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Arrhythmia/Electrophysiology

Cardiac Arrhythmogenic Remodeling in a Rat Model of
Long-Term Intensive Exercise Training

Begoña Benito, MD*; Gemma Gay-Jordi, PhD*; Anna Serrano-Mollar, PhD; Eduard Guasch, MD;
Yanfen Shi, MD; Jean-Claude Tardif, MD; Josep Brugada, MD, PhD;

Stanley Nattel, MD†; Lluis Mont, MD, PhD†

Background—Recent clinical studies suggest that endurance sports may promote cardiac arrhythmias. The aim of this

study was to use an animal model to evaluate whether sustained intensive exercise training induces potentially adverse

myocardial remodeling and thus creates a potential substrate for arrhythmias.

Methods and Results—Male Wistar rats were conditioned to run vigorously for 4, 8, and 16 weeks; time-matched

sedentary rats served as controls. Serial echocardiograms and in vivo electrophysiological studies at 16 weeks were

obtained in both groups. After euthanasia, ventricular collagen deposition was quantified by histological and

biochemical studies, and messenger RNA and protein expression of transforming growth factor-�1, fibronectin-1,

matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1, procollagen-I, and procollagen-III was evaluated in

all 4 cardiac chambers. At 16 weeks, exercise rats developed eccentric hypertrophy and diastolic dysfunction, together

with atrial dilation. In addition, collagen deposition in the right ventricle and messenger RNA and protein expression

of fibrosis markers in both atria and right ventricle were significantly greater in exercise than in sedentary rats at 16

weeks. Ventricular tachycardia could be induced in 5 of 12 exercise rats (42%) and only 1 of 16 sedentary rats (6%;

P�0.05). The fibrotic changes caused by 16 weeks of intensive exercise were reversed after an 8-week exercise

cessation.

Conclusions—In this animal model, we documented cardiac fibrosis after long-term intensive exercise training, together

with changes in ventricular function and increased arrhythmia inducibility. If our findings are confirmed in humans, the

results would support the notion that long-term vigorous endurance exercise training may in some cases promote adverse

remodeling and produce a substrate for cardiac arrhythmias. (Circulation. 2011;123:13-22.)

Key Words: arrhythmia � exercise � fibrosis

Regular physical activity confers benefits that are widely

recognized such as improved cardiovascular risk profiles

and prevention of coronary heart disease and diabetes melli-

tus.1,2 Regular exercise also directly and positively affects

cardiac physiology (eg, increased myocardial oxygen supply

and enhanced myocardial contractility), both in the general

population3 and in patients with cardiovascular disease.4

Editorial see p 5
Clinical Perspective on p 22

Long-term exercise induces hemodynamic changes and

alters the loading conditions of the heart, with specific effects

depending on the type of sport and intensity, that are most

evident among athletes.5 Cardiac adaptations in highly trained

subjects include increased left ventricular (LV) and right

ventricular (RV) diameters, enlarged left atrial (LA) dimen-

sions, and increased cardiac mass and LV wall thickness.5,6

These changes, together with a preserved ejection fraction,

have classically characterized the physiology of the “athlete’s

heart.”5

Despite the evident benefits of an active lifestyle,1–4

numerous observational studies have raised concerns that

high-level exercise training may be associated with increased

cardiac arrhythmia risk and even primary cardiac arrest.7

Initial observations from our group and others,8–13 later

confirmed by a large epidemiological study,14 have shown

that long-term endurance training may promote atrial fibril-

lation. Complex ventricular tachyarrhythmias can also occur

in highly trained individuals15; according to recent studies16,17

they often originate from a mildly dysfunctional RV, even
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after excluding RV pathologies like arrhythmogenic RV

cardiomyopathy.

These findings raise the possibility that long-term endur-

ance exercise may promote the development of certain

cardiac arrhythmias. Some authors have speculated that the

cardiac remodeling after sustained physical activity may

create an arrhythmogenic substrate.8,17 Although information

on athletes is insufficient, arrhythmia susceptibility has been

extensively related to myocardial fibrosis in other clinical

contexts.18 Tissue fibrosis appears as a reparative process for

damaged myocardial parenchyma and results in accumulation

of fibrillary collagen deposits, which may favor reentry and

consequently arrhythmogenicity.18

The present study was designed to develop a rat model of

long-term, intensive endurance exercise to test whether reg-

ular intense physical training can induce cardiac structural

changes, particularly fibrosis, thereby generating a substrate

for cardiac arrhythmias.

Methods

Experimental Design
This study conformed to European Community (Directive 86/609/

EEC), Spanish, and Canadian guidelines for the use of experimental

animals and was approved by the institutional animal research ethics

committees. Pathogen-free, 4-week-old male Wistar rats weighing

100 to 125 g (Charles River Laboratories, France) were housed in a

controlled environment (12/12-hour light/dark cycle) and fed rodent

chow and tap water ad libitum.

Animals were randomly assigned to sedentary (Sed) or intensive

exercise (Ex) groups. To assess time-course changes, animals in both

groups were studied at 4, 8, and 16 weeks. The exercise program was

based on a previously validated protocol.19 Ex rats underwent daily

running training sessions on a treadmill. The treadmill had different

lanes to serve as corridors for each animal and had a grid in the back

that administered a small electric shock on contact to ensure that

animals ran effectively. The electric shock was of constant intensity

(0.3 to 2 mA), sufficient to encourage the animal to run without

being harmful. The protocol included a 2-week progressive training

program, starting with a 10-minute running session at 10 cm/s and

increasing gradually to steady-state 60-minute running at 60 cm/s.

Thereafter, animals were trained at this level 5 days a week for 4, 8,

or 16 weeks. Investigators observed the treadmill sessions daily to

ensure effective running. Only rats that mastered the running training

and ran spontaneously with a maximum cumulative shock time of 15

seconds per 1-hour training session were included in the study.
Sedentary rats were housed and fed in the same conditions.

An additional series of rats underwent 16 weeks of training
followed by discontinuation of exercise (DEx) to assess the revers-
ibility of exercise-induced changes. DEx rats were assessed after 2,
4, or 8 weeks of exercise cessation. Sedentary rats housed and fed in
the same conditions over the same period served as DEx controls.

Animals were euthanized 3 days after the end of the training
program to avoid immediate responses or after 2, 4, or 8 weeks from
the last running session in the DEx groups. Hearts were quickly
removed; weighed; dissected into LV, RV, LA, and right atrium
(RA); and frozen in liquid nitrogen at �80°C or fixed for histolog-
ical studies. For details on the echocardiography, electrophysiolog-
ical study, tissue imaging, and biochemical studies, see the online-
only Data Supplement.

Statistical Analysis
Data are expressed as mean�SEM. Statistical analysis was generally
carried out with 2-way ANOVA with general linear model proce-
dures using a univariate approach. Compound symmetry covariance
structure was used for repeated measures analysis. The sphericity
test, the Mauchly criterion, was used to test for departures from the
assumption of compound symmetry and was consistent with the
sphericity assumption in all instances. For heart weight and hy-
droxyproline experiments, exercise and time point were the main
effects. Morphometric, real-time polymerase chain reaction and
echocardiographic results were analyzed with 2-way, repeated mea-
sures ANOVA, with exercise as 1 main effect and either cardiac
chamber (morphometric and real-time polymerase chain reaction
experiments) or time point (echocardiography) as the repeated
measures main effect. Picrosirius red and hydroxyproline decondi-
tioning studies were analyzed with 1-way ANOVA. In the case of a
significant interaction by 2-way ANOVA or a significant difference
on 1-way ANOVA, Bonferroni-corrected t tests were used to assess
Sed versus Ex group differences. In the absence of interaction,
P values are shown for significant differences in the main effect. Ex
versus Sed immunoblots and electrophysiological testing results
were compared by use of t tests for nonpaired samples. The Fisher
exact test was used to compare frequency variables. SPSS version
17.0 was used for statistical analysis. Detailed specifications of
statistical analysis in each figure are provided in the online-only
Data Supplement. Two-tailed values of P�0.05 were considered
significant.

Results

Cardiac Remodeling After Long-Term Intensive
Exercise Training
Cardiac mass was significantly increased by exercise (Figure

1A). Values for individual cardiac chambers, available at 16

Figure 1. A, Mean�SEM cardiac mass
changes indicated by heart weight/body
weight (HW/BW) ratios (Sed: n�4, 4, and
6 for 4, 8, and 16 weeks, respectively;
Ex: n�5, 5, and 8 for 4, 8, and 16
weeks; 2-way ANOVA). B, Schema indi-
cating areas studied for ventricular hy-
pertrophy assessment. C, Mean�SEM
ventricular wall thickness (WT) indexed
to body weight (n�4 rats per group;
2-way ANOVA, repeated
measure�region).**P�0.01,***P�0.001,
Bonferroni-adjusted t test (correction
factor�3), Ex vs Sed.
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weeks, were significantly increased in Ex rats (Table 1). No

significant changes were observed in the LV/RV mass ratio.

Direct measurement of wall thickness (Figure 1B) confirmed

significant increments in postmortem interventricular septum

(IVS) and LV free wall (FW) thickness after 8 weeks of

intensive exercise, which were maintained at 16 weeks

(Figure 1C). No significant differences were observed in RV

FW thickness.

To evaluate further cardiac morphological and functional

adaptation to long-term intensive exercise, serial echocardio-

grams were performed in a subset of Ex and Sed rats. Because

morphological LV hypertrophy was not observed before 8

weeks, echocardiograms were performed only at baseline and

after 8 and 16 weeks of training. Ex rats developed concentric

LV hypertrophy at 8 weeks, manifested by increased LV wall

thicknesses and ratio of IVS to LV diameter at end diastole

(for echocardiographic results, see Table 2), evolving to

eccentric hypertrophy/ventricular dilatation at 16 weeks. Ex

rats also showed evidence of LV diastolic dysfunction at 8 to

16 weeks (decreased S wave in pulmonary vein flow, in-

creased LV isovolumic relaxation time corrected for R-R),

along with LA enlargement. A slight but statistically signif-

icant decrease in LV systolic function was also observed in

Ex rats at 16 weeks. Evidence of RV diastolic dysfunction

also occurred at 8 to 16 weeks (decreased E-wave velocity,

prolonged E-wave deceleration time).

Intensive Exercise Training Promotes

Chamber-Specific Ultrastructural Remodeling
We next evaluated tissue fibrosis. Figure 2A shows represen-

tative photomicrographs of Picrosirius red–stained RV sec-

tions from Sed and Ex rats. Diffuse interstitial collagen

deposition associated with disturbances in myocardial archi-

tecture was observed in RV FWs of Ex rats after 16 weeks of

training. No differences were observed in the LV (Figure IA

in the online-only Data Supplement). Morphometric quanti-

fication confirmed a gradual increase in RV FW collagen

with training (Figure 2B). No differences in collagen density

Table 1. Tissue Mass in Sed and Ex Rats After 16 Weeks of

Training

Sed Rats (n�9) Ex Rats (n�10)

RA/BW, g/kg 0.091�0.006 0.144�0.020*

LA/BW, g/kg 0.083�0.010 0.153�0.020†

RV/BW, g/kg 0.357�0.019 0.433�0.029*

LV/BW, g/kg 1.837�0.057 2.212�0.098†

IVS, g/kg 0.444�0.026 0.644�0.100

LV FW, g/kg 1.394�0.052 1.568�0.160

LV/RV mass index 5.227�0.259 5.264�0.329

BW indicates body weight.

*P�0.05, †P�0.01, nonpaired t test, Ex versus Sed rats.

Table 2. Serial Echocardiographic Parameters in the Ex and Sed Groups

Baseline At 8 wk At 16 wk

Sed (n�11) Ex (n�12) Sed (n�11) Ex (n�12) Sed (n�11) Ex (n�12)

LV dimensions and function

LVDd/BW, cm/kg 3.01�0.07 3.01�0.05 1.59�0.04 1.72�0.03 1.39�0.05 1.63�0.02‡

LVDs/BW, cm/kg 1.43�0.07 1.51�0.06 0.79�0.03 0.86�0.03 0.72�0.03 0.94�0.03†

IVS/BW, cm/kg 0.55�0.01 0.56�0.01 0.31�0.01 0.38�0.01‡ 0.29�0.01 0.36�0.01‡

PW/BW, cm/kg 0.54�0.01 0.54�0.01 0.30�0.01 0.35�0.01† 0.27�0.01 0.32�0.01‡

LV mass/BW, g/kg 2.68�0.11 2.68�0.07 1.93�0.04 2.14�0.05 1.76�0.06 2.13�0.07†

IVS/LVDd* 0.19�0.01 0.19�0.00 0.20�0.01 0.22�0.00 0.21�0.01 0.22�0.01

EF, % 86.99�1.45 85.19�1.31 85.74�0.92 85.66�1.02 83.85�1.02 77.89�1.54†

S-wave PV, cm/s 32.44�1.53 32.71�1.53 33.39�1.48 31.93�1.45 37.06�1.46 30.45�1.20†

IVRTc, ms 1.21�0.06 1.12�0.07 1.21�0.06 1.43�0.07* 1.29�0.05 1.49�0.06

RV dimensions and function

RVD/BW, cm/kg 1.29�0.03 1.27�0.05 0.68�0.02 0.72�0.03 0.60�0.02 0.69�0.02

RVWT/BW, cm/kg 0.10�0.02 0.11�0.03 0.06�0.01 0.06�0.01 0.06�0.01 0.07�0.01

TAPSE, cm 3.38�0.68 3.16�0.14 3.41�0.11 3.61�0.09 3.80�0.09 3.43�0.09

Sm, cm/s 8.13�0.68 8.57�0.40 9.42�0.45 9.21�0.47 10.37�0.59 8.99�0.36

E velocity, cm/s* 75.60�3.51 74.88�2.31 76.61�5.50 60.76�4.27 63.81�3.63 49.55�3.41

E-DT, ms 36.54�1.48 33.15�2.07 34.43�1.39 35.69�3.28 28.49�2.04 44.07�4.31‡

E/A ratio 1.08�0.06 1.20�0.07 1.03�0.05 0.88�0.07 1.03�0.06 0.87�0.05

Atrial dimensions

LADs/BW, cm/kg 1.83�0.04 1.87�0.03 0.98�0.03 1.13�0.02† 0.89�0.03 1.14�0.02‡

LVDd indicates LV diameter at end diastole; BW, body weight; LVDs, LV diameter at end systole; PW, posterior wall thickness; EF, ejection fraction; PV, pulmonary

vein; IVRTc, LV isovolumic relaxation time corrected for R-R; RVD, RV diameter at end diastole; RVWT, RV wall thickness; TAPSE, tricuspid annulus plane systolic

excursion; Sm, RV lateral wall systolic motion velocity; E-DT, E-wave deceleration time; and LADs, LA diameter at end-systole.

*P�0.05, †P�0.01, ‡P�0.001, Ex rats versus Sed rats, 2-way repeated measures ANOVA.
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were observed in the IVS or LV FW. Increased collagen in

the RV of Ex rats at 16 weeks was also noted on Masson

trichrome–stained images (Figure 3A).

To independently quantify fibrous tissue content, the

amount of hydroxyproline, a modified amino acid specifically

found in collagen, was determined. After 16 weeks of

intensive exercise, animals showed significant increases in

RV hydroxyproline content (Figure 3B), with no significant

differences observed in the LV (Figure I in the online-only

Data Supplement).

Messenger RNA (mRNA) expression of transforming growth

factor-�1 (TGF-�1), fibronectin-1, matrix metalloproteinase-2

(MMP-2), tissue inhibitor of metalloproteinase-1 (TIMP1),

procollagen-I, and procollagen-III was measured in all cardiac

chambers of rats in the Sed and Ex groups. After 4 and 8

weeks of exercise, no significant changes were observed

(Table I in the online-only Data Supplement). The results at

16 weeks are shown in Figure 4. TGF-�1, fibronectin-1, and

MMP-2 mRNA expression was significantly increased in the

RA, LA, and RV of Ex rats compared with Sed rats (Figure

4A, 4B, and 4C, respectively). The only significant difference

for TIMP1 mRNA expression was found in the RA (Figure

4D). Finally, mRNA expression of procollagen-I was signif-

icantly increased in the RA and RV of Ex rats (Figure 4E),

whereas procollagen-III was significantly increased in both

the RA and LA of Ex rats (Figure 4F).

Alterations in protein expression corresponding to mRNA

changes were assessed by Western blot analysis for TGF-�1,

fibronectin-1, MMP-2, TIMP1, collagen-I, and collagen-III.

TGF�-1 protein levels were significantly increased in both

atria and RVs of Ex rats (Figure 5A). Fibronectin showed no

significant changes (Figure 5B). MMP-2 protein expression

was significantly increased in the RA and LA of Ex rats

(Figure 5C), whereas TIMP1 was unchanged (Figure 5D). In

parallel with results for procollagen-I mRNA expression,

collagen-I protein levels were significantly greater in both the

RA and RV of Ex rats (Figure 5E); however, collagen-III was

unchanged (Figure 5F).

These results confirm the development of significant ex-

tracellular matrix (ECM) changes after 16 weeks of intensive

endurance exercise, with fibrosis clear in the RV but not LV.

Figure 2. A, Picrosirius-stained photomi-
crographs of RV sections. In 16-week Ex
rats, there is widespread interstitial colla-
gen deposition with disarray of myocar-
dial architecture (arrow). B, Mean�SEM
collagen content in RV FW, IVS, and LV FW
(n�4 per group/time point; 2-way ANOVA,
repeated measure�region).*P�0.05,
Bonferroni-adjusted t test (correction fac-
tor�3), Ex vs Sed.

Figure 3. A, Masson trichrome–stained photomicrographs of
right ventricular sections. Increased collagen deposition (blue
staining, arrow) is present in the Ex group at 16 weeks. B,
Mean�SEM hydroxyproline content in the RV FW. n�4 (Sed at
4 and 8 weeks), n�6 (Sed at 16 weeks), n�5 (Ex at 4 and 8
weeks), and n�8 (Ex at 16 weeks); 2-way ANOVA, no repeated
measures.***P�0.001, Bonferroni-adjusted t test (correction fac-
tor�3), Ex vs Sed.
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Long-Term Intensive Exercise Increases
Ventricular Arrhythmia Vulnerability
We then evaluated whether ventricular remodeling by 16

weeks of exercise led to changes in electrophysiological

parameters and/or arrhythmia susceptibility. In vivo electro-

physiological study was performed with a customized cathe-

ter inserted into the RV apex. Ex rats showed evidence of a

slight delay in ventricular conduction, manifested by longer

QRS duration (Table 3). No changes were noted in repolar-

ization on the basis of ventricular effective refractory periods.

During programmed stimulation with up to 3 extrastimuli,

sustained ventricular tachyarrhythmias (�10 seconds) were

induced in 5 of 12 Ex rats (42%) compared with 1 of 16 Sed

rats (6%; P�0.05; Figure 6).

Remodeling Reverses With Detraining
To determine whether potentially adverse ventricular remod-

eling is reversible after exercise cessation, we compared rats

allowed to recover after discontinuation of exercise (DEx

groups) with age-matched Sed controls. Although showing

some regression, cardiac mass remained significantly greater

in all DEx groups compared with their Sed counterparts

(Figure 7A).

Because all Sed groups (Sed at 16 weeks and Sed-DEx at

2, 4, and 8 weeks) presented equivalent data (not shown) for

morphometric measurements, hydroxyproline levels, histol-

ogy, and mRNA analyses, results for the 16-week Sed group

were used for comparisons. Wall thickness increases induced

by 16 weeks of intensive exercise resolved progressively in

both the IVS and LV FW (Figure 7B). In contrast, no

differences in RV wall thicknesses were found among the Ex,

the Sed and all the DEx groups.

We then evaluated whether the fibrotic changes induced by

16 weeks of intensive exercise were also reversed by exercise

discontinuation. Histopathology studies with Masson

trichrome and Picrosirius red confirmed a gradual decrease in

collagen content during deconditioning (Figure 7C and 7D).

Similarly, collagen quantification based on image analysis of

Figure 4. Mean�SEM mRNA-expression of fibrotic markers (A)
TGF-�1, (B) fibronectin-1, (C) MMP-2, (D) TIMP1, (E)
procollagen-I (Proc-1), and (F) procollagen-III (Proc-III) at 16
weeks in the Sed and Ex groups, quantified by real-time poly-
merase chain reaction and normalized to �-actin. n�6 (Sed)
and n�8 (Ex); 2-way ANOVA, repeated measure�region.
*P�0.05,**P�0.01,***P�0.001, Bonferroni-adjusted t test (cor-
rection factor�4), Ex vs Sed.

Figure 5. Mean�SEM protein levels of fibrotic markers (A) TGF-
�1, (B) fibronectin-1, (C) MMP-2, (D) TIMP1, (E) collagen-I (Col-
I), and (F) collagen-III (Col-III) analyzed by immunoblot (exam-
ples shown above bar graphs) and normalized to �-actin in the
Sed and Ex groups at 16 weeks. n�6 (Sed) and n�8 (Ex); non-
paired t test,*P�0.05,**P�0.01, Ex vs Sed.

Table 3. Ventricular Electrophysiological Parameters at 16

Weeks

Sed Rats (n�10), ms Ex Rats (n�11), ms

QRS duration 23.5�0.4 25.2�0.6*

V-duration 17.1�0.5 18.2�0.6

VERP 39.8�1.1 43.2�1.3

V-duration indicates ventricular electrogram duration; VERP, ventricular

effective refractory period.

*P�0.05, non-paired t test, Ex versus Sed group.
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Picrosirius red–stained tissues confirmed regression of fibro-

sis in the RV after deconditioning (Figure 7E). Correspond-

ingly, hydroxyproline content in RV decreased progressively

during deconditioning and became nonsignificantly different

from Sed rats and significantly lower than in Ex rats at 16

weeks after exercise cessation (Figure 7F). In accordance

with these results, mRNA studies showed significant reversal

in exercise-enhanced profibrotic markers within 2 weeks of

deconditioning (Figure 8). Together, these results suggest

substantial reversibility of vigorous endurance training–in-

duced cardiac remodeling after the cessation of exercise

training.

Discussion
The present study describes cardiac remodeling in a rat model

of long-term, intensive exercise training, demonstrating

changes in cardiac function, fibrous tissue content, fibrotic

markers, and arrhythmia susceptibility following long-term

endurance training, with substantial reversibility after exer-

cise cessation. If results are similar in humans, then our

findings suggest that long-term, intensive exercise can pro-

mote chamber-specific remodeling and provide a substrate

for arrhythmogenesis.

Cardiac Remodeling After Intense
Endurance Exercise-Training
As previously described in other models,19–21 we found

significant LV hypertrophy at 8 weeks of training. At 16

weeks, LV dilatation was also observed, leading to eccentric

Figure 6. A, Inducibility of sustained (�10 seconds) ventricular
arrhythmias by programmed electric stimulation; Fisher exact
test, Ex vs Sed. B, Example of polymorphic ventricular
tachyarrhythmias (VT) induction by ventricular stimulation in an
Ex rat.

Figure 7. Reversibility of remodeling.
Sed indicates time-matched sedentary
control for 16-week Ex and 2-, 4-,
8-week exercise cessation groups in A
and time-matched sedentary control for
16-week Ex in B through F. A,
Mean�SEM heart weight/body weight
(HW/BW) ratio (2-way ANOVA, no
repeated measure; Bonferroni correction
factor�7). B, Mean�SEM wall thickness/
body weight ratio (2-way ANOVA,
repeated measure�region; Bonferroni
correction factor�21). C, Right ventricu-
lar Masson trichrome–stained photomi-
crographs. D, Picrosirius red–stained
photomicrographs. E, Mean�SEM colla-
gen content (Picrosirius red). F,
Mean�SEM hydroxyproline content
in RV. E and F analyses: 1-way
ANOVA; Bonferroni correction
factor�7.*P�0.05,**P�0.01,***P�0.001,
Ex vs Sed. †P�0.05,††P�0.01,
†††P�0.001, DEx vs Ex, Bonferroni-
adjusted t test.
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hypertrophy. LV hypertrophy may have accounted for the

impaired diastolic function observed after 8 and 16 weeks of

exercise, which in turn was associated with LA dilatation. All

these findings are consistent with the features of the athlete’s

heart described in humans5 and support the potential rele-

vance of our training program. Of note, we also observed RV

diastolic dysfunction, with a trend to RV dilatation and

systolic dysfunction after 16 weeks of exercise, findings that

have recently been described in high-level endurance-sport

practitioners.17

Chamber-Specific Myocardial Fibrosis After
Intensive Exercise Training
Perhaps our most noteworthy finding is the demonstration of

myocardial fibrosis after long-term, intensive exercise train-

ing. RV fibrosis was documented by collagen quantification

in histological sections and analysis of hydroxyproline con-

tent. These observations were functionally paralleled by the

development of RV diastolic dysfunction, with impaired

relaxation potentially related to fibrotic infiltration. More-

over, we noted an increase in mRNA and protein expression

of a series of fibrotic markers in the RV and in both atria.

TGF-�1 expression was increased in the RA, LA, and RV

after 16 weeks of intensive exercise. TGF-�1 is a potent

stimulator of collagen-producing cardiac myofibroblasts22

and leads to fibrosis development. Experimental studies have

reported that both genetic ablation of TGF-�1 in mice23 and

treatment with anti–TGF-�1 antibodies24 inhibit fibrosis de-

velopment, indicating that TGF-�1 plays a major role in

collagen turnover. We also noted enhanced expression of

other major components of the ECM control system, includ-

ing fibronectin-1, collagens, MMP-2, and TIMP1. Collagen-I

determines the stiffness of cardiac muscle, whereas collagen-

III is more distensible. Thus, the ratio of collagen-I to

collagen-III can be a marker of the ECM determinants of

cardiac stiffness.25 We observed a significant increase in

collagen-I protein expression in right-sided cardiac chambers

after 16 weeks of intensive exercise, whereas collagen-III

expression remained unchanged, indicating that long-term,

intensive exercise could increase cardiac stiffness in these

chambers via altered ECM composition, a notion that was

supported by echocardiographic evidence of diastolic dys-

function. These findings were accompanied by overexpres-

sion of mRNA and protein levels of MMP-2. MMP-2 is a

proteolytic enzyme; activation of MMP-2 induces disruption

of ECM proteins and promotes fibrogenesis. Together, these

Figure 8. Mean�SEM mRNA expression
of fibrotic markers (A) TGF-�1, (B)
fibronectin-1, (C) MMP-2, (D) TIMP1, (E)
procollagen-I (Proc-I), and (F)
procollagen-III (Proc-III) at 16 weeks in
the Sed and Ex groups and in all DEx
groups, quantified by real-time polymer-
ase chain reaction and normalized to
�-actin. n�4 (Sed) and n�6 (Ex and
all DEx groups). Two-way ANOVA,
repeated measure�region.
*P�0.05,**P�0.01,***P�0.001,
Bonferroni-adjusted t test (correction
factor�7) for main-effect group
comparisons.
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results indicate the presence of a milieu favoring the devel-

opment of myocardial interstitial fibrosis, characterized by

alterations in fibroblast growth factors and ECM imbalance.

Although extensive data have been published on echocar-

diographic remodeling with exercise,6,26 less information is

available on cardiac histological and biochemical remodeling

in endurance athletes. A recent study demonstrated increased

turnover of fibrosis markers in plasma from veteran ath-

letes,27 although cardiac origin was not assessed. Data in

abstract form also suggest the development of ventricular

fibrosis based on magnetic resonance imaging in endurance

athletes.28 Our finding of cardiac fibrosis represents the first

direct evidence of potentially adverse cardiac remodeling

after long-term, intensive exercise.

The mechanisms by which long-term, intensive exercise

may promote cardiac fibrosis are unknown. It is possible that

long-term cardiac overload plays a role by promoting phys-

iological remodeling in early phases that may eventually

become maladaptive in the long term. Experimental studies

support the idea that physiological cardiac remodeling and

pathological cardiac remodeling involve different signaling

pathways,29 but recent data have demonstrated that excessive

stimulation of physiological systems can result in maladap-

tive responses.30,31 Whether this or other mechanisms are

involved in the profibrotic cardiac remodeling observed in

our model is a matter to be addressed in future studies.

Of note, tissue fibrosis in this model of long-term, inten-

sive exercise was chamber specific (ie, the LV did not appear

to be affected). There are 2 potential explanations for this

finding. First, assuming that exercise increases loading con-

ditions on all cardiac chambers,5 it is reasonable to suppose

that greater profibrotic remodeling develops in chambers

suffering greater degrees of overload. In this regard, clinical

studies have described higher loading conditions on the RV

than on the LV during endurance sports,32 leading to transient

RV dysfunction immediately after exercise.33 Second, it has

been suggested that intrinsically thinner walls could make the

atria, as well as the RV, more susceptible to remodeling.17,18

The absence of significant fibrosis in the LV agrees with

previous models of long-term exercise20,21 and supports the

normal functionality of the LV of the athlete’s heart.5

Supporting this idea, an animal model of long-term volume

overload with similarities to loading condition changes in

endurance training showed regional overexpression of growth

factors and increased collagen deposition in the RV but not

the LV.34

Intense Exercise Training and
Arrhythmogenic Remodeling
Despite its benefits for overall health,1–4 numerous clinical

studies in recent years have suggested that long-term high-

level exercise might be associated with an increased risk of

cardiac arrhythmias, mainly atrial fibrillation and ventricular

arrhythmias originating from the RV.8–16 One important

aspect of this study is that the remodeling observed after

long-term, intensive exercise training could represent a po-

tential substrate for arrhythmias. Cardiac fibrosis and associ-

ated myocardial disarray provide electric heterogeneity and

promote reentrant circuits and arrhythmogenesis.18 It has

been reported that atrial overexpression of TGF-�1 in trans-

genic mice is sufficient to generate a fibrotic substrate that

supports atrial fibrillation.35 Similarly, increases in procolla-

gen and MMPs have been related to increased risks of atrial

and ventricular arrhythmias.36–38 We assessed this hypothesis

by evaluating the inducibility of ventricular arrhythmias

during in vivo programmed stimulation studies and noted

inducible sustained ventricular tachyarrhythmias in 42% of

rats subjected to intensive exercise for 16 weeks, compared

with only 6% of sedentary rats. In the presence of increased

QRS duration, indicating ventricular conduction slowing, and

the absence of changes in electrophysiological parameters

reflecting repolarization-like ventricular refractory period,

these results suggest that the cardiac fibrosis observed in our

model could play a role in producing the increased arrhyth-

mia susceptibility we observed in exercise rats.

Reversibility
Clinical studies have reported regression of the morphologi-

cal changes characteristic of the athlete’s heart after long-

term detraining.39 The reversibility of arrhythmogenic remod-

eling is of potentially great clinical importance, because it

would imply that deleterious rhythm consequences of long-

term endurance training can be expected to disappear after

cessation of intense physical training. We accordingly as-

sessed whether a period of rest could allow reversion of the

profibrotic changes induced by endurance training in our

model. The results of our exercise discontinuation study

demonstrate that, after 8 weeks of detraining, virtually all the

abnormal cardiac remodeling parameters resulting from in-

tense exercise training regressed to control levels.

More studies are needed to ascertain the mechanisms that

participate in both the promotion and the reversal of the

fibrotic remodeling associated with long-term exercise and

detraining, respectively. In addition, follow-up clinical stud-

ies are indicated to establish whether similar remodeling

changes can be demonstrated in humans and, if so, whether

they are reversible.

Potential Limitations
We cannot exclude the possibility that our exercise training

protocol involving conditioning shocks might have induced

emotional stress in Ex rats. Maximum efforts were taken to

minimize stress responses. Rats that did not adapt to treadmill

exercise or received excessive shocks (�15 s/h) were ex-

cluded from the study.

It is difficult to estimate precisely how our exercise

program translates into human activity. As a rough approxi-

mation, considering that the typical rat life expectancy is 2 to

2.5 years, our 18-week exercise protocol (2 weeks of pro-

gressive training plus 16 weeks of intensive exercise) would

be equivalent to �10 years of daily exercise training in

humans. According to previous studies in rodents,40,41 the

intensity of our program would correspond to �85% of

maximum oxygen uptake, equivalent to physical activity at

�90% of predicted maximum heart rate in humans.42 There-

fore, our results cannot be directly extrapolated to milder or

more moderate forms of exercise. In addition, we studied

only remodeling reversal with complete exercise cessation,
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which is unlikely in high-level athletes. Whether similar

recovery is achieved by simply reducing the intensity of a

training program is uncertain.

Only young male rats were tested in this study. Age- and

gender-related factors could significantly influence exercise-

related cardiac remodeling and were not analyzed in our

study. Further work in other animal models, studies of age

and gender effects on exercise-induced remodeling, and

follow-up analyses in human populations would be of great

interest.

The functional consequences of cardiac remodeling have

been specifically assessed by passive pressure-strain curves

in papillary muscles or LV pressure-volume curves.43 Be-

cause of limited availability of hearts and the need to obtain

tissue samples for histological and biochemical studies, we

decided to study both functional and morphological conse-

quences of long-term intensive exercise by performing serial

echocardiograms, thus obtaining a maximum of information

while being able to use each rat as its own control.

Conclusions
This study shows that long-term intense endurance training

promotes heart chamber-specific remodeling and ventricular

arrhythmia susceptibility in an animal model. Cessation of

endurance training was able to arrest and even reverse this

pathological process. These findings, if reproduced in hu-

mans, could have potentially important implications for

arrhythmia risk and its management in individuals involved

in high-level athletic training and practice.

Acknowledgments
We thank Valeria Sirenko and Nathalie L’Heureux for excellent
technical assistance and Anna Nozza for statistical assistance.

Sources of Funding
This work was supported by grants from the Sociedad Española de
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CLINICAL PERSPECTIVE
Despite the well-recognized benefits of exercise training in healthy individuals and in patients with cardiovascular disease,

increasing evidence has suggested that long-term high-level exercise practice (as in athletic contexts) can increase the risk

of developing cardiac arrhythmias. Both atrial tachyarrhythmias (particularly atrial fibrillation) and (much more rarely)

potentially malignant ventricular arrhythmias have been associated with sustained high-level endurance training. There

have been debates about whether these arrhythmias are due to undiagnosed underlying cardiac arrhythmogenic diseases,

with long-term exercise being a triggering factor, or whether high-intensity long-term exercise can actually be a primary

cause of arrhythmia susceptibility. To provide insights into the ability of sustained high-level exercise to cause

arrhythmogenic cardiac remodeling, we applied an experimental model in which male rats were trained to run vigorously

1 hour daily for 16 weeks and compared them with a parallel group of sedentary control rats. We found that intense

long-term exercise induced morphological and functional changes characteristic of the “athlete’s heart” as described in

humans, along with extracellular matrix changes and fibrosis affecting all chambers except the left ventricle. Ventricular

arrhythmia susceptibility to programmed electric stimulation was enhanced in exercise-trained rats. The fibrotic changes

caused by 16 weeks of vigorous exercise training were reversible within several weeks of exercise cessation. These results,

if confirmed in humans, suggest that long-term vigorous endurance exercise training may cause cardiac remodeling that

serves as a substrate for arrhythmia vulnerability. Our findings may have important potential implications for arrhythmia

risk assessment and management in individuals performing high-level exercise training.
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SUPPLEMENTAL METHODS 

Echocardiography 

Transthoracic echocardiographic studies were performed at baseline, 8 weeks, and 16 weeks 

in both exercise (Ex) and sedentary (Sed) groups, in all cases with the rats having been at rest 

during a minimum of 6 hours. The procedure was performed under general anesthesia with 

2% isoflurane, using a phased-array probe 10S (4.5-11.5 Megaherz) in a Vivid 7 Dimension 

system (GE Healthcare Ultrasound, Horten, Norway). The M-mode spectrum was traced in 

parasternal long axis view at the level of the aortic valve, left atrial dimension at end-cardiac 

systole (LADs) and right ventricular (RV) dimension (RVD) and wall thickness (RVWT) at end-

cardiac diastole were measured in this view. The M-mode spectrum was also obtained in 

parasternal short axis view at the level of papillary muscle, and left ventricular (LV) dimension 

at both end-cardiac diastole (LVDd) and systole (LVDs) were measured. The thickness of LV 

anterior wall and that of LV posterior wall at end-cardiac diastole were also measured in this 

view. Given that animals differed in size during the study, all dimensions were indexed for 

body weight. LV mass was calculated and corrected for small animals using the formula 

suggested by Reffelmann et al.1 The Teicholz method was employed to calculate LV volumes 

(LVV = (7/(2.4+D))*D3, where D is LV diastolic and/or systolic dimension). LV ejection fraction 

(EF) was calculated using the formula packed in the Vivid 7 system ((LVVd-LVVs)/LVVd*100).  

Pulsed-wave Doppler (PW) was used to record trans-mitral, trans-tricuspid, and pulmonary 

venous flow (TMF, TTF, PVF) in apical 4-chamber view. Peak velocity in early filling E and E 

wave deceleration time (E DT) were measured in TMF and TTF, and peak velocity in systolic 

S wave and diastolic D wave were measured in PVF. Mitral lateral, septal, and tricuspid lateral 

annulus moving velocity during early filling Em were derived by tissue Doppler imaging (TDI) in 

apical 4-chamber view. Tricuspid annulus plane systolic excursion (TAPSE) was measured by 

M-mode echocardiography, and RV lateral wall systolic moving velocity Sm was obtained by 

TDI in apical 4-chamber view. Continuous-wave (CW) Doppler at the conjunction of LV inflow 

and outflow was recorded in apical 5-chamber view, LV isovolumic relaxation time (IVRT) was 
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measured, and corrected (IVRTc) by R-R intervals taken from simultaneously recorded 

ECGs.2 The average of 3 consecutive cardiac cycles was used for each measurement, with 

the operator being blinded to treatment assignment. Special care was taken to get similar 

imaging at follow up study.  

 

In vivo electrophysiological study 

At 16 weeks, a subgroup of rats from Ex and Sed groups underwent in vivo 

electrophysiological study (EPS). The procedure was performed under general anesthesia 

with 2% isoflurane. After analgesia with buprenorphine (0.03-0.05 mg/Kg), a 1.9F octapolar 

electrocatheter (Scisense FTS-1913A-1018, London (ON), Canada) was introduced into the 

right ventricle through the right jugular vein. Surface ECG (lead I) and intracardiac 

electrograms were recorded on a computer through an analog-digital converter (IOX 1.585, 

EMKA Technologies, Paris, France) for monitoring and later analysis and measurement. 

Programmed right-ventricular stimulation was performed at a cycle length of 150 ms to 

determine the ventricular effective refractory period (VERP). QRS duration and the duration of 

the ventricular intracavitary electrogram were measured as indices of ventricular conduction. 

For assessment of inducibility of ventricular arrhythmias, double and triple extrastimulation 

techniques were administered to a minimal coupling interval of 30 ms, during spontaneous 

sinus rhythm and following a 9-beat train at a cycle length of 150 ms. Right-ventricular burst 

pacing at rates of 80 to 60 ms cycle length was also performed if no sustained arrhythmias 

were induced with 2-3 extrastimuli. Sustained ventricular tachycardia (VT) was defined as 

episode of ventricular arrhythmia lasting ≥ 10 s induced by ventricular stimulation. 

 

Histology and morphometry 

Total cardiac mass was assessed by heart-weight-to-body-weight ratio. Individual-chamber 

mass was assessed by chamber-weight-to-body-weight ratios. Relative LV to RV hypertrophy 
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was evaluated according to the formula proposed by Fulton (LV free-wall (FW) 

weight+interventricular-septum (IVS) weight/RV weight).3  

For histological studies, the hearts were perfused with a fixative solution (10% neutral-buffered 

formalin) at a pressure of 80 cm H2O, immersed in the fixative for 12 – 24 h, and embedded in 

paraffin. Ventricular hypertrophy was evaluated morphometrically by direct measurement of 

ventricular wall thickness in all the heart sections (analySIS Image Processing software, Soft 

Imaging System, Germany) at RV FW, IVS and LV FW levels. Differences in ventricular-size 

were controlled by indexing wall-thickness to body-weight.  

Heart sections were stained with Masson’s trichrome to identify connective tissue and collagen 

deposition. Additionally, sections from the RV and LV were stained with picrosirius-red for 

quantification of collagen deposition using analySIS Image Processing software (Soft Imaging 

System GMBH, Germany), as previously described.4 Perivascular collagen was excluded from 

this measurement.  

 

Hydroxyproline content 

Ventricular hydroxyproline content was measured using the method described by Woessner.5 

Samples of RV and LV were homogenized and then hydrolyzed in 6M HCl for 18 h at 110ºC. 

The hydrolysate was then neutralized with 2.5M NaOH and analyzed for hydroxyproline 

content after addition of chloramine T, perchloric acid and dimethylaminobenzaldehyde. 

Samples were read for absorbance at 550 nm in a spectrophotometer. Results are expressed 

as µg of hydroxyproline per mg dried tissue sample.  

 

mRNA analysis 

Total RNA was extracted from 50 to 100 mg of a section of the right atrium (RA), left atrium 

(LA), RV and LV using Trizol® reagent (Invitrogen Corporation, CA, USA) according to the 

manufacturer's protocol. RNA integrity and loading amounts were assessed by examining 
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UV/VIS at a multiple wave lengths following the ND-3300 user manual V2.5, instructions (ND-

3300, NanoDrop Technologies, USA). Analysis of transforming growth factor-β1 (TGF-β1), 

Fibronectin-1, metalloproteinase 2 (MMP2), tissue inhibitor of metalloproteinases 1 (TIMP1), 

procollagen-1 (Proc-I) and procolagen-3 (Proc-III) mRNA expression was obtained by Real-

Time PCR. One μg total mRNA was converted to cDNA with the iScript cDNA (Bio-Rad 

Laboratories, CA, USA) according to the manufacturer’s protocol. 100 ng of cDNA was 

amplified by the iCycler IQTM version 3.1 (Bio-Rad Laboratories, CA, USA) using Applied 

Biosystems (Applied Biosystems, CA, USA) TaqMan gene expression assays (Rn00572010-

m1 for TGF-β1, Rn00569575-m1 for fibronectin, Rn02532334-s1 for MMP2, Rn00587558-m1 

for TIMP1, Rn01526721-m1 for Proc-I, Rn01437675-m1 for Proc-III and Rn00667869-m1 for 

Actin, which was used as a housekeeping reference). Data were analyzed with the ΔCt 

method as previously described.6 

 

SDS-PAGE and Western blot 

Protein samples were extracted using Nonidet P-40 buffer. SDS-PAGE was performed on 5%-

13% acrylamide gels. Proteins were electrotransferred to nitrocellulose membrane and probed 

with primary antibodies. The antibodies used included mouse monoclonal anti-TGF-β1 

(ab27969, dilution1/2000), mouse monoclonal anti-MMP2 (ab7032 dilution 1/1000), rabbit 

polyclonal to TIMP1 (ab61224 dilution 1/1000), mouse monoclonal to collagen-I (ab6308 

dilution 1/1000) (all of them acquired from Abcam plc, Cambridge, UK); rabbit polyclonal anti-

fibronectin ( BP8025, dilution 1/1000) (Acris Antibodies GmbH, Herford, Germany) and rabbit 

polyclonal to collagen-III (dilution 1/500) (Santa Cruz Biotechnology, Ca, USA), and mouse 

monoclonal anti-actin (dilution (1/1000) (Chemicon-Millipore Co, MA, USA), which served as a 

housekeeping reference. The membranes were incubated with the corresponding peroxidase-

conjugated secondary antibodies, washed, and then incubated with ECL reagents (GE 

Healthcare Europe GmbH; Freigburg; GE) before exposure to high performance 
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chemiluminescence films. Gels were calibrated using Bio-Rad standard proteins (Hercules, 

CA) with markers covering a 7-240 kDa range. 

Films were scanned by using image-editing software NIH ImageJ software for densitometric 

analysis of immunoreactive bands.  

 

Statistical analysis 

Data are expressed as mean±SEM. Statistical analysis was generally carried out with two-way 

ANOVA using general linear models (GLM procedures), with the exceptions described in detail 

below. In the case of a significant interaction by 2-way ANOVA or a significant difference on 1-

way ANOVA, Bonferroni-corrected t-tests were used to assess Sed versus Ex group-

differences, except as otherwise indicated. All P-values shown were obtained by multiplying 

the P value for the non-paired t-test by the correction factors indicated below. In the absence 

of interaction, P-values are shown for significant main-effect differences. Ex versus Sed 

immunoblots and electrophysiological-testing results were compared with t-tests for non-paired 

samples. Fisher’s exact test was used to compare frequency-variables. Statistical analysis 

was performed with SPSS v17.0.  

Analyses of repeated measures were performed using the univariate general linear model 

approach (GLM procedures) and a compound symmetry covariance structure. The sphericity 

test, Mauchly’s criterion, was used to test departures from the assumption of compound 

symmetry. The sphericity test was consistent with the sphericity assumption in all instances. 

Detailed specifications of statistical analysis in each figure: 

Figure 1A: An analysis of variance model, including exercise group (sedentary, exercise), 

time-point (4 weeks, 8 weeks and 16 weeks) and the interaction term (exercise x time-point) 

was performed. Each heart weight was obtained on different hearts at 4, 8 and 16 weeks, so 

time point was not considered a repeated measures factor. The interaction was not significant, 
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so the overall group effect is presented. Exercise group effect was significant and is depicted 

in the figure. 

Figure 1C: A repeated measure analysis model, including exercise group (sedentary, 

exercise), repeating factor ventricular wall (as results were obtained for right ventricular free 

wall, interventricular septum and left ventricular free wall in each heart) and the interaction 

term (exercise x ventricular wall) was performed at each time point (4 weeks, 8 weeks and 16 

weeks). At 4 weeks, neither the interaction term nor the exercise group effect were significant. 

At 8 and 16 weeks, interaction term was significant at the 0.05 level, so comparisons between 

exercise groups within each ventricular wall were done. The Bonferroni-corrected t-test 

(correction factor 3) was used to control for the family-wise error rate by reporting the adjusted 

p-value for every comparison. 

Figure 2B: A repeated measure analysis model, including exercise group (sedentary, 

exercise), repeating factor ventricular wall (since results were obtained for right ventricular free 

wall, interventricular septum and left ventricular free wall in each heart) and the interaction 

term (exercise x ventricular wall) was performed at each time-point. At 4 and 8 weeks, neither 

the interaction term nor the exercise-group effect were significant. At 16 weeks, the interaction 

term was significant at the 0.01 level, so comparisons between exercise groups (sedentary vs 

exercise) within each ventricular wall were done. The Bonferroni-corrected t-test (correction 

factor 3) was used to control for the family-wise error rate by reporting the adjusted p-value for 

every comparison  

Figure 3B A two-way analysis of variance model, including exercise group (sedentary, 

exercise), time-point (4 weeks, 8 weeks or 16 weeks) and the interaction term (exercise x 

ventricular wall) was performed. Each measurement was obtained from separate hearts at 4, 8 

and 16 weeks, so time point was not considered a repeated measures factor. The interaction 

term was significant at the 0.01 level, so comparisons between exercise groups (sedentary vs 

exercise) within each time-point were done. The Bonferroni-adjusted t-test (correction factor 3) 
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was used to control for the family-wise error rate by reporting the adjusted p-value for every 

comparison  

Figure 4: A repeated measure analysis of variance model, including exercise group 

(sedentary, exercise), repeating factor cardiac chamber (right atrium, left atrium, right ventricle 

and left ventricle) and the interaction term (exercise x cardiac chamber) was performed for 

each individual fibrosis marker. The interaction term was significant for all the fibrosis markers 

at the 0.05 level, so comparisons between exercise groups (sedentary, exercise) within each 

cardiac chamber were done (four comparisons per chamber). The Bonferroni-corrected t-test 

(correction factor 4) was used to control for the family-wise error rate by reporting the adjusted 

p-value for every comparison 

Figure 5: In Figure 5, all Western blots for all Sed and Ex samples for one region were 

obtained on a single gel to ensure comparability. Because technical factors can greatly affect 

results between gels, the results for one region (which were done on one gel) cannot be 

compared in a valid way to results from another region (which because of limits on the number 

of samples that can be loaded on each gel had to be performed on a separate gel). Therefore, 

there were no repeated measures in Figure 5 and Sed vs Ex were compared by nonpaired t-

test within each region. 

Figure 6: The proportions of inducibility of ventricular arrhythmias were compared with the 

Fisher exact test. 

Figure 7A: An analysis of variance model, including exercise group (sedentary, exercise), 

deconditioning-time (exercise, deconditioning 2 weeks, deconditioning 4 weeks and 

deconditioning 8 weeks) and the interaction term (exercise x deconditioning-time) was 

performed. Each heart weight was obtained on separate hearts at 4 weeks, 8 weeks, 16 

weeks and deconditioning time points, so time point was not considered a repeated measures 

factor. The interaction was significant at the 0.05 level. Consequently, comparisons between 

exercise groups (exercise vs sedentary) within each deconditioining time-point (4 

comparisons), and between the exercise group at different deconditioning-times (Ex vs DEx2, 
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Ex vs DEx4 and EX vs DEx8, 3 comparisons) were done. The Bonferroni-adjusted t-test 

(correction factor 7) was used to control for the family-wise error rate by reporting the adjusted 

p-value for every comparison. 

Figure 7B: A repeated measures analysis of variance model, including exercise-deconditioning 

group (sedentary, exercise, deconditioning 2 weeks, deconditioning 4 weeks and 

deconditioning 8 weeks), repeating factor ventricular wall (since results were obtained for right 

ventricular free wall, interventricular septum and left ventricular free wall in each heart) and the 

interaction term (exercise-deconditioning x ventricular wall) was performed. Measurements 

were obtained on separate hearts at 4 weeks, 8 weeks, 16 weeks and deconditioning time 

points, so time point was not considered a repeated measures factor. The interaction was 

significant at the 0.01 level, so comparisons between exercise groups (Sed vs Ex, DEx2, DEx4 

and DEx8, and Ex vs DEx2, DEx4 and DEx8, accounting for 7 comparisons) within each 

ventricular wall (3 ventricular walls) were done. The Bonferroni-corrected t-test (correction 

factor 21) was used to control for the family-wise error rate by reporting the adjusted p-value 

for every comparison. 

Figure 7E and 7F: For these data sets, results for only one sedentary group (corresponding to 

16-week exercise) were available. One-way ANOVA was therefore applied. Measurements 

were obtained on separate hearts at 4 weeks, 8 weeks, 16 weeks and deconditioning time 

points, so time point was not considered a repeated measures factor. The main-effect factor 

was group and was a statistically-significant determinant of the dependent variable. Pairwise 

comparisons (Bonferroni-corrected t-tests) were performed between Sed and each Ex or DEx 

group (4 comparisons) and between Ex and each DEx group (3 comparisons); thus, a 

Bonferroni correction factor of 7 was used. 

Figure 8: A repeated measures analysis of variance model, including exercise-deconditioning 

group (sedentary, exercise, deconditioning 2 weeks, deconditioning 4 weeks, deconditioning 8 

weeks), repeating factor cardiac chamber (right atrium, left atrium, right ventricle, left ventricle) 

and the interaction term (exercise/deconditioning x cardiac chamber) were performed for each 
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fibrosis marker (each panel). Measurements were obtained on separate hearts at 4 weeks, 8 

weeks, 16 weeks and deconditioning time points, so time point was not considered a repeated 

measures factor. The interaction term was not significant for any of the fibrosis markers, so 

only the overall group effect is presented. Exercise/deconditioning group effect was significant 

for all fibrosis markers at the level of 0.001, so comparisons among exercise/deconditioning 

groups were obtained (Sed vs Ex, DEx2, DEx4 and DEx8 to look for differences in comparison 

to baseline, and Ex vs DEx2, DEx4 and DEx8 to establish the DEx groups with significant 

recovery, accounting for a total of 7 comparisons per fibrosis marker). The Bonferroni-

corrected t-test (correction factor 7) was7 used to control for the family-wise error rate by 

reporting the adjusted p-value for every comparison.  

Table 1: Comparisons by non-paired t-test between Ex and Sed. 

Table 2: A repeated measures analysis of variance, including exercise group (sedentary, 

exercise), repeating factor time-point (each rat has echocardiographic data at baseline, 8 and 

16 weeks) and the interaction term (exercise x time-point) was performed. Interaction was 

significant at the 0.05 level for LVDd/BW, LVDs/BW, IVS/BW, PW/BW, LV mass/BW, EF, S 

wave PV, IVRTc, E DT, and LADs/BW. For these, comparisons between groups (Ex, Sed) 

were performed at each time-point (baseline, 4 weeks, 8 weeks). The Bonferroni-corrected t-

test was used to control the family-wise error rate (correction factor 3). Interaction was not 

significant but there was a significant group effect (Ex vs Sed) for IVS/LVDd and E veloc.  

Table 3: Comparisons by non-paired t-test between Ex and Sed. 

Online Table 1: A repeated measure analysis of variance model, including exercise group 

(sedentary, exercise), cardiac chamber (right atrium, left atrium, right ventricle and left 

ventricle) and the interaction term (exercise x cardiac chamber) was performed for each 

separate fibrosis markers. Neither interaction term nor exercise group effect was found to be 

significant in any of the fibrosis markers.  
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Online Figure 1: An analysis of variance model, including exercise group (sedentary, 

exercise), time-point and the interaction term (exercise x ventricular wall) was performed. 

Analyses were performed on separate hearts at 4, 8 and 16 weeks, so time point was not 

considered a repeated measures factor. Neither interaction term nor exercise group effects 

were found to be significant for any of the time-points. 
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  Right atrium Left atrium Right ventricle Left ventricle 

  Sedentary 

(n=4) 

Exercise 

(n=5) 

Sedentary 

(n=4) 

Exercise 

(n=5) 

Sedentary 

(n=4) 

Exercise 

(n=5) 

Sedentary 

(n=4) 

Exercise 

(n=5) 

TGFβ  

Relative expression 
1.00 ± 0.40 0.71 ± 0.27 1.00 ± 0.50 1.99 ± 0.48 1.00 ± 0.32 1.04 ± 0.20 1.00 ± 0.38 0.41 ± 0.41 

Fibronectin 
Relative expression 

1.00 ± 0.35 0.97 ± 0.37 1.00 ± 0.31 1.42 ± 0.34 1.00 ± 0.62 0.96 ± 0.45 1.00 ± 0.32 0.62 ± 0.21 

MMP2  

Relative expression 
1.00 ± 0.42 1.06 ± 0.50 1.00 ± 0.30 2.01 ± 0.77 1.00 ± 0.71 2.28 ± 0.77 1.00 ± 0.47 0.38 ± 0.07 

TIMP1  

Relative expression 
1.00 ± 0.67 0.54 ± 0.32 1.00 ± 0.43 1.74 ± 0.42 1.00 ± 0.46 1.07 ± 0.05 1.00 ± 0.48 0.39 ± 0.20 

Proc-I  

Relative expression 
1.00 ± 0.76 0.77 ± 0.76 1.00 ± 0.56 2.26 ± 0.11 1.00 ± 0.68 1.33 ± 0.69 1.00 ± 0.66 1.16 ± 0.83 

4 weeks 

Proc-III  

Relative expression 
1.00 ± 1.04 0.95 ± 1.04 1.00 ± 0.29 1.62 ± 0.39 1.00 ± 0.61 0.90 ± 0.30 1.00 ± 0.53 1.03 ± 0.53 

TGFβ  

Relative expression 
1.00 ± 0.34 1.44 ± 0.62 1.00 ± 0.56 3.76 ± 1.09 1.00 ± 0.56 1.91 ± 0.73 1.00 ± 0.47 2.19 ± 0.43 

Fibronectin 
Relative expression 

1.00 ± 1.04 2.57 ± 2.83 1.00 ± 0.39 6.29 ± 2.26 1.00 ± 0.56 5.01 ± 2.62 1.00 ± 0.19 1.89 ± 0.32 

MMP2  

Relative expression 
1.00 ± 0.56 1.84 ± 0.83 1.00 ± 0.15 3.42 ± 0.99 1.00 ± 0.51 1.52 ± 0.58 1.00 ± 0.64 0.93 ± 0.36 

TIMP1  

Relative expression 
1.00 ± 0.12 1.63 ± 0.77 1.00 ± 0.10 3.97 ± 1.34 1.00 ± 0.43 4.51 ± 1.52 1.00 ± 0.34 3.09 ± 1.32 

Proc-I  

Relative expression 
1.00 ± 0.38 3.48 ± 1.33 1.00 ± 0.34 0.98 ± 0.62 1.00 ± 0.43 2.53 ± 0.37 1.00 ± 0.34 1.25 ± 0.24 

8 weeks 

Proc-III  

Relative expression 
1.00 ± 0.43 2.55 ± 0.62 1.00 ± 0.38 2.14 ± 1.10 1.00 ± 0.34 1.95 ± 0.29 1.00 ± 0.64 1.34 ± 0.63 

Table 1. mRNA expression of TGF-β1, fibronectin-1, MMP2, TIMP1, procollagen-I, procollagen-III in the four cardiac chambers at 4 and 8 

weeks in Sed and Ex groups. Results are normalized to actin mRNA expression. Values are mean ± SEM of 4 animals (Sed at 4 and 8 weeks) 

and 5 animals (Ex at 4 and 8 weeks). There were no statistically-significant differences. Statistical analysis was by 2-way ANOVA. 
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SUPPLEMENTAL FIGURE LEGENDS 

Supplementary Figure 1: (A) Representative picrosirius-red stained photomicrographs of left 

ventricular sections obtained from the interventricular septum and the left ventricular free wall. (B) 

Mean±SEM hydroxyproline-content in left ventricle (whole tissue). n=4 (Sed, 4 and 8 weeks), n=6 

(Sed, 16 weeks), n=5 (Ex, 4 and 8 weeks) and n=8 (Ex 16 weeks). Two-way ANOVA (exercise and 

timepoint as main factors). 
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