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Abstract

We present a framework for cardiac motion recovery using the adjustment of an electromechanical

model of the heart to cine Magnetic Resonance Images (MRI). This approach is based on a constrained

minimisation of an energy coupling the model and the data. Our method can be seen as a data assimi-

lation of a dynamic system that allows us to weight appropriately the confidence in the model and the

confidence in the data. After a short overview of the electromechanical model of the ventricles, we de-

scribe the processing of cine MR images and the methodology for motion recovery. Then, we compare

this method to the methodology used in data assimilation. Presented results on motion recovery from

given cine-MRI are very promising. In particular, we show that our coupling approach allows us to

recover some tangential component of the ventricles motion which cannot be obtained from classical

geometrical tracking approaches due to the aperture problem.

1 Introduction

The modelling of the heart’s electromechanical activity is an active research area [5, 9, 1, 13, 4]. The

simulation of the heart has received growing attention due to the importance of cardiovascular diseases in

industrialised nations and to the high complexity of the cardiac function.

In order to help the clinical practice of cardiologists, it is important however that those models not only

describe with some degree of realism the cardiac function but also be patient specific. Creating such person-

alised cardiac models implies that the anatomy of the patient is taken into account but also that the model

parameters are tailored such that the simulated cardiac motion matches well with the observed cardiac

motion. This represents a great challenge due to the intrinsic physiological complexity of the underlying

phenomena which combine tissue mechanics, fluid dynamics, electrophysiology, energetic metabolism and

cardiovascular regulation. Also only partial information can be derived from clinical data for a specific

patient making the parameter estimation an ill-posed problem.

The objective of this paper is to propose a methodology that aims at creating personalised electromechanical

model of the heart from cine MR images. Previous work [6, 10, 8, 12] on the adjustment of a geometrical

model of the heart on time series of medical images are mainly based on the concept of deformable models.

In such a framework, a surface or volumetric mesh is fitted to the apparent boundaries of the heart by



minimising the sum of two energies: an image term and a regularising or internal term. In such approaches,

the model can be considered as a static system evolving under the minimization of an energy.

Conversely, electromechanical models of the heart are dynamic systems that evolve even in the absence of

any image term. Adjusting such dynamic systems to time series of data (a method also known as ”data

assimilation”) is fundamentally different from adjusting a static system since the parameters of the dynamic

system are additional degrees of freedom that should be estimated. In the medical imaging community,

P.C Shi and his group introduced data assimilation techniques by integrating cardiac models and Kalman

filters for state and parameter estimation, see for instance [16] and [18]. However, such techniques, such as

extended or unscented Kalman filtering, are often limited by the curse of dimensionality since they involve

full covariance matrices whose size are equal to the square of the number of state variables augmented by

the number of parameters to estimate. In the case of clinical applications, as cardiac electromechanical

models are already complex dynamic systems with changing boundary conditions (cardiac phases), having

a computationnally efficient estimation method is crucial.

In this paper, we propose an efficient method to estimate the state (i.e. the position and velocity) of an

electromechanical model from cine MR images which is inspired from the deformable model framework

used in medical image analysis. The goal of this paper is to show the formal equivalence between this

approach and a filtering method introduced by Moireau et al. [7] used in data assimilation, which is different

from Kalman-like filters such as the one used in [18]. The filtering approach proposed in [7] does not

involve any matrix inversion (except the mass matrix which is a diagonal constant matrix), so that it allows

much faster computations: the motion of a whole cardiac cycle on a mesh with 50 000 tetrahedral elements is

estimated in about 10 minutes on a regular PC. This increases largely its potential future clinical application.

The theoretical efficiency of this filter for mechanical systems has been demonstrated in [7]. The theoretical

equivalence between the deformable model approach proposed here and this filtering approach leads to a

better understanding of the trade-off between the electromechanical model and the image data.

We assume in this paper that model parameters are well known, in order to focus only on state estimation.

Some preliminary results on parameter estimation are presented in conclusion, but this is not the goal of

this paper. The proposed approach is first validated on synthetic time series of images and then applied to

clinical cine MR images of a human heart.

2 Electromechanical model

We consider in this paper a fairly reduced electromechanical model since we want the complexity of the

model to match the relatively sparse measures available from imaging data. Furthermore, this coarse level

of modeling allows us to simulate a whole cardiac cycle on a mesh with 50 000 tetrahedral elements in about

5 minutes on a regular PC. Of course, the heart is a nonlinear material undergoing large strain. Thus, the

assumptions of our simplified model are not realistic, but the global behavior of the heart is well represented.

Furthermore, the limited computational time makes the estimation of the mechanical state and parameters

tractable and allows us to test the behaviour of the model on series of heart beats.

2.1 Anatomy Description

The two ventricles are represented as a tetrahedral volumetric mesh including some anatomical information

such as the myocardium geometry, the definition of some clinical anatomical regions (the American Heart

Association regions), and the local orientation of fibres. We can build such a mesh from MR images, as

explained below in section 3.1. The local fibre orientation can be either created from basic anatomical

assumptions (elevation angle across the wall) or extracted from Diffusion Tensor MRI (DT-MRI) [11].



2.2 Simulation of the cardiac electrophysiology

2.2 Simulation of the cardiac electrophysiology

Several electrophysiological models have been proposed in the literature. Due to its efficiency, we use an

Eikonal approach for the electrophysiology propagation, with a volumetric implementation of the algorithm

described in [15]. The depolarisation time td of the electrical wave for a given vertex of the volumet-

ric mesh is computed by solving the anisotropic Eikonal equation v2(∇ tT
d D∇ td) = 1, where v is the local

conduction velocity parameter and D is the tensor defining the conduction anisotropy. In the fibre coordi-

nates, D = diag(1,ρ,ρ), where ρ is the conduction anisotropy ratio between longitudinal and transverse

directions. An anisotropic multi-front fast marching algorithm was developed in order to solve this model

very efficiently.

2.3 Simulation of the myocardium contraction

The biomechanical model presented here is derived from a multi-scale modelling of the myocardium de-

tailed in [2]. The mechanical model is composed of two elements, as shown on Fig. 1.a. The former is a

parallel element which represents the passive properties of the tissue. This parallel element is anisotropic

linear visco-elastic. The second element is an active contractile element controlled by the electrophysiol-

ogy. More precisely, when the action potential is higher than a given threshold (i.e. when we reach the

depolarisation time td), some calcium stored in the sarcoplasmic reticulum inside the cardiac cells is used

for the ATP hydrolysis which provides energy to the molecular motors in the sarcomeres, generating the

contraction of the fibre. The duration of this depolarisation is the action potential duration (APD). The elec-

trical command u is then set to a constant kATP which represents the rate of the hydrolysis of the ATP. After

contraction, during the repolarisation, calcium moves back into the sarcoplasmic reticulum and this calcium

decrease allows the relaxation of the muscle. The electrical command u is then set to another constant −kRS

which represents the activity of the sarcoplasmic reticulum.

Thus, the contractile element is controlled by its corresponding command u through the differential equa-

tion: σ̇C + |u|σC = |u|+σ0 where σC is the strength of the contraction, and σ0 the maximum contraction.

Then, with its associated command u described above, the strength of the contraction for each tetrahedron

element is :

σC(t) =

{

σ0

(

1− ekAT P(td−t)
)

during depolarisation td ≤ t < tr
σC(tr)ekRS(tr−t) during repolarisation tr ≤ t < td + HP

(1)

where tr = td + APD is the repolarisation time and HP the heart period. The command u and the intensity

of the resulting contraction are represented on Fig. 1.b. Then, the active contractile element creates a stress

tensor σC~f ⊗~f where ~f is the 3D fibre orientation and ⊗ the dyadic product. For each vertex of each element,

this results in a 3D force vector ~fC =
1

4

R

S(σC~f ⊗~f )~ndS with~n the surface normal and S the element surface.

Finally, we represent the simplified dynamic law by a stiffness matrix K for the transverse anisotropic

elastic part (parallel element), a diagonal mass matrix M, and a damping matrix C for the internal viscosity

part, which is the Rayleigh damping matrix C = αM + βK, the contraction force vector FC created by the

contractile elements, a force vector FP corresponding to the pressure forces in the ventricles and a force

vector FB corresponding to other boundary conditions. The resulting law of motion is:

MŸ +CẎ + KY = FPV + FC + FB (2)

with Y = (x1,y1,z1, . . .xi,yi,zi, . . .xN ,yN ,zN)T the position vector, N the number of mesh vertices, (xi,yi,zi)

the position of the ith vertex, Ẏ = dY
dt the velocity, Ÿ = d2Y

dt2 the acceleration and FC = (~fC1
, . . . ~fCi , . . .

~fCN ) the

assembled contraction force.
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Figure 1: (a) Simplified biomechanical model. (b) Electrical command and intensity of contraction.

Let X = (Y,Ẏ )T . Then, X is the state vector of the following dynamical system:

{

Ẋ = AX + R(u,θ)
X(0) = X0

(3)

where X0 is the initial state vector, θ is the set of parameters of the model such as maximum contractility for

example and where A (which depends of some parameters too) and R are defined by:

A =

(

03N,3N I3N,3N

−M−1K −M−1C

)

R =

(

03N

FPV + FC + FB

)

(4)

We simulate the four cardiac phases (filling, isovolumetric contraction, ejection and isovolumetric relax-

ation) as described in [14]. The arterial pressures were computed using a 3-element Windkessel model

described in [17].

3 Mesh Creation and Model Initialisation

3.1 Mesh Creation

4D (3D + t) cine MRI provides time series of high resolution images of the heart that describe in part or

in total one (averaged) cardiac cycle. A cine-MRI typically consists in a sequence of 15 to 20 3D images

for one cycle. The high intensity contrast between myocardium and ventricular blood pool allows a rough

segmentation of the blood pools based on the combination of thresholding and connected component ex-

traction. This segmentation is only used to demonstrate the possibilities of the method, a discussion on

the various segmentation methods is out of the scope of this article. Fig. 2.c presents these two connected

components for one image of the cardiac cycle. We need to build a computational mesh of the myocardium,

(a) (b) (c)

Figure 2: (a) Mid-diastole image. (b) Segmented mesh with synthetic fibre directions. (c) Segmented blood

pools of one MR image of the cardiac cycle.



3.2 Model Initialisation

adjusted to the MRI image corresponding to the beginning of our simulation cycle. The first instant of our

simulation cycle is the mid-diastole which corresponds to an instant when the ventricles are almost filled,

just before the atrial contraction (P wave). We select for this the mid-diastole image, using the volume

curves, detailed in the next paragraph. Then, the epicardium and left and right ventricles endocardia were

delineated on this image using an interactive tool. These delineations generate three binary masks of the

epicardium and the endocardia which are combined to obtain the binary mask of the myocardium used to

create the mesh. This is done with isosurface extraction and tetrahedral mesh generation, using the INRIA

software GHS3D (http://www.simulog.fr/mesh/gener2.htm).

We also need the local fibre orientation for this mesh. We generate synthetic fibre by linearly interpolating

the elevation angle between the fibre and the short axis plane, from 80o on the endocardium to −80o on the

epicardium. Fig. 2.b represents the obtained anatomical mesh with its synthetic fibre directions.

3.2 Model Initialisation
P
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Figure 3: Left (solid line) and right (dashed line) ventricle volumes from MRI.

Electrical Model: As cardiac MRI is ECG-gated, we know the heart rate (here the heart period is 0.8 s)

and the acquisition times of the 3D images related to the R-wave instant. This allows a first synchronisation

between the image sequence and the simulation cycle. As the electrical information is not fully available,

we need to extract additional information from the images. Due to the limited field of view, we only see part

of the right ventricle in the MR images. Futhermore, the right ventricle blood pool has a grey level which

varies along the cardiac cycle in cine MR images, thus thresholding is not reliable. Finally the trabeculae

make the right ventricle segmentation difficult. For all these reasons, we have an important difference in

volume between the two ventricles, as shown in Fig. 3. A more advanced segmentation method could

overcome most of these difficulties, but this is out of the scope of this article. As our action potential

propagation model only needs as inputs the time of the initialisation of the electrical wave and the action

potential duration for each element, we extract average values from the volume curves. On these, one can

observe the times of the beginning of the atrial contraction (P wave), of the ventricular contraction (R wave),

and of the ventricular relaxation (T wave) independently for each ventricle (see Fig. 3). These times were

set respectively to 0.0827 s, 0.125 s, 0.425 s. Then, we set the average value of the APD to the difference

between the times of the beginning of the ventricular contraction and relaxation. Thus, for each vertex, APD

is equal to 300 ms.

Mechanical Model: The passive mechanical parameters used are taken from the literature [16]. For the

active component, we can use the volume curves to compute the ejection fraction, which is closely related to

these parameters, in order to initialise it. However, due to the possible error on the right ventricle volume, we

use only the left ventricle volume curve to calibrate the global contractility (the maximum contractility σ0

constant for all the volumetric mesh) in order to obtain the same ejection fraction as the one computed

from the left ventricle volume curve. For our data, σ0 was set to 0.073 MPa/mm2. The rest position of the

mechanical model is defined as the mid-diastole mesh created.



4 Coupling Model and Data: Methodology

In this section, we describe a method for coupling a dynamic system, the electromechanical model of the

heart, and motion information from cine MRI. We start by discussing the choice of a metric to compare the

simulated and observed motion and then describe formally the problem at hand: having a dynamic system

that matches the available observations. Finally we show that motion tracking following a deformable

model approach is equivalent to a data assimilation formulation where the error is minimised. This data

assimilation formulation is directly inspired from the methodology of [7].

4.1 Metrics for comparing simulated and observed cardiac motion

Our objective is to minimize the discrepancy between the simulated cardiac motion and the actual one. One

of the major difficulty is that in cine-MRI (which is the main dynamic modality in clinical routine MRI),

only the apparent motion is visible. We see how the boundary moves, but we loose information on the

tangential motion, which is important in the heart. We need to provide a metric to compare the model and

the data taking this into account.

Since at each image instant the binary segmentation of the right and left blood pools are available it is

reasonable to define the metric as the distance of the model endocardial surfaces to the blood pool surfaces

as they should ideally match. Thus, for each point Yi of one endocardium surface of the mesh, we find the

nearest point Y c
i on the corresponding surface extracted in the MR image. Ideally, we want the distance d̃i

between Yi and Y c
i to be zero. This approach is illustrated in Fig. 4 (in green) in which ~nc is the normal to

the blood pool surface at the point Y c
i .

Howewer, the distance maps must be either precomputed (storage costs) or computed during the estimation

(computationnal costs). Thus, in this paper, we propose to use the reverse metrics: the distance of the

blood pool voxels to the mesh vertices as shown in Fig. 4 (in red). In this figure, ~Ni is the normal to the

mesh at the point Yi. Thus, for each point Yi of one endocardium surface, we find the point Y img
i of the

corresponding surface in the image contour for which the nearest point of the heart mesh is Yi. Ideally, we

want the distance di between Yi and Y img
i to be zero.

Yi

Y img
i~Ni

di

~ncd̃i

Y c
i

Figure 4: Distances d̃i of the mesh to the blood pool (green) and di of the blood pool to the mesh (red).

Data interpolation: Due to limited temporal resolution, only a few MR images are available for a cardiac

cycle. The time step used in the estimation is far smaller than the period between two MR images and

we need information at each time step. Rather than interpolating the MR images, which would blur the

contours, we prefer to interpolate the image forces described in the previous paragraph and computed at the

previous and next images at each time step (see [14] for details).

4.2 Deformable Model Approach

This approach is based on segmentation by deformable models in which we minimise the sum of the energy

of the dynamic system representing the heart and the energy corresponding to images forces, which are



4.3 Data assimilation approach

computed from contour images with distance maps for example. The introduction of the model in the

minimised energy allows us to recover some movement which cannot be obtained from classical geometrical

tracking approaches. Of course, the image forces have no physiological meaning, but if we couple the

model and the data and if we estimate the model parameters (which is the next step of this work), the

motion generated by the model should converge to the one observed in the images. Thus, the intensity

of image forces should decrease along the estimation and the estimated motion should be more and more

physiological.

The definition of image forces are consistent with the metrics chosen in the previous section. Namely, for

each mesh point Yi, we seek the closest point Y img
i along the normal direction ~Ni of the mesh at Yi. Since

the blood pool surfaces are roughly segmented as binary images, we compute Y img
i as the intersection of the

normal line at Yi with the isosurface I(x,y,z) = 127.5 for binary masks set to I = 255. This intersection can

be computed fairly efficiently and with a subvoxel accuracy. More complex image forces involving intensity

profiles, image blocks or textures could be used instead as shown in [3]. Here, we minimise the following

energy:

Ẽimg(Y,Ẏ ,Y img) =
m

∑
i=1

γi‖Yi −Y img
i ‖~Ni~NT

i
. (5)

where ~Ni is the normal of the endocardium surface at the point Yi, m is the number of points of the endo-

cardium surfaces (the points Yi are indexed from 1 to m for more simplicity) and γi is the confidence in the

measure Y img
i . When we differentiate this energy with respect to Y , we obtain:

∂Ẽimg

∂Y
=









...

2γi~Ni~NT
i (Yi −Y img

i )
...









=









...

2γid(Z,Yi)~Ni
...









(6)

Finally, this approach consists in adding the image forces 2γid(Z,Yi)~Ni to the vertex Yi belonging to endo-

cardium surfaces. This is similar to the pro-active deformable model described in [14].

4.3 Data assimilation approach

We will show in the following that this minimisation of energy can be related to a data assimilation approach.

The methodology of this data assimilation is directly inspired from [7]. In this approach, two parts are taken

into account: the electromechanical model described by Equation 3 with inputs consisting in the electrical

command and different external loads, and the available observations. We assume that the parameters of the

model are known, unlike the initial position condition X0 on which we make an error of ξX (X(0) = X0 +ξX ).

A new dynamical system called state observer takes as inputs the electrical command and the image data

and returns the estimated state, written as X̂ which should converge to the true state X . In classical data

assimilation approach, the observation Z (measures) can be directly computed from the true state X , thanks

to an observation operator H such that Z = H X . Then, the observations computed from the estimate

state (Ẑ = HX̂) are compared to the measured observations (Z) and the difference (Ẑ −Z) called innovation
is taken into account in the sate observer dynamics.

In our case, if we note Z the blood pool surfaces, we no longer have Z = H X since with cine MRI, we

cannot track any material points during a cardiac cycle. Instead, we can compare the two surfaces X and Z
through a distance map which can be formalized as H(X ,Z) = 0. The observation operator is taken as the

gradient of the square distance between the two surfaces H(X ,Z) = ∇ d2(Z,X) = 0



4.3 Data assimilation approach

The estimated state X̂ does not match perfectly with the observation, and therefore the error between the

estimated state and the true state can be quantified with ∇ d2(Z, X̂) = 2d(Z, X̂)∇ d(Z, X̂). Note that ∇ d2(Z, X̂)
is a vector of the same size as X and its velocity components and its components which correspond to

points that are not on endocardium surfaces are 0. For points on the endocardium, ∇ d2(Z, X̂) ≡ 2di∇ di

where di = ‖Ŷi −Y img
i ‖. Furthermore, by definition of a distance map, ∇ di = ~Ni where ~Ni is the normal of

the heart mesh at point Ŷi. Then, the built state observer is:
{

˙̂X = AX̂ + R(u,θ)+ Kd∇ d2(Z, X̂)
X̂(0) = X0

(7)

with Kd the gain associated with the data. We can see that with a high gain, the estimated state will rely more

on image data information than in the electromechanical model. Conversely, with no gain, the observer do

not take into account the data and is equivalent to the electromechanical model. Thus, the choice of the

gain Kd depends on the relative confidence in the model and the data.

It is of high interest to analyse the error between the estimated state X̂ and the true state X in order to choose

the gain. With a proper choice of the gain, the error should converge towards zero. We write the error

dynamics by subtracting the model (equation 3) from the observer (equation 7):
{

˙̃X = AX̃ + Kd∇ d2(Z, X̂)
X̃(0) = ξX

(8)

After linearising the data and assuming that the estimated state X̂ is close to X :

∇ d2(Z,X) = ∇ d2(Z, X̂)+ Hd(X̂)(X − X̂) (9)

where Hd(X̂) a matrix n×n where n is the size of the state vector X . Its components corresponding to points

on endocardium surfaces are the 3×3 Hessian matrix of the squared distance di and are null otherwise. Since

the real state X is supposed to coincide with the position and the movement of the apparent boundaries in

the image Z, then ∇ d2(Z,X) = 0. The error dynamics is:
{

˙̃X = (A + KdHd)X̃
X̃(0) = ξX

(10)

A result of the control theory shows that this error converges to 0 if all eigenvalues of (A + KdHd) matrix

have negative real parts. This provides a criterion for selecting the gain matrix Kd.

In practice, we choose the gain Kd as in [7] : Kd = γM−1HT
d . Indeed, if we decompose the error dynamics,

we have:

M ¨̃Y +C ˙̃Y +(K +γHT
d Hd)Ỹ = 0 (11)

Therefore with this choice of Kd , the stiffness of the error dynamics is increased. It implies an increase of

the frequency and the damping of the eigenmodes, and therefore a better convergence toward zero. Here

we see the difference between this filtering method and Kalman filtering methods such as the one proposed

in [18]. The gain Kd is not the Kalman gain, so that the result of the filter is not the optimal result in a

stochastic way, but Kd is chosen in order to ensure the convergence of the error X̃ toward zero. Although we

do not ensure an optimal result, we avoid to compute the inverse of a combination of covariance matrices,

thus leading to a much faster filter than the Kalman approach.

We use the Houbolt implicit scheme to integrate equation 7. Since the image term is also made implicit,

the generalised stiffness matrix that is involved in the linear system of equations should change at each

time step since the matrix Hd depends on the position of endocardium vertices Yi. However, modifying the

generalised stiffness matrix at each time step implies that a Cholesky decomposition or a preconditioning

must be performed at each iteration which is computationally very expensive. Since the stiffness matrix K is



constant, we chose to estimate the term γHT
d HdŶt+dt numerically, by first computing the position Ŷt+dt as if

there were no image forces and then multiplying it by γHT
d Hd. This proved to be a fairly efficient approach

since the preconditioning of the generalised stiffness matrix is only done once. This also gives better results

than a semi-implicit scheme where image forces are estimated explicitly.

Finally, one should note that ~Ni is an eigenvector of the Hessian matrix of the distance map di with eigen-

value 1. Therefore, when using the gain matrix as Kd = γM−1HT
d , the dynamic law of the state observer is

given by :

M ¨̂Y +C ˙̂Y + KŶ = FPV + FC + FB +γHT
d ∇ d2(Z, X̂) = FPV + FC + FB +









...

2γd(Z,Yi)~Ni
...









(12)

This corresponds exactly to the formulation we obtained with the deformable model approach.

5 Results

5.1 Validation with synthetic data

In order to validate our state estimation method in a quantitative way, we generated synthetic cine-MR

images using the electromechanical model with standard values. We took 29 instants of the second simulated

cycle and we generated the corresponding segmented 3D images, using rasterisation of the tetrahedra. As

we assume here that the model is known, all parameters of the model used in the state estimation are the

same than the ones used to generate the synthetic data. Thus the only error is on the initial position. We can

then quantify the evolution of the mean position error in this ideal case.

State error analysis: We observed, as expected, that the root mean squared error (RMSE) decreases with

time, under the action of the state estimation filter. Here, the gain γ was set to 0.8. Fig. 5.a shows the

evolution of the position error along three cardiac cycles. Fig. 5.b shows the intensity of the contraction

forces and the intensity of the image forces for one endocardial vertex and along three cardiac cycles. We

can see that the image forces decrease rapidly in the first times of the first cycles and that the images forces

remain small compared to the intensity of physical forces such as the contraction forces. We can see also

that the image forces do not vanish exactly to zero. The decreasing of this RMSE depends on the spatial

resolution of the images.
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Figure 5: (a) Root mean squared error for three different spatial resolutions. Solid line: 1mm, dashed

line 0.75mm, dash-dot: 0.5mm (in all three directions). (b) Intensity of the contraction force (dashed

line) and intensity of the image force (solid line) for an endocardial vertex along three cycles. (c) Left

ventricle volume curves from the images (solid red), and for three different temporal resolutions: complete

sequence (30 images, dash-dot blue), 15 (dash magenta) and 5 (long dash-dot cyan).



5.2 Results with clinical data

Effect of the spatial resolution of the MR images: The voxel sizes used in the synthetic images are respec-

tively 1mm, 0.75mm and 0.5mm in all three directions. The RMSE decreases if we increase the spatial

resolution of the images and seems to converge to values which are smaller than the spatial resolution of the

images and which should correspond to numerical approximation errors (see Fig. 5.a).

Effect of the temporal resolution of the MR images: For this we used real images (see details in next sec-

tion). The first one was a complete cine-MRI sequence (30 images), the second and the third ones were

subsamples of the cine-MRI sequence (respectively 15 and 5 images). Fig. 5.c shows that the left ventri-

cle volume is better approximated in the case of sequences with 30 or 15 images than in the case of the

sequence of 5 images. Nevertheless, as the contractility of the left ventricle was well calibrated, the knowl-

edge of the model allows us to obtain good information on the left ventricle volume curve, and to compute

good approximations of the ejection fraction. The left ventricle ejection fractions obtained respectively from

the complete segmented sequence, from the estimations with complete MRI sequence, and with 15 and 5

images sequences are respectively: 59.20%, 59.34%, 57.56% and 56.84%.

Cardiac Function Estimation: Finally, in Fig. 6, the physiological curves obtained from the state estimation

are compared with the ones given by the reference simulation. These physiological curves correspond to

the right and left ventricular pressures (Fig. 6.a), volumes (Fig. 6.b) and flows (Fig. 6.c). In the isovolumic

phases, pressures are computed to counterbalance external forces such as contraction forces and image forces

in the case of the estimation in order to keep the volume constant. We can see that in these phases, and in

the ejection phases in which the pressures depend on flows through the Windkessel model, the pressures are

well recovered. We can see also that after a small period due to the initial position error, the volumes and the

global evolution of the flow are well recovered. As flows are the derivative of volumes, errors on volumes

due to the oscillation of image forces are magnified.
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Figure 6: Comparison of: a) Left (red) and right (blue) ventricular pressures(in mmHg). (b) Left (red)

and right (blue) ventricular volumes (in mL) (c) Left (red) and right (blue) flows (in mL/s) in the reference

simulation (dashed curves) and in the estimation (solid curves) with reference images of voxel size of 0.5mm

in all three directions.

5.2 Results with clinical data

Several estimations were made with different values of the gain γ in order to see the effect of the gain on the

state estimation. Fig. 7 shows the MRI segmentation at a time ti of the cardiac cycle. The superimposed lines

represents the endocardium and epicardium surfaces of two heart meshes obtained with different values of γ.

The higher value of the gain gives more confidence in the data than in the model, then the image forces are

larger in this case as we see in Figs. 7.b and 7.c. We can see that the left ventricle is well tracked in the two

cases, while the right ventricle is better tracked in the case of the higher gain. It shows that the contractility

parameter in the right ventricle does not equal the one in the left ventricle, which we calibrated with the left



(a) (b) (c)

Figure 7: a) Delineation of two estimated heart meshes at a given time ti during the contraction. These

delineation are superimposed to the short axis view of the segmentation. The cyan and red mesh were

obtained respectively with a gain γ equal to 0.8 and 0.2. b) and c): 3D view of the estimated heart meshes

with a gain of 0.8 (b) and a gain of 0.2 (c) at the same time ti. Colours correspond to the intensity of the

image forces (in MPa.mm−2).

volume curve obtained from the cine-MRI. Thus, it allows us to detect differences in parameters, which can

lead to parameter estimation.

In order to qualitatively evaluate the estimated motion, we used tagged MRI on the same subject to extract

the projection of the 3D real cardiac motion in a number of short axis view (Fig. 8.a). The qualitative

comparison with the projection of the 3D estimated motion (Fig. 8.b) is promising, as we observe similar

motion patterns. The estimated motion is much smoother due to the influence of the model. We are working

on a more quantitative comparison with the estimated motion.

(a) (b)

Figure 8: Projection on a short axis view of the 3D end-diastolic motion respectively extracted from tagged

MR images (a) and estimated from cine-MRI with the presented method (b). (same subject)

6 Conclusion

Coupling electromechanical models of the heart with clinical data in order to help diagnosis and therapy

planning is still very challenging. This article presents the link between deformable models and data as-

similation in order to estimate cardiac motion from cine-MRI. The proposed method allows to keep the

low computational cost of deformable models while using a rigourous mathematical framework. Motion

recovery is demonstrated on synthetic and real data. These promising preliminary results will be extended

in order to perform parameter estimation, which is the ultimate goal of the approach.
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