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Abstract

Fibroblasts comprise the largest cell population in the myocardium. In heart disease, the number of fibroblasts is

increased either by replication of the resident myocardial fibroblasts, migration and transformation of circulating

bone marrow cells, or by transformation of endothelial/epithelial cells into fibroblasts and myofibroblasts. The

primary function of fibroblasts is to produce structural proteins that comprise the extracellular matrix (ECM). This

can be a constructive process; however, hyperactivity of cardiac fibroblasts can result in excess production and

deposition of ECM proteins in the myocardium, known as fibrosis, with adverse effects on cardiac structure and

function. In addition to being the primary source of ECM proteins, fibroblasts produce a number of cytokines,

peptides, and enzymes among which matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitor of

metalloproteinases (TIMPs), directly impact the ECM turnover and homeostasis. Function of fibroblasts can also in

turn be regulated by MMPs and TIMPs. In this review article, we will focus on the function of cardiac fibroblasts in

the context of ECM formation, homeostasis and remodeling in the heart. We will discuss the origins and multiple

roles of cardiac fibroblasts in myocardial remodeling in different types of heart disease in patients and in animal

models. We will further provide an overview of what we have learned from experimental animal models and

genetically modified mice with altered expression of ECM regulatory proteins, MMPs and TIMPs.
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Review

Cardiac fibroblasts

Myocardium is comprised of a number of cell types, car-

diomyocytes, cardiofibroblasts, endothelial cells and

smooth muscle cells. Cardiac fibroblasts (CFBs) have the

highest cell population in the myocardium, accounting

for about two-thirds of the cells, while cardiomyocytes

constitute about two-thirds of the myocardial tissue vol-

ume [1], although this ratio may vary in different species

[2]. A number of excellent reviews have discussed the

contribution of the contractile proteins and the mole-

cules involved in intracellular calcium handing in cardio-

myocytes in cardiac pathologies [3-5]. In this review, we

will provide an overview of the literature on the role of

CFBs in the context of extracellular matrix (ECM)

remodeling and its contribution to development and

progression of heart disease. Fibroblasts (FBs) are cells

of mesenchymal origin and are present in every tissue in

the body [2,6]. Morphologically, FBs are flat and spindle-

shaped with multiple projecting processes. In the myo-

cardium, CFBs are unique among other cell types in that

they lack a basement membrane. Although historically

FBs were considered a homogeneous cell population, it

has become increasingly clear that FBs from different

tissues have different properties and functions [2,7]. In

this review we will focus our discussion on CFBs, al-

though some of the discussed properties and functions

could also apply to FBs from other tissue sources.

A number of cell surface markers have been identified

for FBs and CFBs, but over time their specificity to

these cells has been challenged. Vimentin, a protein

that is present in the intermediate filaments of FBs, has

been the most widely used FB marker – and although

it is also expressed in other cell types such as endo-

thelial cells [8] and myoepithelial cells [9], due to
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morphological differences among these cell types,

vimentin remains a reliable marker for identifying FBs

[10]. Discoidin domain receptor (DDR) 2 was discovered

as a specific marker for CFBs [1,2,11]. DDR1 and DDR2

are collagen receptors [12,13], a family of protein tyro-

sine kinases involved in a variety of cellular functions

such as growth, migration and differentiation [14].

DDR1 is expressed mainly in epithelial cells, whereas

DDR2 is expressed in mesenchymal cells [15]. DDR2

was detected in rat and mouse heart [16], and has been

considered to be more specific than vimentin for CFBs

since it is not expressed in cardiomyocytes or cardiac

endothelial cells [11]; however, it is also expressed on

specific bone-marrow-derived cells, fibrocytes [17], leu-

kocytes, vascular smooth muscle cells [18,19], and cor-

neal epithelial and endothelial cells [20]. Another FB

marker is fibroblast-specific protein 1, a filament-

associated calcium-binding protein in FBs [21]; however,

fibroblast-specific protein 1 has also been found to be

expressed in leukocytes and a number of cancer cells

[22].

Myofibroblasts

In response to appropriate stimuli, most commonly

myocardial injury, CFBs can differentiate into myofibro-

blasts (myoFBs), which are more mobile and contractile

with a greater synthetic ability to produce ECM proteins

[23]. MyoFBs, originally identified and named by Gab-

biani in 1971 [24], are not found in healthy myocardium

and only appear following cardiac injury [25]. Similar to

CFBs, cardiac myoFBs are nonexcitable cells, but express

a number of smooth muscle cell markers that are not

typically expressed in quiescent CFBs, such as alpha

smooth muscle actin (αSMA) [26], smooth muscle my-

osin heavy chain, vinculin, paxillin, and tensin [27]. The

internal microfilmanents in the myoFBs are connected

to the extracellular fibronectin domains via specialized

adhesion complexes called fibronexus. This allows the

myoFBs to exert a contractile force on the surrounding

ECM [28]. MyoFBs are highly responsive to chemokines

released at the site of injury. This is the main mechan-

ism that mediates migration of FBs to the site of injury.

In addition, myoFBs themselves produce and secrete a

number of cytokines (for example, IL-1α, IL-1β, IL-6,

IL-10 and TNFα), which in turn help to maintain the in-

flammatory response to injury [25].

Cardiac injury triggers CFBs to be differentiated to

myoFBs, which have a stronger ability to produce ECM

proteins. MyoFB have been demonstrated to play a key

role in reparative fibrosis in the infarcted heart [29], and

to be associated with hypertrophic fibrotic scars in vari-

ous injury models. Differentiation from FB to myoFB is

promoted by transforming growth factor beta (TGFβ),

cytokines, the ECM, and other growth factors [30,31].

TGFβ induces the transdifferentiation of CFBs into

myoFBs and increases collagen expression [23], whereas

IL-1β inhibits differentiation of CFBs by preventing the

expression of αSMA and other contractile proteins in

these cells [25]. In vitro, αSMA expression levels in cul-

tured CFBs are increased by passaging, and after the

third passage CFBs are believed to become myoFBs [25]

with elevated TGFβ expression such that stimulation

with exogenous TGFβ could not further increase colla-

gen production in these cells [23]. Transformation of

CFBs to myoFBs shifts the balance in ECM turnover, in-

creasing synthesis and accumulation of fibrotic deposi-

tions that can replace the myocytes and/or interrupt the

myocyte–myocyte interactions in the myocardium lead-

ing to overall impairment of cardiac function.

Origins of cardiac fibroblasts

CFBs are derived from mesenchymal cells. During heart

development, epicardial cells formed by migration of

proepicardial cells over the embryonic heart undergo

epithelial-to-mesenchymal transformation and subse-

quently differentiate into FBs [32]. This transition is

induced primarily by periostin [33] and TGFβ [34].

However, epicardial cells do not constitute all of the FBs

in the heart. In principle, they only contribute to the FBs

in the cardiac interstitium [35] and fibrous annulus

[36,37]. The annulus is an electrically inert structure that

forms the isolating barrier between the atrial and ven-

tricular tissues necessary for normal sequential activa-

tion of the heart. The FBs in the atrioventricular valve

leaflets are primarily derived from the endocardium [38].

After the completion of embryonic development, the

epicardium-derived and endocardium-derived cells be-

come quiescent.

Injury to the heart can trigger amplification of resident

CFBs, transformation of endothelial or epithelial cells to

FBs, or recruitment of hematopoietic cells originating

from the bone marrow to the site of injury and their

transformation into CFBs and myoFBs (Figure 1). Myo-

cardial fibrosis in response to cardiac pressure overload

is a characteristic feature of this disease and has been

reported to result from proliferation of resident CFBs

[39] as well as transformation of endothelial cells to

mesenchymal cells leading to generation of CFBs and

myoFBs [40,41]. Endothelial-to-mesenchymal transform-

ation can be induced by TGFβ in a Smad-dependent

fashion during cardiac fibrosis, while bone morphogenic

protein 7 blocks this process and could serve as an anti-

fibrotic factor [40]. A very recent study has reported that

suppression of receptor kinase Tie-1, but not Tie-2, pro-

motes endothelial-to-mesenchymal transformation in

human endothelial cells [42]. In addition, Notch-

mediated epithelial-to-mesenchymal transformation has

also been reported to lead to CFB proliferation in
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myocardial infarction (MI) as well as in aortic constric-

tion [43].

Bone marrow-derived cells and circulating blood

cells such as monocytes and fibrocytes are another

source of CFBs in response to injury [6]. Monocytes

have been proposed as a potential source of CFBs in

pathological fibrosis in ischemia–reperfusion injury

through elevated monocyte chemoattractant protein-1,

which promoted the uptake of hematologic monocytes

[44], and MI [45,46]. Fibrocytes, circulating FB pro-

genitor cells, originate from the hematopoietic stem

cells in the bone marrow and display phenotypic

similarities to other leukocytes such as CD14

expressed by monocytes [47]. Following MI, bone-

marrow-derived cells were found to constitute a large

number of CFBs and myoFBs in the infarct area con-

tributing to infarct formation [45,48]. In addition,

bone-marrow-derived cells were found to constitute

more than 60% of the CFBs and myoFBs in an ex-

perimental autoimmune myocarditis model [49], and

about 30% of CFBs and myoFBs in cardiac pressure

overload [40]. CCR2, a chemokine receptor that is

expressed on bone marrow cells, has been shown to

be critical in recruitment of bone marrow cells to the

heart during disease since CCR2 deficiency prevented

angiotensin-II-induced accumulation of bone-marrow-

derived FB precursors (fibrocytes) in the myocardium

and cardiac fibrosis [50]. Perivascular cells, such as

pericytes, have been shown to differentiate into

collagen-producing FBs in the kidney [51] and in the

retina in vitro [52], but the contribution of these cells

in formation of CFBs has not yet been determined

[6]. In summary, the origin of CFBs during develop-

ment is different from that during disease, which

Figure 1 Origin of cardiac fibroblasts during development and disease. During development, epicardium-derived cells undergo epithelial–

mesenchymal transformation (EMT), while endothelial cells (from the endocardium) can undergo endothelial–mesenchymal (EndMT) and

transform to cardiac fibroblasts. Following myocardial injury, bone marrow (BM)-derived cells (monocytes, BM progenitors and fibrocytes) can be

recruited to the site of injury and transformed to cardiac fibroblasts. This can occur in addition to EMT and/or EndMT.
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could explain the different functions and properties of

CFBs during development, health and disease.

Functions of cardiac fibroblasts

CFBs are involved in many aspects of cardiac functions,

such as homeostasis and remodeling of the cardiac

ECM, cell–cell communication with cardiomyocytes,

electrical activity, production of growth factors and cyto-

kines, and intercellular signaling with other CFBs, endo-

thelial or smooth muscle cells that can impact cellular

events such as angiogenesis, cell proliferation, cardio-

myocyte hypertrophy or apoptosis (Figure 2). FBs can

also be reprogrammed into different cell types, such as

pluripotent stem cells [53], myoblasts [54], neurons [55].

Recently, it has been reported that FBs can be repro-

gramed to contracting cardiac-like myocytes cells by

expressing developmental transcription factors, MEF2,

HAND2, GATA4 and TBX5 [56,57], or by treatment

with a combination of miRNAs (miRNAs 1, 133, 208

and 499) [58]. As such, CFBs are critical in maintaining

normal cardiac structure, function, biochemical and

electrical features of the heart, and CFBs also play a key

role during pathological remodeling of the heart. CFBs

are conductors with a high membrane resistance [59]

and electrically separate the atria and the ventricle, by

forming the fibrotic annulus, to ensure proper contrac-

tion of the heart [36]. CFBs are connected with cardio-

myocytes via gap junctions, particularly connexins

(Cx40, Cx43, and Cx45), which is essential in maintain-

ing an optimal electrical conduction in the heart [10,60].

Another major function of CFBs is to synthesize a

variety of bioactive molecules and secrete them into the

myocardial interstitium. These molecules include cyto-

kines (TNFα, interleukins and TGFβ), active peptides

(angiotensin II, endothelin 1) and growth factors [61],

which function in the myocardium in autocrine and/or

paracrine fashions. CFBs are the key cell type respon-

sible for ECM homeostasis in health and its remodeling

in heart disease. CFBs synthesize the ECM proteins

while also producing the enzymes that degrade these

proteins, and inhibitors of these enzymes. In this review,

we will focus on the function of CFBs in the context of

ECM formation, homeostasis and remodeling in differ-

ent types of heart disease.

Cardiac fibroblasts are critical in extracellular matrix

homeostasis

One of the primary functions of CFBs is maintaining the

integrity of the cardiac ECM, a network structure that in

addition to providing structural and functional integrity

to the heart, also contains a number of cytokines and

growth factors that can impact cardiac function and the

fate of cardiac cells. Cardiac ECM is critical in mediating

the mechanical connection among the cardiomyocytes,

CFBs and the blood vessels within the myocardium. The

ECM also transmits extracellular mechanical signals to

the cardiomyocytes. The ECM is mainly comprised of fi-

brillar collagen types I and III, as well as less abundant

collagen types IV, V and VI. The ECM also includes

fibronectin, laminin, elastin and fibrillin, proteoglycans

and glycoproteins. CFBs are the primary source of all of

these ECM proteins [62], which can be induced by a

number of growth factors such as platelet-derived

growth factor, basic fibroblast growth factor and TGFβ

during development and disease [63].

In addition to producing ECM proteins, CFBs also

produce ECM-regulatory proteins – matrix metallopro-

teinases (MMPs), which can degrade ECM proteins –

and their inhibitors, tissue inhibitors of metalloprotei-

nases (TIMPs). A well-controlled balance between the

function of MMPs and TIMPs is critical in maintaining

ECM homeostasis [64]. MMPs are the predominant pro-

teases responsible for degradation of the ECM proteins.

MMPs are Zn2+-activated proteases that are synthesized

as inactive zymogens (pro-MMPs), and can be activated

by removal of an amino-terminal propeptide domain

and exposure of the catalytic domain. Among the 26

MMPs cloned and characterized in vertebrates, the

MMPs so far identified to be involved in myocardial re-

modeling are as follows: MMP1, MMP3, MMP8,

MMP13, MMP2, MMP9, MMP12, MMP28 and the

membrane-type MMPs (MT1-MMP/MMP14) [65-69],

although the role of higher MMPs in the cardiovascular

system is less well explored. MMP1 degrades collagen

types I, II and III and the basement membrane proteins,

Cardiac Fibroblasts

Growth Factors

Cytokines

MMPs
TIMPs

ECM proteins

ECM homeostasis 

Myocyte hypertrophy or apoptosis  

Angiogenesis

Cardiac electrical activities

Natriuretic 

Peptides

Figure 2 Pluripotent cardiac fibroblasts impact different

aspects of cardiac structure and function. Cardiac fibroblasts can

produce a number of active peptides (for example, cytokines,

growth factors, peptides), extracellular matrix (ECM) proteins

(collagens, elastin, fibronectin, and so forth), and ECM-regulatory

proteins, matrix metalloproteinases (MMPs) and tissue inhibitors of

matrix metalloproteinases (TIMPs). As such, cardiac fibroblasts can

impact molecular and cellular events that collectively determine

cardiac structure and function.
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MMP12 targets elastin, MMP8 and MMP13 can process

collagen types I, II and III, while MT1-MMP can cleave

a number of ECM proteins including fibronectin,

laminin-1 and fibrillar collagen type I [70-73]. Although

classically known as gelatinases, MMP2 and MMP9 also

process a number of collagens, including collagen types

I, IV and V, while MMP2 additionally cleaves collagen

type III [74]. Rodents lack the MMP1 gene but express

MMP1a (mColA) and MMP1b (mColB) genes [75], pri-

marily in the reproductive organs but not in the heart

[76]. The proteolytic activity of MMPs is kept in check

by TIMPs, the predominant inhibitors of MMPs in the

myocardium [64]. Four TIMPs have so far been cloned

[77], among which TIMP2, TIMP3 and TIMP4 are

expressed in the healthy heart, whereas TIMP1 is

expressed at low levels in the healthy heart but its levels

rise in diseased hearts [76,78-80]. TIMPs can inhibit sev-

eral MMPs, while they each also possess unique proper-

ties [81]. Although MMPs and TIMPs are best known

for their functions in ECM homeostasis, they also pos-

sess a number of other functions and properties that

have been discussed elsewhere [64,82].

CFBs can produce a number of MMPs and TIMPs

[83-86] whereby they can impact different aspects of

ECM homeostasis and remodeling. A number of growth

factors, cytokines, and chemokines have been identified

that can regulate production of MMPs and TIMPs by

CFBs. Proinflammatory cytokines such as TNFα and IL-

1β induce transcription of a number of MMPs, TIMP1

and TIMP2 in the myocardium [87]. Brain natriuretic

peptide (BNP) has been reported to be produced by

CFBs and to induce production of MMP1, MMP2,

MMP3, MMP14 and TIMP2 [88]. Adult mouse FBs have

been reported to synthesize a number of soluble secreted

MMPs (MMP13, MMP8, MMP2, and MMP9), and two

MT-MMPs (MMP14 (MT1-MMP) and MMP16 (MT3-

MMP)) [83]. Using a range of MMP-deficient mice

(MMP13−/−, MMP8−/−, MMP2−/−, MMP9−/−, MMP14−/−

(or MT1-MMP−/−) and MMP16−/− (or MT3-MMP−/−)),

Sabeh and colleagues demonstrated that only the

membrane-anchored MMP14 is required for focal colla-

gen invasion required for FB migration through the

stroma, compared with bulk collagenolysis by the sol-

uble MMPs [89].

While CFBs are the main source of ECM regulatory

proteins, MMPs and TIMPs, these molecules can also

impact on CFB function. MT1-MMP can cleave a num-

ber of ECM proteins including fibronectin, laminin-1

and fibrillar collagen type I [70-73], and has been shown

to also trigger fibrosis by cleaving and activating the la-

tent ECM-bound TGFβ, activating the Smad pathway in

CFBs and triggering collagen production [90,91]. MMP2

and MMP9 have been shown to release the ECM-bound

latent TGFβ, thereby inducing collagen synthesis [92].

Consistently, cardiac overexpression of MMP2 led to se-

vere myocardial fibrosis [93]. In quiescently cultured

human CFBs, overexpression of TIMPs using specific

adenoviruses showed that each TIMP can impact

the function of CFB differently [94]. Overexpression

of Ad-TIMP1, Ad-TIMP2, Ad-TIMP3 and Ad-TIMP4

increased αSMA levels, indicating differentiation of

CFBs into myoFBs. Ad-TIMP2 increased collagen syn-

thesis by CFBs, whereas Ad-TIMP3 increased FB apop-

tosis. These functions of TIMPs were independent from

their MMP-inhibitory function [94]. These findings col-

lectively indicate that while CFBs produce ECM proteins

and the ECM-regulatory proteins, they are in turn influ-

enced by these factors working as a self-regulating cycle.

Remodeling of myocardial extracellular matrix in heart

disease patients

Remodeling of the ECM is a key component of cardiac

remodeling that occurs in disease. Disruption of the

ECM network structure interrupts the connection be-

tween the myocardial cells and blood vessels, thereby

compromising the structural integrity and function of

the heart. On the other hand, excess production and ac-

cumulation of ECM structural proteins, or fibrosis,

results in enhanced stiffness of the myocardium and

impedes ventricular contraction and relaxation, leading

to distorted architecture and function of the heart. Ex-

cess collagen deposition and fibrosis has been clearly

linked to myocardial stiffness, diastolic and systolic dys-

function [95]. Fibrosis can be the result of hyperactivity

of existing FBs that proliferate rapidly in response to in-

jury, or recruitment and proliferation of circulating

bone-marrow-derived cells that can enter the myocar-

dium and transform into FBs and myoFBs.

Fibrillar collagen types I and III are the predominant

components of cardiac ECM. These collagens are pro-

duced as pro-collagens that are then processed into ma-

ture collagen molecules upon cleavage of their pro-

peptide domain by procollagen peptidase. Assembly and

cross-linking of mature collagen molecules gives rise to

collagen fibrils and collagen fibers. During physiological

ECM turnover or pathological ECM remodeling, colla-

gen fibers are degraded and the telopeptides in the

amino-terminals or carboxy-terminals of collagen mole-

cules are cleaved (Figure 3). The pro-peptide from the

carboxy-terminal or the amino-terminal propeptides of

collagen type I (PICP, PINP), and those of collagen type

III (PIIICP, PIIINP) are released during biosynthesis of

these collagens in a stoichiometric manner, and hence

are considered biomarkers of collagen synthesis. How-

ever, the carboxy-terminal or amino-terminal telopeptide

of collagen type I (CITP, NITP) and type III (CIIITP,

NIIITP), which are produced when these collagens are

degraded, are considered biomarkers of collagen
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degradation [96]. Measurement of these biomarkers in

heart disease patients has provided insight into cardiac

ECM remodeling in different types of heart disease.

Different reports have been made with respect to col-

lagen turnover in hypertensive patients. Reduced serum

CITP, a marker of collagen type I degradation, was sug-

gested to explain collagen deposition and fibrosis in

hypertensive patients [97], whereas a later study showed

increased CITP as well as PICP (a marker of collagen

synthesis) in hypertensive patients with left ventricular

(LV) fibrosis and diastolic dysfunction indicating

increased overall collagen turnover in these patients

[98]. Using endomyocardial biopsies from hypertensive

patients, a direct correlation was found between serum

PICP and collagen volume fraction, while PICP levels

were also higher in patients with severe fibrosis com-

pared with those with less severe fibrosis [99]. Similarly,

serum levels of PINP correlated with diastolic dysfunc-

tion in hypertensive patients without diabetes [100], sug-

gesting that a serum marker of collagen synthesis (PICP

or PINP) could be used as a biomarker for fibrosis in

hypertensive patients. In hypertrophic cardiomyopathy,

ECM turnover is a major determinant of cardiac remod-

eling. In patients with congestive heart failure, high

serum levels of cardiac fibrosis (PIIINP and PICP) are

significantly associated with poor outcome [101].

In patients with coronary artery disease but no MI,

serum levels of PIIINP, but not PINP, correlated well

with the number of diseased vessels and severity of cor-

onary artery disease [102]. In addition, in patients with

acute myocardial infarction (AMI), elevated serum

PIIINP levels during the first few days post MI was asso-

ciated with suppressed LV function, increased LV volume

over 1-year follow-up [103], poor overall prognosis and

survival [104]. Early post-MI serum PIIINP levels have

been suggested to serve as a marker of long-term LV re-

modeling and prognosis. However, a more recent study

reported that CITP served as the most suitable prognos-

tic tool in patients with acute and chronic MI compared

with PINP, PIIINP and TIMP1 [105].

In using plasma biomarkers for ECM remodeling in

patients with heart disease, it is important to keep in

mind that collagen type I is the most abundant collagen

in the human body and is ubiquitously expressed in al-

most all organs and tissues in the body. Although colla-

gen type III shows a relatively more tissue-specific

expression pattern, it is also highly expressed in the skin,

lungs and the vasculature. Hence, development of more

cardiac-specific plasma biomarkers would provide

more accurate insight into ECM alterations in the

myocardium.

Alterations in MMPs and TIMPs in heart disease patients

Alterations in MMPs and TIMPs levels have been stud-

ied in different types of heart disease as a surrogate

measure of myocardial ECM remodeling. In patients

with end-stage dilated cardiomyopathy, analysis of LV

myocardial tissue showed decreased MMP1, increased

MMP3, MMP9, TIMP1 and TIMP2, and no changes in

MMP2 levels [106]. Picard and colleagues reported

increased MMP1 and TIMP1 mRNA levels in right sep-

tal endomyocardial biopsies from patients with dilated

cardiomyopathy that did not correlate with LV diameter,

whereas collagen volume density correlated well with LV

diameter in these patients [107]. Hypertensive patients

with cardiac hypertrophy have been reported to have

Figure 3 Structure of collagen molecule. Pro-collagen is comprised of two alpha-1 chains and one alpha-2 chain intertwined into a triple helix.

Pro-peptide domains at the carboxy-terminals and amino-terminals are cleaved, resulting in formation of mature collagen. When collagen is

degraded, during physiological turnover or pathological adverse remodeling, telopeptides (from the amino-terminals or carboxy-terminals) are

cleaved and released into the plasma.
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reduced plasma levels of MMP1 [97], MMP2 and

MMP9 [108], while elevated plasma TIMP1 levels have

been reported in hypertensive patients [97] that corre-

lated with diastolic dysfunction and LV fibrosis [98].

In patients with MI and unstable angina, serum levels

of MMP2 and MMP9 (but not MMP1), TIMP1, TNFα

and IL-6 were significantly elevated compared with

healthy controls, suggesting that these MMPs, TIMP1

and proinflammatory cytokines could play an important

role in the pathophysiology of acute coronary syndrome

[109]. Measurement of temporal changes in plasma

MMPs and TIMPs levels following MI showed a rapid

and sustained increase in MMP9 and MMP8, with a

delayed increase in TIMP2 and TIMP4 levels [110].

Plasma levels of MMP2 and MMP9 were elevated in

AMI patients, but only the MMP9 levels exhibited a bi-

phasic profile that peaked within the first 12 hours and

then fell to a plateau [110]. This report is consistent with

an earlier study that reported the early peak in MMP9

levels correlated with white blood cell and neutrophil

counts after AMI, and inversely correlated with LV ejec-

tion fraction and LV end-diastolic volume during the fol-

low-up, whereas the higher plateau levels later after

AMI were associated with better LV function and LV re-

modeling [111]. However, plasma MMP9 has also been

reported to serve as a useful prognostic tool in patients

with AMI, where during the 2-year follow-up plasma

MMP9 levels (but not MMP2, TNFα, C-reactive protein,

creatine kinase or pro-BNP) were the only predictive of

late-onset congestive heart failure [112]. Overall, plasma

biomarkers and their levels can be influenced by the

type, severity and stage of disease, which should be taken

into consideration when comparing reports from differ-

ent studies.

Experimental models of heart disease and extracellular

matrix remodeling

MI results from occlusion of a coronary artery, subject-

ing the downstream myocardial tissue to hypoxia and is-

chemia. The remodeling process consists of a series of

timed molecular events that include recruitment of in-

flammatory cells, proliferation of CFBs or recruitment of

circulating bone-marrow-derived cells and their differen-

tiation to myoFBs, and formation of the fibrotic scar tis-

sue. Experimental models of myocardial ischemic injury

can be generated in different species by permanent or

temporary ligation of the left anterior descending coron-

ary artery resulting in MI or ischemia–reperfusion, re-

spectively. Ischemia–reperfusion results in greater

inflammatory cell influx and prolonged inflammatory re-

sponse compared with MI, whereas in the MI model a

greater number of CFBs are detected at the injury site,

which correlates well with greater degree of fibrosis and

ECM remodeling in the MI compared with the

ischemia–reperfusion model [113]. CFBs are a critical

element of myocardial repair that produce collagens,

providing the tensile strength for cardiac tissue [1]. As

such, interruption or hindrance of CFB activation will

lead to decreased tensile strength of the cardiac wall,

predisposing the cardiac chambers to dilate from the

pressure of the blood within the chamber. Although in-

hibition of fibrosis post MI in mice lacking secreted

frizzled-related proteins-2 was reported to result in

beneficial outcomes [114], a recent study showed that

inhibiting CFBs (by interrupting the wnt/β-catenin sig-

naling) prevented fibrosis, impaired the wound healing,

and accelerated cardiac dilation and dysfunction within

a few days of myocardial ischemic injury in mice [115].

This study clearly indicates that the post-MI fibrosis is

reparative, and in fact a healing process and interruption

of this process may bear unfavorable outcomes [116].

The wnt-1/β-catenin has also been identified as a key

pro-fibrotic signaling pathway in myocardial ischemia–

reperfusion injury, activating the epicardial cells to

undergo epithelial-to-mesenchymal transformation, gen-

erating FBs, triggering CFB proliferation and expression

of profibrotic genes [116]. Following myocardial ische-

mic injury, MMPs mediate a number of cellular

responses, such as inflammation and fibrosis, through

processing the ECM proteins as well as non-ECM sub-

strates. MMP-mediated degradation of the ECM gener-

ates fragments that serve as chemoattractants triggering

infiltration of inflammatory cells to the site of injury.

The infiltrating macrophages and neutrophils in turn

produce a number of MMPs, such as MMP8, MMP9

and MMP12 [117-120], which then further contribute to

the adverse remodeling.

In hypertensive heart disease, reactive myocardial fi-

brosis increases myocardial stiffness and reduces compli-

ance. Roles of MMPs and TIMPs have been indicated

in the myocardial fibrosis in a number of hyperten-

sive animal models. Deoxycorticosterone acetate salt-

hypertensive rats showed higher collagen deposition

through endothelin-1-mediated TGFβ expression [121].

This was later reported to be preceded by increased

fibronectin expression, which could contribute to ECM

cell attachment and promote collagen deposition, as well

as elevated gelatinase levels (MMP2 and MMP9) [122].

While TGFβ is well known to activate the Smad sig-

naling pathway in CFBs, thereby mediating FB activation

and collagen production, a recent study by Koitabashi

and colleagues demonstrated that the TGFβ signaling

pathway in the cardiomyocytes via TGFβ-receptor 2

plays a critical role in myocardial fibrosis following pres-

sure overload [123]. Cardiomyocyte-specific knockdown

of TGFβ-receptor 2 completely blocked myocardial fi-

brosis and LV dysfunction, activation of the Smad path-

way as well as TGFβ-activated kinase 1 and preserved
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capillary density. However, cardiomyocyte knockdown of

TGFβ-receptor 1 or treatment with a TGFβ neutralizing

antibody only suppressed the Smad activity (not TGFβ-

activated kinase 1) and partially suppressed fibrosis

without improving LV function [123]. As such, TGFβ-

mediated activation of TGFβ-activated kinase 1in cardio-

myocytes was proposed to underlie the maladaptive

hypertrophy and dysfunction secondary to cardiac pres-

sure overload.

Atrial natriuretic peptide and BNP have been shown

to inhibit FB proliferation, collagen synthesis and MMP

release via activation of the cGMP pathway [124], and to

oppose the TGFβ-induced ECM protein synthesis

in vitro [125,126]. These findings are particularly inter-

esting since FBs are also an important source of natri-

uretic peptides, and as such can generate a negative

feedback loop [127]. Deletion of the major natriuretic re-

ceptor for atrial natriuretic peptide and BNP, natriuretic

peptide receptor-1 in mice (Npr1−/−), resulted in hyper-

tension, cardiac hypertrophy, congestive heart failure

and sudden death at 6 months of age [128,129]. Elevated

levels of MMP2, MMP9 and TNFα in these mice were

linked to increased production of collagen types I and

III by CFBs in a TGFβ-dependent manner, leading to

myocardial fibrosis [130]. Atrial natriuretic peptide and

BNP levels are consistently elevated in heart disease in

patients [131,132] as well as in experimental models of

heart disease [133,134], and are consistently linked to se-

verity and progression of disease [135]. Taken together,

these elevated atrial natriuretic peptide and BNP levels

in heart disease could be a protective attempt by the

myocardial tissue to limit excess fibrotic deposition, tis-

sue injury and adverse remodeling.

MMPs, TIMPs, myocardial remodeling and fibrosis

As discussed earlier, a tightly controlled balance between

the function of MMPs and TIMPs is critical in maintain-

ing the ECM integrity. A number of experimental animal

models have been developed in order to determine the

contribution of MMPs and TIMPs in ECM remodeling

in heart disease, and genetically modified mice have pro-

vided valuable tools in examining the causal role of

MMPs and TIMPs in this process.

Remodeling following myocardial infarction

Targeted deletion of MMP2 improved post-MI survival

by hindering macrophage infiltration and reducing the

rate of LV rupture [136]. MMP7 has been shown to

cleave the gap junction connexin-43, thereby promoting

an arrythmogenic response post MI. MMP7 deletion

therefore improved post-MI survival and improved myo-

cardial conduction pattern owing to preserved

connexin-43 levels [137]. MMP9 deletion provided par-

tial protection against post-MI rupture [138], while

reducing LV dilation and dysfunction [139]. Lack of indi-

vidual TIMPs influenced different aspects of cardiac

structure and function following MI. In TIMP1−/− mice,

MI led to greater LV dilation and increased LV end-

diastolic volume compared with parallel wildtype mice

[140]. In mice lacking TIMP2, MI exacerbated LV dila-

tion and reduced the ejection fraction but did not alter

the rate of LV rupture compared with WT-MI mice [78].

Lack of TIMP3 increased the rate of LV rupture, wor-

sened LV dilation and reduced ejection fraction follow-

ing MI [133], whereas TIMP4 deficiency only increased

the rate of LV rupture without affecting the LV structure

or function post MI [141]. While lack of TIMP2 and

TIMP3 exacerbated infarct expansion, the increased rate

of LV rupture in TIMP3−/− and TIMP4−/− impaired

ECM remodeling in these mice. Second harmonic gener-

ation imaging further revealed reduced density and

greater disarray of fibrillar collagens in the infarct myo-

cardium of TIMP3−/− and TIMP4−/−, consistent with the

increased rate of LV rupture in these mice [133,141].

These data indicate that while TIMP1, TIMP2 and

TIMP3 exert a global impact altering the overall struc-

ture and function of the LV myocardium, the function of

TIMP4 appears to be localized to the infarcted

myocardium.

Mice overexpressing MT1-MMP showed lower sur-

vival and ejection fraction post MI compared with paral-

lel wildtype mice, whereas these parameters were

improved in mice with reduced MT1-MMP levels

(MT1-MMP+/−) [90]. Overexpression of TIMP1 has

been shown to have beneficial effects in mouse [142]

and rat [143] models of MI. Additionally, overexpression

of TIMP2 in the peri-infarct myocardium reduced the

infarct expansion and improved LV dilation and dysfunc-

tion [144].

Fibrosis and ECM remodeling in hypertension and cardiac

pressure overload

Pressure overload exerts a mechanical stress on the ven-

tricles and can trigger cardiac hypertrophy and fibrosis.

In this model of heart disease, the excessive biomechan-

ical stress is transmitted to ECM and cell–ECM connec-

tions that can lead to adverse remodeling of the ECM,

and can further activate the intracellular signaling path-

ways leading to cardiac hypertrophy, fibrosis and cell

death. MMP2-deficient mice showed reduced myocardial

hypertrophy and fibrosis [145], while MMP9 deficiency

partially improved myocardial hypertrophy and fibrosis

following pressure overload [146]. We recently reported

that in response to cardiac pressure overload, TIMP2−/−

mice exhibit greater LV dilation and dysfunction, with

non-homogeneous ECM remodeling which was charac-

terized by areas of disrupted ECM network adjacent to

regions of fibrotic lesions [134]. Myocardial fibrosis in
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pressure-overloaded TIMP2−/− hearts was not due to

increased expression of collagen type I and/or type III,

however, but due to elevated levels of SPARC (secreted

protein acidic and rich in cysteine) and enhanced post-

translational stabilization of collagen fibers [134]. Car-

diac pressure overload in TIMP3-deficient mice led to

exacerbated LV remodeling, and dysfunction [147], and

to severe myocardial fibrosis [148]. The exacerbated LV

dilation and dysfunction in these mice was found to be

due to the combined contribution of augmented MMP-

mediated proteolytic activities and heightened the

TNFα-converting enzyme–TNFα pathway [147], while

myocardial fibrosis was found to be mediated through

an interaction between the TNFα and TGFβ pathways

that led to increased expression of fibrillar collagens

[148]. Interestingly, TIMP4 was found not to contribute

to cardiac response to mechanical stress, as TIMP4−/−

mice exhibited comparable cardiac remodeling, dysfunc-

tion and myocardial fibrosis compared with the parallel

wildtype mice [141].

Conclusion

The ECM is an integral component of the myocardium,

and the factors that influence the integrity of the ECM

structure also impact cardiac structure and function.

Cardiac FBs play a central role in the physiological turn-

over of the ECM as well as its pathological remodeling.

Although cardiac FBs are often associated with cardiac

fibrosis and adverse outcomes, it is important to note

that the primary function of FBs is tissue repair (wound

healing) – which in cases such as MI is in fact beneficial,

and its interruption would have undesirable outcomes.

In addition, MMPs are traditionally known for degrading

the ECM proteins, and TIMPs to inhibit this process.

However, MMPs can also promote ECM production

(and fibrosis) by regulating the activity of FBs, and simi-

larly TIMPs can influence FB behavior and ECM pro-

duction in a MMP-independent fashion. Hence, it is

critical to understand the diverse functions of MMPs,

TIMPs and FBs towards developing effective therapies to

control harmful myocardial fibrosis.
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