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Abstract
The metabolic syndrome (MetS) is a cluster of risk factors including obesity, insulin resistance,
dyslipidemia, elevated blood pressure and glucose intolerance. The MetS increases the risk for
cardiovascular disease (CVD) and type 2 diabetes. Each component of the MetS causes cardiac
dysfunction and their combination carries additional risk. The mechanisms underlying cardiac
dysfunction in the MetS are complex and might include lipid accumulation, increased fibrosis and
stiffness, altered calcium homeostasis, abnormal autophagy, altered substrate utilization,
mitochondrial dysfunction and increased oxidative stress. Mitochondrial and extra-mitochondrial
sources of reactive oxygen species (ROS) and reduced antioxidant defense mechanisms
characterize the myocardium of humans and animals with the MetS. The mechanisms for
increased cardiac oxidative stress in the MetS are not fully understood but include increased fatty
acid oxidation, mitochondrial dysfunction and enhanced NADPH oxidase activity. Therapies
aimed to reduce oxidative stress and enhance antioxidant defense have been employed to reduce
cardiac dysfunction in the MetS in animals. In contrast, large scale clinical trials using
antioxidants therapies for the treatment of CVD have been disappointing because of the lack of
efficacy and undesired side effects. The focus of this review is to summarize the current
knowledge about the mechanisms underlying cardiac dysfunction in the MetS with a special
interest in the role of oxidative stress. Finally, we will update the reader on the results obtained
with natural antioxidant and mitochondria-targeted antioxidant therapies for the treatment of CVD
in the MetS.
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INTRODUCTION
The metabolic syndrome (MetS) represents a cluster of cardiovascular risk factors that
includes abdominal obesity, dyslipidimia, hypertension, and impaired glucose tolerance. The
MetS increases the risk for type 2 diabetes (T2D) and cardiovascular disease (CVD). Thus,
people with the MetS have a five-fold higher risk of T2D and a two to three-fold higher risk
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of atherosclerotic CVD than those without [1–2]. The etiology of CVD in patients with
MetS may involve: coronary atherosclerotic disease, arterial hypertension, left ventricular
(LV) hypertrophy, diastolic dysfunction, endothelial dysfunction, coronary micro-vascular
disease and autonomic dysfunction. The pathogenesis of CVD in the MetS is multifactorial
as it can be caused by one or more factors associated with this condition such as the
systemic abnormalities, insulin resistance, diabetes and/or inflammation. One common
characteristic of CVD in the MetS and the insulin resistant state is increased oxidative stress
in the heart [3–4]. Indeed, patients with the MetS have elevated systemic oxidative damage
as a result of overproduction of ROS and decreased antioxidant protection [5–6]. In this
review, we will first summarize the contribution of each component of the MetS to cardiac
dysfunction and then highlight the underlying mechanisms with a special focus on the
contribution of oxidative stress. Finally, we will summarize and discuss past and current
studies using antioxidant therapies to treat CVD in the MetS.

CARDIAC DYSFUNCTION IN THE METABOLIC SYNDROME
Each component of the MetS is known to independently affect cardiac structure and
function, but their combination under this syndrome seems to carry additional risk [7–8].
Thus, cardiac dysfunction can occur in patients with normal coronary artery disease or other
etiologies, suggesting the existence of specific cardiomyopathies such as obesity-related
cardiomyopathy, diabetic cardiomyopathy and insulin resistance-related cardiac dysfunction.
As summarized in (Fig. 1), common mechanisms responsible for cardiac dysfunction are
shared between obesity, diabetes and insulin resistance, however unique mechanisms
characterize each component of the MetS.

MECHANISMS FOR OBESITY-RELATED CARDIOMYOPATHY
Obesity itself or in association with dyslipidimia promotes hearts failure in humans [9–10].
Several mechanisms have been proposed to explain cardiac dysfunction in obesity including
increased hemodynamic load, cardiac hypertrophy, increased lipid accumulation and altered
substrate metabolism. For example, an association between myocardial triacylglycerol (TG)
content and concentric LV hypertrophy with subtle reduction in systolic function was
reported in humans [11]. Similarly, a higher cardiac TG content was observed in heart of
obese or T2D patients [12], suggesting the involvement of cardiac lipid accumulation in the
pathogenesis of cardiac dysfunction in the MetS (See Review by Kusminski et al. [13]). In
addition to the above mentioned mechanisms, it was recently suggested that adipose-derived
factors and adipokines such as leptin, adiponectin, resistin and fatty acid binding protein 4
(FABP4) can directly affect cardiac structure and function. Indeed, elevated circulating
leptin levels are predictors of worse outcome in patients with CVD and heart failure [14].
Furthermore, leptin treatment of neonatal ventricular myocytes promotes cardiac
hypertrophy through the regulation of actin dynamics [15]. In contrast, leptin treatment of
the leptin-deficient (ob/ob) or the leptin receptor-deficient (db/db) mice completely
normalized cardiac hypertrophy [16], suggesting rather an antihypertrophic role for leptin.
Depressed plasma adiponectin levels correlated inversely with the MetS and T2D and
increased the risk of myocardial infarction and heart failure [17–19]. Similar to findings
with leptin, adiponectin also has antihypertrophic properties as its reduction in mice
promotes the development of LV hypertrophy [20]. Moreover, serum resistin levels are
usually high in mouse models of the MetS and in humans with heart failure [21–24].
Resistin affects both the structure and the function of the heart. Indeed, in-vitro and in-vivo
studies have suggested a role for resistin in promoting cardiac hypertrophy and reducing
contractility [21, 25]. Finally, adipocytes-derived fatty acid binding protein 4 (FABP4)
levels were found to correlate positively with the MetS in a cross-sectional study [26] and
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this fat-specific factor reduced cardiac function through modulation of intracellular calcium
[27–28].

MECHANISMS FOR DIABETIC CARDIOMYOPATHY
Since its first introduction by Rubier et al. [29] forty years ago, the existence of a unique
diabetic cardiomyopathy has been confirmed in numerous studies (see reviews by Boudina
and Abel [30–31]). Indeed, diabetes increased the risk for heart failure even after adjusting
for age, blood pressure, weight, cholesterol and coronary artery disease. Thus, CVD is 2–3
times more common, and survival is worse in subjects with diabetes in comparison with age-
matched and sex-matched counterparts [32–34]. According to the molecular theory of
diabetic cardiomyopathy, hyperglycemia is the main pathogenetic factor, which causes
abnormalities at the cardiac myocyte level, eventually leading to structural and functional
abnormalities [35]. Diabetic cardiomyopathy is characterized by an initial diastolic
dysfunction that occurs before altered systolic function [36–37]. One proposed mechanism
for altered diastolic function in diabetic myocardium is enhanced deposition of glycosylated
glycogen, which is known to promote cardiac stiffness via increased fibrosis [38–40]. In
parallel, hyperglycemia was shown to directly alter components of calcium homeostasis,
leading to diastolic dysfunction (See review by Dobrin and Lebeche [41]). Indeed, the
activity and the content of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is
decreased in diabetes [42–43] and the hemodynamic dysfunction is prevented by up-
regulation of SERCA in a rat model of the MetS [44]. In addition to reducing left ventricular
relaxation time, SERCA2a gene transfer therapy reduced oxygen cost for contraction in a
mouse model of type 2 diabetes [45], highlighting the importance of calcium in metabolic
regulation. The mechanisms by which hyperglycemia affects SERCA activity are through
(1) oxidative stress-mediated oxidation of its cysteine thiols which interferes with the ATP
binding site, making it unable to hydrolyze ATP [46] and (2) through direct cross-linking of
collagen with SERCA, which inhibits its activity. More recently, a role of micro RNAs in
cardiac dysfunction caused by diabetes has emerged [47]. Indeed, the expression of miR133,
the most abundant micro RNA in the heart, was reduced by diabetes, and hyperglycemia-
induced cardiac hypertrophy was prevented by miR133 over-expression in cardiac myocytes
in-vitro [48].

MECHANISMS FOR INSULIN RESISTANCE-RELATED CARDIAC
DYSFUNCTION

The MetS and insulin resistance are associated with abnormal LV diastolic function and
structure independently of age, gender, blood pressure and fasting plasma glucose [49].
Furthermore, insulin resistance predicts the incidence of heart failure independently of other
established risk factors, including diabetes and obesity [50]. Moreover, the contribution of
insulin resistance to cardiac dysfunction without the systemic abnormalities associated with
the MetS has recently been studied using a mouse model of cardiac insulin resistance
obtained by deletion of insulin receptors specifically in cardiomyocytes (CIRKO mice) [51].
Whereas at baseline, these mice exhibit mild alterations of cardiac performance, their
response to pressure overload [52], isoproterenol treatment [53] or myocardial infarction
[54] is altered, suggesting that insulin resistance increased the susceptibility for the
development of cardiac dysfunction independently of obesity or diabetes. The mechanisms
involved in insulin resistance-mediated cardiac dysfunction include altered substrate
metabolism, persistent expression of the fetal beta-myosin heavy chain isoform, reduced
angiogenesis and mitochondrial dysfunction.
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COMMON MECHANISMS BETWEEN OBESITY, DIABETES AND INSULIN
RESISTANCE
1- Altered Cardiac Substrate Metabolism

The mammalian heart possesses the capacity of oxidizing any available substrate to maintain
a steady level of ATP required for contraction. Although, oxidation of fatty acids (FA) is
predominant in the adult heart, the use of glucose, lactate and ketones can be enhanced in
certain pathological condition (See review by Duncan JG [55]. This flexibility in substrate
use is important for normal cardiac function and its alteration by the MetS contribute to
cardiac dysfunction. Thus, obesity, diabetes and/or insulin resistance independently or in
combination affect this flexibility due to alteration in substrate availability or to impairment
in transcriptional regulation of oxidation pathways. For example, obesity in mice enhances
cardiac FA oxidation and reduces glucose oxidation independently of diabetes [56]. The
mechanisms for obesity-related alteration in cardiac substrate utilization are not completely
understood but involve enhanced FA and reduced glucose availability and leptin resistance
[57]. Similarly, type 1 and type 2 diabetes enhanced FA oxidation and uptake whereas
glucose utilization was reduced [58–60]. The mechanisms for increased cardiac FA uptake
and oxidation in the MetS include impaired glucose transport, enhanced long-chain FA
uptake through relocation of the FA transporter CD36 in the sarcolema [61] and increased
mitochondrial CPT-1 activity [62]. Whereas, altered cardiac substrate metabolism is evident
in the MetS, there was no correlation between impaired substrate use and LV diastolic
dysfunction in type 2 diabetic patients, thus excluding a causal role in the development of
cardiac dysfunction during the MetS [60]. Finally, insulin resistance without confounding
systemic abnormalities was shown to reduce both glucose and FA oxidation in the heart
possibly via a reduction in the expression of genes involved in FA oxidation and by
impairing mitochondrial oxidative capacity [51, 63].

2- Altered Cardiac Mitochondrial Function and Biogenesis
Mitochondrial dysfunction plays a crucial role in the pathogenesis of cardiac dysfunction in
the MetS. Indeed, each component of the MetS is known to independently modulate
mitochondrial function, proteome and biogenesis. Whereas most studies examining changes
in mitochondrial function in the MetS in humans have been performed in skeletal muscle,
the results cannot be extrapolated to the heart due to its higher mitochondrial oxidative
capacity and content. Thus, most of what we currently know about mitochondrial function in
the heart comes from animal models of the MetS with the exception of few indirect studies
looking at cardiac oxygen consumption, phosphocreatine (Pcr)/ATP ratios or atrium
mitochondrial oxygen consumption in obese or T2D patients. These studies associated
mitochondrial uncoupling and/or dysfunction with increased cardiac oxygen cost for
contraction in obese individuals [64], decreased high energy phosphate metabolism in the
diabetic heart [65–66] and reduced mitochondrial maximal capacity to oxidize FA and
glutamate in T2D patients [67]. In contrast to human studies, mitochondrial dysfunction in
the heart of genetically obese db/db mice was first reported in the 80s by Kuo et al. [68] and
then confirmed by a recent study [69]. Furthermore, impaired mitochondrial function and
biogenesis was identified in other mouse models of obesity and insulin resistance such as the
leptin-deficient ob/ob mice [70] and UCP-DTA mice [71]. The mechanisms for impaired
cardiac mitochondrial function and biogenesis in the MetS and the insulin resistant state
have been extensively reviewed [3, 72–74] and include enhanced FA-induced mitochondrial
uncoupling [69], increased mitochondrial oxidative stress [67, 75–76], impaired
mitochondrial calcium handling [77–78], enhanced mitochondrial DNA damage [79],
altered mitochondrial proteome [80–84] and deregulation of mitochondrial biogenesis [72–
73, 85].
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3- Impaired Cardiac Autophagy
Although autophagy, which is a physiologic process by which a cell clean damaged proteins
and organelles, has been known since the 60s, its role in CVD has been recently introduced.
Thus, defect in autophagy causes cardiac dysfunction and heart failure particularly under
increased cellular stress such as ischemia/reperfusion (I/R) [86]. Furthermore, autophagy
plays a central role in cardiac dysfunction during aging and its modulation might represent a
promising way to treat cardiac senescence [87–89]. Similarly, long-term caloric restriction
enhances autophagy and preserves cardiac function in otherwise healthy mice [90].
Although autophagy has been implicated in various pathologies of the heart, it is until
recently that the pathophysiologic role of autophagy in the MetS has been introduced [91–
92]. Thus, autophagy is reduced in the hearts of OVE26 mice, a mouse model of severe type
1 diabetes that develop diabetic cardiomyopathy, an effect that was exacerbated by the
inhibition of AMPK and alleviated by metformin treatment [93]. More recently, autophagy
was found to be deregulated in the heart of high fat-fed mice (a mouse model of the MetS),
rendering them more susceptible to I/R injury [94]. The mechanisms underlying the
deregulation of autophagy and whether it can be targeted to treat cardiac dysfunction in the
MetS require more work.

4- Increased Cardiac Oxidative Stress
Oxidative stress (OS) is defined as an excess formation or insufficient removal of highly
reactive molecules such as reactive oxygen species (ROS) and reactive nitrogen species
(RNS) [95]. Many aspects of the relationship between OS and endothelial dysfunction in the
MetS and diabetes have been previously reviewed [96–97], this review will focus on the role
of OS in cardiac dysfunction in the MetS. Increased systemic OS, as evidenced by reduced
serum vitamin C and α-tocopherol concentrations and decreased superoxide dismutase
activity, has been previously documented in patient with the MetS [5–6, 98]. Furthermore, a
positive correlation between systemic OS and the development of insulin resistance and
diabetes was found in the Framingham Offspring Study [99]. Thus, hydrogen peroxide
(H2O2) emission was found to be higher in right atrial appendages obtained from patients
with T2D undergoing non-emergent coronary artery bypass graft surgery [67]. In contrast to
the fewer human studies, many studies have confirmed the existence of OS in the
myocardium of animal models with one or more components of the MetS. Thus, succinate-
supported H2O2 production as well as lipid and protein oxidation markers were increased in
the heart of db/db mice [69]. Furthermore, insulin resistance enhanced cardiac ROS
generation independently of hyperglycemia, hyperlipidemia and hyperinsulinemia in mice
[63], and superoxide production was elevated in the myocardium of high fat-fed
spontaneously hypertensive (SHR) rats [100]. Furthermore reduced GSH/GSSG ratio was
shown in ob/ob hearts [101] and decreased cardiac expression of manganese superoxide
dismutase (MnSOD), glutathione peroxidase I (GPxI) was observed in high fat-fed and
obese Zucker rats [102–103]. Although an association between elevated OS and cardiac
dysfunction in the MetS has been established, a causal role for OS in the development of
myocardial dysfunction has not been proven yet but one could emphasize that ROS-
mediated damage to proteins, DNA and RNA may exacerbate cardiac dysfunction.
Furthermore, OS is involved in the pathogenesis of apoptosis as it can directly activate pro-
apoptotic signaling pathways such as JNK, p38 and ASK-1 [104–105]. In addition,
increased mitochondrial ROS can lead to cytochrome c release and the initiation of
apoptosis [106]. The induction of apoptosis by OS plays an important role in cardiac
remodeling and fibrosis.
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THE SOURCES AND THE MOLECULAR MECHANISMS OF INCREASED
OXIDATIVE STRESS IN THE METS
1- Mitochondrial Sources

Mitochondrial function is particularly important in the heart since it provides over 90% of
myocardial ATP [107]. In the process of normal respiration, 0.4 to 4% of oxygen consumed
by mitochondria is incompletely reduced and form ROS [108]. As illustrated in (Fig. 2),
ROS are generated at several sites of the electron transport chain (ETC), where electrons
leak to O2 to generate superoxide [109]. A significant amount of superoxide is produced at
the level of complex I and III of the ETC. Complex I produces superoxide in the matrix
[110] whereas its production by complex III happens both in the matrix and in the inter-
membrane space [111]. In addition to complex I and III, other less important sources of
mitochondrial superoxide have been documented and include pyruvate dehydrogenase, 2-
oxoglutarate dehydrogenase, the electron transferring flavoprotein ubiquinone
oxidoreductase (ETF-QOR) (receiving electrons from the β-oxidation) and the glyceraol 3-
phosphate dehydrogenase [112–113]. Because of the susceptibility of mitochondrial
membranes and DNA to oxidative damage, detoxifying systems are in place to reduce
superoxide accumulation. This detoxification is achieved by the conversion of superoxide to
H2O2 by MnSOD [114–115] and peroxide reduction by GPx1 and GPx4, thioredoxin
reductases (Trx2), glutaredoxin (Grx2) and peroredoxins (Prdx3 and Prdx5), which are all
expressed in the mitochondria [116].

Mitochondrial-generated H2O2 was documented in the hearts of genetically obese and
diabetic db/db mice and in CIRKO mice lacking insulin receptors in cardiac cells [63, 69].
One common finding between these mice is enhanced FA oxidation, which can promote
ROS formation. Indeed, a study by St-Pierre et al. [111] demonstrated that mitochondrial
H2O2 production in the heart is enhanced when mitochondria are respiring on the FA
substrate palmitoylcarnitine compared to other substrate such as glutamate or pyruvate. This
is possibly due to enhanced superoxide generation from the ETF-QOR, as a result of
accelerated electrons flux through the β-oxidation. This is further confirmed by the
association of enhanced activity of enzymes involved in β-oxidation with mitochondrial
generation of H2O2 in db/db and CIRKO mice [63, 69], whereas no changes in β-oxidation
enzymes activity and no mitochondrial H2O2 generation was detected in ob/ob hearts despite
increased FA oxidation [69]. Another possible mechanism for increased mitochondrial ROS
is inhibition of the ETC, which can trigger superoxide generation through the reverse
electron transfer [111]. This inhibition can be caused in part by glucose or hyperglycemia-
mediated O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) of
mitochondrial complex I, which can lead to ROS generation especially in the presence of
excess reducing equivalents [81]. Furthermore, hyperglycemia increased H2O2 formation in
neonatal cardiomyocyte cell line that was dependent on mitochondrial fission [117].
Whether increased mitochondrial ROS formation is indeed responsible for cardiac
dysfunction in animals with the MetS is possible but has not been fully investigated (see
antioxidant therapy section bellow).

2- Extra-mitochondrial Sources
While mitochondria are considered the major source of cell-damaging ROS in the heart,
there are other cellular sources. The three predominant extra-mitochondrial systems that
produce ROS mammalian cells are NADPH oxidase (NOX), xanthine oxidase (a form of
xanthine oxidoreductase) and uncoupled nitric oxide [118]. Thus, the activity of NOX is
enhanced in the hearts of obese Zucker rats, leptin-deficient ob/ob mice and high fat-fed rats
[103, 119–121]. Interestingly, and confirming the involvement of NOX in ROS generation,
NOX inhibition abolished superoxide production in the hearts of these animals [103]. In
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addition to NOX, xanthine oxidoreductase activity was shown to be elevated in ob/ob hearts
whereas nitric oxide synthase level was decreased [122]. All these studies highlight a role
for NOX and xanthine oxidoreductase as potential extra-mitochondrial source of ROS but
the consequences of inhibiting these enzymes on cardiac function in the MetS have not been
extensively investigated. Thus, inhibition of NOX alleviated contractile defects in ob/ob
mice, in high fat-fed mice subjected to myocardial infarction and in mice with experimental
diabetes [120, 123–124]. One additional cardiac ROS-generating system that is relevant in
the MetS is the rennin-angiotensin system (RAS). Indeed, RAS is up-regulated by various
components of the MetS such as glucose, circulating lipids, obesity and blood pressure
[125], and its activation promotes ROS generation by NADPH oxidase and mitochondria
[126].

ANTIOXIDANT THERAPIES AND CARDIAC DYSFUNCTION IN THE METS
I- Non Mitochondria-targeted Antioxidants

Systemic therapeutics for the treatment of CVD in the context of the MetS need to address
one or several underlying conditions, including metabolic abnormalities (dyslipidemia and
hyperglycemia), hypertension, arterosclerosis, and sleep apnea. There has been a substantial
interest in using natural antioxidant compounds for the treatment of CVD such as vitamins,
flavonoids and polyphenols. More recently, synthetic antioxidants with selective
mitochondrial targeting property have been discovered and used to treat abnormalities
associated with the MetS (See Table 1).

Vitamins—Vitamin E supplementation in Chinese women for 4 month improved plasma
cholesterol levels and markers of oxidative stress [127]. However, unlike smaller trials,
investigation of vitamins administration to larger cohorts of patients did not show positive
results. A randomized trial using Vitamin E daily did not have significant effects on
cardiovascular outcomes in patients enrolled in the Cambridge Heart Antioxidant Study
(CHAOS) [128]. A combination of vitamins C and E did not affect metabolic parameters
(body weights, hemoglobin Alc, low density lipoprotein or triglycerides) of patients with the
MetS or T2D [129]. Furthermore, co-administration of α-lipoic acid and vitamin E to
patients with the MetS, failed to improve their metabolic profile [130]. Overall, vitamin
supplementation does not appear sufficient to improve preexisting metabolic or
cardiovascular complications in humans as reviewed elsewhere [131–132].

Flavonoids and Polyphenols—In contrast to vitamins, flavonoids and polyphenols
supplementation has proven to be efficacious in reducing the metabolic abnormalities as
well as cardiac dysfunction in patients or animals with the MetS. Thus, resveratrol, which is
an antioxidant found in red wine and grape skin/seed, has protective cardiovascular
properties [133]. Resveratrol and S17834 (a synthetic flavonoid derivative) prevented LV
hypertrophy, diastolic dysfunction, and interstitial fibrosis and reduced levels of oxidative
modifications and hyper-insulinemia in high fat high sucrose-fed C57B16 mice [134].
Similarly, resveratrol improved LDL, plasma glucose and insulin, blood pressure, and
cardiac function, in Yorkshire mini swine fed a high cholesterol diet [135]. Furthermore,
resveratrol supplementation in rats fed 65% sucrose, improved glucose tolerance, plasma
insulin and triglyceride levels and enhanced hepatic catalase and superoxide dismutase
enzyme activities [136]. In humans, moderate wine consumption may lower the incidence of
the MetS and the associated cardiovascular complications, a finding that has been recently
reviewed (See review by Liu et al. [137]). A recent study in obese humans showed that 30
days of resveratrol supplementation increased metabolic rate, moderately lowered blood
pressure, and reduced plasma insulin, glucose and triglyceride levels. This was paralleled by
an increase in skeletal muscle mitochondrial function as a result of enhanced AMPK activity
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and SIRT1 expression [138]. These beneficial effects of resveratrol are believed to be
mediated by AMPK as mice deficient in this metabolic sensor are resistant to the beneficial
metabolic effect of resveratrol in high fat-fed mice [139]. Overall, human and animal studies
hold a great promise for resveratrol use to treat cardiovascular complications in the MetS
[140].

Similar to resveratrol, anthocyanin was shown to reduce oxidative stress in-vitro [141] and
LDL cholesterol but not blood pressure or other metabolic parameters in dyslipidemic
patients [142]. Finally, quercetin reduced systolic blood pressure and plasma oxidized LDL
concentration in overweight subjects with high-cardiovascular disease risk [143] reduced
blood pressure and improved cardiac function in Wistar rats fed high carbohydrate high fat
diet [144]. Other natural supplements such as genistein, triterpenoid, naringenin and
curcumin have shown some in-vitro activity against the MetS but in-vivo studies are
required to confirm their benefits on CVD [145].

II- Mitochondria-Targeted Antioxidants
Since mitochondria is considered a substantial source of ROS in the heart of humans and
animals with the MetS and mitochondrial dysfunction is believed to participate in the
development of CVD under this condition, antioxidant therapies should focus on novel class
of compounds with high mitochondrial affinity as the new way to treat CVD in the MetS, a
topic that has been recently reviewed by Subramanian et al [146]. Among mitochondria-
targeted compounds that have been used in animal studies are superoxide dismutase (SOD)
mimetics, CoenzymeQ10 and its analogues and mitochondria-targeted small peptides.

SOD Mimetics—Pharmacological mimetics of antioxidant enzymes, including MnSOD,
were shown to be effective in reducing ROS and restoring mitochondrial function [147].
Treatment of ob/ob mice with the SOD mimetic and peroxynitrite scavenger MnTBAP,
improved glucose tolerance but cardiac function was not assessed in this study [148].
Furthermore, treatment of L6 myotubes with MnTBAP was able to restore insulin-
stimulated GLUT4 translocation after palmitate treatment and in high fat feeding in mice
[149]. Whether MnTBAP treatment improves cardiac dysfunction in the MetS is yet to be
determined in future studies (See Table 1).

CoenzymeQ10 and its Analogs—CoenzymeQ10 is a vitamin-like lipid-soluble
component of the mitochondrial ETC. Studies in cells showed that exogenous administration
of CoenzymeQ10 leads to its mitochondrial localization in contrast to vitamin E, as its
distribution in cells correlates directly with lipid distribution [150]. A recent study
demonstrated that the use of CoenzymeQ10 supplementation reduced superoxide generation
and ameliorated diastolic dysfunction in db/db mice [151]. Furthermore, CoenzymeQ10
treatment, in female db/db mice, slightly lowered LV mass, systolic blood pressure, and
lipid peroxidation [152]. Similarly, addition of CoenzymeQ10 to regular medications,
reduced diastolic dysfunction in children with cardiomyopathy [153]. However,
supplementation with CoenzymeQ10 was not sufficient to reduce hypertension in patients
with the MetS [154–155].

MitoQ, a triphenylphosphonium-conjugated derivative of Co-enzymeQ, is a mitochondria-
targeted antioxidant that efficiently reduces oxidative stress [156] but has no adverse effects
on wild-type mice [156–157]. When supplemented in drinking water, MitoQ decreased
cardiac dysfunction in rats subjected to I/R [158]. Similarly, MitoQ decreased adiposity,
hypercholesterolemia and hypertriglyceridemia in high fat-fed ApoE−/− and ATM+/−/
ApoE−/− mouse models of the MetS [159]. So far, human studies using this compound have
been performed only in the context of Parkinson’s disease and chronic hepatitis C [157].
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Finally, administration of MitoTempol (another mitochondria-targeted antioxidant) and
MitoQ in drinking water improved mitochondrial function and coronary collateral growth
after I/R in Zucher obese fatty rats [160].

Mitochondria-targeted Peptides—A mitochondria-targeted synthetic antioxidant
peptide SS-31 protected against cardiac I/R injury when given ex-vivo and ameliorated
hypertensive cardiomyopathy and myocardial oxidative stress induced by Angiotensin-II
[161]. In sheep, rabbit, and guinea pig models of I/R, SS-31 analogs moderately reduced
infarct size and improved cardiomyocyte survival [162]. Administration of another SS-31
analog at the onset of reperfusion reduced infarct size in diabetes [163–164]. Whereas the
use of these small mitochondria-targeted peptides is protective against I/R, their use for the
treatment of cardiac dysfunction in the MetS needs further investigations.

Other Semi-natural Products—SkQBerb and SkQPalm (derivatives of natural
products) are novel mitochondria-targeted antioxidants that showed potent ROS-scavenging
properties in isolated mitochondria and in human cells [165]. Their use in the context of
CVD and the MetS has not yet been explored.

Ill- Gene Transfer Therapy
Despite disappointing results of various oral antioxidant treatment trials, promising findings
have been reported using gene delivery of enzymes to improve NO bioavailability and
decrease oxidative stress in animal models for cardiovascular diseases. Increased MnSOD
expression in diabetic cardiomyocytes led to improved contractility [166]. Furthermore,
over-expression of cardiac specific metallothionein (a heavy metal scavenger) in mice
reduced ROS levels and improved cardiac and mitochondrial function after long-term high-
fat feeding [167]. Finally, enhanced MnSOD or catalase expression normalized contractility
in mouse models of type 1 and type 2 diabetes [166, 168]. Whereas these results suggest a
protective role of anti-oxidants gene delivery, more work is needed to investigate the
signaling pathways involved.

CONCLUSION
Because of the increasing obesity and T2D rates worldwide, there is an urgent need to
develop new therapeutic strategies to prevent the CVD associated with these conditions.
Therapeutic strategies aimed to reducing systemic abnormalities associated with these
conditions such as reducing circulating glucose, cholesterol and triglyceride levels, were
unable to reverse cardiovascular complications (ACCORD study) or were abandoned due to
failure to reduce the risk of cardiovascular events. These disappointing results indicate that
targeted therapies are indeed required to reduce or prevent the development of CVD in the
MetS. The use of antioxidant as a therapy for the treatment of CVD in the MetS is to be
considered however, care in their use in hearts exhibiting oxidative stress might be useful.
Furthermore, caution has to be taken when the rates of FA oxidation are high, because the
use of antioxidants in this case might eliminate the beneficial effect of ROS on facilitating
FA-induced mitochondrial uncoupling, a process that is required to reduce further ROS
generation. Finally, and based on animal studies, antioxidant therapies have proven to be
effective only as treatments but not as prevention strategies potentially because of negative
effects associated with excessive antioxidant scavenging in non-stressed hearts.
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Fig. 1. Mechanisms for altered cardiac function in the metabolic syndrome
Common and distinct mechanisms responsible for cardiac dysfunction are highlighted for
three important components of the metabolic syndrome; Obesity and dyslipidemia, diabetes
and hyperglycemia and insulin resistance.
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Fig. 2. Major sites for mitochondrial superoxide (O2
−) generation and its detoxification

Black arrows indicate electron flow, blue hatched arrows indicate proton flow and red
arrows indicate superoxide production. SOD1 and SOD2: superoxide dismutase 1 and 2;
GPx: glutathione peroxidase; Trx: thioredoxin and Grx: glutaredoxin. (The color version of
the figure is available in the electronic copy of the article).
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