, “Securely computing XOR

with 10 cards,” Australasian Journal of Combinatorics, 2006.

[6] T. Mizuki, M. Kumamoto, and H. Sone, “The five-card trick

can be done with four cards,” Advances in Cryptology - ASI-

ACRYPT, vol.7658 of Lecture Notes in Computer Science, pp.598–

606, Springer, 2012.

[7] T. Mizuki and H. Shizuya, “A formalization of card-based crypto-

graphic protocols via abstract machine,” Int. J. Inf. Sec., vol.13, no.1,

pp.15–23, 2014.

[8] T. Mizuki and H. Shizuya, “Practical card-based cryptography,”

FUN 2014 Seventh International Conference on FUN WITH AL-

GORITHMS, vol.8496 of Lecture Notes in Computer Science,

pp.313–324, Springer, 2014.

[9] T. Mizuki and H. Sone, “Six-card secure AND and four-card se-

cure XOR,” Third International Workshop on Frontiers in Algorith-

mics, vol.5598 of Lecture Notes in Computer Science, pp.358–369,

Springer, 2009.

[10] V. Niemi and A. Renvall, “Secure multiparty computations with-

out computers,” Theor. Comput. Sci., vol.191, no.1-2, pp.173–183,

1998.

[11] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone, “Card-based proto-

cols for any Boolean function,” Theory and Applications of Models

of Computation, TAMC 2015, vol.9076 of Lecture Notes in Com-

puter Science, pp.110–121, Springer, 2015.

[12] T. Nishida, T. Mizuki, and H. Sone, “Securely computing the three-

input majority function with eight cards,” 2nd International Con-

ference on the Theory and Practice of Natural Computing, TPNC

2013, vol.8273 of Lecture Notes in Computer Science, pp.193–204,

Springer, 2013.

[13] A. Nishimura, Y. Hayashi, T. Mizuki, and H. Sone, “An implemen-

tation of non-uniform shuffle for secure multi-party computation,”

Proc. 3rd ACM International Workshop on ASIA Public-Key Cryp-

tography, AsiaPKC@AsiaCCS, pp.49–55, 2016.

[14] K. Shinagawa, “Oblivious conversion using 4-sided cards,”

YouTube, 2015. https://youtu.be/hlAetm66iRU

[15] K. Shinagawa, “Secure addition protocol using 4-sided cards,”

YouTube, 2015. https://youtu.be/9Tid6X-9r-c

[16] K. Shinagawa, T. Mizuki, J. Schuldt, K. Nuida, N. Kanayama,

T. Nishide, G. Hanaoka, and E. Okamoto, “Multi-party computation

with small shuffle complexity using regular polygon cards,” The 9th

International Conference on Provable Security, ProvSec, pp.127–

146, 2015.

[17] K. Shinagawa, T. Mizuki, J. Schuldt, K. Nuida, N. Kanayama,

T. Nishide, G. Hanaoka, and E. Okamoto, “Secure multi-party com-

putation using polarizing cards,” The 10th International Workshop

on Security, IWSEC, pp.281–297, 2015.

[18] A. Stiglic, “Computations with a deck of cards,” Theor. Comput.

Sci., vol.259, no.1-2, pp.671–678, 2001.

Kazumasa Shinagawa received his B.E.

degree from University of Tsukuba in 2015.

He is a master course student of University of

Tsukuba. He received SCIS Best Paper Award

from IEICE in 2015 and CSS Best Student Pa-

per Award from IPSJ in 2015.

Takaaki Mizuki received his B.E. degree in

information engineering and his M.S. and Ph.D.

degrees in information sciences from Tohoku

University, Japan, in 1995, 1997 and 2000, re-

spectively. He is currently an associate profes-

sor of the Cyberscience Center, Tohoku Univer-

sity. His research interests include cryptology

and information security. He is a member of

IEICE, IEEE, and IPSJ.

Jacob C.N. Schuldt obtained a B.Sc. de-

gree and a M.Sc. degree (cand.scient) from The

University of Copenhagen, and a Ph.D. degree

from The University of Tokyo. He is cur-

rently a research scientist in the Advanced Cryp-

tosystems Research Group, National Institute

of Advanced Industrial Science and Technol-

ogy (AIST), Japan. Before joining AIST, he

held postdoctoral research positions at AIST and

Royal Holloway, University of London.

Koji Nuida received the Ph.D. degree in

Mathematical Science from The University of

Tokyo, Japan, in 2006. From 2006, he had

been working as a postdoctoral researcher, a re-

searcher and currently a senior researcher at Na-

tional Institute of Advanced Industrial Science

and Technology (AIST), Japan. He is currently

also receiving support as a Japan Science and

Technology Agency (JST) PRESTO Researcher.

His research interest is mainly in mathematics

and mathematical cryptography.

Naoki Kanayama received his B.E., B.S.,

M.S. and D.S. degrees from Waseda University,

Tokyo, Japan, in 1994, 1996, 1998 and 2003,

respectively. In 2003–2006, he was a post-

doctoral fellow of the Japan Society for the Pro-

motion of Science. In 2006–2013, he was a re-

search fellow at University of Tsukuba. He is

an assistant professor at University of Tsukuba.

Dr. Kanayama is a member of the Japan Society

for Industrial and Applied Mathematics and of

the Information Processing Society of Japan.

Takashi Nishide received B.S. degree from

the University of Tokyo in 1997, M.S. degree

from the University of Southern California in

2003, and Dr.E. degree from the University of

Electro-Communications in 2008. From 1997

to 2009, he had worked at Hitachi Software En-

gineering Co., Ltd. developing security prod-

ucts. From 2009 to 2013, he had been an as-

sistant professor at Kyushu University and from

2013 he is an associate professor at University

of Tsukuba. His research is in the areas of cryp-

tography and information security.

http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1016/s0304-3975(97)00107-2
http://dx.doi.org/10.1016/s0304-3975(97)00107-2
http://dx.doi.org/10.1016/s0304-3975(97)00107-2
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-642-45008-2_16
http://dx.doi.org/10.1007/978-3-642-45008-2_16
http://dx.doi.org/10.1007/978-3-642-45008-2_16
http://dx.doi.org/10.1007/978-3-642-45008-2_16
http://dx.doi.org/10.1007/978-3-642-45008-2_16
http://dx.doi.org/10.1145/2898420.2898425
http://dx.doi.org/10.1145/2898420.2898425
http://dx.doi.org/10.1145/2898420.2898425
http://dx.doi.org/10.1145/2898420.2898425
https://youtu.be/hlAetm66iRU
https://youtu.be/hlAetm66iRU
https://youtu.be/9Tid6X-9r-c
https://youtu.be/9Tid6X-9r-c
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1016/s0304-3975(00)00409-6
http://dx.doi.org/10.1016/s0304-3975(00)00409-6

SHINAGAWA et al.: CARD-BASED PROTOCOLS USING REGULAR POLYGON CARDS

1909

Goichiro Hanaoka graduated from the De-

partment of Engineering, The University of To-

kyo in 1997. Received Ph.D. degree from The

University of Tokyo in 2002. Joined AIST in

2005. Currently, Leader, Advanced Cryptosys-

tems Research Group, Information Technology

Research Institute, AIST. Engages in the R&Ds

for encryption and information security tech-

nologies including the efficient design and secu-

rity evaluation of public key cryptosystem. Re-

ceived the Wilkes Award (2007), British Com-

puter Society; Best Paper Award (2008), The Institute of Electronics, In-

formation and Communication Engineers; Innovative Paper Award (2012,

2014), Symposium on Cryptography and Information Security (SCIS);

Award of Telecommunication Advancement Foundation (2005); 20th An-

niversary Award (2005), SCIS; Best Paper Award (2006), SCIS; Encour-

agement Award (2000), Symposium on Information Theory and its Appli-

cations (SITA); and others.

Eiji Okamoto received his B.S., M.S. and

Ph.D. degrees in electronics engineering from

the Tokyo Institute of Technology in 1973, 1975

and 1978, respectively. He worked and stud-

ied communication theory and cryptography for

NEC central research laboratories since 1978. In

1991 he became a professor at Japan Advanced

Institute of Science and Technology, then at

Toho University. Now he is a professor at Fac-

ulty of Engineering, Information and Systems,

University of Tsukuba. His research interests

are cryptography and information security. He is members of IEEE and

ACM.

