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Abstract

Chromatin modifying enzymes play a critical role in cardiac differentiation. Previously, it has been shown that the targeted
deletion of the histone methyltransferase, Smyd1, the founding member of the SET and MYND domain containing (Smyd)
family, interferes with cardiomyocyte maturation and proper formation of the right heart ventricle. The highly related
paralogue, Smyd2 is a histone 3 lysine 4- and lysine 36-specific methyltransferase expressed in heart and brain. Here, we
report that Smyd2 is differentially expressed during cardiac development with highest expression in the neonatal heart. To
elucidate the functional role of Smyd2 in the heart, we generated conditional knockout (cKO) mice harboring a
cardiomyocyte-specific deletion of Smyd2 and performed histological, functional and molecular analyses. Unexpectedly,
cardiac deletion of Smyd2 was dispensable for proper morphological and functional development of the murine heart and
had no effect on global histone 3 lysine 4 or 36 methylation. However, we provide evidence for a potential role of Smyd2 in
the transcriptional regulation of genes associated with translation and reveal that Smyd2, similar to Smyd3, interacts with
RNA Polymerase II as well as to the RNA helicase, HELZ.
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Introduction

The formation of the heart is one of the most complex processes

during vertebrate development being dependent on the orches-

trated interplay of a variety of cell types and the precise

intracellular regulation of transcriptional networks [1–2]. The

complexity of its development renders the heart vulnerable to

congenital diseases, affecting 1–2% of all newborns and being the

leading cause of death in infants under 1 year [3]. Although, in

recent years considerable progress has been made in defining the

molecular mechanisms that control cardiac growth and differen-

tiation at transcriptional level, far less is known about the

epigenetic control of heart development imparted by chromatin

remodeling enzymes. It has become increasingly evident that, in

addition to the well-established roles of histone acetyltransferases

(HATs) and histone deacetylases (HDACs) in cardiac differenti-

ation, histone methyltransferases and demethylases are also

essential in both cardiac [4–6] and skeletal [7–10] muscle

development.

Functionally, methylation of lysine or arginine residues on

histone tails, similar to a plethora of other post-translational

histone modifications (e.g., phosphorylation, acetylation, SUMOy-

lation, ubiquitylation), has been shown to recruit protein

complexes affecting target gene expression at the transcriptional

level [11–12]. This complexity in histone modifications might not

only be seen as a simple code, but rather as an ingenious

chromatin ‘language’ where different biological outcomes are

defined by the combinatorial modification of basic building blocks

[13]. Additionally, in contrast to histone acetylation, lysine

residues can either be mono-, di- or tri-methylated, thereby

adding an additional level of ‘histone code’ complexity. Interfering

with the controlled action of histone methyltransferases by either

loss of function or gain of function experiments therefore often

results in a deleterious biological outcome due to disturbed

proliferation and/or differentiation. This phenomenon is not only

true for the heart [14], but can also be observed in a wide range of

other organs and cell types [15–18].

Members of the SET and MYND domain containing (Smyd)

family of proteins possess SET-dependent methyltransferase

capacity and have been shown to be involved in the transcriptional

control of cell differentiation and cell proliferation [19–21].

However, with the exception of Smyd1, little is known about the
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distinct functional relevance of Smyd family proteins during

vertebrate development. Evidence for a critical role of Smyd

proteins during organ development was first shown by the

constitutive knockout of Smyd1/m-Bop, resulting in early embryonic

lethality due to disruption of cardiac differentiation and morpho-

genesis [14]. This finding made the Smyd proteins interesting

candidates for the control of cardiac growth and differentiation.

Subsequent reports have further indicated that Smyd -family

members are, indeed, critical regulators of cardiac as well as

skeletal muscle development [14,21–29].

We identified Smyd2 as a histone 3 lysine 36 (H3K36)

methyltransferase with highest expression in heart and brain

[20]. Functionally, methylation on H3K36 is most often associated

with actively transcribed genes [20,30–31]. Our in vitro studies,

however, revealed that Smyd2 acts as a transcriptional repressor

when bound to HDAC1 and the Sin3 repression complex [20].

More recent findings suggest that Smyd2 is also capable of H3K4

methylation when bound to Hsp90a, showing that the full

spectrum of Smyd2 impact on transcriptional regulation is still

largely unknown [32]. Furthermore, it has been shown that Smyd2

acts on non-histone targets by inhibiting the functional activity of

p53 via methylation of p53, lysine 370 [33]. Thus, several lines of

evidence support a role for Smyd2 in the regulation of

proliferation and in tumor progression [20,33–36].

Despite being highly expressed in heart and brain, a specific

functional relevance for Smyd2 in these organs has not yet been

described. To that end, we have examined its spatiotemporal

expression during vertebrate cardiac development and performed

loss of function experiments. We report quite unexpectedly that,

while Smyd2 is expressed nearly exclusively in cardiomyocytes in

high abundance around birth, its cardiac-specific deletion has no

major discernable impact on normal heart development.

Materials and Methods

Animals and cardiomyocyte isolation
This investigation conforms to the Guide for the Care and Use

of Laboratory Animals published by the US National Institutes of

Health (NIH Publication No. 85-23, revised 1996). Animal

experiments were approved by the local committee for care and

use of laboratory animals (Regierungspräsidium Darmstadt, Gen.

Nr. B 2/202). Ventricular cardiomyocytes from fetal (E17), 3-days-

old (P3), and adult (.10 weeks, 200–250 g) Sprague Dawley rats

(Charles Rivers, or own breed) were isolated and cultured as

described [37–38].

Plasmids and constructs
Myc-tagged Smyd2 and Smyd3 have been described previously

[20].

Western Blot analysis
Cardiac ventricles were washed in ice-cold PBS, minced and

then homogenized and lysed by repeated sonication in cell lysis

buffer (Cell Signaling) containing 1 mM PMSF and 1x protease

inhibitor cocktail (Roche) on ice. After additional 15 min

incubation, samples were centrifuged at 17.0006g at 4uC for

10 min to remove cell debris. Whole cell extracts from cultured

cells were made using the same lysis buffer. Nuclear/cytosolic

fractioning was performed using NE-PER Kit (Pierce) according

to the manufacturer’s protocol. Total histone fractions were

isolated from pooled (n = 6) neonatal (P3–5) Smyd2flox/flox or Smyd2

conditional knockout (cKO) mouse hearts using the EpiQuickTM

Total Histone Extraction Kit (Epigentek) according to the

manufacturers protocol. Protein concentration was determined

using DC Protein Assay (Bio-Rad). Equal amounts of proteins

were resolved on 4–12% Bis-Tris Gels (Invitrogen) and blotted

onto PROTRANH nitrocellulose membranes (Whatman). Mem-

branes were blocked with 5% non-fat dry milk in Tris-buffered

saline (TBS) with 0.1% TWEEN-20 for 1 hour at RT and then

incubated with primary antibodies overnight at 4uC under gentle

agitation. Antigen-antibody complexes were visualized using

horseradish peroxidase-conjugated secondary antibodies (Amer-

sham) and SuperSignalH West Femto substrate (Thermo) on a

VersaDoc imaging system (Bio-Rad). The following antibodies

have been used: rabbit anti-Smyd2, 1:500 (Abcam), mouse anti-

PARP, 1:500 (Transduction Laboratories), mouse anti-HSP70,

1:500 (Transduction Laboratories), rabbit anti-Pan-Actin,

1:2000 (Cell Signaling), mouse anti-GAPDH, 1:4000 (SIGMA),

mouse anti-p53, 1:200 (SIGMA), rabbit anti-Troponin-I, 1:250

(Santa Cruz), rabbit anti-H3K4me1, rabbit anti-H3K4me2,

rabbit anti-H3K4me3, rabbit anti-H3K36me1, rabbit anti-

H3K36me3 (Millipore), rabbit anti-H3K36me2, rabbit anti-

H4K20me3, (Epigentek), rabbit anti-Histone H3, rabbit anti-

Histone H4, (Bethyl Laboratories). All histone antibodies were

diluted 1:1000.

Real-time qPCR and semi-quantitative RT-PCR
RNA from mouse tissue was isolated using TRIZOL (Invitro-

gen) according to standard protocols. RNA from cultured cells was

isolated using RNeasy Kit (Qiagen) including on-column DNase

digest according to the manufacturer’s protocol. For cDNA

synthesis the RNA from .10 fetal heart ventricles and $3

postnatal heart ventricles was pooled and subjected to reverse

transcription using M-MLV reverse transcriptase (SIGMA). RNA

for expression profiling in different mouse tissues was isolated from

3 male neonatal animals and pooled for cDNA synthesis. cDNA

was used for real-time qPCR or semiquantitative RT-PCR

respectively. Real-time qPCR was performed in triplicates using

AbsoluteTM QPCR SYBRH Green Fluorescin Mix (Thermo

SCIENTIFIC) and Bio-Rad iCYCLER iQ5 Real time PCR

instrument. Relative gene expression was calculated on the basis of

DCt values to Gapdh or ß-actin as housekeeping genes. All primer

pairs used for real-time qPCR and RT-PCR respectively are

summarized in the supplementary information (Table S1).

Immunofluorescence staining
For cryosections P1 neonatal mouse hearts were isolated,

washed in cold PBS and then embedded in POLYFREEZETM

tissue freezing media (Polysciences Inc.). Embedded hearts were

frozen in methylbutane on liquid nitrogen, sectioned (transverse,

10 mM). For immunostaining cryosections or cultured cells were

fixed for 15 min in 4% formaldehyde. Permeabelization was

performed in PBS + 0.5% Triton X-100 for 10 min at RT and

blocking in 5% goat serum/0.2% TWEEN-20/PBS for 1 h at RT.

Primary antibodies were diluted in blocking solution and

incubated at 4uC for overnight. The following antibodies have

been used for immunostaining: rabbit anti-Smyd2, 1:75 (Abcam),

mouse anti-Tropomyosin, 1:100 (SIGMA), mouse anti-Caveolin-

3, 1:200 (Transduction Laboratories).

Histological analysis
The hearts from 5 day old neonatal or adult mice were dissected

and soaked in ice-cold 30 mM KCl/PBS to induce diastolic arrest,

washed and subsequently fixed in 4% paraformaldehyde,

dehydrated, embedded in paraffin and sectioned at 6 mM. Sections

were stained with hematoxylin and eosin or Masson’s trichrome

according to standard protocol and examined by light microscopy.

Smyd2 in Heart Development
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Magnetic Resonance Imaging
MRI experiments were carried out on a 7.0 T Bruker

Pharmascan, operating at 300.51 MHz for 1H and equipped with

a 300 mT/m gradient system, using a custom-built circularly

polarized birdcage resonator and the Early Access Package for

self-gated cardiac Imaging (Intragate, Bruker, Ettlingen, Germany)

[39]. The measurement is based on a gradient echo method; the

imaging parameters are: echo time/repetition time= 44.4/6.3 ms;

flip angle = 15u; field of view= 2.2062.20 cm; slice thick-

ness = 1.0 mm; matrix = 1286128; repetitions = 100. The imaging

plane was localized using scout images showing the 2- and 4-

chamber view of the heart, followed by acquisition in short axis

view, orthogonal on the septum in both scouts. Multiple

contiguous short-axis slices consisting of 6 to 7 slices were

acquired for complete coverage of the left ventricle. MRI data

were analyzed using Qmass digital imaging software (Medis,

Leiden, Netherlands). All mice were measured under volatile

isoflurane (1.5 to 1.7%) anesthesia and body temperature was

maintained at 37uC throughout the measurements. For measure-

ment 4 male Smyd2fl/fl animals were used as control group

compared to 4 male Smyd2 cKO animals, all 6 months old.

Cloning of the Smyd2 conditional targeting construct
and generation of Smyd2 conditional knockout mice
To construct the Smyd2 conditional targeting construct, two

genomic fragments were first subcloned from the C57BL/6

murine Bac clone-RPC124288J3. A 2.2 kb KpnI fragment

containing exon 1 and a KpnI fragment containing 5.2 kb of

intronic sequence between exons 1 and 2 was subcloned into

pBluescript (Stratagene). Fragment 1 (5.2 kb) was excised with

KpnI, blunt ended, and ligated into the unique blunt ended SalI

site of pDELBOY [40]. The resulting clones were screened for

correct orientation and for the regeneration of the SalI site.

Fragment 2 (2.2 kb) was excised with KpnI and ligated into the

unique KpnI site of pDELBOY containing fragment 1. This was

subsequently screened for correct orientation. Fragment 3,

containing 0.6 kb upstream of exon 1, was generated using

Platinum Pfx DNA Polymerase (Invitrogen), C57BL/6 genomic

DNA as template, and the following primer pair 59gtcgacattgagc-

taatgtgctta-39and 59-ctcgaggtaacactcaacctctgc-39. The resulting

PCR product was treated with Taq Polymerase, ligated into

pGEM-T EASY (Promega), and excised with SalI and XhoI. This

product was ligated into the unique XhoI site of pDELBOY

containing fragments 1 and 2 and subsequently screened for

correct orientation. The completed targeting construct was

linearized at the short arm of homology using XhoI. C57BL/6

ES cells were then transfected and selected with G418 and

gancyclovir. Targeted ES cell colonies were screened by Southern

hybridization analysis using probes specific for the genomic

sequence external to the arms of homology. The 59 Southern

used a 0.8 kb PCR fragment using the following primer pair: 59-

ggctggagttagaggtggttatga-39and 59-acagctctgggctcggaaataaag-39.

The 39 Southern used a 0.9 kb PCR fragment using the following

primer pair: 59-aactccatgtggtggaattctgtggt-39and 59-gcagcctgaaa-

gaatcccttagact-39. Successfully targeted ES cells were identified by

Southern analyses. These assays were performed across the long

arm of homology and the short arm of homology of clones that

had experienced homologous recombination at the Smyd2 locus. A

size difference allowed the separation of targeted allele and wild

type allele. These clones were then injected into C57Bl/6J-tyr�-2J

(an albino strain) blastocysts, which were implanted into the uteri

of psuedopregant recipients and ultimately chimeras were born.

The chimeras were mated to albino C57Bl/6 females and resulting

progeny with a black coat color were genotyped. Mice that were

shown to be heterozygous for the targeted allele were mated to

Flip recombinase-expressing transgenic mice to remove the neo

cassette. Targeted deletion of Smyd2 in cardiac tissue was

accomplished by crossing mice expressing Cre recombinase under

the control of the Nkx-2.5 promoter as described previously [41]

into Smyd2 homozygous floxed mice and backcrossing the resulting

heterozygous mice governing the Cre recombinase back to

homozygous Smyd2flox/flox mice. Cre mediated recombination

resulted in a deletion of a region including exon 1 of Smyd2.

Microarray analysis
RNA was isolated from postnatal day 5 (P5) Smyd2flox/flox or

Smyd2flox/floxCre mouse cardiac ventricles (n = 4/4) according to

standard TRIZOL protocol (Invitrogen). RNA quality was

assessed using Agilent 2100 Bioanalyzer and RNA 6000 Nano

Kit (Agilent). For mRNA expression analysis, the Affymetrix

GeneChip Mouse Gene 1.0 ST Array was employed with the

Affymetrix total RNA labeling protocol. Data were analyzed by

the RMA algorithm using the Affymetrix Expression Console.

Annotation and statistical analysis were performed with the

DNAStarTM ArraystarTM 3.0 software using log2 transformed

data. Fold changes were calculated on the basis of the median of

signal intensity of the groups. To maximize the number of true

positives, unpaired t-test without further correction was used for

statistical analysis. Microarray data is deposited in MIAME

compliant format at the ArrayExpress Database (http://

www.ebi.ac.uk/microarray) with the assigned accession number:

E-MEXP-2542.

Statistical analysis
Results were analysed by GraphPad Prism (version 4.00,

GraphPad Software Inc.). Statistical significance was determined

using a Student’s t-test. Values of P,0.05 were considered

statistically significant.

Results

Temporal expression profiling of Smyd-family members
during cardiac development
To determine the temporal expression patterns of Smyd-family

members during vertebrate heart development, we collected

mouse cardiac ventricles at sequential developmental stages from

embryonic (E) days 12.5 to 18.5, postnatal (P) days 1 to 7 and adult

and determined the relative mRNA expression levels of Smyd1-5.

Smyd1 and Smyd2 showed distinct expression in cardiac ventricles

with peak mRNA expression between P1 and P5 displaying a

.10-fold and .5-fold developmental change respectively. In

contrast, Smyd5 expression changed less than 3-fold and peaked

before birth (Fig. 1A). Smyd3 and Smyd4 expression was almost

undetectable at any given time point (data not shown).

Since Smyd2 expression has not yet been described in the

neonatal heart and previous expression analyses were only

performed at the mRNA level using Northern-blotting and in situ

hybridization [20], we next investigated Smyd2 protein expression

in heart ventricles during cardiac development. Western-Blot

analysis showed relatively high Smyd2 protein expression in P1

cardiac ventricles while very low expression was detected at E12.5

and adult. This expression pattern was conserved between rat and

mouse (Fig. 1B).

As Smyd2 expression in the heart peaks shortly after birth, we

re-evaluated Smyd2 expression in other organs at that time as our

previous evaluation was performed only in adult mouse organs

where Smyd2 expression is almost absent [20]. In line with our

previous findings, Smyd2 showed a broader organ distribution

Smyd2 in Heart Development
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pattern compared to Smyd1 but was most highly expressed in

heart, skeletal muscle and brain tissue. In contrast, Smyd5

expression levels were uniform in all analyzed organs (Fig. 1C).

Smyd2 is specifically expressed in cardiomyocytes
In order to obtain deeper insight into the cell type-specific

expression characteristics of Smyd1, 22 and 25 in the heart, we

isolated RNA from either non-cardiomyocyte (non-CM) or

cardiomyocyte (CM) fraction from neonatal (P3) rat heart

ventricles and performed semiquantitative RT-PCR. Fraction

purity was determined using primer pairs that specifically amplify

transcripts of the cardiac marker gene Nkx.2–5. Interestingly,

Smyd1 and 22 were almost exclusively expressed in cardiomy-

ocytes while, in accordance with its organ distribution, Smyd5

exhibited relatively uniform expression in CM and non-CM

fractions (Fig. 2A). Smyd3 and 24 did not show significant

expression in either fraction (data not shown).

The observed cardiomyocyte-specific expression of Smyd2 was

further analyzed at the protein level. Western-blots confirmed the

distinct Smyd2 protein expression in the Troponin-I positive

cardiomyocytes (Fig. 2B).

Since Smyd proteins have been shown to modify both histone [20]

and non-histone [33] targets, we next investigated the cellular

localization of Smyd2 in cardiomyocytes. Western-blot analysis of

nuclear and cytosolic extracts from neonatal (P3) rat cardiomyocytes

revealed that Smyd2 protein is expressed in nuclear as well as

cytosolic cell fractions. The specific fraction marker proteins PARP

(nucleus) and HSP70 (cytosol) were used to confirm the purity of the

fractions (Fig. 2C). In line with western blot results, this subcellular

distribution was also observed using immunocytochemistry (Fig. 2D).

Taken together, the data indicate that Smyd1 and Smyd2 are

the only Smyd-family members observed to be preferentially

expressed in cardiomyocytes, and their levels are markedly

regulated during cardiac development.

Figure 1. Temporal expression patterns of Smyd-family members during vertebrate heart development. (A) Real-time qPCR showing
relative expression levels of Smyd-family members in mouse heart ventricles at different developmental stages (E12.5 to adult as indicated).
Expression levels of Smyd-family members were normalized to GAPDH Ct values as housekeeping gene. qPCR analysis of Smyd-family members 21,
22 and 25 reveals a peak mRNA expression for Smyd1 and Smyd2 between postnatal day 1 to day 5 while Smyd5 mRNA shows highest expression
levels during embryonic stages E14.5 to E18.5 ceasing after birth. (B) Western-blots of pooled E12.5, P1 or adult tissue extracts (70 mg) from rat and
mouse heart ventricles were probed with anti-Smyd2 antibody showing maximal expression at postnatal day 1. Blots were re-probed with anti-
GAPDH antibody for equal loading control. (C) Semiquantitative RT-PCR for Smyd1, 22 and 25 expression in neonatal (P4) mouse tissues. 18s rRNA
expression was used as loading control.
doi:10.1371/journal.pone.0009748.g001
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Generation of mice containing floxed Smyd2 alleles
Since Smyd2 expression is not restricted to the heart (Fig. 1C),

we generated mice that allow the tissue specific deletion of Smyd2

expression. For this purpose we generated Smyd2 homozygous

floxed mice (for detailed description see Materials and Methods).

In brief, the targeting vector contained a short (0.6 kb) and a long

(7.4 kb) arm of homology, a neomycin resistance cassette (neo) for

positive selection, and a thymidine kinase cassette for negative

selection. LoxP sites were positioned in a region including exon 1

of Smyd2 (Fig. 3A).

Targeted ES cell colonies were screened by Southern

hybridization analysis using probes specific for the genomic

sequence external to the arms of homology. These assays were

performed across the long arm of homology (Fig. 3B) using SalI

Figure 2. Smyd2 is predominantly expressed in cardiomyocytes. (A–B) RNA and protein was isolated from either non-cardiomyocyte (non-
CM) or cardiomyocyte (CM) fraction following digestion of P3 rat heart ventricles. (A) Semi-quantitative RT-PCR was performed using primer pairs
specifically detecting Smyd1, 22 and 25. Using RNA as a template served as negative control (-RT control). Smyd1 and Smyd2 show distinct
expression predominantly in the cardiomyocyte fraction while Smyd5 is expressed in both fractions. The expression of the cardiac marker gene
Nkx.2–5 was analyzed as a fraction purity control, GAPDH is shown as equal loading control. (B) Protein (50 mg) from non-cardiomyocyte and
cardiomyocyte fractions was subjected to Western-blotting and blots were probed with anti-Smyd2 antibody showing a predominant expression of
Smyd2 in the cardiomyocyte fraction. The membrane was re-probed with an antibody against cardiac Troponin-I as a control for fraction purity as
well as anti-pan-actin antibody for controlling equal loading. (C) Nuclear and cytosolic fractions were assessed from P3 rat cardiomyocytes and equal
protein amounts (50 mg) were subjected to Western-blotting. Smyd2 was detectable in nuclear as well as cytosolic fractions using anti-Smyd2
antibody. Blots were re-probed with antibodies against Poly (ADP-Ribose) Polymerase (PARP) as a nuclear marker protein or Heat shock protein 70
(Hsp70) as a cytosolic marker protein to assure fraction purity. (D) Immunocytochemistry using an anti-Smyd2 antibody shows that Smyd2 is
expressed in the nuclei as well as in the cytoplasm of cultured P3 rat cardiomyocytes (red). Cardiomyocytes were co-stained using an antibody
against cardiac Tropomyosin (green), nuclei were stained with DAPI (blue).
doi:10.1371/journal.pone.0009748.g002

Smyd2 in Heart Development
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and Bgl2 for restriction and the short arm of homology (Fig. 3C)

using BamHI for restriction to select clones that had experienced

homologous recombination at the Smyd2 locus. Mice that were

shown to be heterozygous for the targeted allele were mated to

Flip recombinase-expressing transgenic mice to remove the neo

cassette. Genotyping PCR was performed using a primer pair

binding at positions P1 and P2 (Fig. 3A) to identify WT (366 bp)

and floxed (500 bp) Smyd2 alleles, respectively (Fig. 3D).

Deletion of Smyd2 in cardiomyocytes
Targeted deletion of Smyd2 in cardiomyocytes was accom-

plished by initially crossing mice expressing the Cre-recombinase

under the control of the cardiac specific Nkx2–5 promoter [41]

with Smyd2 homozygous floxed mice (Smyd2fl/fl). Smyd2fl/fl mice

were mated with Smyd2wt/fl mice harboring the Nkx2–5/Cre

transgene (Smyd2wt/flCre) to obtain Smyd2 conditional knockout

(cKO) mice (Smyd2fl/flCre). This mating resulted in offspring of 4

Figure 3. Generation of Smyd2 conditional knockout mice. (A) The targeting vector contains a short (0.6 kb) and a long (7.4 kb) arm of
homology, a neomycin resistance cassette (neo) for positive selection, and a thymidine kinase cassette for negative selection. Two site-specific
recombination sites were employed in vivo. Flp recombinase was used to delete the neo marker from the mouse germline and Cre recombinase
afterwards allowed the conditional deletion Smyd2 in selected tissues. Two loxP sites flank the region to be deleted. This region includes exon 1 of
Smyd2. (B–C) Southern-blot analysis was performed to identify successfully targeted ES cell clones. Wild type (wt) or targeted (ta) alleles are
indicated by arrows respectively. (B) Southern-blot analysis for homologous recombination was performed across the long arm of homology
identifying clones 7 and 9 for successful recombination by size difference. (C) Southern-blot analysis for homologous recombination was
performed across the short arm of homology also identifying clones 7 and 9 for successful recombination by size difference. The restriction
enzymes used for Southern blotting were SalI/Bgl2 or BamHI as indicated below the blots. (D) Genotyping PCR was performed using a primer pair
binding at positions P1 and P2 (A) to identify WT (366 bp) and floxed (500 bp) Smyd2 alleles respectively. A representative genotyping PCR results
for each genotype is shown (D).
doi:10.1371/journal.pone.0009748.g003
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genotypes (Smyd2fl/fl, Smyd2wt/fl, Smyd2fl/flCre, Smyd2wt/flCre). As

shown in figure 4A, animals were born at normal Mendelian ratios

and survived until adulthood without any obvious abnormalities.

For all subsequent analyses we used the Smyd2fl/fl genotype as the

control group, as this is widely accepted [42–44]. The genotypes

used for analysis are shown by a representative genotyping PCR

Figure 4. Analysis of cardiac specific Smyd2 deletion. (A) Mating of Smyd2fl/fl mice with Smyd2fl/flCre mice resulted in offspring of four
genotypes (Smyd2wt/fl, Smyd2fl/fl, Smyd2wt/flCre, Smyd2fl/flCre) at normal Mendelian ratios. (B) The genotype of the animals used for analysis is shown by
a representative genotyping PCR. Animals homozygous for the floxed Smyd2 allele but lacking the Nkx2–5 driven Cre recombinase were used as
control. (C) Protein extracts (70 mg) from Smyd2fl/fl, Smyd2wt/flCre or Smyd2fl/flCre (cKO) mouse hearts were subjected to western-blot analysis and the
knockdown efficiency as well as antibody specificity was assessed by probing the blot with an anti-Smyd2 antibody. Smyd2 protein expression was
lowered by half in the heterozygous animals while it was almost completely absent in the homozygous cKO animals. The blot was re-probed with an
anti-GAPDH antibody for equal loading control. (D) Cryosections from P1 control or Smyd2 cKO mice were stained with an anti-Smyd2 antibody (red)
and an anti-Caveolin-3 antibody (green) to co-stain the cardiomyocyte cell membrane. Smyd2 shows a distinct expression in the cardiomyocytes of
control mice while no expression was observed in the cardiomyocytes of cKO animals. Pictures were taken at a magnification of 10006. (E) Real-time
qPCR showing relative expression levels of Smyd-family members 1–5 in P5 control or Smyd2 cKO mouse heart ventricles. Data is shown as mean +/2
SEM, *p,0.05 vs. control, #p,0.01 vs. control, n = 5.
doi:10.1371/journal.pone.0009748.g004
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(Fig. 4B). Western Blot analysis of cardiac tissue revealed that

Smyd2 protein expression in Smyd2fl/wtCre mice was approximately

reduced by half, whereas Smyd2 expression was almost completely

abolished in cKO (Smyd2fl/flCre) animals (Fig. 4C). Immunohisto-

chemistry using cryosections from neonatal (P1) mouse hearts

further confirmed loss of Smyd2 expression in cKO animals

(Fig. 4D).

Since the loss of Smyd2 functional activity might result in

compensation by other Smyd-family members, we also investigat-

ed whether expression levels of the related Smyd genes 1–5 are

affected by Smyd2 deletion. Relative Smyd1–5 mRNA expression

profiles in hearts from P5 mice were obtained using real-time

qPCR of RNA/cDNA samples from either control or Smyd2 cKO

mice. This analysis confirmed the significant knockdown of Smyd2

expression and revealed that Smyd1/mBop expression was

modestly, but statistically significantly, elevated (1.3-fold60.09)

in the cKO animals. No significant changes were detected for

other Smyd transcripts (Fig. 4E).

Morphologic and functional analysis of Smyd2 cKO hearts
Following successful knockdown of Smyd2 in cardiomyocytes

we analyzed the hearts of adult Smyd2 cKO mice. The Smyd2 cKO

hearts appeared normal (Fig. 5A), and we detected no significant

changes in heart to body weight ratios compared to control mice at

6 month of age (Fig. 5B). Similar results were obtained from

analyses of neonatal hearts (data not shown).

Since Smyd2 is most highly expressed after birth, we also

examined the hearts of neonatal (P3) as well as adult (.8 weeks)

mice by histological analysis using hematoxylin and eosin staining

as well as Masson’s trichrome staining. Upon microscopic

observation we observed no obvious differences in necrosis or

cardiomyocyte organization (Fig. 5C). Additionally, no signs of

cardiac fibrosis were observed (Fig. 5D).

The absence of morphological changes would not rule out

potential phenotypes at the functional level. Thus, we assessed

functional cardiac parameters by MRI-analysis. As shown in

Fig. 5E, Smyd2 deficiency did not alter end-systolic volume, end-

diastolic volume or stroke volume compared to control littermates.

Observed variations in functional parameters deviate in physio-

logic range [45].

Taken together, the data suggest that Smyd2 does not

contribute non-redundantly to development or maintenance of

normal cardiac morphology even though neonatal cardiomyocytes

are the primary site of Smyd2 expression.

Molecular analysis of Smyd2 cKO hearts
In an attempt to reconcile these paradoxical findings, we

investigated potential genome-wide changes in the cardiac

transcriptome by expression profiling. Based on the observation

that Smyd2 expression peaks after birth, we expected maximal

changes in target gene expression between Smyd2 cKO and control

animals at that time. Yet, microarray analyses of neonatal (P5)

heart ventricles revealed only modest changes in global gene

expression patterns (ArrayExpress/accession no.: E-MEXP-2542).

Although Smyd2 was previously shown to function as a

transcriptional repressor in cultured cells [20], the vast majority

(79%) of the differentially expressed transcripts were down-

regulated (Fig. 6A). Functional annotation analysis for all

significantly regulated transcripts [46–47] indicated that regulated

transcripts are enriched in translational processes (p-value ,0.01)

(Fig. 6B). Interestingly, the majority of enriched transcripts in this

cluster were found to encode for subunits of either cytosolic or

mitochondrial ribosomes. Real-time qPCR was performed as a

second technique to additionally confirm transcriptional regula-

tion of certain mitochondrial ribosomal subunits (Fig. 6C).

The majority of deregulated genes in Smyd2 cKO hearts

displayed reduced expression. This, along with the observation

that Smyd2 gain of function experiments, in vitro, resulted in a

predominant up-regulation rather than down-regulation of genes

[32], predicted that Smyd2 might act as a transcriptional activator

in the wild type heart. As Abu-Farah and colleagues found histone

methyltransferase activity to be essential for target gene upregula-

tion [32], we also determined the extent of H3K4 as well as

H3K36 methylation in neonatal Smyd2 cKO versus control hearts,

as these histone modifications are generally believed to be

associated with actively transcribed genes [30–31,48–49]. How-

ever, western blot analyses using purified histone fractions revealed

no differences in the extent of mono-, di- or tri-methylation on

H3K36, or H3K4 (Fig. 6D).

An alternative mechanism by which Smyd2 might contribute to

transcriptional activation was suggested in previous studies of the

highly related paralogue, Smyd3 [19]. In addition to catalyzing

H3K4 HMTase activity, Smyd3 may act as a direct transcriptional

regulator via a ternary association with RNA Polymerase II and

the RNA helicase, HELZ [19]. As with Smyd3, Smyd2 co-

immunoprecipitates with co-transfected HELZ as well as with

endogenous RNA polII (Fig. 6E, F). This feature, shared by

Smyds2 and 3, might contribute to the observed target

deregulation observed in our microarrays in the absence of global

methylation changes.

Discussion

Members of the Smyd protein family have been shown to be

involved in the regulation of cellular differentiation processes

[19–21]. It has become increasingly apparent that the functional

role of Smyd proteins is of particular importance for the

differentiation of muscle tissue [14,25–27,29]. Targeted gene

disruption revealed Smyd1 to be essential for early cardiac

development [14] by acting as a downstream effector of the

cardiac transcription factor, MEF2C, in the developing heart [26].

However, functional characterization of other Smyd-family

members in the heart has not been performed. Since we have

recently identified Smyd2 as a distinct Smyd -family member that

is most highly expressed in heart and brain [20], we performed a

study aimed at expanding the understanding of Smyd proteins in

the heart with specific focus on Smyd2.

Our results reveal that Smyd2 is differentially expressed during

cardiac development, displaying highest expression levels around

birth in rats and mice. In contrast to Smyd1 deficiency, loss of

Smyd2 does not result in embryonic lethality, consistent with

implications from expression data that Smyd2 functions later in

development. Smyd2 cKO animals are viable and are born in

normal Mendelian ratios with no obvious changes in heart

morphology or function. Thus, Smyd2 does not appear to be

essential for early heart formation.

Given a peak expression of Smyd2 in the first week of postnatal

life, one might anticipate that Smyd2 is important for the

biological processes occurring during this time period, namely

the irreversible exit from cell cycle [50–52] as well as the change

from mainly lactate and glucose catabolism to mitochondrial fatty

acid oxidation [53]. If Smyd2 was essential for these processes, we

would have expected deregulation of genes associated with either

cell cycle control (cyclins, CDKs, cell cycle inhibitors) or key

regulatory enzymes for cardiac energy metabolism, such as carnitine

palmitoyl transferase-I or medium-chain acyl-CoA dehydrogenase [54].

However, microarray analyses did not reveal significant changes of
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Figure 5. Morphologic analysis of Smyd2 cKO hearts. (A) The hearts from 6 month old Smyd2fl/fl or Smyd2 cKO animals were isolated and
washed in cold 30 mM KCl/PBS. Subsequently photographs were taken using a standard digital camera. Scale bar indicates 1 cm. (B) Heart to body
weight ratios were obtained from adult male Smyd2fl/fl or Smyd2 cKO animals. Data is shown as means6 SEM, n= 4. (C) Tissue sections from neonatal
(P3) or adult (.8 weeks) male Smyd2fl/fl or Smyd2 cKO hearts were examined by histological analysis with hematoxylin and eosin staining (H&E). No
signs of necrosis or cardiomyocyte disarray have been observed. Scale bar = 65 mm, n= 4. (D) Tissue sections from neonatal (P3) or adult (.8 weeks)
male Smyd2fl/fl or Smyd2 cKO hearts were examined by Masson’s trichrome staining. Signs of fibrosis were not observed in cardiac ventricles. Scale
bar = 65 mm, n= 4. (E) Functional cardiac parameters were obtained using MRI analysis of either male Smyd2fl/fl or Smyd2 cKO mice at the age of 6
month. No statistical differences were detected for end-systolic, end-diastolic or stroke volume. Data is shown as means 6 SD, n = 4.
doi:10.1371/journal.pone.0009748.g005
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Figure 6. Molecular analysis of Smyd2 cKO hearts. (A–B) Microarray analysis was performed on RNA from P5 neonatal Smyd2fl/fl or Smyd2 cKO
mouse heart ventricles (4 animals per genotype) and sorted for significantly regulated transcripts (p-value ,0.05). (A) Significantly regulated
transcripts have been sub grouped by either up- or down-regulation compared to the Smyd2fl/fl control group. (B) Gene ontology analysis was
performed on significantly regulated transcripts using DAVID tool (http://david.abcc.ncifcrf.gov/). Significantly enriched biological processes are
shown and plotted as the 2log(p-value). (C) Real-time qPCR analysis of 3 nuclear encoded genes for mitochondrial ribosomal subunits was
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such marker genes in P5 mouse heart ventricles, nor did adult

Smyd2 cKO hearts exhibit differences in size or weight as would

have been expected if the proliferation of cardiomyocytes was

affected [55]. Surprisingly, we found that the majority of genes

affected by cardiac Smyd2 deletion are functionally associated

with translation. Interestingly, a number of the down regulated

genes (eg, Mrpl45, Mrps18a and Mrpl3) belong to the nuclear

encoded repertoire of mitochondrial ribosomal subunits [56–58].

To our knowledge there are no previous data showing a

transcriptional increase in components of the translational

machinery occurring after birth. Nonetheless, our results suggest

that the hypertrophic growth of the heart just after birth might be

facilitated by a temporary increase in protein translation. Such a

phenomenon is consistent with previous results which demon-

strated increased ribosome expression during pathologic hyper-

trophy of cardiomyocytes (for review see Hannan et al. [59]). The

fact that we do not observe hypertrophy suggests that Smyd2 is not

a key regulator of normal growth. It will, however, be of interest to

test how Smyd2 cKO mice react to stress.

We and others have previously characterized Smyd2 as a

histone methyltransferase with capacity to methylate H3K36 [20]

as well as H3K4 [32]. As these findings were based on in vitro as

well as cell culture studies, our current study provided the

opportunity to test whether corresponding effects could be

observed in vivo. The observed absence of any detectable changes

in global H3K36 or H3K4 methylation, while unexpected,

indicates that redundant HMTases might compensate in the

developing heart. In particular, Smyd1, also has H3K4 methyl-

transferase activity [25]. Since Smyd1 expression is slightly (but

statistically significantly) elevated upon Smyd2 deletion, it is

possible that this function of Smyd2 might be partially compen-

sated by Smyd1. An alternative and trivial explanation might be

that Smyd2 is predominantly expressed in cardiomyocytes which

make up only 56% of all cell types in the murine heart [60].

Assuming that Smyd2 might be involved in the transcriptional

regulation of a subset of target genes in cardiomyocytes, one might

not expect to detect global changes in histone methylation using

crude heart tissue by western blot techniques. Therefore, a more

detailed analysis of histone methylation status on isolated murine

cardiomyocytes at confirmed target site promoters will be

conducted in future experiments.

The finding that most of the deregulated genes in Smyd2 cKO

hearts were repressed indicate a role for Smyd2 as an activator in

the developing heart. This is consistent with other data from

overexpression studies, showing that Smyd2 gain of function

predominantly results in the up-regulation of genes [32]. The

finding that Smyd2 is capable of interacting with RNA Polymerase

II as well as the RNA helicase, HELZ, suggests that Smyd2 might

share functional similarities with Smyd3 [19]. Although we do not

provide evidence for a functional consequence of the interaction

between Smyd2 and RNAPolII or HELZ regarding the regulation

of transcription, one might speculate that Smyd2 might also

facilitate target gene expression via the elongation of transcription.

In addition to its molecular function as a histone methyltrans-

ferase, Huang et al. recently proposed a distinct role for Smyd2 as a

putative oncogene by methylating p53 and thereby repressing its

tumor suppressive function [33]. Although we did not specifically

address the functional consequence of Smyd2 deficiency for p53

activity in vivo, one might have expected a pronounced phenotype, at

least in adult Smyd2 cKO animals. This seemed reasonable, as it

has been shown that cardiac deletion of Mdm4, another inhibitor of

p53 functional activity, results in p53-dependent dilated cardiomy-

opathy [61]. However, functional misregulation of p53 by Smyd2 in

vivo seems unlikely for the heart, as Smyd2 cKO hearts showed no

noticeable change in the levels of apoptosis or necrosis, nor

transcriptional changes in the p53 target genes Mdm2 and p21

(Figure S1A). Additionally we did not observe any differences in p53

protein stability (Figure S1B/C). Given the importance of

understanding the precise mechanisms of p53 regulation in vivo,

our Smyd2 cKO mice will provide a useful tool for gathering such

information in the heart as well as other organs. The relevance of

Smyd2 in the heart will be particularly interesting in regard to stress

models (myocardial infarction, hypoxia), as functional misregulation

of p53 and other stress sensors might be masked under physiologic

conditions, becoming apparent only when an acute need is present.

In summary, our data reveal that Smyd2 is dispensable for

cardiac development and maturation in the mouse under normal

physiologic conditions. They further suggest that Smyd2 might be

involved in the transcriptional regulation of genes associated with

protein translation.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0009748.s001 (0.04 MB

DOC)

Figure S1 Regulation of p53 target genes in Smyd2 cKO hearts

(A) Microarray analysis was performed on RNA from P5 neonatal

Smyd2fl/fl or Smyd2 cKO mouse heart ventricles. Transcriptional

changes were analyzed for the p53 target genes Mdm2 and p21.

Data is given as fold changes versus Smyd2flox/flox and shown as

means 6 SD, n= 4. (B) Protein extracts (50 mg) from P3 Smyd2fl/

fl or Smyd2 cKO mouse hearts were subjected to western-blot

analysis and blots were probed with an anti-p53 antibody. Blots

were re-probed with an anti-GAPDH antibody for equal loading

control. A representative blot is shown. No differences in p53

protein expression were observed. (C) Densitometric analysis of

p53 protein expression using western-blot. Data is shown as

means 6 SEM and ratio to GAPDH, n= 3.

Found at: doi:10.1371/journal.pone.0009748.s002 (0.54 MB

TIF)
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