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Cardiovascular disease (CVD) is the leading single cause of morbidity and mortality,

causing over 17. 9 million deaths worldwide per year with associated costs of over

$800 billion. Improving prevention, diagnosis, and treatment of CVD is therefore a

global priority. Cardiovascular magnetic resonance (CMR) has emerged as a clinically

important technique for the assessment of cardiovascular anatomy, function, perfusion,

and viability. However, diversity and complexity of imaging, reconstruction and analysis

methods pose some limitations to the widespread use of CMR. Especially in view of

recent developments in the field of machine learning that provide novel solutions to

address existing problems, it is necessary to bridge the gap between the clinical and

scientific communities. This review covers five essential aspects of CMR to provide a

comprehensive overview ranging from CVDs to CMR pulse sequence design, acquisition

protocols, motion handling, image reconstruction and quantitative analysis of the

obtained data. (1) The basic MR physics of CMR is introduced. Basic pulse sequence

building blocks that are commonly used in CMR imaging are presented. Sequences

containing these building blocks are formed for parametric mapping and functional

imaging techniques. Commonly perceived artifacts and potential countermeasures are

discussed for these methods. (2) CMRmethods for identifying CVDs are illustrated. Basic

anatomy and functional processes are described to understand the cardiac pathologies

and how they can be captured by CMR imaging. (3) The planning and conduct of a

complete CMR exam which is targeted for the respective pathology is shown. Building

blocks are illustrated to create an efficient and patient-centered workflow. Further

strategies to cope with challenging patients are discussed. (4) Imaging acceleration and

reconstruction techniques are presented that enable acquisition of spatial, temporal, and

parametric dynamics of the cardiac cycle. The handling of respiratory and cardiac motion

strategies as well as their integration into the reconstruction processes is showcased.

(5) Recent advances on deep learning-based reconstructions for this purpose are

summarized. Furthermore, an overview of novel deep learning image segmentation and

analysis methods is provided with a focus on automatic, fast and reliable extraction of

biomarkers and parameters of clinical relevance.
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INTRODUCTION

Over the past 40 years, cardiovascular magnetic resonance
(CMR) has evolved from an esoteric research tool found in
the confines of large academic supraregional tertiary referral
centers to being an indispensable clinical tool that routinely
changes patient management across the breadth of modern
cardiovascular practice (1). Increasing clinical recognition of
the transformative role this technology can play in patient care
has led to its growing availability in secondary care settings
too, although significant barriers remain to its greater adoption
world-wide, particularly in Africa.

CMR is a versatile non-invasive and radiation-free imaging
modality that provides a comprehensive assessment of multiple
parameters of cardiac function and anatomy in a single
examination. CMR plays a major role in the diagnosis and
management of cardiovascular disease. However, aside from
cost, there remain major obstacles for the widespread usage
of this technique like: (i) complex underlying physics and
technology, (ii) data analysis and interpretation, (iii) large
number of pulse sequences and parameters to choose from,
(iv) challenges from the inherent cardiac and respiratory
motion, and (v) duration of examination. The recent
hype around artificial intelligence algorithms designed to
overcome these hurdles has raised new questions around
the reliability, accuracy, and stability of this technology.
Therefore, to help shape the future of CMR, it is essential
to bridge the gap between theory and practice, and thus, to
promote a bridge of scientific knowledge between the research
and clinical communities by improving (maintaining or
updating) their knowledge of CMR technical principles and
clinical applications.

This review provides an overview of five essential aspects
of CMR which have been covered separately in-depth in
other review papers (2–11). We address: (1) data acquisition
sequences and common artifacts, (2) clinical applications,
(3) clinical examination protocols, (4) image acceleration,
reconstruction, and motion handling, (5) artificial intelligence-
assisted reconstruction and analysis. In addition, this review
provides hands-on tutorials and videos that can be found
at ismrm-mit-cmr.github.io. More specifically, Section The
Physics Behind Cardiovascular MR describes the key physical
principles of CMR, most common pulse sequences and
preparation pulses, and the physics behind the most common
artifacts. Section Clinical Cardiovascular MR: What do we
See and Why do we Need it? covers the clinical application
of CMR in the diagnosis of a spectrum of cardiovascular
diseases. Section Clinical Cardiovascular MR: How Should
we Perform the Examination describes how to complete
a comprehensive examination and deal with challenging
patients. Section CMR Image Quality: No Free Lunch provides
an overview of scan acceleration acquisition and image
reconstruction methods while also describing current solutions
to overcome challenges from cardiac and respiratory motion.
Finally, Section Artificial Intelligence for Cardiovascular MR
describes machine learning methods used for automated
quantitative analysis of CMR data.

THE PHYSICS BEHIND CARDIOVASCULAR
MR

In this section we aim to provide a brief overview of the
physical principles and basic mathematical concepts behind
magnetic resonance imaging (MRI) targeted to create the
necessary background to understand modern CMR methods.
This section will give an overview of the physics of nuclear
magnetic resonance and relaxation, essential for describing the
concepts behind image formation and the k-space formalism.
Furthermore, basic building blocks of MRI are introduced, and
common cardiac MR sequences are described.

Magnetization Formation and Dynamics
MRI is based on a magnetic property that is intrinsic to certain
nuclei, some of which can be found all throughout the human
body. Nuclei [and (sub)atomic particles] possess an intrinsic
quantum mechanical property called spin. Mathematically the
spin can be described as the angular momentum of a spinning
sphere. As a quantummechanical quantity, however, the spin can
only have a discrete set of states. By convention, the number of
spin states are described according to the spin quantum number
Swith integer or half-integer values, giving rise to 2S+1 different
spin states. In MRI, the nucleus of greatest importance can be
found in hydrogen atoms (1H): It comprises only a single proton
with S =

1
2 and, thus, two spin states. These are commonly

denoted as +½ (“spin-up”) and –½ (“spin-down”). Due to the
classical relationship between angular momentum and magnetic
moment of a rotating charged particle, the spin S is always
associated with a magnetic moment µ via the particle-specific
gyromagnetic ratio γ ([rad/sT]):

µ = γ S. (1)

In a proton ensemble the magnetic moments of the nuclei
are randomly orientated unless an external magnetic field B0
is applied. In this case, all particles will align depending on
their magneticmoment either parallel (“spin-up”) or anti-parallel
(“spin-down”) to the applied field. Now, spins parallel to the
magnetic field are in a lower energy state compared with those
in the opposite direction. Hence, the energy levels of the spin
states are separated by 1E = γℏB0, with reduced Planck
constant ℏ. This is also known as the Zeeman effect. Due to
the angular momentum, the magnetic moment is also associated

with a precession around
−→
B 0. The rotational frequency of this

precession is called the Larmor frequency ωL:

ωL = γ B0 (2)

For clinical MRI field strengths (0.5T−7T), this frequency is
usually found in the radio frequency (RF) range. At thermal
equilibrium, there is a slight excess of protons in the “spin-up”

state due to its lower energy. Thus, the net magnetization
−→
M

averaged over all protons will be oriented along and precess

around
−→
B 0. Following the correspondence principle, this net

magnetization
−→
M and its precession motion can be described

with classical mechanics, where the precession dynamics
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resemble those of a spinning top. The net magnetization
−→
M can

be perturbed if protons are excited from the thermal equilibrium.
In the analogy of the spinning top, this would mean tilting its
rotation axis to the side. To achieve this, a so-called RF pulse that

produces a resonant magnetic field
−→
B 1 oscillating at ωL needs to

be applied. During this RF pulse, energy will be deposited in the
spin system and some of the protons will flip to the “spin-down”
state. Depending on the duration and strength of the RF pulse,

the direction of
−→
M progressively tips away from

−→
B 0 leading

to a transverse component perpendicular to
−→
B 0. Thereby, the

polar angle α between
−→
M and

−→
B 0 is referred to as flip angle.

Assuming that the initial magnetic field
−→
B 0 is along the z-axis,

then the transverse and longitudinal parts of
−→
M are denoted as

−→
M xy and

−→
M z , respectively. The above-described phenomenon

is called nuclear magnetic resonance and gives MR imaging its
name as the underlying physical principle.

MR Signal and Relaxation: Time to Relax
The precession of

−→
M leads to an oscillating magnetic field. We

can picture the precessingmagnetization as a rotating bar magnet
in classical mechanics. This can be detected using a nearby
coil where the time-varying magnetic flux induces a measurable
electric current via the Faraday-Lenz principle. After the RF
pulse has been turned off, the net magnetization continues to

precess around
−→
B 0. However, over time, the energy transferred

to the system dissipates and the magnetization recovers to

the thermal equilibrium state
−→
M 0. This process is known as

longitudinal relaxation and can be described by an exponential
growth function with characteristic time constant T1:

Mz (t) = Mz (0) −
(

Mz (0) −Mz,0
)

e
−

t
T1 . (3)

Here, Mz(0) = Mz(t = 0) is the flip angle dependent
initial magnetization, andMz,0 the longitudinal magnetization at
thermal equilibrium.

Besides the regrowth of
−→
M z , the transverse magnetization

is subject to an additional relaxation process: the transverse

component
−→
M xy is only preserved if all spins precess with

the same frequency, i.e., point to the same direction. But,
due to differences in the microscopic environment, each spin
experiences slightly different magnetic fields. As a result,
individual spins precess with slightly different frequencies. Over
time, this leads to a dephasing of the spins and to a decrease

of
−→
M xy. This is referred to as transverse relaxation and can

be modeled by an exponential decay with characteristic decay
time T2:

Mxy (t) = Mxy,0e
−

t
T2 , (4)

where Mxy,0 describes the transverse magnetization after
excitation. In addition, inhomogeneity of the main magnetic field
(1B0,i) accelerates dephasing and leads to an effective decay time
denoted as T∗

2 :
1
T∗
2
=

1
T2

+ γ1B0,i. Thus, the actually observed

decay time T∗
2 is always equal to or shorter than T2 and usually

shorter than T1. Both relaxation processes are influenced by the

atomic and molecular environment of the proton spins, such as
type, size, and motion of the particles. Consequently, different
tissue types or pathological tissue changes characteristically
influence T1 and T2 times. In CMR, for example, the T1/T2 times
of myocardium and native blood at 3T are∼1,550/45ms (12, 13)
and 2,000/250ms (12, 14), respectively. Together with the proton
density, this contributes to the image contrast in MRI.

The above set of equations was first proposed by Felix Bloch

to describe the temporal dynamics of
−→
M , and has accordingly

been named Bloch equations (15, 16). For the evolution of signal
intensities, however, this model is less suitable as it requires
solving the individual Bloch equations for all magnetization
vectors. Instead, the so-called Extended Phase Graph (EPG)
model has been proposed (8, 17–19), where signal dynamics can
be expressed efficiently based on a rotation matrix formalism in
the Fourier domain (see Sections k-space and View Planning and
Image Acquisition).

Image Acquisition: What Is the Position?
Having established the nuclear origin of the MR signal and how
it can be manipulated by RF pulses, the next necessary step for
image formation is to spatially localize the signal. This is achieved
through spatially varying magnetic fields, the so-called gradients.
As described in Equation (2), the precession frequency ωL of a
spin is a function of the magnetic field. Thus, by making the
magnetic field a function of the location, spins at different spatial
locations will have different resonance frequencies. Although
various gradient forms can be applied, linear gradients have
proven to be the most useful and, thus, will be assumed in the
following description. While a linear gradient field is turned on,
ωL becomes a function of the spin position −→r and the field

gradient
−→
G = ∇

−→
B :

ωL

(−→r
)

= γ
−→
G ·

−→r . (5)

This principle can be used both to select imaging slices within
the body as well as to encode positions in-plane within the slice.
For simplicity, we will further assume that the imaging slice is in
the transverse xy-plane. Note, however, that arbitrary acquisition
angles can be achieved by using a combination of the x-, y-, and
z-gradients for the encoding described below.

Slice Selection (SS)
In slice selection, an additional spatially varying magnetic field

gradient
−→
G z can be applied such that the field strength varies

along the z-axis. Thus, the Larmor frequencies of spins will vary
along this axis too: ωL = γ (B0 + Gzz). While the additional
gradient field is turned on, spins in different xy-planes precess
with different frequencies, while spins within the same plane all
precess with frequency ωL. If the excitation RF pulse is chosen
to have just the right frequency bandwidth, only spins in the
corresponding xy-plane are excited. Accordingly, a transverse
magnetization will only be created in those.

In-plane Phase Encoding (PE)
After selecting a two-dimensional (2D) slice, the signal needs

to be located within the slice. A phase encoding gradient
−→
G y
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along the y-axis is temporarily applied before the readout. During

the presence of
−→
G y, spins along the gradient axis precess with

different frequencies. After
−→
G y has been turned off, the spins

will have accumulated different phases, pointing in different
directions, but continue to precess with the same frequency. For
one gradient strength, only one phase shift can be achieved.
Therefore, multiple PE steps are necessary, which primarily
determines the overall scan time. In order to acquire a three-
dimensional (3D) volume, a second PE gradient along the slice-
selection axis can be applied in the same stepwise manner.

In-plane Frequency Encoding (FE)

To account for the remaining spatial direction, a gradient
−→
G x

is applied, such that spins along the x-axis will precess with
linearly increasing frequencies. Upon Fourier transforming the
signal, each obtained frequency can thereby be connected to a
position/pixel on the selected axis, usually the x-axis.

K-Space
In the presence of linear gradient fields, the MR signal can be
conveniently expressed with the so-called k-space formalism. If

we consider the precession of
−→
M xy in the transverse plane, it can

be described as:

Mxy

(

t,−→r
)

= e−iωtMxy,0
(−→r

)

(6)

with precession frequency ω = γ B
(−→r

)

= γ (B0+
−→
G

(−→r
)

·
−→r )

[Equations (2, 5)]. Given that the acquired signal is the sum of
the magnetization of all spins in the imaging volume, it can be
described as follows:

S (t) ∝ e−iγB0t

∫

e−iγ
−→
G (−→r )·−→r tMxy,0

(−→r
)−→
dr . (7)

The gradient related frequency contribution can be written in
terms of the gradient strengths Gx,Gy and Gz :

γ
−→
G

(−→r
)

·
−→r t = γ

(

Gxx+ Gyy+ Gzz
)

t

= kxx+ kyy+ kzz (8)

with the spatial frequencies kx, ky, and kz . If motion is
considered, −→r (spin position) becomes a function of time −→r (t).
Furthermore, each receiving coil j, i.e., each receiving channel,
has a specific sensitivity cj(

−→r ) signal from different spatial points.
Combining these with the previous equation yields

Sj (t) ∝ e−iγB0t

∫∫∫

e−i(kxx+kyy+kzz)cj
(−→r

)

Mxy,0
(−→r

)

dx dy dz (9)

Equation (9) shows that the measured signal in time domain
and the magnetization in spatial domain are connected via
Fourier transformation. As a consequence of this relation, the
spatial frequency (kxy) and distance (1kxy) of k-space points are
associated with image resolution and size (field-of-view, FOV):

FOVx/y =
1

1kx/y
and

1x

y
=

1

kx/y
. (10)

Image acquisition methods can be distinguished by the
proportion of the k-space acquired at once: In so-called single-
shot sequences all k-space points are sampled in one acquisition,
while in segmented methods the k-space is acquired in subsets
during multiple repetitions. The overall scan time is, thus,
primarily determined by the number of acquired points in the
k-space. In this regard, subsampling techniques offer ways to
accelerate image acquisition as described in Section Fast CMR:
Speeding up Imaging by Acquiring Less Data.

So far, theMR signal has been treated as a continuous function
in both space and time. Actual image acquisition, however, is a
discretized process characterized by the data sampling rate and
image resolution. Hence, the signal/forward model in Equation
(9) can be discretized as:

σj = Ej
−→ρ +

−→η , (11)

with encodingmatrix Ej for coil j, initial transversemagnetization
−→ρ , and thermal noise −→η (20). At time point κ and grid point λ,

Ej is given by Ej,κ ,λ = cj
(−→r

)

ei8(−→r λ ,tκ). Neglecting relaxation,
the phase factor8

(−→r λ, tκ
)

accounts for phase accumulation due
to time-varying magnetic fields (see Sections Handling motion
and Motion Correction).

Sequence Building Blocks: Time and Order
Are Key
By manipulating the timing and strength of RF-pulses and
gradients, a plethora of MR sequences can be constructed.
Different pulse sequences differ in their acquisition speed,
encoded image information, or to which degree image contrast
is affected by differences in proton density, T1, or T∗

2 , or
other properties. CMR sequences are typically described by
components for actual image acquisition and components for
preparing the magnetization. These elements can be understood
as building blocks of MRI sequences. The schematic design of the
most common building blocks is shown in Figure 1.

Image Acquisition Methods: Get What You Want

Spin Echo
As described in the previous section, after RF excitation the net
magnetization is subject to T∗

2 relaxation. Fortunately, part of the
dephasing of the transverse magnetization can be recovered with
a so-called spin-echo (SE) sequence. In this sequence a second
RF pulse is applied, where the simplest form comprises a 90◦

excitation and 180◦ refocusing pulse. After the first excitation, the
spins dephase and fan out in the transverse xy-plane. Dephasing
caused by temporally invariant field inhomogeneities, however,
can be reversed via the second refocusing pulse (21). Its effect is
often described as a pancake-flip: The fan of spins is flipped by
180◦ around the x- or y-axis, such that the faster spins now move
toward instead of away from the slower rotating spins. After a
so-called echo time TE, corresponding to twice the time between
the two RF pulses, all dephasing caused by static inhomogeneities
is rephased and an echo of the signal is created, as depicted in
Figure 1. This gives the name to the SE sequence. Consequently,
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FIGURE 1 | MR sequence building blocks. One or more preparatory pulses (left) can be combined with different acquisition sequences (right) to encode the desired

information into the imaging data and achieve different image contrasts.

the contrast in SE, is driven by the T2 time, which captures the
residual dephasing caused by temporally variable factors, such as
spin-spin interaction.

Spoiled Gradient Echo
As opposed to SE, the so-called gradient echo (GRE) sequences
retain not the transverse but the longitudinal magnetization.
They typically require only one RF excitation pulse after which
the frequency encoding gradient is applied (see Figure 1). In
GRE, however, the positive FE gradient lobe is preceded by an
additional negative lobe.

When the areas of the positive and negative lobe are equal,
the initially evoked dephasing of spins is reverted—except
for T∗

2 decay. This creates a signal which is referred to as
a gradient echo and gives name to the GRE sequence (22).
In the so-called spoiled GRE (spGRE), remaining transverse
magnetization is destroyed at the end of each TR cycle.
This can be achieved with strong gradients at the end of
the TR and results in T1 weighted imaging (23). As no
additional RF pulses are required, shorter TE and TRs can
be achieved in GRE compared to SE allowing for faster
image acquisition. In GRE, the echo signal is subject to T∗

2
decay as no rephasing of field inhomogeneities is achieved.
Therefore, GRE sequences are less robust in the presence of
field inhomogeneities.

Balanced Steady-State Free Precession
A third common image acquisition sequence in CMR is the so-
called Balanced Steady-State Free Precession (bSSFP). It can be
understood as a hybrid between SE and GRE. Starting from a
GRE sequence, a train of RF pulses is applied with very short TR
(≪T2) such that the magnetization never fully recovers between
two consecutive RF pulses and a non-zero net magnetization
is present at the next RF pulse. This residual magnetization
contributes to the signal of the following TR. Characteristically
for bSSFP, the flip angles are alternated every TR between +α

and −α causing the net magnetization to flip around the z-
axis between TRs (24, 25). This further means that each RF
pulse has both an excitation and refocusing effect on the spins
and explains the SE nature of bSSFP sequences. For effective
refocusing of the magnetization, the gradient moments on all
three axes (SS, FE, PE) need to be zero at each TR. This means
that the areas of positive and negative gradient lobes on each
axis must be equal, as shown in Figure 1, which is referred to
as balanced gradients. The alternating magnetization progresses
through a transient state and after a certain number of TR

cycles
−→
M reaches a steady state, that is a stationary amplitude.

For TR≪T2 the contrast in bSSFP sequences is determined by
the T2/T1 ratio (24). The main advantage of bSSFP lies in the
improved signal to noise ratio (SNR) compared with spGRE, due
to the recycled transverse magnetization. However, the scheme is
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highly sensitive to off-resonancesmaking it a less common choice
for high field strength and rarely useful for ultra-high fields (25).

Preparation Pulses: Be Prepared for the
Changes
Inversion Pulses
So-called inversion pulses, are 180◦ RF pulses which can be
applied before image acquisition in order to flip the initial
magnetization along the B0 axis (26). During the time between
inversion and the first imaging RF pulse (inversion time, TI), the
longitudinal magnetization recovers along the B0 axis toward its
equilibrium state as depicted in Figure 1. At image acquisition,

the degree to which
−→
M has recovered determines the image

contrast and, thus, induces T1 weighting. This enhances the
image contrast based on T1 properties, which is of interest in
many imaging applications. By adjusting TI, imaging can also
be timed to the point when the magnetization of specific tissues
is crossing the zero point, leading to effective signal suppression
(26). For instance, in double inversion black blood imaging (27), a
global and slice-selective inversion pulse are applied immediately
one after the other such that only the blood outside of the imaging
slice is inverted. With an appropriate TI, the signal of blood
flowing into the slice can be nulled at image acquisition.

Saturation Pulses
Intentionally suppressing tissue signal can also be achieved
through so-called saturation pulses. These RF pulses flip the
magnetization to the transversal plane. Subsequent spoiler
gradients dephase the magnetization, thereby nulling the
signal from the “saturated” spins. The subsequent recovery of
longitudinal magnetization is shown in Figure 1. Saturation
pulses can be made spatially selective, such that regions
in or outside of the image are canceled out. For instance,
artifacts due to through-slice flow can be reduced by applying
a saturation pulse upstream, parallel to the imaging slice.
Furthermore, saturation pulses can be made selective to specific
chemical species by adjusting the resonance frequency. The
most common example is fat saturation, where RF pulses with
carrier frequencies specific to ωL of fat are applied close to the
imaging sequence such that only fat but not water signal is
nulled. Creating uniform saturation with common rectangular
RF pulses is hindered by their high sensitivity to B0 and B1
inhomogeneities. To overcome this limit, adiabatic saturation
modules—such as composite (28) or B1 insensitive rotation (BIR)
pulses (29)—have been proposed.

T2 Preparation
T2 contrast can be induced using the so-called T2 preparation
pulses (30, 31). In a T2 preparation, a first 90◦ excitation pulse is
followed by a series of refocusing pulses and, finally, by a 90◦ flip-
back pulse. To induce robust refocusing, the refocusing pulses
are separated by a 2τ interval, whereas the interval between the
90◦ pulses and the refocusing pulses is equal to τ . The total
T2 preparation time is varied to achieve different echo times.
During this time, the refocusing pulses compensate for T∗

2 -
decay, resulting in a transverse magnetization decay effectively
characterized by the T2. The final 90◦ flip-back pulse brings the

remaining transverse magnetization back to the z-axis, encoding
T2 contrast in the longitudinal magnetization, which is then
imaged during acquisition. Several strategies, such as phase
cycling following Malcolm Levitt (MLEV) schemes or using
composite pulses, are employed in order to make T2 preparations
more robust to field inhomogeneities (32, 33).

T1ρ

The relaxation constant in the rotating frame of reference, T1ρ ,
is an additional property of tissues, besides T1 and T2 times.
T1ρ contrast can be achieved through spin-lock preparations.
A spin-lock module consists of a 90◦ tip-down pulse followed
by a continuous wave RF pulse applied for a certain time τSL.
During this time the magnetization is locked on the spin-lock
axis, and it relaxes back to its equilibrium value following an
exponential T1ρ decay. Finally, a 90◦ tip-up pulse is applied after
the spin-lock to restore longitudinal magnetization. Spin-lock
pulses show high susceptibility to field inhomogeneities. Several
compensated schemes, as well as adiabatic spin-lock modules,
have been proposed to make T1ρ preparation more robust to B0
and B+1 variability (34–36).

Common CMR Sequences: What Are They
Made of
The sequence building blocks introduced in the previous
sub-sections can be combined to design tailored sequences
to assess, for example, cardiac function and viability. These
sequences represent powerful tools for the non-invasive
characterization of congenital or acquired cardiovascular
diseases, including ischemia, valvular diseases and ischemic and
non-ischemic cardiomyopathies, as described in Section Clinical
Cardiovascular MR: What do we See and Why do we Need it?.
Here, we will discuss the physics principles governing the main
CMR sequences and introduce some emerging techniques.

Cine bSSFP
Cardiac function is commonly assessed using bSSFP sequences
in cine mode. The structure of bSSFP sequences, described in
Section Sequence Building Blocks: Time and Order are Key,
allows very short TR values to be achieved and increasing
the number of k-space lines acquired in a single heartbeat.
At the same time, bSSFP sequences maintain high intrinsic
myocardial/blood contrast (37). These characteristics enable the
fast acquisition of a single slice across multiple cardiac phases
(typically 10–30 phases, also referred to as frames). This allows
the reconstruction of movies of the beating heart. To achieve
good spatial resolution for every frame, the acquisition of each
frame is divided among different cardiac cycles, using the so-
called segmented acquisition (see Section Handling Motion).
During each heartbeat, in fact, only a limited number of k-
space lines (or a segment) is acquired for each cardiac phase.
Therefore, several heartbeats are necessary to acquire all the
k-space segments. The acquired images are then assigned to
the corresponding heart phases using retrospective gating (see
Section Handling Motion). Full heart coverage is achieved by
repeating the acquisition of each cine image set for different
locations and orientations.
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Late Gadolinium Enhancement CMR
Cardiac viability studies traditionally rely on the use of
gadolinium-based contrast agents (see Section Ischemic Heart
Disease). These cause enhancement of tissue contrast, with
respect to native T1 contrast. Gadolinium-based contrast agents
have the effect of shortening the T1 of both healthy and diseased
myocardium, resulting in their enhancement right after injection.
However, healthy and diseased tissues are characterized by
different contrast wash-out times: at a certain time point after
injection, gadolinium has largely washed out of healthy tissues
but is still retained in pathological areas where the extracellular
space is expanded.

Late gadolinium enhancement (LGE) imaging is most
commonly performed with an inversion-prepared segmented
GRE sequence, where the inversion time (TI) is chosen so
as to null the signal from healthy myocardium and maximize
the contrast. This technique, however, shows high sensitivity
to a correctly chosen TI, which is often based on a quick
scout acquisition (38). Alternatively, Phase-Sensitive Inversion-
Recovery (PSIR) sequences can be used to mitigate the effects
of an incorrect TI on the resulting image contrast (39). Unlike
traditional IR sequences, PSIR retains the information on the
longitudinal magnetization polarity by incorporating the signal
phase in the image reconstruction. The reconstructed PSIR
images exhibit enhanced contrast between healthy and diseased
myocardium. PSIR sequences, however, require the acquisition
of a reference image, in addition to the inversion-recovery image,
to extract the signal polarity. Nevertheless, the total scan time
can be kept constant by acquiring the reference scans during the
T1-recovery heartbeats.

First Pass Perfusion CMR
First pass perfusion CMR is becoming essential for measuring
myocardial blood flow (MBF) and detecting myocardial ischemia
(40), as described in Section Ischemic Heart Disease. In this
technique, images are acquired during the first passing of a
bolus of contrast agent, which increases the blood signal as
described above. To this end, saturation prepared single-shot
GRE (1.5T/3T) or bSSFP (1.5T) sequences in multiple slices are
usually performed. In consequence, myocardial regions with low
perfusion and, hence, low gadolinium concentration, will exhibit
lower signal intensities. Moreover, if perfusion data is acquired
under stress conditions, myocardial perfusion reserve can be
obtained as the ratio of MBF at stress and at rest. Recent first
pass perfusion methods can even yield quantitative MBF values
by taking the temporal dynamics of the signal into account (41).
In clinical practice, first pass and LGE images are often evaluated
alongside each other. This provides additional information on
cardiac viability.

Quantitative CMR Techniques
The methods described in the previous section offer powerful
tools for the qualitative assessment of cardiac function and
viability. Nevertheless, new quantitative MRI biomarkers have
recently been introduced, significantly enhancing the diagnostic
capabilities of CMR. Here, we provide a general overview of
these techniques.

T1 Mapping
While T1-weighted LGE images provide good qualitative
characterization of focal myocardial infarction, it becomes less
sensitive in the presence of diffuse fibrosis. An emerging
alternative is the pixel-by-pixel quantification of T1 relaxation
times (42). By obtaining a healthy reference range, several
pathologies can be characterized without the need for healthy
reference areas within the image. T1-mapping can be performed
with or without contrast injection. In the latter case, it is
referred to as native T1-mapping, as opposed to post-contrast
T1-mapping. T1-mapping sequences are traditionally based on
the Look-Locker technique, which consists in measuring the
signal at multiple time points following an inversion preparation
pulse (43) (see Figure 2). The collected data points, sampling
the longitudinal magnetization recovery, are then fit to an
exponential curve to derive the T1 estimates for each pixel. The
most commonly used method for myocardial T1-mapping is the
Modified Look Locker Inversion recovery (MOLLI) sequence.
Single-shot bSSFP images are each acquired in the end-diastole
phase of consecutive heart beats following the application of
an inversion pulse (44). A typical MOLLI pattern is the 5(3s)3
scheme (45), where the first inversion preparation is followed by
5 bSSFP acquisitions in separate heart beats, then 3 s of rest are
inserted to allow for T1 recovery and, finally, a second inversion
pulse is followed by the last 3 bSSFP measurements. MOLLI
enables precise T1-mapping in a single breath-hold.

Saturation recovery has been proposed as an alternative
to inversion-recovery techniques. The SAturation recovery
single-SHot Acquisition (SASHA) sequence (46) acquires nine
consecutive saturation-prepared single-shot bSSFP images, with
variable saturation recovery times, in consecutive hearth beats.
Saturation recovery-based sequences have the advantages of
not requiring rest periods and of acquiring each image
independently. As a result, the T1-mapping will be less
susceptible to biases introduced by T2, magnetization transfer,
inversion pulse efficiency and magnetic field inhomogeneities,
however at the expense of a reduced dynamic range and,
thus, reduced precision. Hybrid inversion, saturation recovery
sequences have also been proposed to mitigate some loss in
precision (47).

T2/T
∗

2 Mapping
T2 relaxation time in the myocardium can be used as a marker
for the presence of edema, as mentioned in Section Myocardial
Inflammation. T2-mapping is most often performed using a T2-
prepared bSSFP sequence (32), as shown in Figure 2. Commonly,
the acquisition of each image is interleaved with rest periods to
allow for T1 recovery. Alternatively, T1 recovery periods can be
omitted introducing a saturation pulse at the end of the R wave
in every heartbeat (48). The signal is sampled at different TEs by
varying the echo time of the T2-preparation. Acquired data are
then fit to an exponential decay curve to estimate T2 values.

T∗
2 -mapping can also be performed and is used for the

identification of iron accumulation (33, 49). T∗
2 -mapping is

commonly achieved with multi-echo GRE sequences, with a
number of equally-spaced echo times. The resulting signal is then
fit to an exponential decay curve to estimate T∗

2 values.
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FIGURE 2 | Acquisition schemes for quantitative CMR techniques: T1-mapping, Arterial Spin Labeling (ASL), T2-mapping, and T1ρ -mapping. For each technique, the

sequence scheme is represented along with the data sampling and reconstruction strategies.

T1ρ Mapping
Myocardial T1ρ-mapping has been recently introduced as a
promising method for assessment of myocardial fibrosis without
the need for exogenous contrast agents (50). T1ρ-mapping
is performed through spin-lock-prepared bSSFP sequences
acquired for different spin-lock times and interleaved with T1

recovery periods (Figure 2). The sampled signal is then fit to an
exponential decay curve to estimate the relaxation constant T1ρ .
The in-vivo applicability of T1ρ-mapping, however, is hindered
by the susceptibility to field inhomogeneities, especially at high
field strengths.

Cardiac Magnetic Resonance Fingerprinting
Obtaining T1/T2 values with the techniques described above
requires the acquisition and subsequent fit of multiple high-
resolution images to exponential decay models. Unfortunately,
high-resolution scans can be impractically long, particularly if
multiple parameters need to be estimated. On the other hand,
magnetic resonance fingerprinting (MRF) offers the possibility
to simultaneously quantify multiple tissue parameters in a single
scan (51). By varying sequence parameters such as TR and
FA throughout the acquisition of highly undersampled images,
information on tissue parameters is encoded in the temporal
signal of each pixel. These so-called fingerprints are unique
to the underlying tissue parameter configuration and can be
compared to previously generated dictionaries to infer the
model parameters of interest. The dictionary contains simulated

time signals for the chosen sequence parameters for a range
of model parameter values. While MRF is well established
for studies of the brain, non-static organs such as the heart
pose challenges due to high respiratory and cardiac motion
(52, 53). Therefore, cardiac MRF is performed in breath-held
acquisitions which are ECG triggered to the quiescent, end-
diastolic phase of the cardiac cycle (54). More recently, free-
breathing cardiac MRF sequences have also been proposed
(55). However, since the heart rate varies over time, multiple
dictionaries which are simulated with the actual heart rate, are
required. To further increase sensitivity to T1/T2, inversion
or saturation pulses can be added (54). Although clinical
validation is still in its early stages due to complex acquisition
and reconstruction as well as relatively long breath-holds,
cardiac MRF remains a promising technique for fast multi-
parametric mapping.

Blood Flow
Cardiovascular flow is typically measured through phase contrast
methods that are sensitized to through-plane velocities (56). Flow
velocity values are obtained by adding bipolar flow-encoding
gradients in the slice-selection direction, after the excitation
but before read-out. Flow encoding is based on the principle
that moving spins, contrary to stationary spins, accumulate a
net phase shift proportional to their velocity when subject to
bipolar gradients. By toggling the bipolar gradients, the other
contributions to the phase shift, such as those cause by field
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inhomogeneities, can be neutralized and the blood flow velocity
can be quantified.

2D-phase contrast imaging only resolves though-plane flow in
2 spatial dimensions. However, more recently, 4D-flow imaging
has been proposed, which combines 3D spatial encoding with
3D directional velocity encoding (57, 58). As a result, 4D-flow
MRI offers the possibility to visualize the temporal evolution of
complex flow patterns in a 3D volume.

Arterial Spin Labeling
CMR allows the assessment of myocardial perfusion (40).
However, current techniques are based on first pass perfusion
imaging which requires the use of contrast agents and, thus, limits
the repeatability and clinical applicability. Arterial spin labeling
(ASL), on the other hand, relies on endogenous contrast in the
form of magnetically labeled blood. The general idea behind ASL
is to acquire two images, one with and one without labeled blood.
Subsequently, these images are subtracted to obtain the perfusion
related signal only. For cardiac applications of ASL, the most
commonly used tagging method is Flow-Alternating Inversion
Recovery ASL (FAIR-ASL) (59, 60), depicted in Figure 2. In
FAIR-ASL, spatially selective and non-selective inversion pulses
are applied alternately: The selective pulse serves as a preparation
for the control image. During image acquisition after the
non-selective pulse, however, in-flowing inverted spins reduce
the longitudinal magnetization proportionally to the perfusion
rate. During reconstruction, the subtracted images are first
normalized to the baseline intensity, i.e., an image without any
preparation pulse. This difference is then multiplied with the
inversion efficiency, the blood water-tissue partition coefficient,
and an exponential factor accounting for T1-decay to obtain the
MBF (61).

Common CMR Artifacts: Obscured Reality
The complexity of cardiac anatomy, as well as the presence of
respiratory motion, cardiac motion, and blood flow, constitute a
unique set of challenges for CMR examinations. In this section we
recount the most common artifacts in cardiac MR (Figure 3) and
strategies for mitigating them (see Section CMR Image Quality:
No Free Lunch). A comprehensive guide to cardiac MR artifacts
can be found in Ferreira et al. (62).

Respiratory motion can cause inconsistencies between
different segments of the acquisition. As a result, ghosting
artifacts may appear on the reconstructed images. Two
approaches are commonly used to avoid breathing-related
artifacts: breath-holding and respiratory navigators (both will
be described in Section Handling Motion). On the other hand,
cardiac motion can cause blurring for long imaging blocks, when
the acquisition window includes phases of rapid motion. This
effect is commonly tackled by introducing cardiac triggering,
which synchronizes the acquisition with the cardiac cycles.
Choosing relatively long trigger delays from the R peak of the
electrocardiogram (ECG) signal enables acquisition during
quiescent cardiac phases, such as mid-diastole.

Blood flow can also be a cause of artifacts in CMR. As
already discussed in the blood flow imaging paragraph of
Section Quantitative CMR Techniques, motion-induced phase

shifts occur in presence of blood flow, corrupting the spatial
phase encoding. Flow-compensated gradients can be employed to
minimize these alterations, by nulling the higher-order gradient
moments. For instance, 1st order flow compensation consists of
nulling the gradients’ 1st order moment, minimizing constant
flow velocities contributions.

Aliasing artifacts are very common in MRI and specifically
in CMR, where the strict time constraints often limit the
FOV dimensions. These artifacts manifest as wrap-around
ghosts, which can overlap to the anatomical structures under
investigation. While aliasing in the frequency-encoding direction
can be avoided through oversampling, this is not feasible in
the phase encoding direction without increasing scan time.
In this case, the FOV must be enlarged at the expense of
lower resolution.

Finally, chemical shift artifacts can manifest in the presence
of pericardial fat. These arise because of the different molecular
environment of protons in fat and water, whose resonant
frequencies differ by approximately 420Hz (at 3T) as a result.
This difference results in a misregistration of fat and water tissues
along the frequency encoding direction. Chemical shift artifacts
becomemore evident, for example, when changing the frequency
encoding direction. They can be reduced by increasing the signal
bandwidth, albeit at the cost of lower SNR.

CLINICAL CARDIOVASCULAR MR: WHAT
DO WE SEE AND WHY DO WE NEED IT?

This section will outline the contributions CMR can make
within each of the major cardiovascular subspecialties and
set the scene for the remaining sections in this manuscript
which focus on image acquisition, reconstruction, and the
burgeoning impact of artificial intelligence on all these areas.
Where relevant, reference is made to international diagnosis
and treatment guidelines and the levels of supporting evidence
underpinning recommendations.

Basic Principles and Advantages of CMR:
What You See and What You Get
CMR is widely recognized as the gold-standard for the non-
invasive quantification of left ventricular (LV) ejection fraction
which remains a cornerstone parameter that guides decision
making in various scenarios ranging from the diagnosis of
heart failure to determining the need for primary prevention
implantable cardioverter defibrillators (ICDs) and the timing of
surgical intervention in patients with valvular heart disease (63,
64). For many of these applications, echocardiography remains
a first-line investigation, but CMR is particularly valuable for
evaluating cardiac structure and function in patients with poor
acoustic windows. This is recognized in the recent European
society of cardiology (ESC) heart failure guidelines as a class I
indication for CMR (Class I: evidence and/or general agreement
that a given treatment or procedure is beneficial, useful, or
effective) with level of evidence C (consensus opinion of
experts and/or small studies, retrospective studies, registries)
(63). The ability to non-invasively acquire high spatial and
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FIGURE 3 | Experienced CMR image artifacts of (A) respiratory motion, (B) cardiac motion, (C) chemical shift, and (D) wrap-around.

temporal resolution images in any plane using bSSFP sequences
which have high intrinsic T1 and T2 contrast affords high
endocardial definition enabling chamber volumes and function
to be quantified with high accuracy and precision (65). This is
achieved by acquiring a contiguous short axis stack parallel to the
atrioventricular groove and planned with two and four chamber
cine sequences (5, 66), see Section Plan Imaging Accurately and
Avoid Common Mistakes.

A key feature of CMR is its ability to non-invasively
characterize tissue by exploiting intrinsic differences in
nuclear magnetic relaxation characteristics of hydrogen
nuclei which are found in abundance in the human body in
different chemical environments in the form of water but
also bound in large macromolecules such as triglycerides and
proteins (Supplementary Figure 1). This enables different
anatomical structures and pathology to be readily appreciated
and differentiated without the need for exogenous contrast.
However, the administration of the latter, in the form of
large macromolecular chelates of the paramagnetic element
gadolinium, augments our ability to detect pathology even
further by highlighting the presence of myocardial fibrosis,
infiltration, or areas of infarction (67). Gadolinium contrast
agents shorten T1 relaxation times in proportion to their local

concentration. As large positively charged macromolecules,
they are unable to penetrate the intact cell membrane and
so remain entirely extracellular. As such, in tissues where
the extracellular space has been expanded by the presence
of fibrosis or infiltrated by exogenous proteins such as for
instance in cardiac amyloidosis, gadolinium can accumulate to
higher local concentrations. If imaged ∼10min after contrast
administration using an appropriate inversion recovery prepared
T1-weighted sequence with an inversion time set to null the
signal from healthy myocardium, such areas are illuminated as
gadolinium washes out of healthy tissue but remains at higher
concentrations in diseased areas, causing faster recovery of
signal. Infarcted or non-viable areas of myocardium can be
similarly delineated as they are rich in extracellular matrix
and proteins, but cell-poor or in the case of acute myocardial
injury, may be populated by necrotic cells with disrupted cell
membranes (68). The LGE imaging technique (see Section
Common CMR Sequences: What are They Made of) plays
a pivotal role in phenotyping patients with heart failure,
particularly differentiating patients with ischemic from non-
ischemic heart failure (Class IIa: conflicting evidence and/or
divergence of opinion about the usefulness/efficacy of the
given treatment or procedure but weight of evidence/opinion
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is in favor of usefulness or efficacy) with level of evidence
C (63).

Ischemic Heart Disease
In patients with ischemic heart disease, occlusion of an epicardial
coronary artery tends to cause injury and necrosis of endocardial
cells first as these are furthest away from the blood supply,
evolving to a wavefront of necrosis that gradually spreads
centrifugally toward the epicardium (Figure 4A). Areas of
LGE extending from the sub-endocardium, particularly if they
are regional or in a coronary distribution, denote areas of
ischemic infarction. In contrast, non-ischemic pathologies such
as dilated cardiomyopathy or myocarditis tend to be associated
with LGE in an epicardial or mid-wall distribution, allowing
ischemic and non-ischemic etiologies of heart failure to be
readily distinguished (Figure 4B). CMR is regarded as a class I
indication for evaluating acute chest pain or myocardial injury
in patients with unobstructed coronary arteries (level of evidence
B: moderate quality evidence from one or more well-designed,
well-executed non-randomized studies, observational studies or
registry studies or meta-analyses of such studies) (69). As well as
being diagnostically valuable, it is increasingly being recognized
that the presence and/or extent or pattern of LGE may have
prognostic significance (70–74).

In patients with ischemic heart disease, the distribution
of LGE can localize infarcts to specific coronary territories
(Figure 4A), and the transmural extent can determine the
likelihood of underlyingmyocardial viability (75). By imaging the
first pass of contrast through the myocardium under conditions
of vasodilator stress (typically achieved with adenosine or
regadenoson), myocardial perfusion abnormalities may be
identified which may signify myocardial ischemia (76). When
the epicardial coronary arteries are unobstructed, contrast arrives
synchronously and homogeneously in all supplied myocardial
segments. However, where there is a hemodynamically significant
stenosis in a given coronary artery, that vessel will already
be maximally vasodilated at baseline. The administration of
a vasodilator will thereby augment blood flow (and so the
arrival of contrast) to unobstructed coronary arteries, allowing
areas of hypoperfusion to be delineated by the delayed and
reduced arrival of contrast to the already maximally dilated
stenosed vessel (76). This technique can therefore be used to
diagnose the presence of coronary disease (77) or where this is
already known, determine the functional significance of a given
stenosis identified using an anatomical imaging technique such
as invasive coronary angiography or CT coronary angiography.
As mentioned previously, this technique is frequently used in
tandem with LGE imaging to assess for myocardial ischemia
and viability and thereby determine the need for or to guide
revascularization (76). Recent US chest pain guidelines now
regard this as a class I indication for stress CMR (level of evidence
B) (69). Advances in sequence design, image processing, and
quantification techniques now enable myocardial blood flow
to be measured at the voxel level with high in-plane spatial
resolution (78–83). The latter allows microvascular dysfunction
to be elucidated non-invasively (79, 84, 85) (Figures 4C,D),
and for ischemic burden to be accurately calculated (81, 86).

FIGURE 4 | Ischaemic and non-ischaemic heart disease. (A) Late gadolinium

enhancement sequence in the 3-chamber view. There is near transmural

sub-endocardial enhancement of the mid-apical septum and apex (short

arrow, mid-left anterior descending coronary artery territory). A signal void

focus is also seen adherent to the apex (arrowhead). This represents a left

ventricular thrombus. In addition, there is focal partial thickness

sub-endocardial enhancement of basal inferolateral wall (long arrow, circumflex

coronary artery territory), which spares the sub-epicardium (denoting an

ischaemic etiology). The presence of infarcts in two different coronary

territories alludes to the potential presence of multivessel coronary disease. (B)

Late gadolinium enhancement sequence demonstrating a ring or

circumferential pattern of non-ischaemic enhancement. The areas of

enhancement involve the mid-wall or sub-epicardium, sparing the

sub-endocardium. (C,D) Stress perfusion scan from a patient with

hypertrophic cardiomyopathy. There is widespread circumferential

sub-endocardial delayed arrival of contrast (hypoperfusion) at mid-ventricular

level (C) and apex (D), typical of microvascular dysfunction. (E,F) Bright blood

axis scout at upper abdominal level (E). The normal liver should have signal

characteristics similar to the spleen (marked). However, in this patient with

hepatic iron overload, the spleen appears almost black due to accelerated

dephasing of spins brought about by the increasing field inhomogeneity

generated by intrahepatic iron stores. This T*2 effect can be used to quantify

liver iron levels (F). Here, the liver T*2 is ∼1.9ms, denoting moderate hepatic

iron overload (normal > 6.3ms) equivalent to ∼5–10mg iron/g dry weight.

Quantification techniques also appear to improve the ability to
correctly identify multivessel coronary disease (87).

Non-ischemic Cardiomyopathies
The ability to quantify tissue characteristics has enabled various
MR relaxation parameters to be used as biomarkers for diagnosis
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FIGURE 5 | Multiparametric evaluation of a patient with acute myocarditis. (A)

Depicts increased T2 signal in the mid-inferior and lateral walls in an epicardial

to mid-wall distribution. The absolute T2 time in the inflamed area is increased

to ∼70ms (B) whereas the remote myocardium in the septum has a normal T2
time of 45ms (normal < 55ms). (C) depicts increased native T1, another

marker of tissue injury. This is raised at 1,347ms in the epicardium of the

mid-inferior and lateral walls (normal range: 890–1,035ms on this platform at

1.5T). (D) illustrates epicardial to mid-wall enhancement of the mid-inferior and

lateral walls, which spares the sub-endocardium (typical of myocarditis).

and to guide therapy (42, 88). The seminal example of this is the
development of T∗

2 imaging (Figures 4E,F), which has enabled
non-invasive hepatic and myocardial iron quantification (49). By
allowing the early diagnosis of iron overload cardiomyopathy and
timely initiation and titration of chelation therapy, this has been
credited with significantly reducing the risk of death from heart
failure in patients with thalassemia (89). The development of T1

mapping techniques (see Section Quantitative CMR Techniques)
has found applications in detecting interstitial fibrosis, and by
measuring post-contrast T1 together with the knowledge of
the patient’s hematocrit, the estimation of extracellular volume
fraction (ECV) has made it possible to track pathologies such as
cardiac amyloidosis (42). This is of growing relevance as these
conditions are increasingly amenable to novel therapeutics which
can stabilize or even potentially partially reverse cardiac amyloid
deposition (90). Thus, CMR is regarded as a class I indication for
the evaluation of infiltrative disease and suspected iron overload
(level of evidence C) (63).

CMR also plays a vital role in the evaluation of patients with
heart failure or suspected non-ischemic heart muscle disease.
It can be used as a gatekeeper for invasive coronary evaluation
(91) but also to accurately evaluate areas of the heart that
are difficult to clearly visualize by echocardiography such the
LV apex or the right ventricle. This can be invaluable for the

diagnosis of particularly the apical variants of hypertrophic
cardiomyopathy (92) and arrhythmogenic right ventricular (RV)
cardiomyopathy (93).

Myocardial Inflammation
The ESC guidelines regard CMR as a class I indication
(level of evidence C) for the evaluation of patients with
suspected myocardial inflammation (63). Acute inflammatory
processes and tissue injury can increase tissue water content
and increase the mobility of tissue water protons (94). This
can be exploited with T2-weighted imaging techniques
and quantitative mapping methodologies (see Section
Quantitative CMR Techniques) to diagnose the presence
and distribution of myocardial inflammation (Figure 5)
(88, 94, 95). Myocarditis can be diagnosed when in the
appropriate clinical context, there is evidence of tissue oedema
and inflammation/injury on one T2-based (T2-weighted-
imaging or T2-maps) and one T1-based criterion (native T1 map,
LGE imaging, or ECV maps), respectively, in a non-ischemic
distribution (96).

Cardiac Electrophysiology
Within the sphere of cardiac electrophysiology, not only is CMR
playing a vital role in the identification of patients at increased
risk of arrhythmia (70, 72–74), but it is increasingly being used
to plan invasive arrhythmia ablation procedures (97). Atrial
fibrillation is the commonest sustained cardiac arrhythmia and
an important cause of morbidity and mortality (98). In most
patients, the arrhythmia is triggered by electrical activity from
the pulmonary veins which can be treated by electrically isolating
these through ablation (98). 3D-anatomical and fibrosis imaging
sequences can help to define the number of pulmonary veins
and the degree of fibrotic remodeling of the atrium which may
influence procedural success (Figure 6) (99). For patients with
malignant ventricular arrhythmias, identifying the precise origin
of arrhythmic foci often requires prolonged and tedious pace-
mapping of the electrical substrate increasing procedure times
and thereby risk to patients (100). This can be considerably
facilitated by pre-procedural CMR which can identify areas of
scar tissue and help target electrical interrogation of the diseased
myocardium (100).

Congenital Heart Disease
CMR has also revolutionized the care of patients with congenital
heart disease, which occurs at a frequency of 6–8 per 1,000 live
births (101). Advances in care now mean that more patients
are surviving to adulthood and so are forming an important
cohort of patients who require regular clinical and imaging
evaluation (101–103). The complexity of disease can range from
minor anomalies such as a small restrictive ventricular septal
defect through to patients with complex cyanotic heart disease
with cardiac malformations that require often multiple complex
surgeries to correct or palliate. The imaging assessment of
such patients requires the ability to image in multiple planes,
in 3D, and to quantify blood flow, particularly to diagnose
the presence and severity of any intracardiac shunts (101,
103). Importantly, this is achieved without the need for any
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FIGURE 6 | 3D-segmentation of the left atrium depicting left atrial anatomy

and four pulmonary veins and their tributaries (A). There is extensive fibrosis of

the left atrial wall (B) on 3D late enhancement sequences which may reduce

the likelihood of successful ablation.

ionizing radiation (which would have a greater impact on this
younger cohort of patients who need frequent serial imaging)
and unfettered by limitations imposed by acoustic windows as
echocardiography often is. This is particularly true for structures
such as the right ventricle that are more challenging to image
with echocardiography (104). The high accuracy and precision
of the measurements of ventricular size and function as well
as blood flow enable these parameters to be used to guide the
timing for surgical intervention, for instance, pulmonary valve
interventions in patients with repaired tetralogy of Fallot (103,
105). The broad utility of CMR in congenital heart disease has
been recognized in recent international guidelines (106). The
presence of RV scar detected by LGE-CMR has been highlighted
as a risk factor for sudden cardiac death and its use for risk
stratification is recommended as a class IIa indication (level of
evidence C). These guidelines also recognize CMR with physical
stress as a class I indication (level of evidence C) for the
evaluation patients with coronary anomalies to confirm/exclude
myocardial ischemia (106).

Valvular Heart Disease
While Doppler echocardiography is rightly considered the
modality of choice for the evaluation of patients with
valvular heart disease, phase-contrast velocity mapping is
particularly adept at quantifying regurgitant lesions such as
aortic and pulmonary regurgitation (107). It can play a
role in corroborating echo findings or in providing accurate

FIGURE 7 | Cardiovascular time resolved 3D-angiography. The bolus of

contrast is imaged progressively as it passes from the right side of the heart

(A) into the pulmonary arteries (B), left atrium/ventricle (C), and thoracic aorta

(D). This obviates the need to precisely time the contrast volume and enables

the rapid visualization of different parts of the circulation with a single bolus of

contrast.

quantification where unfavorable echo windows preclude this,
or jet eccentricity can result in underestimation of jet severity
(Supplementary Figures 2, 3) (64, 108). As in many other
spheres of cardiovascular medicine, an accurate quantification
of ventricular ejection fraction may be vital in determining the
timing of any intervention (109).

Angiography and Vascular Disease
CMR also has the added advantage of enabling visualization of
the aorta and great vessels which can often need intervention
in patients with aortic valve disease, particularly if this is
associated with aortopathy such as patients with bicuspid aortic
valves. This can be achieved using time-resolved angiographic
approaches (110), as well as with 3D-sequences acquired in free-
breathing that can increasingly be combined with multiple tissue
contrasts (111–113). The former can enable the visualization
of multiple vascular beds and structures (systemic venous,
pulmonary arterial and venous, and systemic arterial) with a
single dose of contrast (Figure 7) (110). This has a range of
applications from the evaluation of vascular disease itself to
planning interventions.

Advances in rapid imaging techniques, catheter technology,
and the development of interventional imaging suites now allows
actual invasive procedures to be performed under MR-guidance
(114, 115). This brings the principal benefit of minimizing the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 13 March 2022 | Volume 9 | Article 826283

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ismail et al. CMR QI and AI

need for X-ray fluoroscopy particularly in younger patients who
require frequent serial evaluation.

There is also growing interest in leveraging the tissue
characterization capabilities of CMR to evaluate coronary plaque
characteristics (116, 117). Specifically, T1-weighted non-contrast
coronary imaging can be used to delineate the presence of
methemoglobin, a marker of coronary thrombosis or intraplaque
hemorrhage, which has been associated with vulnerable plaque
morphology and angina severity (118).

Cardiac Tumors
Another area where CMR has made significant indispensable
contributions to patient care is the evaluation of cardiac
tumors (119). While these are thankfully rare, the ability of
CMR to provide full-spectrum non-invasive characterization
can help to refine the diagnosis and, in many instances,
can type specific lesions. Anatomical and cine sequences can
localize a lesion and define its geometry and relationship
with surrounding structures (119). Sequences with different
T1 and T2 weighting with and without fat-saturation can be
used to delineate tissue characteristics. Imaging of the tumor
during the first pass of contrast can depict its vascularity
and perfusion (120). Imaging in the early phase after contrast
administration can differentiate thrombus from neoplasia or
reveal the presence of superadded thrombosis. Imaging in the
late phase can provide information on the contrast uptake
characteristics of the lesion which again can be valuable in
differential diagnosis (119, 120). Such data can increasingly
be combined with fluorodeoxyglucose (FDG)-positron emission
tomography (PET) and other radiotracer uptake data in hybrid
CMR-PET imaging platforms to provide truly multimodal
comprehensive evaluation that encompasses tumor metabolic
activity (121).

In summary, CMR has found applications within every
sphere of cardiovascular medicine and has often had a positive
disruptive effect—improving diagnosis and in many cases,
changing patient outcomes. In a single comprehensive study, it
is now possible to assess and reliably quantify cardiovascular
anatomy, function, tissue T1, T2, T∗

2 , ECV, perfusion at stress
and rest, late gadolinium enhancement, and blood flow. While
many of the necessary sequences are ECG-gated and have
been done with breath holding, recent advances now make it
possible to acquire most data using free-breathing techniques
making CMR more accessible and tolerable for patients with
cardiovascular disease who often suffer from breathlessness (see
Section Handling Motion). However, although the ability to
acquire more and more data has grown over the years, the
time available to scan patients (typically 1 h) and report the
voluminous imaging data sets that are generated has not. This
requires careful protocolling and efficient image acquisition
to harness the true benefits of this technology in a value-
conscious and efficient way (see Section Clinical Cardiovascular
MR: How Should we Perform the Examination). Advances
in the application of artificial intelligence to both image
reconstruction and interpretation may help offset some of these
challenges and are addressed in Section Artificial Intelligence for
Cardiovascular MR.

CLINICAL CARDIOVASCULAR MR: HOW
SHOULD WE PERFORM THE
EXAMINATION

As new imaging techniques are developed and the clinical
applications of CMR expand, implementing efficient workflow
practices has become increasingly important in clinical practice.
To complete a comprehensive examination in a clinically
acceptable timeframe with high quality imaging requires
considerable forethought and planning.

Developing and applying a systematic approach to all aspects
of the examination can save considerable scanner time, even if
the operator is proficient in the placement of imaging planes.
In this section, key areas essential to developing an efficient and
structured approach to a CMR examination are outlined.

Clinically-Tailored Protocols: Make It Right
for Patients
The vast array of CMR imaging sequences now available has
the potential to considerably extend the CMR examination
to clinically unrealistic lengths. Therefore, it is important to
approach CMR as a modality with a suite of standardized,
clinically-targeted protocols rather than a single one-size-fits-
all examination. Protocols should be developed to answer the
clinical question with a focus on adding value. Resources
are available (5) to guide the development of in-house
clinical protocols, which can then be modified to suit patient-
specific requirements. It is essential to review each patient’s
clinical history and previous imaging and tailor the protocol
to answer the clinical question, focusing on providing the
information only CMR can provide. Even reasonably fit patients
can become fatigued from multiple breath holds. Removing
any sequences from the examination that do not assist in
making the diagnosis will increase efficiency and improve
patient compliance.

Template Protocols: Have Them Ready
Before creating comprehensive CMR protocols on the scanner,
build a high quality clinically-appropriate template protocol
for each of the basic pulse sequence types, e.g., cine bSSFP;
phase contrast (PC) flow quantification imaging; dark blood T2

weighted fast spin echo imaging; and LGE imaging (see Sections
Preparation Pulses: Be Prepared for the Changes and Common
CMR Sequences: What Are They Made of).

In accordance with field strength and scanner capabilities,
each template protocol should be created ensuring the scan times
are as short as possible whilst maintaining appropriate spatial
and temporal resolution, and without introducing artifacts from
undersampling or cutting corners (see Section Common CMR
Artifacts: Obscured Reality).

Once created, each pulse sequence template protocol can be
used and modified to build plane-specific image acquisitions, for
example, the 4-chamber or LV vertical long axis views.

This approach ensures consistency and standardization
of image quality across the entire examination and
clinical service.
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The Building Blocks of a Successful CMR
Exam
Almost all CMR examinations will require the basic building
blocks of LV and often RV function. All the basic cardiac
planes are aligned relative to the heart and are specific to the
patient’s anatomy. Each plane is prescribed building on prior
knowledge from previous acquisitions. Scanning efficiency can be
significantly improved by giving careful thought to the order of
acquisition of these basic building block sequences. The sequence
order below has been planned to ensure that there is no downtime
between acquisitions. All image planes required for planning
have been acquired at least one acquisition ahead.

Imaging Protocol for LV and RV Function
1. Three plane (axial, sagittal, coronal) localizer—centered on

heart in three planes.
2. Axial non-cine bSSFP localizer—cover from aortic arch to the

inferior border of the heart.
3. LV Vertical Long Axis (VLA) cine bSSFP localizer—use the

axial bSSFP localizer to prescribe a single slice through the
middle of the mitral valve to the LV apex.

4. Sagittal oblique Main Pulmonary Artery (MPA) cine bSSFP—
prescribe one slice through the middle of the MPA and the RV
outflow tract (RV OT) using the axial localizer.

5. LV short axis (SAX) single heartbeat multislice localizer—use
the axial localizer and LV VLA localizer to prescribe a stack
through the atrio-ventricular valve.

6. Coronal oblique MPA cine bSSFP—use Sagittal Oblique MPA
to prescribe one slice through middle of MPA, Pulmonary
Valve (PV) and RV OT.

7. 4-chamber cine bSSFP—use the basal slice of the LV SAX stack
localizer to prescribe one slice through the center of the mitral
and tricuspid valves. Cross reference to the LV VLA localizer
to ensure the slice is through the center of the mitral valve and
the LV apex.

8. LV 2-chamber cine bSSFP—use the 4-chamber to prescribe
one slice through the middle of the mitral valve to the LV apex.

9. RVVLA cine bSSFP—use the 4-chamber to prescribe one slice
through the middle of tricuspid valve to the RV apex. Cross-
reference to LV SAX stack localizer to ensure RV OT and PV
are in the plane of the slice.

10. LV SAX cine bSSFP-−8 or 6mm slice thickness with 2 or
4mm gap, respectively, to make total 10mm; use both the 2-
chamber and 4-chamber diastolic phase images to prescribe a
series of slices from the mitral valve annulus to the LV apex.
See Section Plan Imaging Accurately and Avoid Common
Mistakes for extra positioning tips.

11. Three chamber cine bSSFP—use the basal slice of the LV SAX
series and prescribe one slice through the middle of the aortic
valve and the left atrium.

12. LV Outflow Tract (LV OT) cine bSSFP—use the 3-chamber
to prescribe one slice through the middle of the aorta and
the LV OT.

13. RV SAX cine bSSFP—(8/2 or 6/4mm); use both the sagittal
MPA and the RV VLA diastolic phase images to prescribe a
series of slices in a plane perpendicular to a line from the

pulmonary valve to the apex of the RV. The first slice should be
placed at the level of the PV in diastole (122). See Section Plan
imaging Accurately and Avoid Common Mistakes for extra
positioning tips.

14. Phase Contrast (PC) Flow Aorta—use both the 3-chamber
and LV OT diastolic phase images to prescribe a slice
perpendicular to the aorta in both planes, at the level of
the sino-tubular junction.

15. PC Flow Aortic Valve—use both 3-chamber and LV OT
diastolic phase images to prescribe a slice perpendicular to the
aorta in both planes, at the level of the aortic valve annulus.

16. PC Flow MPA—use both sagittal and coronal MPA diastolic
phase images to prescribe a slice perpendicular to the MPA
in both planes, just distal to the valve, through the tubular
portion of the MPA, avoiding bifurcation.

Plan Imaging Accurately and Avoid
Common Mistakes
Due to the variability of cardiac morphology and body shape
between patients, it can take considerable time to become
proficient at localizing cardiac imaging planes. The heart does not
lie in an orthogonal plane to the thorax and therefore more than
one localizer plane is necessary for accurate and reproducible
positioning. Learning to avoid common positioning errors can
improve scanning efficiency and diagnostic quality.

The 4-Chamber View
The 4-chamber view affords an overall visual assessment
of cardiac function. A well-positioned view (Figure 8A) will
demonstrate the mitral and tricuspid valves and the right and
left atria and ventricles. However, frequently the four cardiac
chambers and the atrio-ventricular valve planes are not well-
visualized due the slice plane being prescribed incorrectly.
Figure 8B is an example of a poorly positioned 4-chamber with
the slice plane prescribed through the LV OT. To successfully
position the 4-chamber view requires the use of three views. On
the LV VLA view (Figure 8C), the operator should ensure the
slice plane is prescribed through the center of themitral valve and
the LV apex. On a mid-ventricular LV SAX slice (Figure 8D), the
plane is tilted down to the RV apex. Finally, the position is cross-
checked on a basal LV SAX view (Figure 8E) to ensure the slice
positioning avoids the LV OT and aortic root.

Left Ventricular Short Axis—Accurate Positioning of

the Basal Slice
Correct positioning of the basal slice of the LV SAX stack
can significantly improve the accuracy and reproducibility of
volumetric analysis. A consistent and reproducible method of
positioning this slice is critical. As outlined in Section Clinical
Cardiovascular MR: What do we See and why do we Need it?,
both the LV VLA (Figure 9A) and 4-chamber (Figure 9B) views
must be used to ensure the basal diastolic phase slice is positioned
parallel to the mitral valve annulus, avoiding atrium and with an
even amount of myocardium around the blood pool (Figure 9C).

If the image position is not correct, simple corrections are
shown in Figure 10 (top row). If the basal diastolic phase slice
includes atrium (Figure 10A), the slice must be repositioned
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FIGURE 8 | Well-positioned 4-chamber view (A) demonstrating mitral and tricuspid valves, right and left atria, and ventricles. Incorrect prescription (B) with the slice

plane prescribed through the LV OT. Accurate positioning of the 4-chamber view requires the use of three views, the LV VLA view (C), mid-ventricular LV SAX slice (D),

and the basal LV SAX slice (E).

FIGURE 9 | Accurate positioning of the basal slice of the LV SAX series requires the use of both the LV VLA (A) and the 4-chamber (B) views to ensure the basal

diastolic phase slice is positioned parallel to the mitral valve annulus, avoiding atrium and with an even amount of myocardium around the blood pool (C).

toward the apex (Figure 10B). If there is an inconsistent amount
of myocardium (Figure 10C), the slice angle is tilted on the LV
VLA view (Figure 10D).

Right Ventricular Vertical Long Axis View
The non-geometric shape of the RV increases the complexity
of positioning. A well-positioned RV VLA (Figure 10E) will
enable visualization of the pulmonary and tricuspid valves, the
RVOT and the RV apex in one plane. After positioning the slice

on the 4-chamber view (Figure 10F) through the RV apex and
avoiding the septum, the slice plane is tilted up to the RV OT and
pulmonary valve using the basal LV SAX slice (Figure 10G).

Right Ventricular Short Axis
The modified RV short axis series (122) enables more accurate
and reproducible planimetry of the ventricular borders making
analysis less prone to operator error. A well-positioned RV VLA
is key to ensuring correct positioning of the RV SAX.
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FIGURE 10 | Top row: Positioning corrections for the LV SAX series include repositioning the slice more apically (B) if the basal diastolic phase slice includes atrium (A).

If there is an inconsistent amount of myocardium around the blood pool (C), the slice angle is tilted on the LV VLA view (D). Bottom row: A well-positioned RV VLA (E)

is achieved by positioning the slice on the 4-chamber view (F) through the RV apex and avoiding the septum, then tilting the slice plane up to the RVOT and pulmonary

valve on the basal LV SAX slice (G). The RV SAX series can then be planned on this view to transect the tricuspid valve at an angle between 45◦ and 90◦ (H).

Figure 10H shows the prescription of the RV SAX slices on
the RV VLA. The slices should transect the tricuspid valve at an
angle between 45◦ and 90◦ to ensure the slices are not prescribed
too close to parallel to the valve.

Building Blocks to a Comprehensive CMR
Protocol
As mentioned earlier, the order of image acquisition is important
for scanning efficiently. The operator should start by creating
scan protocols of the building blocks outlined in Section
The Building Blocks of a Successful CMR Exam. Using the
template pulse sequence protocol created as per the facility
requirements, each individual acquisition can then be built and
named accordingly.

This foundation protocol then forms the basis of all the clinical
protocols to be built on the scanner.

A general cardiomyopathy protocol can be used for the
majority of clinical presentations. Options tailored to specific
presentations, such as oedema-weighted imaging and T2-
mapping for acute presentations, can be selected as required.
Advanced imaging techniques, such as T1-mapping, should
be added as appropriate (see Section Quantitative CMR
Techniques). LGE imaging acquisitions should be built with
plane specific labels, e.g., LV SAX LGE series, to assist in
quickly identifying series when viewing images during reporting.
Supplementary Table 1 is an example of a clinical protocol
for the assessment of acute cardiomyopathic diseases such as
acute myocarditis.

The next step is to build further indication-specific protocols
matched to the facility clinical protocols, such as Hypertrophic
Cardiomyopathy, Arrhythmogenic Cardiomyopathy or
Tetralogy of Fallot where very specific clinical questions
need to be addressed.

Using this method to build a comprehensive CMR protocol
library will enhance efficiency, improve patient compliance, and
ensure that all required imaging sequences are performed.

Get Your Patient Ready
Performing an efficient CMR examination is highly dependent on
patient cooperation. To optimize scanner time, the patient should
be prepared outside the scan room. It is useful for patients to
understand the important role they play in the quality of their
examination, particularly the importance of consistent breath
holding. Coaching breath hold procedures, checking breath hold
capacity, and assessing likely compliance with instructions prior
to commencing the examination will save valuable scanner time.

A good ECG trace is essential and is achieved by preparing
the skin with abrasive gel, shaving if necessary and using low-
impedance MRI safe electrodes. The use of an impedance meter
to check electrode-to-skin contact and ensure strong lead voltage
enables the operator to reposition using new electrodes prior
to the patient entering the scan room. Once the patient is in
the scanner and connected to the scanner gating system, the
ECG trace should be assessed to ensure there is adequate voltage
in each lead. If necessary, electrodes should be replaced and
repositioned until a reliable ECG trace is obtained. If the poor
ECG trace is due to the patient’s irregular rhythm, acquisition
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strategies must be planned accordingly (see Sections Managing
Challenging Patients and Handling Motion).

Plan, Review, and Correct
Examination time can be reduced by attention to detail during
scan preparation. With most CMR sequences requiring one
breath hold per slice, it is important to limit the acquisition of
any unnecessary slices. When acquiring a multi-slice series, each
series should be prescribed carefully to cover only the anatomy
needed. Images should be reviewed as they are acquired so that
the series can be stopped if the anatomy is covered, rather than
completing the full prescribed series.

Equally important is to observe the patient during each
acquisition. Display the ECG and respiratory pulse on the console
and be alert to patient movement; failure to hold breath for the
full length of the scan; ectopic beats or irregular rhythms. It
may be necessary to repeat slices with artifact, particularly if the
images are part of a series used for quantitative analysis.

As a rule, the use of manual breath hold instructions improves
patient compliance with breathing instructions and reduces the
need to repeat slices due to breathing artifact.

Managing Challenging Patients
Irregular Rhythms
Learning how to deal with irregular heart rhythms is one of
the most important components of becoming a proficient CMR
operator. Significant time can be lost if there is no management
strategy in place. It is possible to achieve diagnostic images still
within a reasonable timeframe by building protocols in advance
with appropriate options for each pulse sequence type.

For each clinical protocol in the library, three
acquisition strategies should be built: Sinus Rhythm,
Mildly Irregular Rhythm, and Severely Irregular Rhythm
(Supplementary Figure 4). Operators must learn when it is
appropriate to change strategies and which strategy is required.

Retrospective gating should only be used for sinus rhythm
or where there is a very occasional ectopic beat. The average
heart rate range (RR interval) displayed on cine bSSFP images
can be used to determine which strategy to use. Generally, if
the variability is < ±40ms, retrospective gating can be used
(Sinus Rhythm strategy).Where the variability is greater, it will be
necessary to change to prospective triggering for cine bSSFP and
PC flow imaging (Mildly Irregular Rhythm strategy). Caution
should be used when acquiring images used for quantitative
analysis (such as parametric tissue mapping) to ensure the
integrity and reliability of the data.

In the presence of a severely irregular rhythm, real-time and
highly accelerated options will need to be employed (see Section
Fast CMR: Speeding up Imaging by Acquiring Less Data).

Non-compliant Patients
For extremely unwell or claustrophobic patients, a plan
for a short, high-value examination is required. Prior to
commencing the examination, the clinical history and any
previous imaging should be reviewed to determine the most
critical clinical question. Generally, this will be information that
no other diagnostic imaging test can provide such as tissue

characterization. The imaging protocol is then planned to obtain
this information as a priority in case it is necessary to terminate
the examination prematurely. Protocols should be trimmed of
any unnecessary sequences. For example, if the main question
is the presence of myocardial fibrosis, an option would be to
inject the contrast prior to moving the patient into the scanner,
obtain the LGE first, then acquire any other imaging possible in
the remaining time.

Quantitative CMR: It Is Your Responsibility
CMR is highly operator and patient dependent and the quality
of images obtained directly affects the accuracy and reliability of
quantitative data. Surgical, therapeutic, or prognostic decisions
are made on this data and attention to detail at every stage of
the CMR examination is necessary to ensure the integrity of the
results. It is incumbent upon the operator to recognize and report
the limitations of the data if necessary.

CMR IMAGE QUALITY: NO FREE LUNCH

When setting up and optimizing a clinical CMR protocol to
obtain the best images possible, the inherent trade-off between
spatial and temporal resolution, scan time and signal-to-noise
ratio (SNR) must be taken into consideration. For example,
imaging at higher spatial resolution will result in lower SNR or
longer scan times. Thus, a compromise in this triangle needs to be
found in terms of image quality and acquisition time. Moreover,
CMR can be impacted from image degradation due to cardiac
and respiratory motion. Physiological motion induces aliasing
along the phase-encoding direction and/or blurring of the image
content (see Section Image Acquisition: What is the Position?),
where the appearance depends on the imaging trajectory.
Therefore, CMR acquisitions generally require synchronization
or handling of the cardiac and respiratory cycles as depicted
in Figure 11. In CMR, to avoid artifacts related to cardiac
motion, it is usually desirable to freeze the heart motion, using
gated/triggered acquisitions with <100ms temporal resolution.
Unfortunately, this comes at the expense of spatial resolution
and/or coverage adding further constraints to CMR.

Handling Motion
Motion artifacts can be mitigated by (a) avoiding motion,
i.e., training the patient to perform breath-holds or applying
anesthesia and sedation to freeze respiratory motion; (b)
reducing motion, i.e., signal averaging to smooth out motion,
performing fast imaging to become less sensitive to motion
(123–127) or suppressing motion outside the field of view using
saturation bands; (c) triggering or gating motion, i.e., monitoring
the motion cycle [using, for e.g., MR navigators (128–132),
cameras (133), field probes (134), pilot tone (135), respiratory
belts or electrocardiogram (136)] and either prospectively trigger
on the respective motion (137, 138), meaning only acquiring
within a small portion of the motion cycle, or retrospectively
gate the motion (139–142), meaning sorting the data into
distinct motion states for reconstruction. Motion avoidance
[case (a)] requires, however, patient compliance and reduces
patient comfort. For highly non-compliant patients (for e.g.,
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FIGURE 11 | Cardiac and respiratory motion monitoring. Motion can either be suppressed (e.g., breath-holding) or monitored with MR navigators or external devices

like electrocardiogram (ECG). From the monitored signal, one can extract the respiratory, and cardiac cycles which are needed for triggering (prospective) or gating

(retrospective).

pediatric patients), moderate sedation or general anesthesia can
be given which does however require the use of a lung respirator,
increasing scan time and costs, and could have potential side
effects and complications. Motion reduction [case (b)] can
require longer scan times, increases induced radio frequency
energy on patient (i.e., tissue heating) and residual motion
artifacts can remain in the image. Motion triggering and gating
[case (c)] capture only a fraction of the entire dynamic respiratory
and cardiac cycle or periodic assumptions of the dynamic cycle
are made which may not hold in practice. Thus, a varied range of
strategies has been proposed to avoid CMR image degradation
due to cardiac and/or respiratory motion, some of which are
summarized in Figure 12.

Respiratory Motion: You Can Breathe Normally
Breath-holding techniques are commonly used to reduce
respiratory motion artifacts. If the patient complies with the
breathing instructions this provides a 10–15 s window where
artifact-free images can be obtained. A CMR examination
requires multiple breath holds (143), which can lead to
patient discomfort and fatigue, resulting in poor breath-
holding and, consequently, motion artifacts that can impact
the downstream analysis (144, 145). In addition, breath-holding
can be challenging or impossible for pediatric, critically ill, or
uncooperative patients (146). Moreover, some CMR protocols,

such as CMRA and other 3D CMR applications, require
acquisition times that are too long for a breath-hold. Free-
breathing alternatives that use respiratory triggering or gating
based on diaphragmatic navigators (that monitor the superior-
inferior motion of the diaphragm) are available on most CMR
scanners (147–149). Unfortunately, this approach has low scan
efficiency, since only data within a small predefined respiratory
gating window is used to generate an image, which leads to
long and unpredictable scan times (due to irregular breathing
patterns). External respiratory monitoring devices, such as
bellows around the chest or abdomen, are also often used.
More recently, novel tracking devices like pilot tone (135, 150)
are being investigated for the usage of a sequence-independent
motion monitoring solution.

Free-breathing CMR techniques based on self-navigation
(151–155) or image navigators (130, 156–159) have been
proposed to achieve 100% respiratory scan efficiency (no data
rejection), by correcting all data for respiratory motion. Thus,
allowing for shorter andmore predictable scan times. Respiratory
self-navigation techniques derive the respiratory-inducedmotion
of the heart directly from the imaging data. Self-navigation is
achieved by periodically imaging the central points in k-space
and thus do not require any additional interleaving of navigators
into the sequence. Typically, self-navigation approaches extract
the respiratory signal from 1D projections of the field of
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FIGURE 12 | Cardiac and respiratory motion handling. Motion can either be suppressed (left column), handled prospectively or retrospectively (middle columns) or

corrected/compensated (right column). Different strategies exist to deal with respiratory-only (top), cardiac-only (bottom left), and respiratory and cardiac (bottom right)

motion. Prospective triggering: motion can be triggered to shorten the acquisition window to a specific motion state. Retrospective gating: motion is resolved by

gating which can be performed exclusively on either respiratory/cardiac motion or on the joint respiratory and cardiac motion (central gating matrix) to yield

respiratory/cardiac motion-resolved data. Data between individual gates/motion states can furthermore be compensated by registering them with a rigid or non-rigid

motion field along the respiratory or cardiac motion direction.

view (in one or more directions). However, signal from static
structures, such as chest wall, is also included in 1D self-
navigators, which can lead to motion estimation and correction
errors. Image-based navigators, which allow separation of static
structures from the moving heart, have been proposed as an
alternative to 1D self-navigation to reduce motion estimation
errors. These methods use low spatial resolution images acquired
with sequence interleaved imaging blocks at periodic intervals,
prior to the CMR data acquisition, to estimate and correct for
2D or 3D respiratory motion. Free-breathing single shot CMR
sequences often rely on retrospective motion correction using
image registration methods to correct for respiratory motion
between time frames.

Once the respiratory signal has been estimated, image
degradation caused by respiratory motion can be reduced

by: (a) correcting for translational motion (directly in k-
space) (55, 130, 150, 158, 160–163), (b) separating (or
binning) the data into multiple respiratory states to generate
respiratory motion-resolved images (164–183), and (c) (using
the latter for) correcting for more complex non-rigid motion
(113, 157, 184–201).

Cardiac Motion: Stop Being Triggered
CMR acquisitions are usually synchronized with heart motion
though an ECG (with electrodes attached to the chest) to
minimize imaging artifacts caused by cardiac motion. Two
approaches are typically used: prospective ECG triggering and
retrospective ECG gating. Prospective triggering uses the R
wave from the ECG signal to trigger the data acquisition (and
“freeze” the heart) at a specific phase or certain number of
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phases of the cardiac cycle (149, 161, 202–206). In retrospective
gating, data are acquired continuously throughout the cardiac
cycle and the ECG signal is recorded simultaneously (140,
143, 144, 207–213). Subsequently, data are reordered and
grouped into different cardiac phases according to the ECG
signal. However, the ECG can be unreliable in CMR (as
described in Sections Clinical Cardiovascular MR: What do
we See and why do we Need it? and Clinical Cardiovascular
MR: How Should we Perform the Examination), particularly
in the case of arrhythmias and ectopic hearts. Finger pulse
oximetry can be used as an alternative to ECG, but its signal
is delayed relative to the ECG R wave. To overcome these
challenges, cardiac self-gating approaches have been proposed
to estimate an ECG-like signal directly from the acquired
data (141, 142, 167, 171). The signal is then used for cardiac
gating. More recently, contactless external sensors like pilot
tone have also been used to track motion during CMR
exams (214).

Cardiac and Respiratory Motion: No Stopping Now
Several solutions have been developed to eliminate the need
for ECG synchronization and breath-holding altogether. This
allows continuous acquisition of CMR data, known as free-
running CMR (55, 167, 169, 170, 179, 197, 215). After
acquisition, data is then sorted into multiple cardiac phases
(with the desired temporal resolution) and multiple respiratory
motion phases based on the cardiac (ECG, self-navigation,
pilot tone, etc.) and respiratory (self-navigation, belt, etc.)
motion signals to generate a multidimensional dataset for
reconstruction. Moreover, the (self-navigation) respiratory signal
or, for each cardiac phase, the bin-to-bin (affine) respiratory
motion can be estimated and used to correct for respiratory
motion directly in k-space (by applying the corresponding
phase-shifts in k-space), before the image reconstruction, to
generate respiratory motion-corrected cardiac phase-resolved
CMR images (170, 182). In addition, these images can be used
to generate cardiac motion-corrected images by selecting the
cardiac phases with the smallest intra- and interphase motion
and then correcting for non-rigid motion (200). The obtained
respiratory and/or cardiac motion-gated k-spaces are usually
sparsely sampled. During reconstruction, the spatio-temporal
information can be exploited by either regularizing the motion
dimensions (171, 179), correcting for the motion (216–218) or
exploring the low-rankness (see Section CMR Reconstruction:
From k-space to image space) of the dynamic processes (219,
220).

Retrospective gating assumes a periodicity of the temporal
motion evolution which is however not a given for patients with
arrhythmias or irregular breathing patterns (221, 222). In these
cases, real-time CMR which is based on fast imaging sequences,
like spGRE or bSSFP, can provide a viable solution (154, 157, 185,
222–228). Imaging with high (sub-second) temporal resolution
makes acquisitions robust to motion, and thus, images can be
obtained without gating or binning (220). In combination with
efficient sampling trajectories and reconstruction techniques,
2D and 3D imaging with high spatio-temporal resolution can
be performed.

Fast CMR: Speeding up Imaging by
Acquiring Less Data
Several approaches have been proposed to speed up CMR
acquisitions by reducing the amount of data required for
accurate reconstruction, including parallel imaging (125, 126),
k-t accelerated imaging (173, 174, 229, 230), or pseudo-random
sub-Nyquist sampling (123, 124, 231). Besides more efficient
sampling trajectories, fast imaging sequences like fast low angle
shot magnetic resonance imaging (FLASH) (232), bSSFP (24),
fast spin-echo imaging (RARE) (233), echo planar imaging (EPI)
(234) have enabled fast CMR imaging. Accelerated scans can
be used to shorten the imaging time, to shorten breath-holds
and improve patient comfort, but can also be used to collect
more information (within the same imaging time), to increase
temporal or spatial resolution and/or volumetric coverage.

Parallel imaging methods, such as (the image-based)
SENSitivity Encoding (SENSE) (126) and (k-space-based)
GeneRalized Autocalibrating Partial Parallel Acquisition
(GRAPPA) (125), are used worldwide for CMR applications,
but are limited by the number of receiver coils (see Section
k-space) and in practice typically to 2- to 3-fold acceleration.
K-t accelerated imaging (173, 174, 229, 230) extends these
concepts along the dynamic temporal direction. It uses a regular
undersampling pattern that is shifted over time. Images are
reconstructed using a linear reconstruction approach, which
relies on information extracted from low spatial resolution
calibration data (with high temporal resolution) to minimize
fold-over artifacts.

Simultaneous multi-slice (SMS) imaging (235–240) has the
potential to acquire multiple slices, i.e., increasing cardiac
coverage without sacrificing in-plane spatial resolution. However,
pre-calibration scans are required to calibrate the unfolding
during reconstruction which increase overall scan time.

On the other hand, reduced spatial coverage but increased
dynamic resolution can be obtained with real-time CMR (154,
157, 185, 222–228). It relies on fast imaging sequences and
trajectories to provide respiratory and cardiac motion-resolved
images. Data acquisition is performed under free-breathing with
sufficiently fast enough trajectories to capture whole field of view
with minimal motion impact.

High acceleration factors can be achieved if the
compressibility (or sparsity in a transform domain) of images
is exploited as proposed in Compressed Sensing (CS) (124) or
Low-Rankmethods (178, 231). In these cases, we seek a (pseudo-)
random sub-Nyquist sampling (i.e., undersampling) of the data.
The applied sampling induces incoherent noise-like aliasing
artifacts in the sparse domain. Thus, to satisfy the incoherence
criterion (pseudo-) random Cartesian or non-Cartesian
undersampling schemes are used to accelerate scans.

CMR Trajectories: It Is That Sample
The k-space undersampling patterns to accelerate CMR
acquisitions in combination with the selected reconstruction
method determine the obtainable image quality. A few exemplar
trajectories are shown in Figure 13. In parallel imaging, the
number of k-space lines is usually reduced using regular
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Cartesian undersampling (i.e., sampling below the Nyquist-
Shannon sampling limit) (125, 126). In dynamic CMR, the
Cartesian sampling patterns can be extended along the dynamic
motion direction as used in k-t imaging (173, 174, 229, 230). A
different k-space undersampling should be used for each time
frame to introduce incoherence along the temporal dimension,
and to thus enable exploitation of both spatial and temporal
sparsity, as for example performed with a variable-density
incoherent spatiotemporal acquisition (VISTA) sampling (241).

Non-Cartesian sampling schemes may be preferred because
they are less sensitive to motion (123, 151, 163, 169, 171, 172,
181, 198, 202, 210, 224, 230, 237, 242–253), due to a densely
sampled low-frequency range and the repeated sampling of the
k-space center enables the extraction of motion signals (self-
navigation). Unfortunately, non-Cartesian sampling requires
resampling of the acquired data onto a Cartesian grid, which is
computationally expensive.

Several Cartesian trajectories that acquire data using a radial
or spiral-like pattern on a Cartesian grid have been proposed
to overcome the computational complexity of non-Cartesian
trajectories, such as Variable-Density sampling and Radial view
ordering (VDRad) (254), CIRcular Cartesian UnderSampling
(CIRCUS) (255), (Variable-Density) Cartesian acquisition with
Spiral Profile ordering (VD-CASPR, CASPR) (201, 207, 256),
GOlden-angle CArtesian Randomized Time-resolved
(GOCART) (257), rotating Cartesian k-space (ROCK) (146),
centric reordering (211) or Enhancing Sharpness by Partially
Reduced Subsampling Set (ESPReSSo) (258, 259) sampling.

For 3D CMR imaging, non-Cartesian trajectories can be
combined with Cartesian sampling, as in, for example, radial
stack-of-stars (123, 175, 212, 260, 261) or stack-of-spiral (262)
sampling schemes. Alternatively, 3D whole-heart CMR can be
achieved using 3D Cartesian trajectories (167, 208, 254, 255),
or 3D non-Cartesian sampling patterns, such as radial “koosh-
ball” (169, 182, 209) or spiral phyllotaxis (170, 181). Moreover,
acquisitions often use a golden-angle ordering scheme for which
consecutive k-space spokes are incremented by the golden
angle (θ ≈ 111.25◦) (263, 264), to achieve nearly uniform k-
space coverage (also optimal for retrospective binning) and
incoherence along both spatial and temporal dimensions.

CMR Reconstruction: From K-Space to
Image Space
The undersampled data requires appropriate reconstruction
techniques to recover an aliasing-free image, as illustrated in
Figure 13. The raw data is linked with the image via the forward
model as stated in Equation (11). CS relies on non-linear
reconstruction algorithms to reconstruct images from randomly
(or pseudo-randomly) undersampled data (124). In CS, the
undersampling trajectory should lead to incoherent, noise-like
aliasing artifacts which can be corrected for if images can be
sparsely represented in a set transform domain (e.g., wavelets).
In contrast to fixing the transform domain, dictionary learning
techniques (265) seek to find the sparsest image representation
by learning the sparsifying transform specific to each type of
application. CS has the advantage that it does not require any

training data and can achieve high accelerations. It can also be
combined with parallel imaging methods (266, 267). However,
it depends on application specific hyperparameter optimization,
and the iterative algorithms result in long reconstruction times.

Low-rank matrix completion methods have extended the
idea of CS to matrices (178, 231). These explore the global
or local (patches) correlations within CMR images e.g., along
the temporal or multi-contrast dimensions (113, 178, 179, 189,
207, 231, 268–278). For dynamic CMR, low-rank methods
can act as an implicit motion compensation for any residual
motion (after prior triggering/gating) (177, 207). Some methods
simultaneously enforce low-rank and sparsity constraints to
separate the temporally correlated background and dynamic
information in various CMR applications, such as dynamic
contrast-enhanced CMR (231, 274, 277). Moreover, low-rank
tensor imaging has been proposed for multi-dimensional
CMR imaging (169, 195, 197, 219, 220, 272, 279–281).
These methods explore the spatio-temporal correlations in
all dimensions (spatial, contrast, cardiac, and respiratory
motion) to generate multi-parameteric and motion-resolved
CMR images, e.g., cardiac- and respiratory-resolved T1 and
T2 maps. In addition, motion can be handled implicitly in
the low-rank decomposition instead of performing a prior
motion gating.

Model-based reconstruction approaches have also been
proposed to accelerate quantitative CMR imaging (248, 249, 282–
285). These methods incorporate the physics of the MR
signal into the image reconstruction problem allowing for
the direct reconstruction of quantitative maps from the
undersampled CMR data, bypassing the intermediate steps of
image reconstruction and pixel-wise model fitting. Furthermore,
in model-based reconstructions the underlying respiratory and
cardiac motion model can be accounted for. Explicit motion
compensation can be performed by mapping image data along
the temporal direction with the underlying motion model
extracted from image registration (187, 216, 217, 284).

Fast reconstruction is essential in a clinical setting. However,
non-standard and iterative reconstruction methods often suffer
from high computational demands, long computational times
and require careful tuning of the algorithm (regularization)
parameters. Recently, deep learning-based solutions have been
proposed to address some of these shortcomings and which will
be covered in more detail in Section Image Reconstruction.

ARTIFICIAL INTELLIGENCE FOR
CARDIOVASCULAR MR

Artificial Intelligence (AI) and Machine Learning (ML), a sub-
class of AI, have led to a break-through in the last years
and have the potential to transform the clinical workflow
substantially. CMR imaging leverages a high potential to enhance
each individual step of the imaging pipeline (Figure 14), from
complex CMR acquisition processes, the highly varying imaging
protocols, to automated diagnosis. Despite the success of ML and
AI, these new techniques should not replace clinicians, but aid
clinicians in decision making, facilitate cardiac view-planning, or
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FIGURE 13 | Fast cardiovascular MR techniques to enable high spatial and/or temporal resolved data acquisition. Cartesian or non-Cartesian undersampling

trajectories (left column) can be used to accelerate acquisitions. Depending on the CMR application and acquired trajectory, various image reconstruction techniques

(right column) like parallel imaging, compressed sensing, dictionary learning, low-rank, model-based, or more recently deep learning methods can be used. These

reconstructions handle and exploit the spatial, temporal, and/or parametric dimensions. In CMR, the forward model, commonly given by k = Ex, maps the unknown

(MR signal intensity) image series x to the k-space data k. The forward operator E contains the coil sensitivity maps C (enabling parallel imaging), Fourier operator F

and sampling pattern A. If data are undersampled, dynamic images can be estimated using, for e.g., compressed sensing, by minimizing an objective function with a

data consistency term (to enforce consistency between the measured data and model prediction) and a regularization term, with sparsifying transform 8 (e.g., spatial

wavelet or total variation) and regularization parameter λ. Alternatively, a dictionary learning-based method can learn the sparsifying transform (dictionary, D), and

reconstruct the image simultaneously from undersampled k-space data. The low-rank plus sparse (L + S) decomposition model enables the reconstruction of

undersampled dynamic k-space data. In this case, the low-rank (L) component captures the temporally correlated background, and the sparse (S) component

captures the dynamic information. Model-based reconstruction methods include the physics model in the forward model to directly estimate quantitative parameter

maps from fully-sampled or undersampled k-space data.

support in the tedious task of image segmentation to simplify and
speed up quantification of functional cardiac parameters.

In this section, we first provide an overview of the common
terminology and building blocks in ML, without the usage
of complex mathematical notations. In the second part, we
provide an overview on how ML can be used at each individual
stage of the imaging pipeline, i.e., cardiac view-planning,
image acquisition, image reconstruction, shape analysis, image
segmentation, and quantification of biomarkers. Finally, we
provide insights into potential pitfalls in using ML in CMR, and
an outlook into the future of ML for CMR.

Breaking Down the Terminology
The terms AI, ML and more recently deep learning (DL)
are often used interchangeably. However, there is a huge
difference between these terms. AI leverages the potential
of machines to mimic the human mind’s ability to solve

problems or make decisions. As a sub-branch of AI, ML uses
algorithms to learn patterns from data and make predication
about a certain task. Pre-defined features are extracted from
the input data and are then fed into the (statistical) model.
The parameters of this model are then trained using data
to make correct predictions for a specific task without
human assistance. After model training, predictions from
new unseen data can be made using the trained model
parameters. While ML in its classic formulation depends on
defining hand-crafted discriminative features which are tedious
and time-consuming to extract, a further sub-branch of ML
called DL directly learns feature representations from data
using neural networks (NNs). Although the concept of NNs
was established in the late 1980’s, DL has flourished since
2015. The break-through of DL came with the availability
of Graphics Processing Units (GPUs), large datasets, and
advanced architectures.
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FIGURE 14 | Schematic overview of the five areas in which Artificial Intelligence (AI)/Machine Learning (ML)/Deep Learning (DL) assisted operations can support the

clinical workflow.

ML has the ability to support in various challenging tasks.
In image classification, the model takes the input image or
already extracted features as input, and outputs a classification
label, to predict, e.g., a certain heart disease. The task of
assigning an individual label to each input pixel is called
segmentation. Typical application of image segmentation in the
field of cardiac imaging is the segmentation of the heart into
four chambers and myocardium. Image-to-image or sensor-to-
image translation describe regression tasks that form the third
group of important ML tasks. Regression tasks can be found
in MR image reconstruction from undersampled k-space data,
super-resolution, or image enhancement.

Types of AI: Does It Need Supervision?
Machine Learning can be categorized in three major types:
supervised learning, self-supervised learning, and un-supervised
learning. Supervised learning methods require a training
database with a set of input data and annotated output labels
for training. The model tries to make predictions, which are
then compared to the correct output labels using a cost function.
The error in the cost function then gives an idea how the
models’ parameters have to be updated in the training loop. In
contrast, neither labeled data nor any other prior knowledge
on the data is available in unsupervised learning. Hence, the
model learns itself how to identify patterns in the data, as in
clustering (variational) autoencoders, or Generative Adversarial

Networks. Self-supervised learning is a form of unsupervised
learning, where the data provides the supervision.

Training, Validation, and Testing: Getting It
to Work
To update the parameters of the model, the network needs to be
trained with respective training data. A training database consists
of a number of training samples. For each update of the model
parameters, a batch is drawn from the training samples and
passed through the network. This is repeated until all training
samples have been processed, defining one epoch of training. The
network itself is trained for several epochs until convergence. The
number of training epochs depends on the selected dataset, the
number of training samples, and the selected task. A separate
validation data set is used to monitor the training process and
to tune hyper-parameters (learning rate, architecture parameters
etc.). This allows for, e.g., identification of model overfitting.
However, the validation data set is not used to update the model
parameters of the network. In the testing stage, themodel is tested
on further unseen data and used for the final model evaluation.
It is important to note that training data, validation data, and test
data are mutually exclusive.

However, in medical imaging, and especially in the context of
CMR, only small databases are often available. This requires a
thorough study of the robustness of the model to avoid a bias
toward selected validation samples. Cross validation provides
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a way to study the robustness of models if small datasets are
available. For k-fold cross validation, the database is split into a
number of k subsets and the networks are trained for training
data in k-1 folds, and the data in the remaining fold is used
for validation/test. This is repeated such that k networks are
trained, with every fold being used for validation. Deviations in
evaluation metrics indicate reduced robustness of the models.

In medical imaging, we often observe another danger when
creating our own training databases. In CMR, we often acquire
several slices from a single subject. Hence, in case training
samples are drawn frommultiple subjects with several slices each,
we need to make sure that data from the same patient does not
appear in training and validation simultaneously to avoid any
bias of the models toward specific anatomies or pathologies.

Database: Does Size Really Matter?
The availability of large training databases is one of the most
challenging aspects in ML for CMR. In the context of image
reconstruction, publicly available datasets are very rare. In
CMR, for example, we found that some data for radial image
reconstruction of dynamic cardiac MRI are available (286). For
other ML tasks like image classification and image segmentation,
tens of thousands of annotated CMR datasets are available in, e.g.,
UK Biobank (287), M&M (288), or ACDC (289). However, the
availability of both raw k-space data for image reconstruction and
annotations of the same data for image segmentation or cardiac
disease classifications are still limited. Hence, in the context of
multi-task models, special focus must be given on the datasets, as
k-space data for image reconstruction tasks are often simulated
or only retrospectively undersampled, limiting the application of
proposed approaches to clinical workflow.

Neural Networks and Their Building
Blocks: How to Build Your CMR Network
From Scratch
The recent success of neural networks not only depends on
the availability of training data, but also on the availability of
expressive network architectures. The idea of neural networks
goes back to the 1957, where an artificial neuron was modeled
similar to the neurons in the brain (290). An input signal arrives
at the neuron (layer) and is processed by the layer weights. An
activation function decides if the neuron should be fired or not. A
typical deep neural network consists of several layers, which can
be related to modeling the complex wired structures in the brain.

Convolutional layers are powerful local feature extractors. The
spatially-dependent features are generated by convolving the
underlying image with a set of trainable filter kernels, optimized
during model training. To extract global features, fully connected
layers are used, connecting each input pixel with each output
pixel. Global features are necessary in, e.g., image classification
and segmentation. To emphasize the extracted features, non-
linear activation functions are applied. Common activation
functions for image regression are ReLU and its various
variants, e.g., LeakyReLU, PreLU, while for image segmentation
and classification tasks bounded activation functions such as
tanh, sigmoid, or softmax are used. Pooling layers or strided

convolution layers are used to downsample the spatial features,
to increase the receptive field. To increase the resolution, strided
transposed convolution layers or upsampling layers that perform
interpolation are common choices. In-between convolution and
activation layers, often normalization layers are used that are
reported to stabilize training and improve training convergence.
These are the basic elements to build a deep neural network,
however, more detailed building blocks are out of scope of this
review paper.

It should be noted that the nature of MR data is complex-
valued, but in the core literature only real-valued building blocks
are reported. Hence, the real and imaginary plane are handled
as a real-valued image with two feature channels. Recent works
also focused on the implementation and correct utilization of
complex-valued versions of the aforementioned building blocks,
and correct network training following Wirtinger calculus (291).

CMR Applications
The presented layers and building blocks can be used to form
a full network. For CMR, convolutional neural networks are
most used, however, no unique network definition exists, and
numerous variants have been proposed for various tasks. The
targeted application, dimensionality and data availability mainly
determine the task definitions and subsequently architectural
choices. An exemplary scenario for AI applications for cardiac
cine MRI over the various CMR processing steps (Figure 14) is
depicted in Figure 15.

View Planning and Image Acquisition
A comprehensive CMR exam requires complex and time-
consuming scan planning and optimization of acquisition
protocols. Thus, the effectiveness and image quality of a CMR
scan highly depends on the experience and ability of the operator
to adequately prepare patients, tune acquisition parameters,
plan cardiac views and shimming, all in a timely fashion (see
Section Clinical Cardiovascular MR: How Should we Perform
the Examination). Currently, highly trained operators manually
plan and conduct clinical CMR exams. Recently, ML methods
have been proposed to automate or shorten the scanning process,
standardize image acquisition and quality across patients (292–
296). Major CMR vendors are now introducing ML solutions
to help or automatically optimize and plan exam protocols.
Other ML methods have been proposed for assessing image
quality, replacing the usually subjective visual inspection, which
can detect artifacts, correct acquisition parameters, and trigger a
rescan if deemed necessary (297–299). Moreover, ML methods
can also be used to learn the optimal sampling pattern for
reducing the acquisition time while maximizing image quality
(300). Thus, ML-assisted CMR examinations can help operators
solve complex decision-making tasks under time pressure.

Image Reconstruction
InMR image reconstruction, we aim at recovering an image from
(undersampled) k-space which is corrupted by measurement
noise. The acquisition process is thereby approximated and
formalized in a linear forward operator, see Equation (11).
Depending on the imaging application and signal modeling, the
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FIGURE 15 | Exemplary AI-assisted applications performed on cardiac CINE MRI ranging from acquisition over image reconstruction, analysis, motion to diagnosis.

The respective inputs and output data is illustrated.

operator involves Fourier transforms, sampling trajectories, and
coil sensitivity maps. Field inhomogeneities, relaxation effects,
motion, and diffusion can also be considered.

In ML frameworks, the objective is to learn the sensor-
to-image mapping function having learnable parameters. The
mapping function can be stated as NNs and can be used in
different ways to reconstruct an image from the measured k-
space data. All tasks have an image and/or k-space as input but
differ in how data is processed and how further MR specific
information (meta parameters or other tensors like trajectories
and coil sensitivity maps) are handled for the targeted application
output. These reconstruction tasks are further described hereafter
and depicted in Figure 13.

Image Enhancement Learning
Certain types of undersampling introduce incoherent noise-
like aliasing in the zero-filled reconstructed images. Thus, an
image enhancement task can be used to reduce the noise-
like aliasing in the images. The network performs an image-
to-image regression by predicting the output value based
on the corrupted input image. The input to the denoising
task can be the zero-filled (and noise-affected) MR images
or reconstructed MR images that present remaining aliasing
or noise amplification for high undersamplings (e.g., images
reconstructed with parallel imaging). Instead of learning the
denoised image, some approaches learn the residual noise to be
removed from the noisy input (301–303). The mapping only acts
on the image and does not consider any further information from
the acquired k-space. Hence, data consistency to the measured
k-space signal cannot be guaranteed. Approaches exist that add
additional k-space consistency to the cost function (304) or
enforce k-space consistency after image denoising (305, 306).

K-Space to Image Learning
A different DL-based approach is to reconstruct the MR image
directly from the acquired k-space data. With the so-called direct

k-space to image mapping, the k-space data are directly used as
the input. Consequently, the network approximates the forward
model (see Section CMR Reconstruction: FromK-space to Image
Space). Learning a direct mapping is especially useful if the
forward model or parts of the forward model are not exactly
known. In the case of fully sampled MRI under ideal conditions,
the learned mapping approximates the Fourier transform (307).
However, this becomes computationally very demanding due to
fully connected layers which are involved here. Furthermore,
consistency with the acquired k-space data cannot be guaranteed.

Physics-Based Unrolled Learning
Another family of DL-based MR reconstruction methods is
referred to as physics-based reconstruction. These approaches
integrate the traditional physics-based modeling of the MR
encoding (see Section K-space) with DL, ensuring consistency
with the acquired data. We can distinguish two classes of
problems: (a) learning in k-space domain and (b) iterative
optimization in image domain with interleaved data consistency
steps. The first approaches are referred as k-space learning
whereas the latter one is known as unrolled optimization. These
two approaches can be combined to hybrid approaches that learn
both a neural network in k-space and image domain.

K-Space Learning
A prominent approach for physics-based learning in k-space
domain (308) can be viewed as extension of the linear kernel
estimation in GRAPPA. A non-linear kernel modeled by the
network is learned from the ACS. The missing k-space lines can
then be filled using this estimated, non-linear kernel and the data
is then transformed to the image space using an Inverse Fourier
transform. The final image is obtained by root-sum-of-squares
reconstruction of the individual coil images.

Hybrid Learning
Hybrid approaches (309–311) combine the advantages of
learning in k-space and image domain. These networks
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are applied in an alternating manner to obtain the final
reconstruction. When designing hybrid approaches, it is
important to keep the basic theorems of the Fourier transform
in mind: local changes in image domain result in global changes
in k-space domain and vice versa, to avoid unexpected behavior.

Plug-and-Play Priors
Trained image denoisers can be also combined with physics-
based learning or conventional iterative reconstructions and thus
serve as an advanced regularization for a traditional optimization
problem. Iterative, image-wise, or patch-wise denoising is
performed followed by a subsequent data consistency step, as
involved in plug-and-play priors (302, 312–314), regularization
by denoising (315) or image restoration (316).

Unrolled Optimization
Physics-based learning, which is modeled as iterative
optimization, can be viewed as generalization of iterative
SENSE (126, 317) with a learned regularization in image
domain. It contains a data-consistency term and a regularization
term which imposes prior knowledge on the reconstruction.
A gradient descent (318), proximal gradient (319), variable
splitting (320), or primal-dual optimization (321) can be used
for algorithm unrolling. The iterative optimization scheme
is unrolled for a fixed number of iterations. Neural networks
replace the gradient of the hand-crafted regularizer by a learned
data-driven mapping. Various regularization networks can be
used, e.g., variational networks (322) or cascade of convolutional
networks (319). In CMR, the dynamic or quantitative dimensions
can be incorporated into network architecture design [e.g.,
recurrent networks (311, 323)], building blocks [e.g., 2D+t
(324), 3D+t convolutions (325)], data priors (326), or loss
modeling (327). Training several iterations with alternating
mapping functions and intermittent data consistencies reflect
thus unrolled optimizations (328).

Super Resolution
An alternative approach for accelerating the image acquisition
while simultaneously increasing spatial resolution is the usage of
DL-based super resolution (SR). Images are acquired at a low-
resolution (with or without undersampling) and retrospectively
reconstructed to the high-resolution target. This has been studied
for cardiac cine (329, 330) and whole-heart CMR (331–336).

Image Analysis
CMR image segmentation and quantitative evaluation can
be a challenging, time-consuming and operator intensive
task. However, quantitative analysis of myocardial function,
perfusion, pathological tissues, provides important diagnostic
and prognostic information (66). In recent years, a large number
of ML-based methods have been proposed to automatically
perform CMR image segmentation and analysis, thereby
significantly reducing the time required for CMR image
assessment (337). Considerable efforts have been directed toward
cine imaging, as it is considered the gold standard for the
assessment of cardiac chamber volumes and function (338–
341). In this case, DL-based methods automatically segment the

myocardium and cardiac chambers from MRI images, replacing
manual approaches that are time-consuming and prone to
observer variability, to enable the extraction of quantitative
indices, such as LV and RV volumes, mass, and EF. Some
frameworks additionally provide myocardial strain measures
(299, 342). Automated segmentation methods have also been
proposed to quantitatively derive other important markers of
cardiovascular disease such as volume of pericardial adipose
tissue (343), and scarred tissue areas (from LGE images) (344–
348). Moreover, few DL-based methods have proposed to
automatically quantify myocardial tissue from native T1 mapping
(349, 350) and myocardial blood flow from contrast-enhanced
perfusion CMR (351, 352).

Motion Correction
Motion artifacts due to physiological motion or caused by mis-
triggering in the ECG or movements during the examination are
a potential source of image degradation. Several approaches using
DL exist to correct for motion artifacts in the area of CMR.

Adversarial training strategies as proposed in Zhang et al.
(353) aim to correct for the motion in the image domain.
A database of motion-corrected and motion-degraded images
serve as training database. A generator network predicts motion-
corrected images. The discriminator network tries to distinguish
if the generated motion-corrected image is from the manifold
of real motion-corrected or generated motion-corrected images.
The goal of the generator network is to fool the discriminator
network to generate images that look like real motion-corrected
images. Another method of retrospective motion correction in
CMR with adversarial training is proposed in Ghodrati et al.
(354). Here, a Variational Autoencoders is trained on healthy
subjects and patients with suspected cardiovascular disease to
remove respiratory motion.

Instead of addressing MR motion correction in the image
domain, Oksuz et al. (355), apply motion correction directly
in k-space. Their method uses a generator network that is
motivated by Automap (307) to transform the k-space directly to
a reconstructed image. Pairs of synthetically motion-corrupted k-
space data and artifact-free reconstructed CMR images serve as
training database for the proposed adversarial training strategy.
Beyond image reconstruction, Oksuz et al. (356) introduced a
joint framework for motion artifact detection and correction in
k-space and image segmentation. The motion artifact network
detects motion-affected lines in k-space, influencing the data
consistency term. The motion-corrected image is obtained from
a subsequent bi-directional recurrent CNN. The segmentation
network is based on a standard UNet architecture (357). Their
work showed that end-to-end training outperforms sequential
training substantially when trained on UK Biobank data (287),
with synthetical motion corruption and synthetically added
phase information.

Retrospective motion-correction of reconstructed CMR
images is proposed in Huang et al. (358). First, CMR
reconstruction is performed with a Convolutional Gated
Recurrent Units and a subsequent data consistency layer. Motion
fields are then estimated from the reconstructed images using
a FlowNet architecture. The estimated motion fields are then
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used in a post-processing motion-correction step to improve the
final reconstruction.

Large non-rigid motion across multiple temporal frames can
occur and in the case of 2D imaging, the existence of through-
plane motion complicates the motion estimation process. A
fast and reliable motion estimation is therefore required that
correlates these short- and long-term correspondences, as
proposed by Pan et al. (359) and Küstner et al. (360), and either
operates on the image domain (359) or on the accelerated raw
data (360).

Joint motion estimation and reconstruction is
proposed by Seegolam et al. (361). Here, a motion-
estimation UNet is embedded directly in the data
consistency term of a dynamic reconstruction network.
This approach allows for exploiting the whole temporal
information in each cardiac phase, resulting in high-
quality reconstruction of extremely undersampled
CMR data.

Multi-Task Networks
Sun et al. (362) proposed a unified deep network architecture
for joint image reconstruction and segmentation. Image
reconstruction is formulated as a cascaded encoder-decoder
network with intermittent data consistency layers to facilitate
learning and making use of the acquired k-space data. The
reconstruction and segmentation networks share the same
encoder, acting as a regularizer for the two tasks, while the
decoder is different, and hence, task specific. Their results
suggest that training a joint network is beneficial for high-
quality segmentation of undersampled k-space data, however,
the evaluation was performed on simulated k-space data of
the MRBrainS segmentation challenge dataset (363). Similar
observations were made in Huang et al. (364) where FR-
Net for image reconstruction (inspired by the fast iterative
shrinkage-thresholding algorithm), was combined with a UNet
for myocardial segmentation. However, this approach was
evaluated only on simulated k-space data. While these multi-
task networks aim for a reconstructed intermediate image,
Schlemper et al. (365) bypassed this step and directly predicted
segmentation maps from highly undersampled dynamic CMR
images of the UK Biobank data (287). Their results indicate that
clinical parameters can be computed within an error of 10%
if at least 10 lines are acquired for each cardiac phase, using
Cartesian sampling.

Joint learning of motion estimation and segmentation from
fully-sampled data was proposed byQin et al. (366). An extension
to undersampled data has been proposed in Qin et al. (367),
where the network training is guided by fully-sampled data. The
results suggested that an efficient motion estimation network
can bypass the need for high-quality reconstructions in order to
achieve accurate image segmentation.

The surveyed approaches achieve promising results for end-
to-end training. However, to date, none of these approaches
have been tested on real k-space data and evaluated for clinical
applicability. Furthermore, evaluation of these k-space data also
requires the availability of proper training databases with both
real k-space data and manual segmentations.

CHALLENGES AND CONCLUSION

The plethora of CMR sequences available and information
offered makes the technique attractive, but also very challenging,
particularly for a beginner. This review has provided an
overview of the main CMR concepts and techniques, including
recent technical advances, which should be useful for anyone
wanting to improve, update, or maintain their knowledge and
understanding of CMR. Ultimately, the dialogue between the
scientific and clinical communities should improve if all users
understand CMR terms and use a common language. This review
has described the key physical principles underlying the most
commonly used (quantitative) CMR sequences and preparation
pulses and causes of common image artifacts. This review has
explained how and why CMR can (and should) be used for
diagnosis and guiding clinical decision making in a range of
cardiovascular disease scenarios, such as ischemic heart disease,
myocarditis, atrial fibrillation, valvular heart disease, vascular
disease, congenital heart disease, and cardiac tumors. This review
has also outlined the building blocks of a CMR examination,
explained how to perform a comprehensive patient-tailored
examination based on these building blocks in a clinically
acceptable timeframe and avoid common scanning mistakes.
The challenges of CMR associated with acquisition time, SNR,
spatial and temporal resolution, cardiac and respiratory motion
have been discussed. In addition, popular and recently developed
methods of suppressing and handling motion have been
described. This review has explained how to speed up CMR scans
by acquiring less data (than needed by conventional methods)
using (pseudo-)random sampling trajectories and non-linear
reconstruction algorithms, such as compressed sensing and low-
rank completion, model-based or DL reconstruction approaches.
Finally, this review has discussed how DL approaches can
potentially help overcome challenges such as time-consuming
reconstructions and quantitative analysis.
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Supplementary Figure 1 | Still from a balanced steady-state free precession

4-chamber cine. This sequence has high intrinsic T1 and T2 contrast enabling

cardiac chambers and anatomy to be visualized with exquisite clarity. The blood

pool appears bright. Fat also appears high signal. Areas where fat and water

protons interface appear black in outline due to chemical shift artifact. This allows

fibrofatty change (arrows) to be readily visualized in the septum (arrows) and

epicardial lateral wall, enabling a diagnosis of arrhythmogenic cardiomyopathy to

be made without the need for contrast.

Supplementary Figure 2 | Balanced steady-state free precession cine

demonstrating a jet of aortic regurgitation (arrow). This cannot be reliably

quantified by visual assessment of the jet and once detected should be further

evaluated using phase-contrast velocity mapping.

Supplementary Figure 3 | Quantification of aortic regurgitation in the patient

depicted in Figure 9 using phase-contrast velocity mapping. The magnitude

image on the top right is used to contour a region of interest in the aorta. The

phase image on the top left is used to determine flow and plot this against time

(bottom). The flow drops below the baseline for the whole of systole. The

regurgitant volume is ∼67ml which amounts to a regurgitant fraction of 60%,

denoting severe regurgitation.

Supplementary Figure 4 | An example of a clinical imaging protocol library built

with three acquisition strategies for managing irregular rhythms: Sinus Rhythm;

Mildly Irregular Rhythm; Severely Irregular Rhythm.

Supplementary Table 1 | A general cardiomyopathy protocol can be modified to

assess acute presentations by the addition of imaging sequences sensitive to

oedema (highlighted).
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