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ABSTRACT 

In the Western countries cardiovascular disease and cancer are the leading causes of death in 

the ageing population. Recent epidemiological data suggest that cancer is more frequent in 

patients with prevalent or incident cardiovascular disease, in particular heart failure. Indeed, 

there is a tight link in terms of shared risk factors and mechanisms between heart failure and 

cancer. Heart failure induced by anticancer therapies has been extensively studied, primarily 

focusing on the toxic effects that antitumor treatments exert on cardiomyocytes. In this Cardio-

Oncology update, members of the ESC WGs of Myocardial Function and of Cellular Biology 

of the Heart discuss novel evidence interconnecting cardiac dysfunction and cancer via 

pathways in which cardiomyocytes may be involved, but are not central. In particular, the 

multiple roles of cardiac stromal cells (endothelial cells, fibroblasts) and inflammatory cells are 

highlighted. Also, the gut microbiota is depicted as a new player at the crossroads between heart 

failure and cancer. Finally, the role of non-coding RNAs in Cardio-Oncology is also addressed. 

All these insights are expected to fuel additional research efforts in the field of Cardio-

Oncology. 
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1. Introduction 

In the industrialized world, cardiovascular (CV) disease and cancer are the leading 

causes of death in the ageing population 1. Left ventricular dysfunction (LVD) and heart failure 

(HF) are not rare across the broad population of cancer patients. In cancer patients, CV disease 

is the most frequent non-cancer cause of death 2. HF and cancer share the same risk factors (e.g. 

ageing, smoking, obesity, diabetes, dyslipidemia, alcohol intake, inflammation)  3, 4. 

Furthermore cancer and HF may have ancillary factors linking the two together 5. Registries 

have observed that HF patients have a higher cumulative incidence of cancer, with a worse 

prognosis when both co-exist 6, suggesting that cancer surveillance may be useful in the 

management of HF patients 7. Finally, an increased cumulative incidence of cancer among HF 

patients 30 days after MI has been reported, compared to HF-free patients 30 days after MI 8.  

When considering these observations, it should be taken into account that there may be 

a surveillance bias, due to the fact that these study patients usually undergo an intense follow-

up program that may lead to anticipate cancer diagnosis, sometimes discovering malignancies 

that would have gone undiscovered. Moreover, some of the most common therapies used to 

treat HF patients may play a role in revealing tumors otherwise asymptomatic (e.g. a latent 

intestinal neoplasm can bleeding due to anti-thrombotic therapy)3. Clinical presentations can 

also be difficult to distinguish between HF and cancer, since the 2 conditions can share some 

common symptoms (fatigue, dyspnea, weight loss, muscle wasting, oedema) 1, 3. This may delay 

the diagnosis of new-onset cancer in HF patients due to the overlap in clinical manifestation. 

Furthermore, CV function and predictors of exercise capacity have been shown to be impaired 

in patients with cancer per se9. Hence, symptoms due to a tumor may overlap with those of HF 

and be attributed to heart disease. This may even delay cancer diagnosis, as symptoms might 

be thought of as due to advancing disease rather than new cancer  3. Although the relationship 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
a
rd

io
v
a
s
c
re

s
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

v
r/c

v
a
a
2
2
2
/5

8
7
3
5
9
6
 b

y
 g

u
e
s
t o

n
 1

3
 A

u
g
u
s
t 2

0
2
0



7 

 

between cancer and HF is not well-defined in clinical studies, there are increasing data to 

suggest mechanistic links between the two conditions that we discuss in our manuscript. 

Beside these reciprocal relations, cancer and HF carry an independent risk of mortality 

and also limit optimal treatment of the other condition when they co-exist, contributing to 

higher mortality. In addition, the cardiotoxicity risk related to treatment with anticancer drugs 

may unmask or deteriorate pre-existing HF 3. The mechanisms driving HF triggered by 

anticancer therapies have been extensively investigated over the last 20 years and important 

insights have been uncovered 10-12. Nonetheless, major questions are still open, and the answers 

to these questions may lay the foundations for new strategies to detect, monitor and treat cancer-

therapy induced cardiotoxicity. On the other hand, research into the common pathways linking 

cancer and HF regardless of anticancer drugs has just begun 13. 

The latest insights in translational Cardio-Oncology were discussed during the joint 

meeting of the Working Groups of Myocardial Function and the WG of Cellular Biology of the 

Heart of the European Society of Cardiology, held in Naples, Italy, in May 2019. In particular, 

given the systemic involvement of both HF and cancer, the Cardio-Oncology session focused 

on the contribution of organs, systems and cells other than cardiomyocytes to the pathogenesis 

of cardiac dysfunction in cancer patients, and to the interconnection between cancer and HF, 

primarily via inflammation. Opportunities and the current limitations in the use of microRNAs 

(miRNA) in cardio-oncology were also discussed. These topics are reviewed here, to provide 

the reader with updated information and further stimulate research in the field. 

 

2. Role of non-cardiomyocytes in cancer treatment-related cardiotoxicity 

The heart is a multicellular organ composed by cardiomyocytes, fibroblasts, neurons, 

endothelial and hematopoietic-derived cells. In fact, cardiomyocytes are not the most abundant 

cell type 14. The different cardiac cell populations have diverse functions, but also interact 
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through complex intercellular communications 15. Most studies performed so far have focused 

on the effects of anticancer drugs on cardiomyocytes, in both in vitro systems and in vivo models 

16 (see table 1). Briefly, among the many forms of cardiotoxicity caused by several anticancer 

drugs (table 2), cardiac dysfunction due anthracyclines such as doxorubicin (DOXO) has 

historically been the most relevant 17. From a pathophysiological point of view, anthracyclines 

induce cardiomyocyte death, mainly apoptosis and necrosis, via different molecular 

mechanisms, including but not limited to induction of oxidative stress, activation of DNA 

damage responses and impairment of mitochondrial biogenesis and metabolism 18-20. Among 

other mechanisms involved in anthracycline-induced cardiotoxicity, abnormalities in 

myocardial energetics have slso been studied 21, 22. Also biological drugs, designed to target 

specific oncologic pathways may be cardiotoxic, since these pathways play a major role in the 

maintenance of cardiac homeostasis, especially  during stressful conditions, such as 

hypertension or hypertrophy 23. For instance, human epidermal growth factor receptor 2 

(HER/ErbB2) and angiogenesis inhibitors profoundly affect cardiomyocytes metabolism and 

contractile proteins, as discussed in comprehensive reviews 16, 24-26.  

In addition, antitumor therapies likely also affect non-cardiomyocytes in the heart. For 

instance, DOXO has been shown to exert toxic effects on cultured cardiac endothelial cells 27 

and fibroblasts 28-30. This direct activity on non-cardiomyocytes may partly account for the 

cardiotoxicity of the drug, e.g. endothelial cells lose their barrier function with increased 

permeability and myocardial injury.  

The impact of the toxicity of  DOXO and any other antitumor treatment on non-

cardiomyocytes can be better understood when it is placed into the context of the intercellular 

cross-talks in the heart. This concept is exemplified by the current knowledge about the 

cardiotoxicity of anti-HER2 drugs 31. Besides being expressed in breast cancer cells, 

HER2/ErbB2 is also physiologically present in cardiomyocytes together with another receptor 
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tyrosine kinases (RTK) of the same family, HER4/ErbB4 32. Upon binding of HER4/ErbB4 by 

neuregulin-1 (NRG) and other ligands secreted by cardiac microvascular endothelial cells, 

HER2/ErbB2 and HER4/ErbB4 form heterodimers and initiate protective signaling cascades. 

Therefore, drugs targeting HER/ErbB2 are postulated to disrupt the NRG1-HER2/ErbB2-

mediated endothelial cell-cardiomyocyte crosstalk and make cardiomyocytes more vulnerable 

to other stressors (Figure 1). It is notable that trastuzumab, used in the treatment of human 

epidermal growth factor receptor (HER)-2+ breast cancer, also directly damages 

cardiomyocytes and endothelial cells 33; 34. 

The inhibitors of the RTK for vascular endothelial growth factor (VEGF) and platelet-

derived growth factor (PDGF)  cause cardiac microvascular dysfunction secondary to depletion 

of coronary microvascular pericytes 35. The resulting myocardial hypoxia leads to sustained 

expression of hypoxia-inducible factor alpha (HIF-), which was demonstrated to be sufficient 

to cause cardiomyopathy 36,37. Indeed, enhanced vascular permeability and reversible 

microvascular vasoconstriction have been reported in patients receiving therapies targeting 

VEGF and PDGF receptor (VEGFR and PDGFR, respectively) 38. Moreover, this mechanism 

of toxicity well explains the clinical observation that cardiomyopathy associated with anti-

VEGFR/PDGFR agents is reversible 39. 

However, evidence obtained over the last years suggests that blockade of VEGF 

signaing also interrupt endothelial cell-cardiomyocyte communication (Figure 1). VEGF binds 

VEGFR on endothelial cells to stimulate angiogenesis, but also to induce the release of 

angiocrines (including ErbB4 and ErbB1 ligands) that modulate the function and homeostasis 

of adjacent cardiomyocytes 40. Thus, drugs that inhibit VEGFR may alter cardiac function by 

interfering with the VEGF-VEGFR signaling axis, as well as by promoting endothelial cell 

dysfunction and death 41, 42. High-throughput screening of RTK inhibitors pinpointed those 
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targeting VEGFR2 and PDGFR as the most toxic in human induced pluripotent stem cell 

(hiPSC)–derived endothelial cells 43. 

Experimental models and analyses of human biopsies indicate that some features of HF 

with preserved ejection fraction (HFpEF) are at least in part driven by cardiac endothelial cell 

dysfunction. This latter elicits inflammatory infiltration of the myocardium, fibroblasts 

activation to deposit collagen excessively and increased stiffness triggered by a reduction of 

nitric oxide-dependent signaling 44-46. Consistently with the epidemiological finding that the 

risk of HFpEF is correlated with prior radiotherapy for breast cancer 47, similar features were 

demonstrated in rats receiving cardiac radiation 48. Since non-proliferating cardiomyocytes are 

considered resistant to ionizing radiation, other cell types, and in particular endothelial cells, 

are predicted to be the main target of radiation therapy leading leads to HF 49.  

Fibroblasts also regulate cardiomyocytes and inflammatory cells through their 

secretome 50, 51. In a recent study, DOXO caused both apoptosis of cardiac fibroblasts and 

secretion of Fas ligand, which in turn promoted cardiomyocyte death in a paracrine manner 52. 

Conditional deletion of ataxia telangiectasia mutated kinase (ATM) in cardiac fibroblasts 

attenuated cardiac cell apoptosis, LVD and mortality in response to DOXO, suggesting that 

fibroblast are central in the pathogenesis of DOXO cardiotoxicity through ATM. The 

interactions between fibroblasts and other cardiac cell types, and the mechanisms in the 

cardiotoxicity of anticancer therapies, are an important area for future research 52. Senescence 

of fibroblasts and possibly other cardiac stromal cells is especially worth being investigated, 

since it has been proposed that it plays a major role in the pathogenesis of heart disease 53.  

In conclusion, oncological drugs and radiotherapy induce abnormalities in non-

cardiomyocytes, which secondarily derange the networks with cardiomyocytes and may lead to 

LVD and HF. Additional studies are needed, 54, 55 also considering that cardiotoxicity may be 

evident in an already damaged myocardium, but may remain latent or hidden in the healthy 
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heart 56. Since cardiac diseases and their comorbidities significantly change the global cardiac 

transcriptome, proteome and metabolome, it is not surprising that several drugs may act 

differently on the diseased versus healthy hearts 57, 58. Novel cardiac safety testing platforms 

involving combined experimental models of cardiac diseases in the presence and absence of 

major cardiovascular co-morbidities and/or co-treatments are needed 59. In this regard, cardiac 

organoids may allow modelling the complexity of the interactions between the different cardiac 

cell populations and, thereby, comprehensively evaluate the effects of anticancer therapies 55. 

 

3. Interconnections between cancer and heart failure 

Recently, attention has been drawn to the fact that cancer and heart disease have a 

reciprocal relationship: while the presence of cancer may cause LVD, the presence of HF 

associates with excess incident cancer 3-5, 60. The communication between these two threatening 

diseases is complex, intriguing and involves many components. 

First, during life and aging, several risk factors accumulate, which lead to chronic 

inflammation, oxidative stress, and protein and DNA instability. Classical CV risk factors, 

including obesity, diabetes, dyslipidemia and inflammation, are also associated with the 

development of cancer. Many of these risk factors lead to accumulation of fat mass, which is 

an active endocrine organ, secreting inflammatory factors and adipokines, which in turn have 

been associated with new onset CV disease (CVD) and new onset cancer 3-5, 60. 

Second, genetic mutations that accumulate throughout life, such as clonal hematopoiesis 

of indeterminate potential (CHIP), defined as the presence of clonal leukocytes with impaired 

immune proprieties derived by acquired mutation in hematopoietic stem cells, have been 

associated with both cancer and CVD, including HF 61-65. These mutations usually occur in a 

few genes, including DNMT3A, TET2, ASXL1, PPM1D, JAK2, TP53, SF3B1, and SRSF266. 

The risk of developing CHIP increases with aging and, although it rarely results in development 
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of hematologic malignancies, it seems to be tightly linked to increased CV events and worse 

HF prognosis61-65, 67.  

Also, genetic mutations in sarcomeric proteins predispose to HF in patients undergoing 

chemotherapy. Unrecognized rare variants in cardiomyopathy-associated genes, particularly 

Titin truncating variants, have been shown to increase the risk for systolic dysfunction and 

cardiac events in a relatively small population of both children and adults undergoing 

chemotherapy. In specific populations, genotype variant testing, along with cumulative 

chemotherapy dosage and traditional cardiovascular risk factors, may be useful to improve the 

identification of cancer patients with a higher risk for developing HF upon chemotherapy 68. 

Other CV risk factors, such as hypertension and trace albuminuria, have been related to 

cancer development. Therefore, systemic risk factors likely exert effects on several damage 

pathways, and it is hypothesized that individual additional risk factors, such as genetic 

predisposition or pre-existing conditions, will also contribute to the risk of one or both 

conditions. 

Third, cancer and CVD are both associated with profound changes in tissue structure, 

either growth of entirely new tissue or tissue deformation, remodeling, and scarring of pre-

existing tissues, such as heart, endothelial cells and matrix.  Neoplasms are characterized by 

stroma, which is matrix tissue supporting the tumor, providing a scaffold, structure, and 

connections to adjacent organs. Further, most cancers, and especially metastases, rely on strong 

neovascularization requiring mitogenic endothelial cells and pericytes, where multiple growth 

factors play a role. In comparison, damaged cardiac tissue leads to dysfunctional 

cardiomyocytes, and also may develop extracellular matrix remodeling, fibrosis and scar. 

Matrix is produced by activated fibroblasts and multiple cell types homing in, including 

monocytes, macrophages and neutrophils. The cardiac scar is not a static structure, but rather 

is a dynamic and secreting structure 69. 
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4. Psychological convergence of HF and cancer 

There is a well established psychological impact on patients suffering from chronic 

conditions, notably heart failure. This is one of the main aims of cardiac rehabilitation 

programmes in these patients. Unfortunately, rehabilitation programmes have only recently 

been implemented in cancer patients, in a generic “one fits all” umbrella rather than bespoke 

guidelines for specific cancers. It is notable however, the recognition that both cardiac 

dysfunction syndromes and cancers have a significant impact in regards to neuronal changes. 

Whilst these have only just been thought of, the molecular and cellular mechanisms of neuro-

biology change remain relatively unknown. It is likely that both neuronal changes per se as well 

as modifications in signaling and transmission underlie the clinical states of depression or 

cognitive changes in these patients. The most likely culprit remains the chronic systemic 

inflammatory state present in both, probably responsible for an enhanced level of oxidative 

stress, DNA damage, mitochondrial dysfunction as well as synaptic modifications 70; 71. 

Whilst there is available evidence to support a link between certain chemotherapies and 

peripheral neuropathy (for example cisplatin), the issue of clinical states of depression/cognitive 

changes and them per se being a basis for autonomic dysfunction seen in these patients is far 

more complex and yet undemonstrated. At this current time it does not have the level of 

evidence and merrits further exploration. 

 

5. Inflammation at the crossroad between cancer, cardiotoxicity of anticancer 

therapies and heart failure 

Abnormal inflammation is increasingly recognized as a common driver of CVD and 

cancer 72, 73. HF is characterized by a state of mild chronic systemic inflammation, with 

increased circulating concentrations of pro-inflammatory cytokines, such as tumor necrosis 
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factor-alpha (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). Myocardial injury itself 

triggers the recruitment and the activation of immune cells, which in turn produce pro-

inflammatory cytokines and contribute to a self-perpetuating inflammatory state that underlies 

adverse tissue remodeling, primarily associated with capillary dysfunction and fibrosis 74. 

Doxorubicin-induced damage also involves inflammation (Figure 2), with upregulation of pro-

inflammatory toll-like receptor 4 (TLR4) in macrophages 75, higher levels as TNF-α and IL-6 

and reduced levels of the anti-inflammatory cytokine IL-10 76. Cardiac function was preserved 

and survival improved in TLR2 knock-out mice after DOXO exposure compared to wild-types 

77. DOXO also induces local modulators of inflammation and fibrosis, produced by both 

macrophages and fibroblasts. Increased production of the matricellular protein 

thrombospondin-2 (TSP2) is protective in mice treated with DOXO. Enhanced myocyte 

damage in the absence of TSP-2 was associated with impaired activation of the Akt signaling 

pathway. Inhibition of Akt phosphorylation in cardiomyocytes significantly reduced TSP-2 

expression, unveiling a unique feedback loop between Akt and TSP-2 78. Importantly, 

CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors is a 

desired therapeutic effect of anthracyclines 79. 

Indeed, for decades oncologists have been developing strategies to modulate 

inflammation in order to achieve therapeutic anticancer immune responses 80. The first attempts 

were not really successful, since cancer escapes T-cell-mediated cancer-specific immunity via 

inhibitory pathways mediated by cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), 

programmed cell death protein 1 (PD-1), and programmed cell death ligand 1 (PD-L1) (all 

depressing the antineoplastic activity of T lymphocytes) 81. On the opposite, in the last years, 

Immune Checkpoint Inhibitors (ICIs), such as monoclonal antibodies (mAbs) targeting CTLA-

4, PD-1 and PD-L1, have dramatically improved the outcome of many malignancies, but serious 

immune related cardiovascular adverse events have been observed 82-84 (Figure 2). Interfering 
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with the CTLA-4 and PD-1 axes can bring to autoimmune myocarditis and dilated 

cardiomyopathy85, suggesting that these molecules play an important  role in preventing 

autoimmunity86. Hence, immunosuppressive therapies may be necessary to halt immune related 

adverse events (IRAEs) and major adverse cardiovascular events (MACE) 87-89. 

More recently, engineered T cells with chimeric antigen receptors (CAR-T cells) have 

been approved by the U.S. Food and Drug Administration (FDA) as the first genetically 

modified autologous T-cell immunotherapeutic agents that target CD-19. CD-19 is broadly 

expressed on most B-cell malignancies and has limited expression beyond B-cell lineage 90, 91. 

Unfortunately, CAR-T cells are burdened by cytokine release syndrome (CRS) that is due to 

elevated levels of inflammatory cytokines released by activated CAR-T cells and other immune 

cells such as macrophages, with fever and tachycardia that may be associated with hypotension 

and hypoxia. Also, cardiac dysfunction and extremely serious complications such as vascular 

leak syndrome with circulatory collapse and multiorgan failure can be dreadful side effects of 

these therapies 92, 93 (Figure 2). Beside CAR-T cells, bispecific antibodies such as 

blinatumumab (that targets CD19 and CD3 and is increasingly used in the treatment 

of Philadelphia chromosome negative B cell acute lymphoblastic leukemia (ALL)) can also 

lead to CRS and cardiomyopathy94.  

Interestingly, inflammation in cancer plays a dual role. On the one hand it is essential to 

recognize and destroy cancer cells; on the other hand it provides a fertile milieu for 

tumorigenesis and plays key roles in different steps of tumor development, from initiation and 

promotion to invasion and metastasis. Tumor-associated inflammation favors proliferation and 

survival of malignant cells, promotes angiogenesis and metastasis, undermines adaptive 

immune responses, and potentially interferes with responses to hormones and chemotherapeutic 

agents 95, 96. The finding that anti-inflammatory agents are effective in the prevention of cancer 

and CVD further advocates inflammation as a common contributor to both diseases. A 2019 
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study concluded that chronic systemic low-grade inflammation, measured by CRP levels <10 

mg/L, is a risk factor for incident cancer, in particular lung cancer, in patients with stable CVD. 

The relation between inflammation and incident cancer is seen in former and current smokers 

and is uncertain in never smokers 97. Blockade of the pro-inflammatory cytokine IL-1β with 

canakinumab was shown to significantly reduce the rate of recurrent CV events in patients with 

previous myocardial infarction (CANTOS trial). At the same time, blocking IL-1β appeared to 

protect from lung cancer mortality 98, 99. Mice exposed to DOXO showed an increase in serum 

IL-1β along with other inflammatory factors 100. Moreover,  the IL-1β receptor antagonism 

protects against DOXO cardiotoxicity 101. Similarly, the IL-6 inhibitor tocilizumab can protect 

against MACE in CAR-T patients93. 

The experience of IL-1β blockade highlights that the identification of key players of the 

inflammatory response is important to tackle both cancer and heart disease. Among intriguing 

candidates are PI3Ks, and more specifically the PI3K isoform that is enriched in both 

cardiomyocytes and leukocytes (Figure 2). This implies a key role for this isoform not only in 

the control of cardiomyocyte pathobiology, but also in the orchestration of the inflammatory 

response associated to different types of cardiovascular injury 102. PI3K is upregulated in 

patients as well as in mouse models of atherosclerosis, and directs leukocyte infiltration of the 

arterial wall, which is a key pathogenic event in atherosclerosis103. PI3K-mediated 

inflammation is also pivotal to the cardiac response to pressure overload 104.  

Besides directing the cardiac response to stress, macrophage PI3K expression critically 

contributes to tumor growth and progression. Intriguingly, macrophages play opposite roles in 

non-oncological inflammatory conditions and cancer. In response to pathogens or injury, 

macrophages express cytokines that stimulate cytotoxic T cells to clear infected or damaged 

cells. Conversely, in cancer macrophages express anti-inflammatory cytokines that induce 

immune suppression, inhibit T cell-mediated tumor killing and promote resistance to 
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immunotherapies (i.e. T cell checkpoint inhibitors). PI3K has been recently proposed as the 

molecular switch controlling immune stimulation and suppression in cancer 105. The unique 

feature of macrophage PI3K, playing a maladaptive role both in heart disease and in cancer, 

makes this enzyme the ideal pharmacological target to “kill two birds with one stone”, i.e. to 

halt the tumor and at the same time treat the heart 106. This is particularly relevant for cancer 

patients treated with chemotherapy and suffering from iatrogenic cardiotoxicity 15, 105 107. 

Results from clinical trials assessing the combined anticancer effect of such compounds in a 

context of cardiac protection are awaited. 

 

6. The gut microbiome in Cardio-Oncology 

HF has long been recognized to be associated with altered gut function 108, 109. Low 

cardiac output in HF results in intestinal ischaemia, with congestion of the splanchnic 

circulation, bowel wall oedema and impaired intestinal barrier function (Figure 3). This 

condition increases the overall inflammatory state as well as oxidative stress as a consequence 

of HF-induced ischaemia and congestion within the gut via enhanced bacterial translocation 

and the presence of bacterial products in the blood circulation. Increased leakiness modifies the 

gut environment and affects its resident microbial population 110. 

Among the conditions that can influence the gut composition, including individual 

genetic variability, lifestyle, colonization and delivery at birth 111-113, also changes in diet, 

presence of diseases and relative treatments have to be considered 114. Interestingly, genetic 

composition of gut microbiota, defined as microbiome, also influences cancer development and 

progression in different ways 115. Several types of cancers (head and neck, lung, colorectal and 

cervical carcinomas) promote a shift in microbiome composition 116-118. In addition, 

chemotherapy directly impacts the gut microbiota and its efficacy is strongly influenced by 

microbiome composition (Figure 3) 119, 120.  
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Metabolites generated by the gut microbiota derive from the fermentation of indigestible 

fibres to short-chain fatty acids, that have protective properties (reducing inflammation, 

oxidative stress 121, 122 and improving vascular tone). Dietary sources of choline, 

phosphatidylcholine, l-carnitine, and other methylamine-containing nutrients provide 

substrates for microbiota-mediated generation of trimethylamine (TMA) that accesses the 

portal circulation and is converted by the hepatic flavin-containing monooxygenase (FMO) 

family of enzymes into trimethylamine N-oxide (TMAO, Table 3). TMAO can favor the 

development of atherosclerosis, thrombosis, kidney disease, and HF (Figure 3). High plasma 

levels of TMAO have been suggested to be predictive of cardiovascular events of mortality, 

independently from renal function and cardiovascular comorbitities110.  

Additionally, the bacterial transformation of bile acids can result in altered bile acid 

profiles, that in turn can impact systemic inflammatory and fibrotic processes 110. Importantly, 

microbiota-derived peptide mimics may also drive HF, by inducing a lethal inflammatory 

cardiomyopathy. Cardiac myosin-specific TH17 cells are being imprinted in the intestine by a 

commensal Bacteroides species peptide mimic. These cells promote cardiac inflammation and 

dysfunction in genetically susceptible individuals 123.  

Several studies reported SCFAs-producing bacteria perturbation in patients with CVDs 

124. Among these SCFA generated by the gut microbiota, butyrate (BUT) has multiple beneficial 

effects for our cardiovascular system through different mechanisms 125-131, 120 (Table 3). BUT 

exerts major epigenetic effects, acting as a potent inhibitor of histone deacetylase (HDACs) 

activity. Inhibition of HDACs is well-known to protect the heart from pathologic hypertrophy 

and ischaemia 132-135. Among HDAC inhibitors, BUT has been shown to exert anti-neoplastic 

properties in vitro 136, 120; while its derivatives can enhance the anticancer cytotoxic effects of 

DOXO while protecting against cardiotoxicity 137 and can decrease cardiac apoptosis and 

myocardial dysfunction induced by DOXO, by lowering endoplasmic reticulum stress-initiated 
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apoptotic signalling and HDAC-inhibition mechanisms 138, 139. The cardioprotective effect of 

BUT and analogues is associated with the production of anti-inflammatory molecules, 

cytoprotection, modulation of angiogenesis, limiting the occurrence of cardiotoxic 

manifestations caused by DOXO treatments, with reduction of nitrosative and oxidative stress, 

counteracting mitochondrial dysfunction 121. In turn, DOXO is reported to induce GUT-

microbiota dysbiosis in mice, while the administration of BUT attenuates the inflammation state 

induced by DOXO 140, fuelling nutraceutical as a new promising area of research to cardio-

oncology   

 

7. Opportunities and limitations in the use of noncoding RNAs in Cardio-Oncology 

Multiple evidence seems to suggest an involvement of circulating microRNAs 

(miRNAs) in anthracyclines-induced cardiotoxicity both in vivo and in the clinical setting, 

evidencing a very heterogeneous situation. In particular, when focusing on DOXO, miR-1 141, 

142 and miR-34a 143-146, showed a drug-induced regulation in tissues and plasma samples, both 

in patients and animal models. miR-1 is one of the most investigated and most highly expressed 

miRNAs in cardiac and skeletal muscle, both in physiological 146, 147 and pathologic 148, 149 

condition. While many groups have indicated miR-1 as a specific circulating marker of heart 

disease, there is no clear indication about its unambiguous cardiac origin, particularly in 

anthracyclines-induced toxicity, which is a systemic phenomenon. Similarly, miR-34a was 

demonstrated to be modulated by anthracyclines both in experimental models 144, 145, 150 and in 

breast cancer patients 151. Piegari and co-authors, showed that tissue regulation of miR-34a by 

DOXO was not restricted only to the heart 144, hinting at a multi-tissue contribution to the 

circulating levels of this miRNA. Indeed, besides cardiomyocytes, smooth muscle cells, 

fibroblasts, cardiac progenitor cells and endothelial cells may also play a role in DOXO-induced 

cardiomyopathy 152. Acute DOXO treatment in mice was shown to reduce microvessel density 
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and VEGF-A expression with a parallel increase in miR-320a 153. Inhibition of miR320a 

improved cardiac function, decreased apoptosis, and increased microvessel density in DOXO-

treated mice, while overexpression of miR-320a worsened DOXO-induced LV dysfunction 154. 

Conversely, overexpression of the miR-320a target VEGF-A prevented detrimental effects of 

miR-320a in DOXO-cardiotoxicity experimental model confirming VEGF as a direct 

downstream target molecule 153. Mechanistically, the overexpression of the pro-hypertrophic 

miR-212/132 cluster in primary rodent and human iPSC-derived cardiomyocytes as well as in 

in vivo models has been shown to inhibit doxorubicin-induced toxicity 155 Also, another class 

of noncoding RNAs, circular RNAs, may play a crucial role in mediating cardiotoxicity of 

doxorubicin; indeed, overexpression of the RNA binding protein Quaking 5 (Qki5) strongly 

attenuated the toxic effect of doxorubicin in a mouse model by regulating a set of circular RNAs 

including those derived from titin (Ttn; 156). 

The role of miRNAs as markers of cardiotoxicity has also been investigated. Ruggeri 

and coworkers 150 showed that after one month from DOXO administration, only a part of the 

drug-treated mice presented cardiac dysfunction, similarly to the clinical context. miR-1 was 

again among the circulating miRNAs regulated after cardiotoxicity onset, together with miR-

499-5p. In an acute DOXO cardiotoxicity model, the same authors showed that miR-34a-5p 

and miR-451a were dysregulated in all cardiac chambers, with miR34a-5p showing opposite 

trends of regulation between the atria and the ventricles of treated mice. In another study using 

DOXO both in vivo and in vitro acutely and chronically  treated cardiomyocytes, DOXO-

dependent downregulation of miR-30 led to increased cardiomyocyte apoptosis and 

abnormalities of cardiomyocyte β-adrenergic receptor signaling 157. 

Importantly, only part of circulating miRNAs overlapped with their cardiac 

counterparts, suggesting only a partial contribution of the heart to the variations in circulating 

levels of miRNAs upon drug administration. Limitations of the studies are the number of 
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animals, the number of screened miRNAs (often only selected cardiovascular miRNAs), the 

acute phase observed, the absence of tumor in the experimental models, and the lack of 

additional cancer treatments.  

Besides the few miRNAs showing a “reproducible sensitivity” to anthracycline 

treatment, there is a highly heterogeneous picture composed by past and present investigations. 

While the discrepancies in terms of results could be in part explained by the different 

experimental models and by the different malignancies and therapies adopted in patients-based 

investigations, there are at least two fundamental issues that should be addressed in future 

works. A striking feature of many, if not all, published papers is that no study described a 

decline of LVEF below the “normal” threshold of 50%, possibly because of lack of a long-term 

follow-up.  Moreover, the vast majority of human-based research studies concentrated on the 

acute phase of cardiotoxicity 158, and the same limitations often apply also to experimental 

researches, which rarely go beyond a few days’ time span from treatment to sacrifice.  

Additional data on the main non-coding RNAs are summarized in Table 4. 

 

8. Concluding remarks 

We discussed several of the novel exciting insights that are emerging in the ever-

expanding field of cardio-oncology. More research is required to identify and investigate the 

pathways and mechanisms underpinning the intimate relationship between CVD and cancer. 

Current studies focus on shared risk factors, both acquired/modifiable and genetic. The 

substantial structural changes in diseased organs prompt further studies in an effort to learn how 

disease in one organ may communicate with another organ. Learning from each disease 

mechanisms may help to combat both CVD disease and cancer. 
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Figure legend.  

 

Figure 1 

Besides directly affecting cardiomyocytes and the other cardiac cell populations, cancer 

treatments may disrupt the intercellular communications between cardiomyocytes and non-

cardiomyocytes. The inset in the lower part of the Figure shows key endothelial cell (green)-

cardiomyocyte (red) paracrine signaling axes that may be impaired by antitumor therapies. 

NRG-1: neuregulin-1; VEGF: vascular endothelial growth factor; VEGFR2: vascular 

endothelial growth factor receptor type 2; NO: nitric oxide; cGMP: cyclic guanosine 

monophosphate; PKG: protein kinase G 

 

Figure 2 

Inflammation at the intersection of the anti-cancer action and cardiac side effects of major 

oncological treatments.  

Besides directly killing tumor cells, doxorubicin triggers cardiac inflammation via activation of 

macrophages and fibroblasts and the ensuing release of local modulators of inflammation and 

fibrosis, such as TNF-α, IL-1β and IL-6. Major players of the inflammatory response induced 

by doxorubicin include macrophage TLR-4, the matricellular protein thrombospondin-2 (TSP-

2) and leukocyte PI3K. On the other hand, immune check point inhibitors (ICIs) inhibit 

molecules such as cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell 

death 1 (PD-1) and its ligand PD-L1. As a consequence, anti-tumor immune cell responses are 

reactivated and lead to tumor cell death, but concomitantly drives myocarditis. Although these 

new immunotherapies have notable anti-cancer effects, multiple mechanisms of immune 
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resistance exist, and these might be overcome by using PI3K inhibitors that re-shape the tumor 

immune microenvironment. Finally, engineered T cells with chimeric antigen receptors (CAR-

T cells) boosts T cell-mediated tumor killing, but are burdened by cytokine release syndrome 

(CRS) leading to extremely serious complications, including cardiac and vascular dysfunction, 

and ultimately to multiorgan failure.  

 

Figure 3 

GUT Microbiome Dysbiosis can be influenced by both HF and cancer. HF has long been 

associated with congestion of splanchnic circulation, leading to bowel wall edema, impaired 

intestinal barrier function and increased systemic inflammation, that drastically affect GUT 

microbiome composition and response to HF treatments. At the same time, cancer-mediated 

disruption of metabolism and the production of cancer-derived metabolites modifies the 

microbiome. Such altered gut microbiome generates cardiotoxic metabolites such as TMAO 

and Bile Acids, eventually leading to HF worsening. 
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Table 1. Main direct toxic effects of cancer therapies on cardiomyocytes 

Cellular toxicity Treatment(s) most commonly involved 

Type II topoisomerase poisoning * Anthracyclines 

Mitochondrial dysfunction 
Anthracyclines, VEGFR / multitargeted RTK 

inhibitors 

Oxidative stress Anthracyclines 

Impaired authophagy Anthracyclines, proteasome inhibitors 

Altered protein handling Proteasome inhbitors 

Induction of HIF pathways VEGFR / multitargeted RTK inhibitors 

 

* This toxicity is peculiar of anthracyclines. 

VEGFR: vascular endothelial growth factor receptor; RTK: receptor tyrosine kinase; HIF: 

hypoxia-inducible factor.   
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Table 2. Cardiovascular toxicities of cancer therapies 

Type of toxicity Treatment(s) most commonly involved 

LVD, HF 

Anthracyclines, HER2-targeting drugs, VEGFR / 

multitargeted RTK inihibitors, proteasome inhibitors, 

radiation therapy (HFpEF) 

Myocardial ischemia Fluoropyrimidines, VEGFR inhibitors, radiation therapy 

Myocarditis ICIs, cyclophosphamide (rarely) 

Atrial fibrillation Ibrutinib 

QT prolongation 
Arsenic trioxide, vandetanib,androgen deprivation 

therapy (enzalutamide) 

Valvular heart disease radiation therapy 

Pericarditis ICIs,cyclophosphamide 

Hypertension VEGFR inhibitors 

Peripheral artery disease Nilotinib, ponatinib 

Vascular thrombosis * 

Cisplatin, nilotinib, ponatinib, thalidomide and 

lenalidomide, VEGFR inhibitors, proteasome inhibitors, 

aromatase inhibitors 

Pulmonary arterial hypertension Dasatinib, cyclophosphamide 

 

* Acute myocardial ischemia will ensue if thrombosis occurs at coronary artery atherosclerotic 

plaques. 

LVD: left ventricular dysfunction; HF: heart failure; VEGFR: vascular endothelial growth 

factor receptor; RTK: receptor tyrosine kinase; HFpEF: heart failure with preserved ejection 

fraction; ICIs: immune checkpoint inhibitors 
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Table 3 

Role of TMAO and Butyrate in Cardio-Oncology 

Cardiovascular field Cancer field 

TMAO Butyrate TMAO Butyrate 

Prognostic 5 years 

follow-up marker 

in patients with 

heart failure. 

   

Prognostic 

biomarker in  in 

chronic systolic 

HF. 

  

Predictive 

biomarker in 

patients with 

Acute Heart 

Failure 

  

Prognostic 

biomarker in 

patients associated 

with NYHA III 

and IV ischaemic 

aetiology and 

adverse outcomes  

 

Predictive 

biomarker for 

mortality and CV 

mortality in 

HFrEF but not 

HFpEF patients  
110* 

Inhibition of 

maladaptive 

hypertrophy and heart 

failure132; 133; 135 

 

Reduction of 

myocardial ischemia-

reperfusion injury134) 

 

Cardioprotective 

action against DOXO 

toxicity 137 

 

Alleviation of DOXO-

induced ER 

stress138;139)  

 

Prevention of DOXO-

induced mitochondrial 

dysfunction and 

ROS/RNS 

production121 

  

 

Predictive 

biomarker of 

colorectal 

cancer159) 

 

Predictive 

biomarker of 

aggressive 

prostate cancer160 

Induction of 

cytodifferentiation and 

inhibition  leukemic 

cells proliferation;  

inhibition of Lewis 

lung carcinoma cells 

growth136 

 

Increase of the 

antineoplastic effect of 

DOXO137 

 

*High levels of TMAO in patients have been suggested to be predictive of cardiovascular events 

of mortality, independently from renal function and cardiovascular comorbitities110. 
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Table 4 1309 

Non-coding RNAs in Cardio-Oncology 1310 

 Cardiovascular field Cancer field 

 

Circulating 

forms 

(biomarkers) 

Intracellular 

forms 

(epigenetic 

activity) 

Circulating forms 

(biomarkers) 

Intracellular 

forms 

(epigenetic 

activity) 

miR-1 

Marker Of 

Myocardial 

Infarction.161; 

 

Biomarker Of 

Atherosclerosis,  

Coronary Artery 

Disease, Acute 

Coronary 

Syndrome.148 

Involved In 

Cardiogenesis, 

Heart Function, 

Cardiac 

Pathology 162                   

 

Involved In Heart 

Disease And 

Cardioprotection. 

163 

Non-Invasive 

Biomarkers In 

Breast Cancer: 

Early Diagnosis 

And Metastasis 

Prediction164                    

 

Correlation With 

Clinico-Pathologic 

Characteristics And 

Lung Cancer 

Detection.165 

Inhibition Of 

Proliferation 

And Metastasis 

Of Breast 

Cancer. 166; 

 

Differential 

Expression In 

Different Human 

Cancers.167 

miR-

34a 

Biomarker Of 

Aging  168                        

 

Marker Of 

Anthracycline 

Treatment169 

Regulation Of 

Cardiac Ageing 

And Function. 170  

 

Contribution To 

Doxorubicin-

Non-Invasive 

Biomarkers In 

Breast Cancer: 

Early Diagnosis 

And Metastasis 

Prediction164                    

Potential Tumor 

Suppressor And 

Therapeutic 

Candidate In 

Cancer173 
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Induced 

Cardiotoxicity.171 

 

Potential 

Biomarker For 

Early Diagnosis Of 

Esophageal 

Cancer172 

                                              

Associated With 

Aggressive  

Breast Cancer174 

miR-

320a 

Biomarker Of 

Arrhythmogenic 

Cardiomyopathy 

175 

 

Predictive 

Biomarker For 

Left Ventricular 

Remodelling176 

Mediator Of 

Doxorubicin-

Induced 

Cardiotoxicity 

153                                    

 

Involved In 

Human 

Myocardial 

Infarction177 

Early Detection Of 

Pancreatic 

Neoplasia178  

                                                                    

Circulating 

Biomarker Of 

Melanoma179 

 

Regulation Of 
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Figure 1 Click here to access/download;Figure(s);CVR-2020-0455 Figure
1_02-01.tif

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
a
rd

io
v
a
s
c
re

s
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/c

v
r/c

v
a
a
2
2
2
/5

8
7
3
5
9
6
 b

y
 g

u
e
s
t o

n
 1

3
 A

u
g
u
s
t 2

0
2
0

https://www.editorialmanager.com/cardiovascres/download.aspx?id=1048483&guid=bcf83382-1fe9-44ed-af7a-9a1f8754cad0&scheme=1
https://www.editorialmanager.com/cardiovascres/download.aspx?id=1048483&guid=bcf83382-1fe9-44ed-af7a-9a1f8754cad0&scheme=1
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